A testbed for intelligent soccer strategies
for the RoboCup.be team

Tim Vermeulen

Katja Verbeeck

CODeS, KaHo Sint-Lieven (KULeuven), Gebroeders Desmetstraat 1, 9000 Gent, Belgium

Abstract

Robocup.be is part of an international project to encourage Al and robotic research. Guided by DSP Valley
and in association with other colleges and universities KaHo Sint-Lieven cooperates in a Belgian team of
small, driving soccer robots to take part in international RoboCup competitions in the future.

This demonstration paper will present an environment to simulate and test intelligent strategies for
the RoboCup.be soccer robots. The testbed developed is the result of the first author’s master thesis. A
physical simulation environment is created, using a physical engine. Next this is extended with a multi-
agent system to get a testbed in which intelligent multi-agent soccer strategies can be developed and tested.
‘We focus on incorporating reinforcement learning in our RoboCup team. The ultimate goal is to hybridize
the testbed by replacing the physical engine with the real-life robotic soccer game.

1 RoboCup

Robocup.be is part of an international project to encourage Al and robotic research. Guided by DSP Valley !
and in association with other colleges and universities (Erasmus University College, Lessius University
College, Campus De Nayer and Vrije Universiteit Brussel) KaHo Sint-Lieven cooperates in a Belgian team
of small, driving soccer robots to take part in international RoboCup competitions in the future. The Belgian
team aims for the RoboCup Small Size League which is an international competition for small soccer robots,
the height for instance is limited to 15 cm. In those annual competitions teams from many different countries
show their best, in June 2010 18 teams participated the Small Size League. In July 2011 a new competition
is held. More information can be found on www.robocup.be.

2 The simulation environment

The demonstrated simulation environment exists of
two parts, shown in Figure 1, and an interface layer
in between. One part is based on a physical engine
while another part is the multi-agent environment.
The interface layer connects those two and makes
the necessary conversions.

Physical engine

The robots, the field and the ball have many phys-
ical properties. To simulate the robots and the ball
we specify them as bodies in a physical engine. A
body can have physical properties like a position,
a rotation, a velocity, a rotation speed, an acceler-
ation, a mass, friction. All this is simulated with

Figure 1: Simulation environment based on Repast
Symphony and Phys2D.

the physical engine, Phys2D [1], which is written in Java and based on the Game Developers Conference
presentation of Erin Catto in 2006. Currently a three dimensional engine is being added.
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Multi-agent environment

The controlling of the robots is done by a multi-agent system. Based on practical tests and criteria like the
possibility of continuous coordinates, a three-dimensional representation and the possibilities to append the
physical engine, Repast Symphony [2] was chosen as the underlying MAS platform. Within this environ-
ment the ball and players are defined as agents, each with their own behavior. They update their location
every time step to match with the simulated physical world. After updating its location a player uses its
strategy, like described in the next section, to calculate the action to take.

3 Strategies

Every player uses a strategy to determine what action to take. A strategy exists of three parts: a state
representation, a set of actions the player can take and a policy to select an action in the current state. In our
demonstrated test- and simulation environment different strategies can be tested and new ones can be added.

The state representation

The total state of the player is a dynamic set of partial player states: the role, the ball owning, the distance
to the own goal, the distance to the goal of the opponent, the distance to the ball, the possibilities to shoot to
the goal and the pass possibilities. In some situations some parts of the total state are ignored. This reduces
the calculation time per step resulting in a higher update frequency and thus better response times.

The actions

To make a varied player behavior, one need an extensive set of actions a player can take like ’go to the ball’,
’go to the goal of the opponent’, ’defend the own goal’, ’run clear’. Each action corresponds with three
skills, one of each type. The move skills will adjust the position of a player, the turn skills will adjust the
rotation of a player and the kick skills will kick the ball if necessary. Some examples of implemented skills
are: 'run clear’, 'move to defender position’, "turn to ball’, "kick to teammate’.

The policy

The only thing left is selecting a proper action to take in the current state. This is perhaps the most important
part that specifies some rules to select an action in the current state. This policy can be a simple static policy,
hard-coded or specified in a file, or it can be a smarter learning policy based on reinforcement learning [3].
In our demonstrated testbed an extensive static policy is used and tests were done with learning policies.

Local intelligence

Another simulated feature is local intelligence. Some parts of the behavior are implemented on the robot
itself, for instance avoiding collisions. This can give better results because the reaction times are smaller
and local sensors can be used, but only limited calculation power is available on small size league robots, so
implementing the complete behavior local is unfeasible.

4 Demonstration

In the demo we first run a simple match in the physical engine. In this case, the players clearly lack intelligent
team behavior. Next we demonstrate how intelligent multi-agent strategies can simply be incorporated in
our simulated robot soccer testbed. Different strategies can easily be created and activated for each team.
We show manually created strategies versus strategies based on reinforcement learning [3]. The interested
listener can play with the tool and at runtime alter the strategy of a team. On-line performance of the used
strategies is plotted in a life-updated chart.
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