
VALUE OF DEMAND RESPONSE FOR WIND INTEGRATION IN DAILY 

POWER GENERATION SCHEDULING: 

UNIT COMMITMENT MODELING WITH PRICE RESPONSIVE LOAD 

 

Cedric De Jonghe 

Energy Institute, ELECTA branch, Kasteelpark Arenberg 10 (PB 02445) 3001 Heverlee - K.U.Leuven 

Phone +32 16 32 11 47, E-mail: Cedric.DeJonghe@esat.kuleuven.be 

 

Benjamin F. Hobbs 

Whiting School of Engineering, and Environment, Energy, Sustainability & Health Institute,  

The Johns Hopkins University, Baltimore, MD, E-mail: bhobbs@jhu.edu 

 

Ronnie Belmans 

Energy Institute, ELECTA branch, K.U.Leuven, E-mail: Ronnie.Belmans@esat.kuleuven.be 

1. INTRODUCTION 

Different operational decisions have to be made in short-term. In a time frame of eight hours to one week 

ahead, unit commitment modeling is applied to determine which units should be turned on and off, 

referred to as the plant status [1]. Generation output levels are adjusted to demand levels in order to 

instantaneously guarantee the system power balance. The optimization model is used to minimize 

generation costs, taking into account operational constraints. 

Typically, fixed demand levels are included in unit commitment models. However, the expected roll-out 

of smart meters, allowing communication of short-term electricity prices, creates opportunities for 

demand-side participation. The existing models very often disregard the demand-side, assuming fixed 

levels of hourly electricity consumption. Consequently, opportunities for more efficient operational 

decision-making are neglected. 

Therefore, those short-term optimization models must be improved, accounting for consumers adjusting 

their electricity consumption levels in response to frequently communicated electricity prices from 

dynamic tariff structures. Demand-side participation possibly yields load adjustments and corresponding 

cost reductions. Additionally, the impact of wind power variability and limited predictability may be 

reduced. Consequently, the positive contribution of demand response to cost reductions and wind power 

integration must be accounted for.  

First, this paper briefly reviews how an active demand-side is currently included in unit commitment 

models. Then, a basic unit commitment model is described in section 3, planning the optimal commitment 

of generation units with fixed demand levels. Model results are used as a reference and compared to the 

unit commitment model with a price responsive demand-side in section 4. In section 5, the assumption of 

perfectly predictable wind power injections is omitted in the model by including wind power 

stochasticity, followed by conclusions in section 6. 



2. MODELING ACTIVE DEMAND-SIDE IN UNIT COMMITMENT 

MODELS 

Unit commitment models generally simplify or neglect the demand-side, when defining the optimal on-

/off status and loading of power plants. However, some models include demand-side bidding, a 

mechanism enabling consumers to actively participate in electricity trading, typically on power 

exchanges. This mechanism is facilitated by consumers offering to undertake changes to their normal 

consumption pattern [2]. In correspondence to demand-side management, loads are rescheduled in order 

to balance supply and demand or to maintain system security requirements. Both household and industrial 

consumers can participate in demand-side bidding mechanisms. Consumers can participate directly or 

indirectly through a market party acting as an aggregator. The price impact of demand-side bidding is 

discussed in [3], where a laboratory experiment suggests reduced average electricity prices as well as 

reduced price volatility.  

Hobbs [4] has explicitly modeled demand-side bidding in the context of a competitive electricity market. 

The model allows consumers to play a proactive role as they have the opportunity to submit bids for load 

reductions in specific hours. Those bids are directly submitted to a pool (as has been used in the 

Electricity Pool of England and Wales, in the 1990’s as a first attempt to liberalize the electricity sector). 

When this load reduction bid is called upon, consumers benefit by gaining a financial reward. Although 

some opportunities for demand-side bidding are analyzed in [5], typically little attention is paid to the 

benefits with respect to the integration of non-dispatchable power integration, such as wind and solar. 

An attempt to evaluate the impact of real-time pricing on the use of wind power generation in a unit 

commitment model is made in [6]. Consumers responding to a real-time pricing tariff increase the value 

of wind generation. Additionally the frequency of generation units being ramp-up-constrained or ramp-

down-constrained is reduced. The impact on operational costs, such as generation, start-up, emission, and 

wind power curtailment costs are not mentioned. 

The tendency of electrification in the transportation sector results in an additional demand for electricity. 

Given its characteristics, charging of electric vehicles is considered as a source of flexibility at the 

demand-side. The impact of plug-in hybrid electric vehicles charging is analyzed in [7]. A coordinated 

and uncoordinated charging approach has been applied in [8] in order to reduced energy losses and 

voltage deviations in a distribution grid, as well as costs for generation. No attention is paid to 

responsiveness to electricity price changes (price elasticity) or the welfare impact on consumers. 

3. BASIC UNIT COMMITMENT MODEL 

3.1 Model description 

A basic unit commitment model with fixed demand levels is presented in this section used as a reference 

in section 4 and 5. This model optimizes the operation of power generating units in the electricity system 

by minimizing the operating costs and is entirely described in [9].
1
 The operating costs include: 

• variable generation costs 

• start-up costs 

• wind power curtailment costs 

                                                           
1
 This basic as well as the extended models are written in Matlab, calling data from Excel and use the Matlab-Gams interfacing optimization 

[26]. In order to solve the MILP model, Gams utilizes the IBM ILOG CPLEX Optimizer version 12.2 [27]. 



Both fuel and emission costs constitute the variable generation costs of generation technologies (i). Fuel 

Costs (FCi) are expressed in €/MWh, but abstracts from partial load efficiencies, which could be included 

by a stepwise cost function [10]. Generation technology specific carbon emissions (EMISi) are included 

and multiplied by an emission price (EP). Other pollutants related to electricity generation from fossil 

fuels are not accounted for. 

Commitment of generation units also involves a technology specific start-up cost (SCi) whenever a unit is 

turned on. The commitment of generation units is indicated by a binary variable, which equals 1 when the 

unit is on and 0 when off. 

Finally, excessive wind power injections in the system could result in overload situations. Clearly, those 

situations with excess wind power occur when the amount of wind power injected exceeds real-time 

power off-takes by the aggregated load. Operational constraints related to generators could already yield 

overload situations before the amount of wind power injections exceeds real-time system load. Network 

constraints can strengthen this issue [9], but are not included. Reducing hourly wind power injections in 

order to prevent such situations is allowed and referred to as wind power curtailment. For each MWh of 

wind power curtailment (curtu) in hour (u), a curtailment cost (CC) is incurred. 

In the basic unit commitment model, generation output meets expected electricity demand within a 

perimeter or control area. This real-time requirement is enforced by a system power balance, while 

satisfying operational constraints. System reliability requirements, such as ancillary services or reserve 

requirements are not included. The following operational constraints have been accounted for:  

• minimum and maximum output levels 

• ramping rates 

• minimum up- and down-time  

• start-up constraint 
 

3.2 Data and assumptions 

The basic model calculates the optimal unit commitment of generation units for an illustrative 48-hour 

period. Energy demand data is based on an hourly load profile given in the “6 bus hourly data” file, 

available on http://motor.ece.iit.edu/Data/. This website gathers multiple datasets used in several papers 

written by Shahidehpour, e.g., [11] and [12]. The wind power profile represents a realistic variability as it 

is based on historical data.
2
 Energy demand and wind power data (Figure 1) are carefully chosen in order 

to include both hours with high amounts of wind power (excess wind power injections in the first six 

hours) as well as hours with rather moderate amounts of wind power injected. Significant flexibility is 

required to cope with hourly demand and wind power fluctuations. In this basic unit commitment model, 

only supply-side system flexibility is assumed.
3
 Demand is assumed to be located in one region (single 

node), as well as all generation units. Also wind power is assumed to be injected into the single node 

system. Consequently, power injections cannot be restricted by network constraints.  

Hourly wind power generation represents an aggregated profile over a control area. Injections are initially 

assumed to be fixed and perfectly predictable, referred to as perfect foresight. In contrast, uncertainty 

about actual wind power injections is accounted for in section 5. Uncertainty with respect to generation 

unit availability such as an unscheduled plant outage has not been considered in this paper. One single 

unit commitment optimization is performed in contrast to rolling unit commitment where the system is 

rescheduled more often given reduced wind power uncertainty over time [13].  

                                                           
2 Wind power data sets are easily accessible on the website of the Danish grid operator Energinet.dk: http://www.energinet.dk/ 

3 The benefits of energy storage and interconnection capacity as sources of flexibility at the supply-side in long-term investment planning models 

are discussed in [28] 



 

Figure 1: Wind and demand data 

Technology-specific parameters are summarized in Table 1. Five different technologies are selected, 

based upon the 24-bus IEEE Reliability Test System [14] and a modified IEEE 118-bus Test System [11]. 

Technology-specific emissions are based on [10]. The system power plant portfolio is composed of 19 

generation units. It does not represent a specific, existing region, although this could be, but serves to 

illustrate the model. 

Two nuclear and two coal-fired power plants are assumed, as well as three CCGT plants. Nuclear power 

plants have the advantage of having the lowest marginal operating cost (MCi), assumed to be 10 €/MWh. 

However, these units have the disadvantage of being less flexible, given a lower ramping rate (RAMPi) 

and a longer minimum on- (MOi) and down-time (MDi) of 8 hours. Decisions taken in hour u, related to 

output levels or the status of a nuclear power plant, strongly influence the possible output levels or the 

plant status in the upcoming hours. In addition to limited flexibility from a technical perspective, starting 

up a base load power plant is assumed to be an expensive operation, indicated by higher start-up cost 

(SCi) relative to peak load power plants. 

Coal-fired and CCGT units typically face a shorter minimum on- and down-time. In case of a CCGT 

plant, once committed, it must remain turned on for only 2 hours. Correspondingly, once turned off, this 

plant only has to stay off for 2 hours. 

Finally, six OCT plants and six GCT plants constitute the most flexible units. This characteristic is based 

on a minimum on- and down-time of only one hour and the ability to ramp up or down 100% of the rated 

capacity within one hour. OCT and GCT generation units do not have high start-up cost. In this 

illustrative example, they account for about 15% of the installed generation capacity, but typically operate 

only a limited number of hours to prevent from facing high marginal fuel costs of 110 €/MWh and 72 

€/MWh respectively. 

Carbon emissions are also taken into account. It must be emphasized that only marginal emissions of 

operating units are included, abstracting from life-cycle carbon emissions of a specific technology. Given 

the carbon content of the fossil fuels and an average efficiency of the available technologies, marginal 

emission levels (expressed in ton/MWh) are listed in Table 1. The price of carbon emissions (EP) is 

considered to be 10 €/ton CO2.
4
 

                                                           
4 The inclusion of environmental objectives such a CO2 emission reduction target or different CO2 prices is recommended for further research. 

This would be a valuable extension of the unit commitment model, illustrating fuel switching effects [29]. 
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Table 1: Technology-specific parameters 

 Nuclear Coal CCGT GCT OCT 

PMAXi [MW] 400 300 250 30 30 

PMINi [MW] 100 100 75 5 10 

EMISi [ton/MWh] 0 0.9 0.41 0.59 0.78 

FCi [€/MWh] 10 35 50 72 110 

SCi [€] 1000 800 500 80 75 

RAMPi [%/h] 33 40 50 100 100 

MOi [h] 8 5 2 1 1 

MDi [h] 8 5 2 1 1 

Number of plants 2 2 3 6 6 

 

Finally, the option of taking up not the entire hourly amount of available wind power is allowed by means 

of wind power curtailment. The curtailment of wind power injections can be performed at a cost of 30 

€/MWh, assuming that injections are curtailed for periods of at least one hour. 

3.3 Reference scenario 
This section discusses optimal generation output levels and electricity prices for a reference scenario. This 

reference scenario assumes fixed demand levels and is used as a benchmark. In chapter 4, fixed demand 

levels are replaced by consumers able to adjust their demand levels in response to short-term prices. 

The first subsection describes the method of visualizing the model outcome and discusses generation 

output level results; the second analyzes the model results for the basic unit commitment model with 

respect to the electricity price.  

3.3.1 Generation output level results 
Optimal generation output levels are visualized as shown in Figure 2, being the reference outcome of the 

unit commitment model. This method of visualizing output levels is also applied later when comparing 

results for the extended models including demand-side flexibility. Those graphs allow better 

understanding of the impact of operational constraints and how the following elements are influenced: 

• Technology specific generation output: for each hour a bar is constructed to indicate the generation 

output of the different generation technologies. This bar is the average hourly power output of each 

committed generation plant, expressed in MW as shown on the vertical axis. 

• Number of generation units committed: the power output of each committed generation plant is 

indicated by a coloured bar. By encircling the plant specific output in black, the number of 

generation units which are committed can be counted. 

• Aggregated energy demand: the sum of hourly conventional power generation and net wind power 

injection equals the aggregated energy demand. It is indicated by the full bold line above the wind 

power bar and below the coloured bars indicating partial plant loading. 

• Full or partial plant loading: partial plant loading occurs when a generation plant is committed, but 

not operating at its rated capacity. In that case, the amount of unused capacity is shown by a colored 

bar above the aggregated energy demand curve.
5
 

• Amount of wind power curtailment: the amount of wind injections being curtailed in a certain hour 

is displayed by the dashed line and indicated as a negative value as the amount of wind power 

injected is negatively impacted. 

                                                           
5 Colored bars indicated above the aggregated demand curve may not be interpreted as spinning reserves, because the availability of those 

residual capacities may be restricted by operational constraints such as ramping rate limits. Spinning reserves, providing upward and downward 

flexibility, can be calculated after the unit commitment optimization, but are not the focus of this paper. 



 

Figure 2: Generation output levels: basic unit commitment model without demand-side flexibility 

In the basic unit commitment model without demand-side flexibility, the first nuclear power plant is 

turned on in hour 6 and the second nuclear power plant in hour 7. Partial loading of those units is shown 

by the red bars above the aggregated energy demand curve in Figure 2. Given restricted flexibility this 

unused capacity is not yet available for power generation. It takes at least three hours before those nuclear 

power plants reach rated capacity as enforced by the 33% ramping limit. 

The two coal-fired power plants are turned on in hour 8 and restricted by their 40% ramping limit. The 

power output of the nuclear and the coal-fired power plants, combined with the wind power injection is 

deficient to satisfy energy demand in hour 8. Two additional GCT plants must be turned on in order to 

ensure the system power balance. A first and second CCGT plant are turned on in hour 14 and 18 

respectively, in response to peaking demand levels. Even though the demand peak is less pronounced 

between hours 32 and 36 compared to hour 20, net demand levels, after subtracting wind power, are 

higher. The third CCGT plant, five GCT plants and even one OCT plant must be turned on as a result of a 

much lower amount of wind power injected. 

Finally, generation output levels in hour 27 and 28 also require special attention. Reduced conventional 

energy demand levels during the night cause one coal-fired plant to be turned off. It takes five hours 

before this plant can be turned on again, as enforced by the minimum down time constraints. At the same 

time, the output of the other coal-fired power plant is reduced to the minimum level of 100 MW. Also the 

output of the nuclear power plant is slightly reduced. Again, unused capacity of the nuclear and the coal-

fired power plant are shown above the aggregated demand curve, corresponding to the partial load levels. 

Figure 2 shows that wind power is curtailed from hour 1 until hour 6. Curtailment levels up to about 300 

MW in hour 2 can be seen in order to ensure the system power balance. It must be noticed that wind 

power curtailment also occurs in hour 6, even though the first nuclear power plant is already turned on. 

3.3.2 Electricity price results 
The real-time price of electricity (RTP) for the basic unit commitment model (Figure 2) is displayed by 

the full line in Figure 3. The coal-fired power plant is the marginal generation plant from hour 9 until 14 

and from hour 29 until 31. The marginal fuel costs of a coal-fired power plant are assumed to be 35 

€/MWh. An emissions level of 0.9 ton CO2/MWh generated, multiplied by a 10 €/ton CO2 emission price, 

amounts to a cost of emissions equal to 9 €/MWh. The combined marginal cost of generation yields an 

electricity price equal to 44 €/MWh (Figure 3). 



 

Figure 3: Real-time price of electricity: basic unit commitment model 

The CCGT plant is the marginal generation plant from hour 15 until 24 and from hour 36 until 46. The 

marginal fuel costs of a CCGT plant are assumed to be 50 €/MWh. An emissions level of 0.41 ton of 

CO2/MWh generated, multiplied by a 10 €/ton CO2 emissions price, amounts to a cost of emissions equal 

to 4.1 €/MWh. The combined marginal cost of generation yields an electricity price equal to 54.1 €/MWh 

(Figure 3). Correspondingly, the electricity price can be calculated for those hours when the GCT and the 

OCT are the marginal generation plant, resulting in electricity prices of 77.9 €/MWh (hour 8, 33 and 35) 

and 117.8 €/MWh (hour 34). During hours of wind power curtailment, the price of electricity becomes 

negative, because increasing electricity demand by one MWh reduces curtailment costs by 30 €/MWh. 

The weighted average electricity price over this 48 hour period equals 42.7 €/MWh. 

4. PRICE-BASED DEMAND RESPONSE IN UNIT COMMITMENT 

MODEL 

Unit commitment models with fixed demand profiles pursue the reduction of system costs. However, with 

the expected roll-out of smart metering appliances, consumers can take the decision to adjust their initial 

demand levels in response to price changes, referred to as price-based demand response. When short-term 

demand response is integrated, fixed demand profiles are replaced by hourly elastic demand functions 

[15]. The model must define a solution characterized by an equilibrium price and demand for each hour, 

in accordance with Samuelson’s principle [16]. The price-quantity market equilibrium is equivalent to 

maximizing the sum of producer and consumer surplus. Consequently, the solution maximizes welfare, 

being the integral of the demand function, at a minimum cost for generators taking the operational 

constraints into account. According to microeconomic theory, consumer surplus maximizing end-users 

increase their demand up the point where the cost of consumption is equal to the marginal benefits 

obtained from the consumption [17]. The welfare gained by consuming one additional amount of energy 

would be lower than the price to be paid for this additional amount of energy. Correspondingly, the loss 

of consumer surplus after reducing the level of consumption compared to equilibrium demand would be 

larger than the savings of reduced consumption. 

4.1 Model extension 

First, the unit commitment model is optimized for the 48-hour time period with fixed demand levels and 

given the parameters described in subsection 3.2. The model output defines the optimal commitment of 

the available generation units subject to the operational constraints. Based on the dual variable or shadow 

price of the nodal energy balance requirement the marginal price of electricity is found. This marginal 

price is then used to calculate a weighted average energy price. This is the flat tariff currently faced by 

5 10 15 20 25 30 35 40 45

-20

0

20

40

60

80

100

120

Hours

[€
/M

W
h

]



consumers as they are assumed not to be under a real-time pricing structure.
6
 The single tariff combined 

with the fixed hourly demand level constitutes an equilibrium and is used as an anchor point through 

which the linear elastic demand function is drawn. Own-price elasticities are included, resulting in hourly 

short-term demand response. Changing the elasticity corresponds to adjusting the responsiveness of 

consumers with respect to price changes.  

The equilibrium solution considering short-term demand response represented by the linear elastic 

demand function can be found by reformulating the Mixed Integer Linear Program (MILP) model as a 

mixed integer nonlinear problem [18]. As these models are typically hard to solve, an alternative 

computational procedure is suggested in [15] given current supply characteristics and a piecewise 

linearization of the price elastic demand function. 

Still, perfect foresight is assumed, meaning the real-time wind power injections as well as consumers’ 

demand and their responsiveness to electricity prices is perfectly know in advance. As nothing changes 

between day-ahead when the optimal commitment is defined and real-time, the expected hourly prices are 

equal to the real-time price levels. 

4.2 Model results 

This subsection illustrates the impact of integrating short-term price-based demand response into the basic 

unit commitment model focusing is on generation output levels, electricity prices, as well as on 

operational costs and environmental benefits. 

4.2.1 Generation output levels 

Figure 4 shows the generation output levels given different levels of own-price elasticity, respectively -

0.10, -0.20 and -0.30. A higher absolute value of own-price elasticity corresponds to higher demand-side 

flexibility, yielding higher demand adjustments. Looking at the first 8-hour period, demand levels are 

increased by about 500 MW or 20% when compared to the initial load profile in the -0.30 own elasticity 

scenario. Simultaneously, initial peak load levels are reduced by almost 300 MW or 10% between hour 18 

and 22. The amount of load adjustment is less pronounced for a -0.10 own-price elasticity scenario. 

Demand-side flexibility only yields a valley filling effect of about 300 MW in the first 3 hours, and only 

150 MW between hour 4 and 6 in the -0.10 own-price elasticity scenario. 

Valley filling effects during the first hours of this period allow an earlier start-up of the nuclear power 

plants. In the -0.30 own-price elasticity scenario, one nuclear power plant is on during the entire 48-hour 

period. Valley filling effects also occur during the off-peak period between the first and the second 24-

hour period, especially around hour 27 and 28. The increased generation output levels of the nuclear 

power plant also increase its capacity factor, which is the ratio of the total energy generated by a 

generating unit for a specified period (in this case 48 hours) to the maximum possible energy it could 

have generated if operated at its maximum rated capacity (Figure 5) [19]. 

CCGT power plants are typically used to satisfy demand for electricity during peak load. Generation 

output levels of the CCGT plant are reduced when increasing the demand-side flexibility. When assuming 

only -0.10 own-price elasticity, generation output levels are only slightly reduced between hour 15 and 

22. When assuming higher absolute levels of own-price elasticity, the starting up of the first CCGT plant 

can be delayed until hour 18. Furthermore, it is not required to turn on a second CCGT plant in the first 

24-hour period. 

 

                                                           
6 A similar methodology could be applied to calculate weighted average prices for a double tariff structure, with peak and off-peak periods [30]. 



 

Figure 4: Generation output levels: unit commitment with price-based demand response 

Initial load levels are also reduced during the peak load period from hour 32 until 44. When reducing the 

demand-side flexibility with own-price elasticity levels from -0.30 to -0.20 and -0.10, initial load levels 

are reduced by more than 200 MW, about 150 MW and little less than 100 MW, respectively. As a result, 

not only the CCGT generation output levels are reduced, but also the third CCGT plant can be switched 

off after hour 35 when assuming -0.20 or -0.30 own-price elasticity levels. This result is also proven by a 

reduced capacity factor for the CCGT plants (Figure 5). 



 

Figure 5: Capacity factor for nuclear, coal-fired and CCGT power plants 

4.2.2 Electricity prices 

So far, no attention is paid to the driver behind demand-side response, being the hourly electricity price. 

The initial flat tariff price of 42.7 €/MWh is calculated as the weighted average electricity price for the 

basic unit commitment model without demand response. Market clearing hourly electricity prices for the 

different scenarios with demand-side flexibility must be compared to the flat tariff in Figure 6. All 

deviations of the hourly electricity price from the flat tariff explain load changes. The larger the price 

difference between the real-time electricity price and the flat tariff, the larger demand adjustment. This 

applies for both up- and downward price differences. 

Upward price spikes typically occur at moments of high demand levels or load fluctuations. GCT and 

OCT power plants are able to deal with such situations and finally help to meet real-time electricity 

demand. Since these units have higher marginal operational costs, price levels increase. On the other 

hand, downward price spikes typically occur at moments with a large amount of wind power.
7
 Excess 

wind power injections are curtailed, enforcing curtailment costs. During moments of excess wind power 

supply before hour 8, lower electricity prices make consumers increase initial demand levels. Finally, also 

moments occur with market clearing prices negligibly deviating from the flat tariff, such as between hour 

10 and 13, or around hour 30. Then, the aggregated demand levels almost perfectly match the load levels. 

Consumers’ response to price changes finally reduces the frequency and the size of the price deviations. 

Consequently, electricity price volatility measured as the standard deviation is significantly reduced 

(Figure 7). Assuming only -0.05 own-price elasticity, already decreases price volatility for this period 

from 30 to 25 €/MWh. Assuming a higher demand-side flexibility of -0.20 reduces price volatility further 

by half to about 15 €/MWh.  

 

Figure 6: Real-time price of electricity: unit commitment model with price-based demand response 

                                                           
7 The concept of downward price spikes on power exchanges is mentioned in [31]. 
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Figure 7: Electricity price volatility (standard deviation) assuming different levels of own-price elasticity 

4.2.3 Operational costs 

Price-based demand response also impacts operational costs (Table 2). Increasing the assumed level of 

own-price elasticity from -0.05 to -0.30 helps reducing total operational costs by approximately 10% to 

20% in this 48-hour period. Price-based demand response has a similar effect on both generation and 

start-up costs. 

Table 2: Operational costs and environmental benefits: price-based demand response 

Own elasticity Total costs [€] Generation costs [€] Start-up costs [€] Emissions [ton] Curtailment [MW] 

-0.00 1.889.414 1.623.726 7.514 22.526 1.097 

-0.05 1.790.374 1.554.166 7.044 21.981 312 

-0.10 1.733.157 1.511.221 6.900 21.504 0 

-0.20 1.624.976 1.412.454 6.400 20.612 0 

-0.30 1.564.771 1.357.991 6.400 20.038 0 

 

4.2.4 Environmental benefits 

The inclusion of price-based demand response into a unit commitment model also has environmental 

benefits. In this example, responsive consumers realize CO2 emission reductions between 5 and 10% of 

the initial carbon emission levels. Most notable is the impact on the amount of wind power curtailment. 

Price-responsive consumers increase electricity demand compared to initial demand levels. Even given -

0.10 own-price elasticity, the total amount of available wind power can be consumed and no wind power 

is curtailed. 

5. PRICE-BASED DEMAND RESPONSE IN UNIT COMMITMENT 

MODEL WITH WIND POWER STOCHASTICITY 

5.1 Impact of wind power uncertainty 

Wind power injections have to be forecasted to define the residual amount of power that needs to be 

generated by conventional plants. Forecasting errors entail additional system cost, whereas improving 

wind power predictions has a significant economic benefit, measured as fuel savings from conventional 

units in [20]. Given an underestimation of the wind power injections in a control area, downward reserve 

power is required to ensure the power system balance. Generation flexibility prevents overcommitment of 

conventional units, when the amount of wind power injected turns out to be higher in real-time. 
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Correspondingly, given an overestimation of the wind power injections in a control area, upward reserve 

power is required [21]. In that case, generation flexibility must prevent undercommitment of conventional 

units, when the amount of wind power injected turns out to be lower in real-time. When too little 

generation flexibility is available, the adequacy of the power system is at risk as the probability of failure 

increases. Alternatively, system costs are increased above optimal operational levels when too much 

flexible generation capacity is kept available [22]. 

This section abstracts for the presumption of perfectly predictable wind power injections. The basic unit 

commitment model is extended in order to quantify how price responsive consumers react in scenarios 

with forecast errors. These forecast errors result from stochasticity of real-time wind power injections. 

Depending on the hourly amount of wind power injection, a different price is send to the consumers, 

resulting in scenario specific levels of hourly electricity demand. 

5.2 Model extension 

Wind power uncertainty is now included into the unit commitment model with price-based demand 

response, assuming different real-time wind power injection scenarios. Equilibrium price and demand 

levels are defined for each hour in every scenario. Consequently, this model indicates the ability to deal 

with forecasting errors at a minimum cost.  

Uncertainty about the real-time wind power injection in the system is included by constructing a 

stochastic mixed-integer linear programming (MILP) model. The stochastic part is presented by a 

scenario tree for possible wind power generation forecasts for each individual hour [23]. 

Scenario-specific parameters 

The inclusion of stochasticity has model implications. Partitioning of scenario-specific parameters as well 

as scenario-specific decision variables must be done [24]. Hourly wind power injections become scenario-

specific, where each scenario has a predefined hourly probability of occurrence.  

The number of scenarios, as well as the deviations between different possible wind power injections can 

be based on standard deviations of wind power forecasting errors and the forecast lag [25]. Three 

different scenarios are assumed with an equal probability of 33.3% designated to each scenario: 

• Scen 1: Wind power overestimation: 25% less wind power injected in real-time 

• Scen 2: Wind power correctly forecasted 

• Scen 3: Wind power underestimation: 25% extra wind power injected in real-time 

 

The amount of over- or underestimation of wind power injection is indicated by an hourly, scenario-

specific relative parameter. This value of over- and underestimation is assumed to be each 25%. Scenario 

2 corresponds to a correct wind power forecast. 

Scenario-specific decision variables 
Several decision variables must be partitioned in response to different wind power injection scenarios. 

The unit commitment model without wind power uncertainty already entailed wind power curtailment 

during periods of excessive wind power injections. A different optimal amount of wind power curtailment 

is allowed given different wind power scenarios.  

After subtracting from different levels of wind power injection, different net load levels are found, which 

must be satisfied by the conventional generation output. Each generation plant has a scenario-specific 

hourly output level. Generation output deviations in each of the scenarios relative to scenario 2 in the 

previous hour satisfy the ramping rate constraints. 



Nuclear, coal-fired and CCGT plants have a technology specific minimum on- and down-time. Therefore, 

those conventional generators are not turned on or off, depending on the scenario, in order to supply 

electricity demand. The on or off status of these units is assumed to be fixed in each scenario for a given 

hour. The 0-1 binary variable indicating the plant status is not partitioned for scenarios for those units. 

However, the on or off status of the more flexible GCT or OCT plants can be more easily adjusted. As a 

consequence, a scenario depending 0-1 binary variable indicating the plant status is included, specifically 

for those units. The scenario-specific plant status variable for high peaking units also requires a scenario-

specific start-up cost. 

Different output levels of committed generators or even different levels of wind power curtailment may 

finally impact price levels. Hourly, scenario-specific electricity prices are equal to the dual (shadow price) 

of the system power balance requirement. Assuming price-based demand response, scenario specific price 

levels finally yield scenario-specific hourly electricity demand. 

5.3 Model results 

The introduction of price-based demand response in the unit commitment model with wind power 

stochasticity impacts the optimal generation output levels and the corresponding market clearing 

equilibrium prices. Furthermore, operational costs and environmental benefits for the scenario with and 

without price-based demand response are compared. 

5.3.1 Generation output levels 

Generation output levels are gathered in Figure 8 in order to illustrate the impact of demand-side 

flexibility, accounting for three real-time wind power injection scenarios. On the left-hand side, the 

optimal output levels of three scenarios are shown without price-based demand response. On the right-

hand side, the three graphs show optimal output levels for the same scenarios, while price-based demand 

response is included, assuming a -0.15 own-price elasticity. 

Correct forecast 

Starting from the second scenario (second row of graphs), generation output levels are presented given a 

correct wind power forecast. It is assumed that this situation occurs with a probability of 33.3%. The 

output levels without demand response differ markedly from the situation without wind power uncertainty 

(Figure 2).  

The first nuclear plant is already operating in hour 1 above the minimum run level of 100 MW. In order to 

balance generation and demand, 150 MW of wind power is additionally curtailed, increasing optimal 

wind power curtailment levels up to 460 MW in hour 2. Nuclear power plants are much longer fluctuating 

on partial load levels. They only reach rated power output levels in hour 13, instead of hour 9 without 

wind power uncertainty. The start-up of the first CCGT power plants is also advanced from hour 14 to 

hour 8. Even a third CCGT plant is turned on between hour 18 and 22, which does not occur without 

wind power uncertainty. Similar to nuclear power plants, committed CCGT plants are operating at lower 

output levels, but offer upward flexibility which is required in scenario 1 with overestimated wind power 

injections. 

Including demand response in the correct wind power forecast scenario, yields increased demand levels 

by up to 500 MW in the first hours, avoiding excess wind power injections. During the other hours, initial 

demand levels are less significantly impacted. The demand profile after response rarely deviates more 

than 100 MW from the initial levels. Despite those little demand adjustments, the optimal generation 

output profile presents less partial loading. 

The scenario with a correct wind power forecast must be compared to the scenarios where real-time wind 

power injections are over- or underestimated.  



 

 

Figure 8: Generation output levels with wind power uncertainty 

Wind power overestimation 

The first scenario (first row of graphs) represents a forecasting error where the amount of wind power 

injected is overestimated. In real-time 25% less wind power is injected. This deficit must be offset by 

increased conventional power generation output levels.  

Without demand response (upper left graph), output levels of nuclear power plants increase in the first 6 

hours. Coal-fired power plants raise output levels from hour 8 until 18 and from hour 23 until 30. Also 

CCGT power plants are able to ramp up during moments of overestimated wind power injections. 



Further, in several hours, GCT power plants are additionally turned on. Finally, in hour 8, 33 and 34 OCT 

plants even have to be started-up to provide sufficient flexibility. 

When consumers respond to real-time price signals, demand is adjusted compared to the initial demand 

levels (dashed line in upper right graph) when less wind power is injected in real-time. During peak, as 

well as off-peak period initial demand levels are lowered by 100 MW up to 250 MW. Demand 

adjustments even reach a reduction of about 340 MW in hour 9. By reducing demand levels, GCT and 

OCT power generation can be avoided 

Wind power underestimation 
The third scenario (third row of graphs) represents a forecasting error where the amount of wind power 

injected was underestimated. In real-time 25% extra wind power is injected. This surplus of power 

injection must be offset by lowering conventional power generation output levels.  

Without demand response (lower graph left), nuclear power plants are still operating at minimum run 

levels of 100 MW from hour 1 until 7. Since these plants are turned on, it is technically not possible to 

turn them off. As a consequence, wind power injections are heavily curtailed, even up to 1000 MW in 

hour 2, in order to ensure the real-time system power balance. Between hour 8 and 13, the output of the 

coal-fired power plants is reduced to the minimum run level when real-time wind power injection turn out 

to be 25 % higher than initially forecasted. Again, it is technically not possible to turn off these plants. 

Output levels of all CCGT plants which have been turned on between hour 8 and 25 are also lowered to 

the minimum output level of 75 MW. 

When consumers response to real-time price signals, demand is adjusted, compared to the initial demand 

levels (dashed line in lower right graph), when 25% extra wind power is injected in real-time. In the first 

13 hours, initial demand levels are raised. In the first 8 hours, this results in a higher uptake of available 

wind power. Demand-responsive consumers make that hourly wind power curtailment levels are more 

than halved. Between hour 9 and 13, demand-responsive consumers make that nuclear power plant can 

operate at rated output levels, in contrast to a situation without demand response. 

5.3.2 Electricity prices 

Given different wind power forecasting scenarios, electricity prices are listed in Figure 9. Electricity 

prices in the upper graph without demand response can be explained by the marginal cost of generating 

electricity, as discussed before. Price profiles are shown as if each scenario would occur for the entire 

period of 48 hours. 

Depending on the scenario and the hour, a different generation plant may be the marginal unit, resulting 

in different electricity prices. Price levels are commonly higher when less wind power is injected and 

lower when extra wind power is injected, compared to the correct forecasting scenario. The current 

generation portfolio is insufficient to satisfy demand in hour 34 in scenario 1. An additional back-up GCT 

plant is added to the model with marginal fuel costs of 150 €/MWh and comparable minimum run, 

ramping and emission characteristics. The peak demand level in hour 34 causes a price spike up to 155,9 

€/MWh, after accounting for emission costs.  



 

Figure 9: Electricity prices with wind power uncertainty: with and without price elastic demand 

After including price-based demand response into the model, higher market equilibrium electricity price 

levels can be found when less wind power is injected. Correspondingly, lower price levels can be found 

when extra wind power is injected. The deviation between price levels for the correct forecast scenario 

and the other two scenarios is reduced when price-based demand response is included. This directly 

relates to the opportunity to avoid OCT and GCT power generation, already mentioned when discussing 

generation output levels. Not only up-, but also downward price spikes are reduced. The amount of wind 

power curtailment is reduced. Those moments occur during hours with high wind power injections, and 

especially in the scenario with extra injections (underestimation). 

5.3.3 Operational costs 

Operational costs and environmental benefits are summarized in Table 3 and Table 4. The results account 

for the three scenarios with their respective 33.3% probability and can be interpreted as expected costs 

and environmental benefits. We assume one scenario with a correct wind power forecast and two 

scenarios with each a forecast error respectively included as an over- and underestimation. Without price-

based demand response, an operational cost increase can be concluded when forecast errors increase. A 

higher deviation from the correct forecast gives higher generation as well as start-up costs.  

Table 4 lists the results for the unit commitment model with price-based demand response. When 

consumers are able to adjust their initial levels of demand, different forecast error scenarios can be better 

dealt with. A price-responsive demand-side helps avoiding increasing operational costs due forecast 

errors. This conclusion is based on avoided GCT and OCT generation output and less power plants being 

partly loaded (Figure 8). Consequently, expected operational costs are reduced by 10%, given a 10% 

forecast error, up to 15%, for a 25% forecast error, assuming -0.15 own-price elasticity. Consequently, 

demand-side participation could be seen as an alternative to improving forecasting tools in order to reduce 

the cost of forecasting errors. In reality, demand-side participation and forecasting tool improvements 

must be simultaneously applied. 

4 8 12 16 20 24 28 32 36 40 44 48

0

50

100

150

Hour

P
ri

ce
 [
€

/M
W

h
]

Electricity price: wind forecast scenarios without response

 

 

25% less injected

correct forecast

25% extra injected

4 8 12 16 20 24 28 32 36 40 44 48

-20

0

20

40

60

80

Hour

P
ri

ce
 [
€

/M
W

h
]

Electricity price: wind forecast scenarios -0.15 own elasticity

 

 

25% less injected

correct forecast

25% extra injected



Table 3: Operational costs and environmental benefits with wind power uncertainty: without price-based 

demand response 

Forecast error Total costs [€] Generation costs [€] Start-up costs [€] Emissions [ton] Curtailment [MW] 

10% 1.912.952 1.636.777 8.219 22.540 1.419 

15% 1.946.277 1.660.893 8.364 22.555 1.716 

20% 1.988.563 1.684.882 8.803 22.559 2.310 

25% 2.037.096 1.721.153 8.559 22.634 2.701 

Table 4: Operational costs and environmental benefits with wind power uncertainty: with -0.15 own-

price elastic demand response 

Forecast error Total costs [€] Generation costs [€] Start-up costs [€] Emissions [ton] Curtailment [MW] 

10% 1.736.368 1.511.963 6.900 21.697 18 

15% 1.755.450 1.524.797 6.900 21.677 233 

20% 1.733.816 1.501.356 6.900 21.253 434 

25% 1.748.977 1.509.517 6.900 21.184 691 

 

5.3.4 Environmental benefits 

When consumers adjust their demand levels in response to electricity prices, carbon emissions can be 

reduced by 5%. Furthermore, increasing forecast errors result in higher levels of wind power curtailment. 

When demand levels cannot be adjusted in response to prices, an oversupply of wind power must be 

increasingly curtailed with increasing forecast error. However, a flexible demand-side significantly 

impacts the amount of wind power curtailment. As suggested by the results in Table 4, smaller forecast 

errors can easily be absorbed by adjusting initial demand. A total level of curtailment of 1.419 MW in 

case of 10% forecast error can be reduced to 18 MW thanks to price-based demand response. When the 

total level of curtailment is raised up to 2.701 MW, assuming a 25% forecast error, a flexible demand-side 

can reduce curtailment down to 691 MW. 

6. CONCLUSIONS 

Unit commitment models optimize short-term operation of available generation units, accounting for 

technical constraints. Typically, demand levels are assumed to be fixed and system flexibility fully 

originates from generation. However, the smart meter roll-out, allowing real-time billing, creates 

flexibility at the demand-side of the electric power system. This yields value with respect to generation 

cost reductions and wind power integration, which is quantified in this paper. 

Price-based demand response is included in a basic unit commitment model. Consumers are assumed to 

adjust initial demand levels in response to price changes. In order to include the benefits consumers 

receive from electricity consumption, fixed demand levels are replaced by hourly elastic demand 

functions. A more flexible demand-side is included by increasing the absolute value of the own-price 

elasticity.  

Increasing consumer’s responsiveness to price deviations on the one hand reduces peak demand levels, 

avoiding expensive peak and high peak load power generation. On the other hand, demand valleys with 

low electricity demand or excess wind power generation can be filled, increasing the output of less 

expensive power generation. Consequently, the capacity factor of base load generation increases, whereas 

this factor decreases in case of peak load generation. In addition to those cost reductions, price volatility 

is lower and the integration of non-dispatchable wind power generation is improved. 



Finally, a flexible demand-side proofs to be efficient in dealing with the unpredictability of real-time wind 

power injections. A stochastic unit commitment model indicates that the issue of wind power forecast 

errors can partly be solved at by demand-side flexibility. As the instantaneous system power balance is no 

longer only achieved by supply-side measures, a large amount of wind power can be integrated into the 

system without a significant operational cost increase.  
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