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Sparse model estimation is a topic of high importance in mod-
ern data analysis due to the increasing availability of data sets with
a large number of variables. Another common problem in applied
statistics is the presence of outliers in the data. This paper combines
robust regression and sparse model estimation. A robust and sparse
estimator is introduced by adding an L1 penalty on the coefficient
estimates to the well known least trimmed squares (LTS) estimator.
The breakdown point of this sparse LTS estimator is derived, and a
fast algorithm for its computation is proposed. Both the simulation
study and the real data example show that the LTS has better pre-
diction performance than its competitors in the presence of leverage
points.

1. Introduction. In applied data analysis, there is an increasing avail-
ability of data sets containing a large number of variables. Linear models
that include the full set of explanatory variables often have poor prediction
performance as they tend towards having large variance. Furthermore, large
models are in general difficult to interpret. In many cases, the number of
variables is even larger than the number of observations. Traditional meth-
ods such as least squares can then no longer be applied due to the rank
deficiency of the design matrix.

To improve prediction accuracy and as a remedy to computational prob-
lems with high-dimensional data, a penalty term on the regression coeffi-
cients can be added to the objective function. This shrinks the coefficients
and reduces variance at the price of an increased bias. Tibshirani (1996) in-
troduced the least absolute shrinkage and selection operator (lasso), which
uses the L1 norm as penalty function. Let y = (y1, . . . , yn)′ be the response
and X = (xij)1≤i≤n,1≤j≤p the matrix of predictor variables, where n denotes
the number of observations and p the number of variables. In addition, let
x1, . . . ,xn be the p-dimensional observations, i.e. the rows of X. We assume
a standard regression model

(1.1) yi = x′iβ + εi,
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2 A. ALFONS, C. CROUX AND S. GELPER

where the regression parameter is β = (β1, . . . , βp)
′, and the error terms εi

have zero expected value. With a penalty parameter λ, the lasso estimate of
β is

(1.2) β̂lasso = argmin
β

n∑
i=1

(yi − x′iβ)2 + nλ

p∑
j=1

|βj |.

The lasso is frequently used in practice since the L1 penalty allows to shrink
some coefficients to exactly zero, i.e., to produce sparse model estimates that
are highly interpretable. In addition, a fast algorithm for computing the lasso
is available through the framework of least angle regression (LARS; Efron
et al., 2004). Other algorithms are available as well (e.g. Wu and Lange,
2008). Due to the popularity of the lasso, its theoretical properties are well
studied in the literature (e.g., Knight and Fu, 2000; Zhao and Yu, 2006;
Zou, Hastie and Tibshirani, 2007), and several modifications and have been
proposed (e.g. Yuan and Lin, 2006; Gertheiss and Tutz, 2010; Radchenko and
James, 2011; Wang et al., 2011). However, the lasso is not robust to outliers.
In this paper we formally show that the breakdown point of the lasso is 1/n,
i.e. only one single outlier can make the lasso estimate completely unreliable.
Therefore robust alternatives are needed.

Outliers are observations that deviate from the model assumptions, and
are a common problem in the practice of data analysis. Robust alternatives
to the least squares regression estimator are well known and studied, see
Maronna, Martin and Yohai (2006) for an overview. In this paper focus is
on the the least trimmed squares (LTS) estimator introduced by Rousseeuw
(1984). This estimator has a simple definition, is quite fast to compute,
and is probably the most popular robust regression estimator. Denote the
vector of squared residuals by r2(β) = (r2

1, . . . , r
2
n)′ with r2

i = (yi − x′iβ)2,
i = 1, . . . , n. Then the LTS estimator is defined as

(1.3) β̂LTS = argmin
β

h∑
i=1

(r2(β))i:n,

where (r2(β))1:n ≤ . . . ≤ (r2(β))n:n are the order statistics of the squared
residuals and h ≤ n. Thus LTS regression corresponds to finding the sub-
set of h observations whose least squares fit produces the smallest sum of
squared residuals. The subset size h can be seen as an initial guess of the
amount of good observations in the data. While the LTS is highly robust, it
clearly does not produce sparse model estimates. Furthermore, if h < p the
LTS estimator cannot be computed. A sparse and regularized version of the
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LTS is obtained by adding an L1 penalty with penalty parameter λ to (1.3),
leading to the sparse LTS estimator

(1.4) β̂sparseLTS = argmin
β

h∑
i=1

(r2(β))i:n + hλ

p∑
j=1

|βj |.

We prove in this paper that sparse LTS has a high breakdown point. It is
resistant to multiple regression outliers, including leverage points. Besides
being highly robust, and similar to the lasso estimate, the sparse LTS (i) im-
proves the prediction performance through variance reduction if the sample
size is small relative to the dimension (ii) ensures higher interpretability due
to simultaneous model selection, and (iii) avoids computational problems of
traditional robust regression methods in the case of high-dimensional data.

The sparse LTS (1.4) can also be interpreted as as a trimmed version of
the lasso, since the limit case h = n yields the lasso again. Other robust
versions of the lasso have been considered in the literature. Most of them
are penalized M-estimators, as in van de Geer (2008) and Li, Peng and Zhu
(2011). Rosset and Zhu (2004) proposed to use a Huber-type loss function,
which requires knowledge of the residual scale. A least absolute deviations
(LAD) type of estimator is proposed by Wang, Li and Jiang (2007),

(1.5) β̂LAD-lasso = argmin
β

n∑
i=1

|yi − x′iβ|+ nλ

p∑
j=1

|βj |.

However, none of these methods is robust with respect to leverage points,
i.e. outliers in predictor space, and can only handle outliers in the response
variable. The main competitor of the sparse LTS is robust least angle regres-
sion, called RLARS, and proposed in Khan, Van Aelst and Zamar (2007).
They develop a robust version of the LARS algorithm, essentially replac-
ing correlations by a robust type of correlation, to sequence and select the
most important predictor variables. Then a non-sparse robust regression es-
timator is applied to the selected predictor variables. RLARS, as will be
confirmed by our simulation study, is robust with respect to leverage points.
A main drawback of the RLARS algorithm of Khan, Van Aelst and Zamar
(2007) is the lack of an natural definition, since it is not optimizing a clearly
defined objective function.

The rest of the paper is organized as follows. In Section 2, the breakdown
point of the sparse LTS estimator is obtained. A detailed description of
the proposed algorithm to compute the sparse LTS regression estimator
is provided in Section 3. Section 4 introduces a reweighted version of the
estimator in order to increase statistical efficiency. The choice of the penalty
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4 A. ALFONS, C. CROUX AND S. GELPER

parameter λ is discussed in Section 5. Simulation studies are performed
in Section 6. In addition, Section 7 contains a real data example. Finally,
Section 8 concludes.

2. Breakdown point. The most popular measure for the robustness of
an estimator is the replacement finite-sample breakdown point (FBP) of an
estimator (e.g Maronna, Martin and Yohai, 2006). Let Z = (X,y) denote
the sample. For a regression estimator β̂, the breakdown point is defined as

(2.1) ε∗(β̂;Z) = min

{
m

n
: sup
Z̃

‖β̂(Z ′)‖2 =∞

}
,

where Z̃ are corrupted data obtained from Z by replacing m of the original
n data points by arbitrary values. We obtained the following result for the
breakdown point of the sparse LTS estimator. The proof is in the appendix.

Theorem 1. The breakdown point of the sparse LTS estimator β̂sparseLTS

with subset size h ≤ n is given by

ε∗(β̂sparseLTS;Z) =
n− h+ 1

n
.

Applying Theorem 1 to the lasso (corresponding to h = n) yields a finite-
sample breakdown point of

ε∗(β̂lasso;Z) =
1

n
.

Hence only one outlier can already let the lasso tend to infinity, despite the
fact that large values of the regression estimate are penalized in the objective
function of the lasso. The non-robustness of the Lasso comes from the use
of the squared residuals in the objective function (1.2). Using other convex
loss functions, as done in the LAD-lasso or penalized M-estimators, does not
solve the problem and also results in a breakdown point of 1/n.

The smaller the value of h, the higher the breakdown point. By taking
h small enough, it is even possible to have a breakdown point larger than
50%. However, we do not envisage to have such large breakdown points.
Instead, we suggest to take a value of h equal to a fraction α of the sample
size, with α = 0.75, such that the final estimate is based on a sufficiently
large number of observations. This guarantees a sufficiently high efficiency,
as will be shown in the simulations in Section 6. The resulting breakdown
point is then about 1 − α = 25%. Notice that the breakdown point does
not depend on the dimension p. Even if the number of predictor variables is
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larger than the sample size, a high breakdown point is guaranteed. For the
non-sparse LTS, the breakdown point does depend on p, see Rousseeuw and
Leroy (2003).

3. Algorithm. We first present an equivalent formulation of the sparse
LTS estimator (1.4). For a fixed penalty parameter λ, define the objective
function

(3.1) Q(H,β) =
∑
i∈H

(yi − x′iβ)2 + hλ

p∑
j=1

|βj |,

which is the L1 penalized residual sum of squares based on a subsample
H ⊆ {1, . . . , n} with |H| = h. With

(3.2) β̂H = argmin
β

Q(H,β),

the sparse LTS estimator is given by β̂Hopt
, where

Hopt = argmin
H⊆{1,...,n}:|H|=h

Q(H, β̂H).

Hence the sparse LTS corresponds to finding the subset of h ≤ n observations
whose lasso fit produces the smallest penalized residual sum of squares. To
find this optimal subset, we use an analogue of the FAST-LTS algorithm
developed by Rousseeuw and Van Driessen (2006).

The algorithm is based on concentration steps or C-steps. The C-step at
iteration k consists of computing the lasso solution based on the current
subset Hk, with |Hk| = h, and constructing the next subset Hk+1 from
the observations corresponding to the h smallest squared residuals. Let Hk

denote a certain subsample derived at iteration k and let β̂Hk
be the coeffi-

cients of the corresponding lasso fit. After computing the squared residuals
r2
k = (r2

k,1, . . . , r
2
k,n)′ with r2

k,i = (yi − x′iβ̂Hk
)2, the subsample Hk+1 for it-

eration k+ 1 is defined as the set of indices corresponding to the h smallest
squared residuals. In mathematical terms, this can be written as

Hk+1 =
{
i ∈ {1, . . . , n} : r2

k,i ∈ {(r2
k)j:n : j = 1, . . . , h}

}
,

where (r2
k)1:n ≤ . . . ≤ (r2

k)n:n denote the order statistics of the squared

residuals. Let β̂Hk+1
denote coefficients of the lasso fit based on Hk+1. Then

(3.3) Q(Hk+1, β̂Hk+1
) ≤ Q(Hk+1, β̂Hk

) ≤ Q(Hk, β̂Hk
),
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6 A. ALFONS, C. CROUX AND S. GELPER

where the first inequality follows from the definition of β̂Hk+1
, and the sec-

ond inequality from the definition of Hk. From (3.3) it follows that a C-step
results in a decrease of the sparse LTS objective function, and that a se-
quence of C-steps yields convergence to a local minimum in a finite number
of steps.

In order to increase the probability to end up in the global minimum, a
sufficiently large number of starting initial subsamples H0 should be used.
An initial subset H0 is constructed as follows. Draw three observations from
the data at random, say xi1 , xi2 and xi3 . The lasso fit for this elemental
subset of size 3 is then

(3.4) β̂{i1,i2,i3} = argmin
β

Q({i1, i2, i3},β),

and the initial subset H0 is then given by the indices of the h observations
with the smallest squared residuals with respect to the fit in (3.4). The non-
sparse FAST-LTS algorithm uses elemental subsets of size p, since any OLS
regression requires at least as many observations as the dimension p. This
would make the algorithm unapplicable if n < p. Fortunately the lasso is
already properly defined for samples of size 3, even for large values of p.
Moreover, from a robustness point of view, using only three observations is
optimal, as it ensures the highest probability of not including outliers in the
elemental set.

In this paper, we used m = 500 initial subsets. Following the strategy
advised in Rousseeuw and Van Driessen (2006), we perform only two C-
steps for all m subsets, and retain the m1 = 10 subsamples with the lowest
values of the objective function. For the reduced number of subsets m1,
further C-steps are performed until convergence.

Estimation of an intercept: the regression model in (1.1) does not contain
an intercept. It is indeed common to assume that the dependent variable is
mean centered and the predictor variables are standardized before applying
the lasso. Therefore, when computing the lasso (3.2) on a subsample, one
first standardizes the variables using the means and standard deviations
computed from the subsample. It is important that the standardization is
not done using the mean and standard deviation computed over the full sam-
ple, as these will not be robust. When the lasso fit is computed using the R
package lars (Hastie and Efron, 2011), the standardization - and retrans-
formation of the estimates - is automatically taken care of. We also verified
that the centering and standardizations have no impact on the breakdown
point of the sparse LTS estimator.
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4. Reweighted sparse LTS estimator. Let α denote the proportion
of observations in a subsample, i.e., h = b(n + 1)αc. Then (1 − α) may
be interpreted as an initial guess of the proportion of outliers in the data.
This initial guess is typically rather conservative to ensure that outliers do
not impact the results, and may therefore result in a loss of efficiency. To
increase efficiency, a reweighting step that downweights outliers detected by
the sparse LTS estimator can be performed.

Under the normal error model, observations with scaled residuals larger
than a certain quantile of the standard normal distribution may be declared
as outliers. The residual scale estimate associated to the raw sparse LTS
estimator is given by

(4.1) σ̂raw = kα

√√√√1

h

h∑
i=1

(r2)i:n,

with ri = yi − x′iβ̂SparseLTS, and

(4.2) kα =

(
1

α

∫ Φ−1((α+1)/2)

−Φ−1((α+1)/2)
u2dΦ

)−1/2

,

a factor to ensure that σ̂raw is a consistent estimate of the standard deviation
at the normal model. This allows to compute weights

(4.3) wi =

{
1 if |ri/σ̂raw| ≤ Φ−1(1− δ),
0 if |ri/σ̂raw| > Φ−1(1− δ), i = 1, . . . , n.

In this paper, δ = 0.0125 is used such that 2.5% of the observations are
expected to be flagged as outliers in the normal model, which is a typical
choice.

The reweighted sparse LTS estimator is given by the weighted lasso fit

(4.4) β̂reweighted = argmin
β

n∑
i=1

wi(yi − x′iβ)2 + λnw

p∑
j=1

|βj |,

with nw =
∑n

i=1wi the sum of weights. With the choice of weights given
in (4.3), the reweighted sparse LTS is then nothing else but the lasso fit
based on the observations not flagged as outliers. Of course, other weighting
schemes could be considered. The residual scale estimate of the reweighted
sparse LTS estimator is given by

(4.5) σ̂reweighted = kαw

√√√√ 1

nw

n∑
i=1

wi(yi − x′iβ)2,

where kαw is the consistency factor from (4.2) with αw = nw/n.
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8 A. ALFONS, C. CROUX AND S. GELPER

5. Choice of the penalty parameter. In practical data analysis, a
suitable value of the penalty parameter λ is not known in advance. We
propose to select λ by optimizing the Bayes Information Criterion (BIC),
or the estimated prediction performance via cross-validation. The BIC of a
given model estimated with shrinkage parameter λ is given by

(5.1) BIC(λ) = log(σ̂) + df(λ)
log(n)

n
,

where σ̂ denotes the corresponding residual scale estimate, (4.1) or (4.5),
and df(λ) are the degrees of freedom of the model. The degrees of freedom
are given by the number of non-zero estimated parameters in β̂ (see Zou,
Hastie and Tibshirani, 2007).

As an alternative to the BIC, cross-validation can be used. To prevent
that outliers affect the choice of λ, a robust prediction loss function should
be used. A natural choice is the root trimmed mean squared prediction error
(RTMSPE) with the same trimming proportion as for computing the sparse
LTS. In the example in Section 7, the data are split randomly in five blocks
of approximately equal size. Each block is left out once to fit the model, and
the left-out block is used as test data. In this manner, and for a given value
of λ, a prediction is obtained for each observation in the sample. Denote the
vector of squared prediction errors e2 = (e2

1, . . . , e
2
n)′. Then

(5.2) RTMSPE(λ) =

√√√√1

h

h∑
i=1

(e2)i:n.

To reduce variability, the RTMSE is averaged over 500 different random
splits of the data.

The selected λ then minimizes BIC(λ) or RTMSPE(λ) over a grid of
values in the interval [0, λ0]. We take a grid with steps of size 0.025 λ0,
where λ0 is an estimate of the shrinkage parameter that would shrink all
parameters to zero, as in Efron et al. (2004).

6. Simulation study. This section presents a simulation study for
comparing the performance of various sparse estimators. The sparse LTS
estimator is evaluated for the subset size h = b(n + 1)0.75c. Both the raw
and the reweighted version, see Section 4, are considered. We prefer to take
a relatively large trimming proportion to guarantee a breakdown point of
25%. Adding the reweighting step will then increase the statistical efficiency
of the sparse LTS. We make a comparison with the lasso, the LAD-lasso, and
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robust least angle regression (RLARS), discussed in the introduction. We se-
lected the LAD-lasso estimator as a representative of the class of penalized
M-estimators, since it does not need an initial residual scale estimator.

For every generated sample, an optimal value of the shrinkage parameter
λ is selected. The penalty parameters for sparse LTS and the lasso are chosen
using the BIC, as described in Section 5. For the LAD-lasso, we estimate
the shrinkage parameter in the same way as in Wang, Li and Jiang (2007).
However, if p > n we cannot use their approach and we use the BIC as in
(5.1), with the mean absolute value of residuals (multiplied by a consistency
factor) as scale estimate. For RLARS, we add the sequenced variables to the
model in a stepwise fashion, and fit robust MM-regressions (Yohai, 1987), as
advocated in Khan, Van Aelst and Zamar (2007). The optimal model when
using RLARS is then again selected via BIC, now using the robust scale
estimate resulting from the MM-regression.

The simulations are performed in R (R Development Core Team, 2011)
with package simFrame (Alfons, Templ and Filzmoser, 2010; Alfons, 2011),
which is a general framework for simulation studies in statistics. Further-
more, the package quantreg (Koenker, 2011) is used for LAD and LAD-
lasso, and lars (Hastie and Efron, 2011) for the lasso. For RLARS, the vari-
ables are sequenced using the code by Khan, Van Aelst and Zamar (2007),
which is available from http://users.ugent.be/~svaelst/software/RLARS.

html, while the MM-estimators are computed with package robustbase
(Rousseeuw et al., 2011)

6.1. Sampling Schemes. The first configuration is similar as in Wang, Li
and Jiang (2007). The covariates X = (x1, . . . ,xp) are generated from a
p-dimensional standard normal distribution. We take p = 20 and n = 50,
so the sample size is moderate compared to the dimension. The coefficient
vector β = (βj)1≤j≤p is given by β1 = 0.5, β2 = 1, β3 = 1.5, β4 = 2, and
βj = 0 for 5 ≤ j ≤ p. The response variable y is generated according to the
regression model (1.1), where the error terms follow a normal distribution
with σ = 0.5 for a strong signal-to-noise ratio.

The second configuration is a latent factor model taken from Khan, Van Aelst
and Zamar (2007). From k = 6 latent independent standard normal vari-
ables l1, . . . , lk and an independent standard normal error variable e, the
response variable y is constructed as

y := l1 + . . .+ lk + σe,

where σ is chosen so that the signal-to-noise ratio is 3, i.e. σ =
√
k/3. With

independent standard normal variables e1, . . . , ep, a set of p = 50 candidate

imsart-aoas ver. 2011/05/20 file: sparseLTS.tex date: July 25, 2011

http://users.ugent.be/~svaelst/software/RLARS.html
http://users.ugent.be/~svaelst/software/RLARS.html


10 A. ALFONS, C. CROUX AND S. GELPER

predictors is then constructed as

xj := lj + τej , j = 1, . . . , k,

xk+1 := l1 + δek+1,
xk+2 := l1 + δek+2,

...
x3k−1 := lk + δe3k−1,
x3k := lk + δe3k,

xj := ej , j = 3k + 1, . . . , p,

where τ = 0.3 and δ = 5 so that x1, . . . ,xk are low-noise perturbations of the
latent variables, xk+1, . . . ,x3k are noise covariates that are correlated with
the latent variables, and x3k+1, . . . ,xp are independent noise covariates. The
number of observations is set to n = 150.

The third configuration covers the case of high-dimensional data. We
generate n = 100 observations from a p-dimensional normal distribution
N(0,Σ), with p = 1000. The covariance matrix Σ = (Σij)1≤i,j≤p is given by
Σij = 0.5|i−j|, creating correlated predictor variables. The coefficient vector
β = (βj)1≤j≤p with β1 = β7 = 1.5, β2 = 0.5, β4 = β11 = 1, and βj = 0
for j ∈ {1, . . . , p}\{1, 2, 4, 7, 11}, and the response variable is generated ac-
cording to the regression model (1.1), where the error terms follow a normal
distribution with σ = 0.5.

For each of the three simulation settings, we apply contamination schemes
taken from Khan, Van Aelst and Zamar (2007). To be more precise, we
consider

1. No contamination
2. Vertical outliers: 10% of the errors terms in the regression model follow

a normal N(20, σ), instead of a N(0, σ).
3. Leverage points: Same as in 2., but the 10% contaminated observations

contain high-leverage values, by drawing the predictor variables from
independent N(50, 1) distributions.

This results in a total of 9 different simulations schemes, which we think to
be representative for the many different simulation designs we tried out. The
first scheme has n small, but still larger than p, the second scheme follows a
factor model, the third setting has p large. The choices for the contamination
schemes are standard, inducing both vertical outliers and leverage points in
the samples.
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6.2. Performance measures. Since one of the aims of sparse model es-
timation is to improve prediction performance, the different estimators are
evaluated by the root mean squared prediction error (RMSPE). For this
purpose, n additional observations from the respective sampling schemes
(without outliers) are generated as test data, and this in each simulation
run. Then the RMSPE is given by

RMSPE(β̂) =

√√√√ 1

n

n∑
i=1

(ỹi − x̃′iβ̂)2,

where ỹi and x̃i, i = 1, . . . , n, denote the observations of the response and
predictor variables in the test data, respectively. The RMSPE of the or-
acle estimator, which uses the true coefficient values β, is computed as a
benchmark for the evaluated methods. We report average RMSPE over all
simulation runs.

Concerning sparsity, the estimated models are evaluated by the false pos-
itive rate (FPR) and the false negative rate (FNR). A false positive is a
coefficient that is zero in the true model, but is estimated as non-zero. Anal-
ogously, a false negative is a coefficient that is non-zero in the true model,
but is estimated as zero. In mathematical terms, the FPR and FNR are
defined as

FPR(β̂) =
|{j ∈ {1, . . . , p} : β̂j 6= 0 ∧ βj = 0}|
|{j ∈ {1, . . . , p} : βj = 0}|

,

FNR(β̂) =
|{j ∈ {1, . . . , p} : β̂j = 0 ∧ βj 6= 0}|
|{j ∈ {1, . . . , p} : βj 6= 0}|

.

Both FPR and FNR should be as small as possible for a sparse estimator,
and are averaged over all simulation runs.

6.3. Simulation results. In this subsection, the simulation results for the
different data configurations are presented and discussed.

6.3.1. Results for the first sampling scheme. Table 1 shows the simu-
lation results for a configuration with uncorrelated predictors, n = 50 and
p = 20, similar as in Wang, Li and Jiang (2007). In the case without contam-
ination, the LAD-lasso performs best concerning both prediction accuracy
and sparsity, as it has the lowest RMSPE and almost perfect FPR and FNR.
RLARS and the Lasso also show excellent performance, followed closely by
sparse LTS. The reweighting step clearly improves the estimates, which is
reflected in the lower values for RMSPE, and it also improves FPR and
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12 A. ALFONS, C. CROUX AND S. GELPER

Table 1
Results for the first simulation scheme, where n = 50 and p = 20. Root mean squared
error of prediction (RMSPE), the false positive rate (FPR) and the false negative rate

(FNR), averaged over 500 simulation runs, are reported for every method.

No contamination Vertical outliers Leverage points
Method RMSPE FPR FNR RMSPE FPR FNR RMSPE FPR FNR

Lasso 0.58 0.13 0.00 1.58 0.44 0.12 2.65 0.00 0.69
LAD-lasso 0.55 0.01 0.00 0.58 0.02 0.01 1.79 0.41 0.26
RLARS 0.56 0.18 0.00 0.61 0.22 0.06 0.72 0.52 0.11
Raw sparse LTS 0.71 0.19 0.01 0.67 0.22 0.00 0.65 0.26 0.00
Sparse LTS 0.66 0.16 0.00 0.63 0.20 0.00 0.63 0.23 0.00
Oracle 0.50 0.50 0.50

FNR. It is worth noting that in general the sparse estimators other than
LAD-lasso show a tendency towards more false positives.

When vertical outliers are introduced, the results do not change that
much. Only the non-robust lasso suffers from a strong influence of these
outliers. LAD-lasso is still the best due to better sparsity behavior, but
sparse LTS and RLARS are very close with respect to prediction perfor-
mance. RLARS leads to a slightly larger FPR than reweighted Sparse LTS,
though, and even false negatives occur in some cases. At this point, it should
be noted that false negatives in general have a stronger effect on the RMSPE
than false positives. A false negative means that important information is
not used for prediction, whereas a false positive merely adds a bit of variance
to the predicted values. Reweighting still results in a gain in efficiency for
sparse LTS.

In the scenario with leverage points in addition to the vertical outliers,
sparse LTS exhibits its strengths and clearly performs best. The lowest val-
ues for RMSPE are obtained for sparse LTS. In addition, there are no false
negatives. The LAD-lasso is highly influenced by the leverage points, which
is reflected in the large RMSPE. Also note the considerable amount of false
positives and false negatives for the LAD-lasso in presence of leverage points.
Surprisingly, also RLARS leads to a significant amount of false positives
and some false negatives, but its prediction performance is still competitive.
Closer inspection of the RLARS sequences revealed that significant variables
frequently appear rather late in the sequence, which explains this behavior.
In any case, the influence of the outliers is the strongest on the lasso. Due
to the high FNR, the lasso suffers from the largest RMSPE among the in-
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Table 2
Results for the second simulation scheme, with n = 150 and p = 50, as in Khan,

Van Aelst and Zamar (2007). Root mean squared error of prediction (RMSPE), the false
positive rate (FPR) and the false negative rate (FNR), averaged over 500 simulation

runs, are reported for every method.

No contamination Vertical outliers Leverage points
Method RMSPE FPR FNR RMSPE FPR FNR RMSPE FPR FNR

Lasso 1.17 0.09 0.00 2.47 0.54 0.08 2.21 0.00 0.16
LAD-lasso 1.13 0.04 0.00 1.15 0.07 0.00 1.27 0.18 0.00
RLARS 1.14 0.07 0.00 1.12 0.03 0.00 1.23 0.09 0.00
Raw sparse LTS 1.28 0.34 0.00 1.26 0.32 0.00 1.25 0.26 0.00
Sparse LTS 1.23 0.20 0.00 1.22 0.25 0.00 1.21 0.18 0.00
Oracle 0.81 0.81 0.81

vestigated methods.

6.3.2. Results for the second sampling scheme. The simulation results for
the second data configuration are displayed in Table 2. Keep in mind that
this configuration is exactly the same as in Khan, Van Aelst and Zamar
(2007), and that the contamination settings are a subset of the ones applied
in their paper as well. In the scenario without contamination, the results are
very similar to the previous example. LAD-lasso, RLARS and lasso show
excellent performance. The prediction performance of sparse LTS is good,
but is has a larger FPR than the other three sparse methods. Also in the case
of vertical outliers, the results are similar to before. The non-robust lasso
is influenced by the outliers, whereas RLARS, LAD-lasso and sparse LTS
keep their excellent behavior. Sparse LTS still has a considerable tendency
towards false positives, but the reweighting step is a significant improvement
over the raw estimator.

Nevertheless, the effect of the leverage points is quite different for this
configuration. Sparse LTS still performs best, but RLARS and LAD-lasso
are much less influenced than in the previous configuration. Even though
their RMSPE and FPR slightly increase, there are no false negatives in
this case. This suggests that the leverage points do not have the same bad
leverage effect they had in the previous example.

6.3.3. Results for the third sampling scheme. Table 3 contains the sim-
ulation results for the high-dimensional data configuration. In the scenario
without contamination, RLARS and the lasso perform best with very low
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Table 3
Results for the third simulation scheme, with n = 100 and p = 1000. Root mean squared
error of prediction (RMSPE), the false positive rate (FPR) and the false negative rate

(FNR), averaged over 500 simulation runs, are reported for every method.

No contamination Vertical outliers Leverage points
Method RMSPE FPR FNR RMSPE FPR FNR RMSPE FPR FNR

Lasso 0.62 0.00 0.00 2.54 0.08 0.16 2.55 0.00 0.72
LAD-lasso 0.66 0.08 0.00 0.81 0.00 0.01 1.17 0.08 0.00
RLARS 0.60 0.01 0.00 0.71 0.00 0.09 0.91 0.02 0.09
Raw sparse LTS 0.79 0.02 0.00 0.74 0.02 0.00 0.72 0.02 0.00
Sparse LTS 0.74 0.01 0.00 0.70 0.01 0.00 0.70 0.02 0.00
Oracle 0.50 0.50 0.50

RMSPE and almost perfect FPR and FNR. When vertical outliers are
added, RLARS still has excellent prediction performance despite some false
negatives. We see that the reweighted sparse LTS performs best here. In
addition, the prediction performance of the non-robust lasso already suffers
greatly from the vertical outliers. In the scenario with additional leverage
points, sparse LTS remains stable and is still the best. For RLARS, sparsity
behavior according to FPR and FNR does not change significantly either,
but there is a small increase in the RMSPE. On the other hand, LAD-lasso
already has a considerably larger RMSPE than sparse LTS, and again a
higher FPR than the other methods. Furthermore, the lasso is still highly
influenced by the outliers, which is reflected in a very high FNR and poor
prediction performance.

6.3.4. Summary of the simulation results. Sparse LTS shows the best
overall performance in this simulation study, if the reweighted version is
taken. Concerning the other investigated methods, RLARS also performs
very well, but suffers sometimes from an increased percentage of false neg-
atives under contamination. It is also confirmed that the lasso is not robust
to outliers. The LAD-lasso still sustains vertical outliers, but is not robust
against bad leverage points.

7. Example: Boston housing data. The Boston housing data set,
originating with Harrison and Rubinfeld (1978), has been extensively ana-
lyzed in the robust statistics literature. We use the corrected version of the
data set by Pace and Gilley (1997), which is available from StatLib (http://
lib.stat.cmu.edu/datasets/boston_corrected.txt). The data set con-
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Table 4
Variables of the Boston housing data.

Name Description

CMEDV Corrected median values of owner-occupied housing
CRIM Crime rate
ZN Proportion of area zoned with large lots
INDUS Proportion of nonretail business area
CHAS Dummy variable for location contiguous to the Charles River
NOX Levels of nitric oxides
RM Average number of rooms per dwelling
AGE Proportion of structures built prior to 1940
DIS Weighted distances to employment centers
RAD Index of accessibility to radial highways
TAX Full-value property tax rate
PTRATIO Pupil/teacher ratio
B Proportion of black population
LSTAT Proportion of lower status population
LON Geographical longitude
LAT Geographical lattitude

tains various characteristics of houses, demographics, air pollution, and geo-
graphical details on 506 census tracts in or nearby Boston. The objective is
to relate the median house price to the other characteristics. Table 4 gives an
overview of the variables included in the data. Inspired by Pace and Gilley
(1997), we fit the following model with 18 candidate predictors:

log(CMEDV ) =β0 + β1CRIM + β2ZN + β3INDUS + β4CHAS

+ β5NOX
2 + β6RM

2 + β7AGE + β8 log(DIS)

+ β9 log(RAD) + β10TAX + β11PTRATIO + β12B

+ β13 log(LSTAT ) + β14LON + β15LAT + β16LON
2

+ β17LAT
2 + β18(LON · LAT ).

The following methods are applied for comparison: raw and reweighted
sparse LTS with 25% of trimming, lasso, LAD-lasso, and RLARS. The op-
timal value or the shrinkage parameter is selected using cross-validation, as
discussed in Section 5. The sparse LTS estimator detects a considerable num-
ber of observations as outliers, about 10% of the data. Interestingly, the the
raw and the reweighted estimator both select the same model, consisting of
the 9 predictors with indices (1, 4, 6, 10, 11, 12, 13, 14, 18). This means that
the estimated coefficients corresponding to the other indices are equal to
zero. Hence the high breakdown sparse LTS method selects the same model
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Fig 1. Density curves of the root trimmed mean squared prediction error (RTMSPE) for
the Boston housing data, computed from 500 times repeated fivefold cross-validation.

as the lasso based on the sample with the outliers discarded. Furthermore,
LAD-lasso leads to the smallest model under consideration with 6 selected
predictors, RLARS selects 8 variables, and the lasso 10.

The prediction performance is estimated via 500 times repeated fivefold
CV. Each time, the root trimmed mean squared prediction error (RTMSPE)
is computed using 5-fold cross validation, as in (5.2). Figure 1 shows the
density curves based on these 500 values of the RTMSPE. Clearly, LAD-lasso
exhibits a much higher average RTMSPE, and performs even worse than
the lasso. The bad performance of the LAD-lasso is explained by the fact
that most of the outliers are bad leverage points, as we verified. Out of the
robust methods, the reweighted sparse LTS performs on average better than
RLARS or the raw sparse LTS. The gain in efficiency from the reweighting
step is clearly visible, as both mean and variance for reweighted sparse LTS
are smaller than for the raw version. This example illustrates that sparse LTS
gives excellent results in a practical situation with data containing outliers.

8. Conclusions and discussion. Least trimmed squares (LTS) is a ro-
bust regression method frequently used in practice. Nevertheless, it does not
allow for sparse model estimates and cannot be applied to high-dimensional
data if p > n. This paper introduced the sparse LTS estimator, which over-
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comes these two issues simultaneously by adding an L1 penalty to the LTS
objective function. Simulation results and a real data example illustrated the
excellent peformance of sparse LTS and showed that it performs as well or
better than robust variable selection methods such as RLARS. In addition,
an advantage of sparse LTS over algorithmic procedures such as RLARS is
that the objective function allows for theoretical investigation of its statis-
tical properties. As such, we could derive the breakdown point of the sparse
LTS estimator. However, it should be noted that efficiency is an issue with
sparse LTS. A reweighting step thereby lead to a substantial improvement
in efficiency, as shown in the simulation study.

In the paper, an L1 penalization was imposed on the regression parameter,
as for the lasso. Other choices for the penalty are possible. For example, an
L2 penalty leads to ridge regression. A robust version of ridge regression was
recently proposed by Maronna (2011), using L2 penalized MM-estimators.
Even though the resulting estimates are not sparse, prediction accuracy is
improved by shrinking the coefficients, and the computational issues with
high-dimensional robust estimators are overcome due to the regularization.
Another possible choice for the penalty function is the smoothly clipped
absolute deviation penalty (SCAD) proposed by Fan and Li (2001). It sat-
isfies the mathematical conditions for sparsity but results in a more difficult
optimization problem than the lasso. Still, a robust version of SCAD can
be obtained by optimizing the associated objective function over trimmed
samples, instead of over the full sample.

There are several other open questions that we leave for future research.
For instance, we did not provide any asymptotics for sparse LTS, as was
for example done for penalized M-estimators in Germain and Rouff (2009).
Potentially, sparse LTS could be used an an initial estimator for computing
penalized M-estimators. Furthermore, for more precise detection of outliers
it might be necessary to provide additional finite sample correction correc-
tion factors to the scale estimates in (4.1), as was done by Pison, Van Aelst
and Willems (2002) in the non-sparse case. A very different approach for
simultaneous outlier identification and variable selection in linear regression
is taken by Menjoge and Welsch (2010). All in all, the results presented in
this paper suggest that sparse LTS is a valuable addition to the statistics
researcher’s toolbox. The sparse LTS estimator has an intuitively appealing
definition, and is related to the popular least trimmed squares estimator of
robust regression. It performs model selection, outlier detection, and robust
estimation simultaneously, and is applicable if the dimension is larger than
the sample size.
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PROOF OF BREAKDOWN POINT

Proof of Theorem 1. In this proof, the L1 norm of a vector β is de-
noted as ‖β‖1 and the Euclidean norm as ‖β‖2. Since these norms are topo-
logically equivalent there exists a constant c1 > 0 such that ‖β‖1 ≥ c1‖β‖2
for all vectors β. The proof is split into two parts.

First, we prove that ε∗(β̂sparseLTS;Z) ≥ n−h+1
n . Replace the last m ≤

n − h observations, resulting in the contaminated sample Z̃. Then there
are still n − m ≥ h good observations in Z̃. Let My = max1≤i≤n |yi| and
Mx1 = max1≤i≤n |xi1|. For the case βj = 0, j = 1, . . . , p, the value of the
objective function is given by

Q(0) =
h∑
i=1

(ỹ2)i:n ≤
h∑
i=1

(y2)i:n ≤ hM2
y .

Now consider any β with ‖β‖2 ≥ M := (hM2
y + 1)/(λc1). For the value of

the objective function, it holds that

Q(β) ≥ λ‖β‖1 ≥ λc1‖β‖2 ≥ hM2
y + 1 > Q(0).

Since Q(βsparseLTS) ≤ Q(0), we conclude that ‖β̂sparseLTS(Z̃)‖2 ≤M , where
M does not depend on the outliers. This concludes the first part of the proof.

Second, we prove that ε∗(β̂sparseLTS;Z) ≤ n−h+1
n . Replace the last m =

n − h + 1 observations of Z to the position z(γ, τ) = (x(τ)′, y(γ, τ))′ =
((τ, 0, . . . , 0), γτ)′ with γ, τ > 0, and denote Zγ,τ the resulting contaminated
sample. Assume that there exists a constant M such that

(A.1) sup
τ,γ
‖β̂sparseLTS(Zγ,τ )‖2 ≤M,

i.e., there is no breakdown. We will show that this leads to a contradiction.
Let βγ = (γ, 0, . . . , 0)′ ∈ Rp with γ = M +2 and τ = max(h−m, 0)(My+

γMx1)2 + hλγ + 1. Then the objective function is given by

Q(βγ) =

{ ∑h−m
i=1 ((yi − xiβγ)2)i:(n−m) + hλ|γ|, if h > m,

hλ|γ|, else,

since the residuals with respect to the outliers are all zero. Hence,

(A.2) Q(βγ) ≤ max(h−m, 0)(My + γMx1)2 + hλγ ≤ τ − 1.

Furthermore, for β = (β1, . . . , βp)
′ with ‖β‖2 ≤ γ − 1 we have

Q(β) ≥ (γτ − τβ1)2,
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since at least one outlier will be in the set of the smallest h residuals. Now
β1 ≤ ‖β‖2 ≤ γ − 1, so that

(A.3) Q(β) ≥ (τ(γ − |β1|))2 ≥ τ2 ≥ τ.

Combining (A.2) and (A.3) leads to

‖β̂sparseLTS(Zγ,τ )‖2 ≥ γ − 1 = M + 1,

which contradicts the assumption (A.1). Hence there is breakdown.
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