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Abstract

We explore two avenues where machine learning can help drug discovery:
predictive models of in vivo or in vitro effects of molecules (known as Quantitative
Structure-Activity Relationship or QSAR models), and the selection of efficient
experiments based on such models.

In the first part, we present methods to improve the predictive power of graph
kernel based molecule classifiers. The bias of existing graph kernels can be
improved by augmenting atom-bond graphs with functional groups. This
novel representation allows a machine learning algorithm to use both high-level
functional and low-level atomic information, without any change to the kernel or
learning algorithm. In internal validation tests, we observe consistently higher
AUROC:s for all tested kernels.

We also introduce a novel, efficient graph kernel called the Neighborhood
Subgraph Pairwise Distance Kernel. The feature space of this kernel is the
space of pairs of topological balls and the interpair distance. Using this kernel, a
standard support vector machine outperforms existing methods in the prediction
of all investigated target properties: mutagenicity, in vivo toxicity, antiviral
activity, and cancer suppression.

In the second part, we tackle the problem of efficient experimentation in drug
discovery using optimization assisted by a learned surrogate model and we
evaluate different experiment selection strategies. The algorithm is extended
to accommodate drug discovery needs, such as the selection of many parallel
experiments. The algorithm is integrated in an automated drug discovery
platform, the robot scientist Eve. It is also applied to the optimization of the
design of nanofiltration membranes.

Xiv



Beknopte samenvatting
(Abstract in Dutch)

In dit werk bestuderen we twee manieren om het onderzoek naar geneesmiddelen
efficiénter en effectiever te maken.

In het eerste deel stellen we methoden voor om voorspellende modellen
van in-vivo of in-vitro effecten van moleculen nauwkeuriger te maken. De
nauwkeurigheid van modellen gebaseerd op grafenkernels kan worden verbeterd
door functionele groepen op te nemen in de graaf, die normaal enkel uit atomen
en hun bindingen bestaat. Een leeralgoritme kan dan zowel rekening houden met
grotere functionele eigenschappen als met de exacte structuur van de individuele
atomen, zonder dat we het leeralgoritme of de kernel moeten wijzigen. We
stellen experimenteel vast dat alle geteste eigenschappen (toxiciteit, antivirale
werking, en remming van kankergroei) nauwkeuriger worden voorspeld als de
uitgebreide grafen worden gebruikt.

We introduceren ook een nieuwe, efficiénte kernel, die we de Neighborhood
Subgraph Pairwise Distance Kernel (NSPDK) noemen. De NPSDK vergelijkt
moleculen door te tellen hoeveel paren van topologische bollen er in hun graaf
te vinden zijn. Hoe meer dergelijke paren identiek zijn in twee moleculen en
bovendien dezelfde interpaar afstand hebben, hoe gelijkaardiger de moleculen
worden bevonden. Met behulp van de NSPDK levert een gewone Support Vector
Machine nauwkeurigere voorspellingen van de toxische, antivirale en antikanker
eigenschappen van moleculen dan welke andere methode ook.

In het tweede deel bestuderen we hoe experimenten kunnen worden geselecteerd.
Omdat er een enorm aantal verschillende moleculen kunnen worden gesyn-
thetiseerd (waarvan vele miljoenen commericieel beschikbaar zijn), is de vraag
welke moleculen het eerst te testen, van groot belang. Dit geldt des te meer
naarmate de test duurder is. Slechts een minieme fractie van alle moleculen
heeft immers een gewenst geneeskundig effect, dus is het verre van denkbeeldig

XV



xvi LIST OF SYMBOLS

dat het budget op raakt voor een geschikte molecule gevonden wordt. We passen
surrogaatmodel-gebaseerde optimalisatietechnieken toe op dit probleem en we
vergelijken manieren om de moleculen te kiezen die moeten worden getest. We
breiden het algoritme uit zodat het vele moleculen tegelijk kan selecteren in
plaats van één-per-één. De toepasbaarheid van het algorithme wordt bewezen
door de integratie in een automatische screening-robot. We passen het algoritme
ook toe om te zoeken naar betere membranen voor ultrafiltratie.
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Outline

No sensible decision can be made any longer
without taking into account

not only the world as it is,

but the world as it will be.

Isaac Asimov

Introduction

The goal of this thesis is to develop computational methods to make drug
discovery, and functional chemistry research in general, more efficient and
effective.

Drug discovery is an empirical science. The primary tool for identifying a
molecule that can become a prescription medicine, is to create a simplified,
reproducible biological model of the disease at the cell level or at the molecular
level. The model becomes an assay when it is designed to allow convenient
detection whether the disease is still functional after some manipulation.
Fluorescent marker molecules are often the detection method of choice, but a
myriad of other mechanisms are also used. To test a molecule it is just added
to the assay solution. After an appropriate time, which can be milliseconds
or days, the presence or absence of the marker is observed. If the disease is
inhibited, we say that the molecule is active.

Realising that drug discovery is experiment driven, we will consider three
questions in particular with regard to our stated goal.

Q1 Can we generalize the results of experiments in order to predict the activity
of molecules that have not been tested?
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Question Q1 asks, once a certain number of experiments have been performed,
whether we can use the results to predict for other molecules how well they would
perform in the assay. This comprises the automatic construction of accurate
computer models for predicting an arbitrary property of small molecules. Once
created, the input for the model is just the chemical description of the molecule
— how it is composed of atoms of the different elements and how its atoms are
bonded together. The output can be a real number, describing the expected
magnitude of activity in the assay. Alternatively, the output may describe
the probability that the molecule is active, or it may just be a Boolean telling
us whether the model expects the molecule to be active or inactive. All such
models are called Quantitative Structure-Activity Relationships (QSAR), and
they establish the correlation between a molecule’s structure and its activity in
a particular assay.

If the property we want to predict is not activity against a disease, but rather
lipophilicity or toxicity, the more general term Quantitative Structure-Property
Relationship (QSPR) is more appropriate. However, the term QSAR has been
in use longer and is also frequently used in the more general sense. We will use
both terms interchangeably.

The purpose of a QSAR model can be twofold:

Predictive To displace or reduce the need for actually measuring the
compounds in the assay, thereby saving resources.

Descriptive To explain to the researcher what properties are important in a
molecule for it to be an effective candidate drug.

Usually there is a trade-off between the intelligibility or transparency of a model
and the quality of its predictions. That is, the most accurate models do not
allow one to pinpoint concisely what aspects or features matter in a molecule.
Typically, in a biological system many aspects are important at the same time,
even though to different degrees. As is evident from the title of this thesis, we
will concentrate on models that are predictive rather than descriptive.

To create the QSAR model, we will assume that some molecules have already
been tested in the assay, and we will exploit these measurements (the ‘training
data’) as well as we can. However, that does not mean we should adjust
the parameters of the model such that the model perfectly fits all available
data. Real-world measurements produce noisy data. That is, the measured
values do not reflect the underlying phenomenon exactly but contain random
errors. This may be due to the limited precision of the measurement method, or
because there are uncontrolled variables other than the molecular structure that
contribute to the outcome. Theory and experience show that in the presence
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of noise (and few fields can compete with biology when it comes to producing
noisy data), it is better for the model to remain sufficiently ‘simple’ than to
cover all subtleties apparent in the training data. The model will then only
pick up the patterns that have suffient support in the training data and are
therefore hopefully also present and valid in the test data. The capability to
accurately predict not just the training data but also unseen test data, is called
generalization. The scientific discipline which studies methods to build such
models, is machine learning.

Intuitively, we can expect our models to be better when during their construction
we have access to more training data. Indeed, this is a key property of a machine
learning algorithm. Mitchell (Mitchell 1997) defines machine learning as the
capability of a computer program to improve its performance with experience.
The improvement can be measured on different scales (accuracy, mean squared
error, ...) and the precise task may differ, but the defining capability is to
obtain some benefit from experience.

In drug discovery the ‘experience’ is the data on the molecules that have already
been tested. They are the training instances or training examples. The task of
building a model based on training data is called supervised learning, as opposed
to unsupervised learning where one does not have access to any training labels
(e.g. clustering). If the target property is discrete (e.g. active vs. inactive), the
machine learning problem is called classification. If the target is a real number
(e.g. ECsg, the log-concentration at which the compound achieves 50% effect),
the problem is called regression. We will initially focus on the learning task
known as binary classification: predicting whether a molecule has a particular
property or not.

When the predictions of a model are used as a substitute for screening new
molecules in the original assay, the process is called virtual screening. Replacing
expensive wet lab tests with cheap in silico computations is obviously desirable,
if the model is accurate enough. However, in the pursuit of making drug
discovery and functional chemistry more efficient, the ability to build accurate
predictive models is only a first step — or rather the last step. Indeed, at the
start of each research project, there is not enough data to build a sufficiently
accurate model. The screening of molecules in an assay is a process during
which critical decisions must be made on which molecules to screen, and how
many, rather than a static provider of input data. Chemical space, the set of
molecules that can possibly be synthesised, is extremely large. A rough estimate
in (Bohacek et al. 1996, page 43) arrives at 10% organic molecules of up to
30 atoms. A precise number is very difficult to obtain and depends strongly
on the assumptions one makes concerning size, stability, synthetic accessibility,
permitted elements, and so on. No matter the precise size of chemical space,
it is clearly infeasible to screen all of it. Even if it was, the drug discovery
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researcher is not necessarily interested in the activity of all possible compounds.
She is rather interested in finding a sufficient number of very active compounds.
The inactive compounds are of no interest at all. This brings us to the second
question:

Q2 Can we design experiments such that we need to carry out fewer of them?

Considering the end goal of the drug discovery researcher, we will reinterprete
(actual, not virtual) screening as an iterative process in which compounds (or
batches of many compounds) are tested one after another rather than all at the
same time. We will assume that the researcher has some form of opportunity to
choose the next compounds to be tested, even though there may be constraints.
The task is then to iteratively select the best set of compounds. It is a machine
learning task, for we expect such an algorithm to gradually become better
at picking new compounds as it obtains more evidence. It is, however, an
unusual task in machine learning. Under the same conditions, we can also
abstract the activity of the drug discovery researcher as a function optimization
process. We can then apply methods from the field of global optimization.
The function to optimize is very expensive compared to in silico computations,
since its evaluation consists of perfoming a real-world assay experiment, thereby
consuming resources and compound stock. We will therefore apply optimization
methods specialized for requiring as few function evaluations as possible. The
most powerful of such methods involve the construction of a predictive model
of the function to be optimized after each batch of function evaluations. The
model is a surrogate: it can be queried cheaply in silico instead of evaluating the
real function, which involves using the assay. Learning the surrogate function
corresponds to building a QSAR model. However, surrogate-based optimization
works better if we also obtain a good estimate of how accurate the model is in
different regions of its domain. For that reason, we will use different QSAR
modeling techniques in answering Question Q2 than for Q1. Answering Q2 also
demands the investigation of different optimization heuristics that make use of
the QSAR model. We are especially interested in their relative frugality: how
few experiments they require to find comparably good compounds.

Answering Q1 and Q2 will provide us with a set of advanced tools. A final

question we should then ask, is:

Q3 Are any of the insights and techniques obtained while answering Q1-Q2
relevant for domains outside drug discovery?

In our quest to answer Q1, we will design novel predictive methods for molecules.
More precisely, we will propose (among others) a new kernel for molecular
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graphs' that leads to more accurate predictions. The new kernel also works
on other types of graphs, and we will also investigate how it can be applied
to other types of data. This will lead to a new language for machine learning.
Using the new language, kernel methods can be applied to the most general
type of data in machine learning: relational data.

For the global optimization methods investigated while seeking an answer for
Q2, we will also test an application outside drug discovery, even though without
straying from the field of functional chemistry: we will apply the method to the
design of water filtration membranes.

Contributions and Roadmap

The thesis is organized into two main parts. The first part discusses machine
learning models that predict the activity of molecules in a biological assay
based on the structural formulae. The second part describes how to use such
models in a setting where one wants to obtain highly active molecules for a
given experimental budget.

Part | covers the construction of empirical models aimed at accurately
predicting the activity of ligand molecules based on past screening data of
other ligands — cf. Question Q1 in the introduction.

First, Chapter 1 concisely introduces the prerequisite mathematics of graphs
and kernels. The chapter contains no original contribution by the author; its sole
function is to introduce the definitions and notation that will be used throughout
Part I. Some concepts will also recur in Part II. Readers knowledgeable in both
mathematical domains may skip the chapter.

Chapter 2 introduces a new representation of molecules, which embeds chemical
background knowledge into the traditional atom-bond representation. The
supplementary knowledge improves the bias of graph-based machine learning
algorithms.

Chapter 3 introduces the neighborhood subgraph pairwise distance kernel
(NSPDK). When this novel molecule kernel is fed into a standard support vector
machine (SVM) algorithm, a state-of-the art ligand-based activity prediction
system emerges, as observed with extensive in silico experiments on datasets
ranging from toxicology over oncology to virology.

IWhat kernels and graphs are, will become clear in Chapter 1.
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NSPDK has inspired the conception of a generic kernel-based machine learning
system that accepts any relational database as input, not just molecular
structures. This system, called kLog, operates (conceptually) in three steps.
First, the relational data is graphicalized. A graph kernel or feature generator
is then applied, and finally a model is learned from the kernel values or features.
We describe kLog in Chapter 4. It provides a first part of our answer to Question

Q3.

Part I is based on material that has appeared in the following publications (key
articles only):

De Grave, K. and Costa, F. (2010). Molecular graph aug-
mentation with rings and functional groups. Journal of Chemical
Information and Modeling.

Costa, F. and De Grave, K. (2010). Fast neighborhood subgraph
pairwise distance kernel. In: Proceedings of the 26th International
Conference on Machine Learning.

Frasconi, P. and Costa, F. and De Raedt, L. and De Grave, K.
(2011). kLog: a language for logical and relational learning with
kernels, Technical report, Katholieke Universiteit Leuven, Universita
degli Studi di Firenze, and Albert-Ludwigs-Universitét.

Part Il covers screening methodologies for expensive assays — cf. Question
Q2. We assume that the screening occurs incrementally rather than all at once.
The core idea is to support the selection of experiments (new molecules to be
screened) as much as possible with information obtained from already screened
molecules. The screening design is thus interpreted as a function optimization
problem.

Chapter 5 describes this setting in detail and identifies a selection of algorithms
which are suitable for screening candidate selection. The algorithms are
compared in silico against each other and against traditional, non-incremental,
high throughput screening. It is shown that drug discovery researchers with
finite budgets should consider using an online optimization algorithm to run
their screenings. In particular, the ‘optimistic’ selection of candidates algorithm
is a good choice, even though it lacks the desirable theoretical property of
dense sampling. The algorithm is implemented and being tested in the wet
lab practice by the drug discovery robot scientist project at the University
of Aberystwyth. This high-profile project aims at the development of Eve,
an autonomous robotic system to demonstrate the end-to-end automation of
scientific discovery in the field of drug discovery. Eve is described in Chapter 6.
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Chapter 7 shows that the applicability of optimization algorithms is not
restricted to the small-molecule ligand area of the chemical space. They can
just as well be applied to the other extreme of the weight scale of organic
molecules: polymers. In particular, we consider the problem of the synthesis of
cellulose acetate nanofiltration membranes. This chapter completes our answer
to Question Q3.

Part II is based partly on material that has appeared in the following
publications:

De Grave, K and Ramon, J. and De Raedt, L. (2008). Active

learning for high throughput screening. International Conference
on Discovery Science. Lecture Notes in Computer Science 5255,
185-196. Received the 2008 Carl Smith Award.

Cano Odena, A. and Spilliers, M. and Dedroog, T. and De Grave,

K. and Ramon, J. and Vankelecom, I. F. J. (2010) Optimization
of Cellulose Acetate Nanofiltration Membranes for Micropollutant
Removal via Genetic Algorithms and High Throughput Experimen-
tation. Journal of Membrane Science.

Cano Odena, A. and Vandezande, P. and Cools I. and

Vanderschoot, K. and De Grave, K. and Ramon, J. and De Raedt, L.
and Vankelecom I. F. J. (2008) Comparison of Multi-Parameter
Optimization Strategies for the Development of Nanofiltration
Membranes for Salt and Micropollutants Remouval. In: International
Congress on Membranes and Membrane Processes (ICOM 2008).

The above list again contains only the most relevant and important articles. A
full publication list of the author can be found in appendix.

Part 111

summarizes the findings of this thesis and indicates future research

directions.
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Quantitative
Structure-Activity
Relationships



Chapter 1

Molecules, graphs, and
kernels

To successfully build models of a molecular property, we need to represent
molecules, and relations between molecules, mathematically. Two types of
mathematical objects will dominate the following chapters: graphs and kernels.
In this chapter, we introduce some prerequisites.

1.1 QSAR

A Quantitative Structure-Property Relationship (QSPR) is the relation between
a specific empirical property of chemical compounds and their chemical
structures. Often the empirical property under consideration is the activity of
the compound in a biological assay, e.g. anti-viral effect or growth suppression
of a cancer cell culture. In that case, the term Quantitative Structure-Activity
Relationship (QSAR) is used (Dudek et al. 2006). The latter term is older and
often used as a synonym for QSPR. The chemical structure of a compound is
its composition of atoms of different elements and the way in which its atoms
are bonded together. We will use the symbol G for a chemical structure, for
reasons that will become clear in the next section, and even clearer in the next
chapter. The most general form of QSAR can be described by the formula

log([A¢ = Bgl) = f(Q) (1.1.1)

or: the log-concentration at which there is equilibrium between two chemical
states Ag and Bg is a function of the structure of the molecule. The task of
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the QSAR modeler is to find a function f that closely approximates reality. To
have any hope of achieving this, (s)he has to assume that the activity is not
random, but that similar structures will show similar activities.

In the current part of the thesis, I will focus on binary QSARs', where I am
only interested in discriminating between molecules that are active below a
threshold concentration C, and molecules that are not:

+1 if [AG \iBG] <C

—1 otherwise (1.1.2)

e =1
Often only a single concentration is measured, in which case we have to model
presence or absense of effect at that concentration.

A seminal work on QSAR is (Hansch et al. 1962). The term ‘Hansch analysis’
now refers to a regression model where the biological activity is expressed as
a linear or parabolic combination of few physico-chemical properties. The
logarithm of the octanol-water partition coefficient? is one of the empirical
properties often used. It can be approximated by its own QSPR model if no
experimental results are available.

Free and Wilson in another important early work (Free and Wilson 1964) studied
the activity of a series of congeneric compounds® and found an independent and
additive contribution to activity at each substituent location. They consequently
express activity as a linear combination:

log([Ac = Bgl) = Zaijffij +p (1.1.3)
ij

where x;; indicates whether substituent ¢ is present in position j on the scaffold
(one is present at each position, i.e. 37, x;; = 1), and a;; is the strength of the
contribution.

Free-Wilson analysis, and in most cases Hansch analysis as well, is limited to
congeneric compounds. To construct a more sophisticated function f, we need
a way to represent structures in the computer. The most common and natural
representation is by means of a labeled graph.

1Some use the term SAR rather than QSAR if the activity is Boolean. Here, the adjective
quantitative’ is warranted since the weights in our models will be numerical, and the binary
predictions of the models will be accompanied by a numerical measure of confidence (the
distance from the hyperplane, see Section 1.4).

2The octanol-water partition coefficient or lipophilicity is the ratio of concentration of the
compound in n-octanol versus in water in a flask containing both solvents.

3Congeneric means that the molecules are very similar. They have the same scaffold
(backbone structure), with only a few substituent groups distinguishing the individual
compounds.

¢
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1.2 Graph definitions and notation

We mostly follow the notation in (Gross and Yellen 2003).

Definition 1.2.1. Graph, vertex, and edge A graph G = (V, E) consists
of two sets V and E. The elements of V are called vertices or nodes and the
elements of E are called edges. FEach edge has a set of two elements in V
assoctated with it, which are called its endpoints. An edge is said to join its
endpoints. We also say that an edge is incident to both of its endpoints.

The notation Vg and Eg is used when G is not the only graph being considered.
When G bears a subscript, we may omit the symbol G itself, e.g. E,)
may substitute for Eg . We denote an edge by its own variable (usually e),
or by concatenating the variables of the endpoints, e.g. we represent the edge
between the vertices u and v with wv. We will only consider undirected edges,
that is, we do not distinguish between the endpoints of an edge: uv = vu.

Figure 1.1a shows an example graph:

G(a) = (VG(a)vEG(a)) = ({v1,v2,v3,v4,v5 }, {v1V2, V103, V2V3, V304, V4 V5 })

Definition 1.2.2. Adjacent vertex A wvertexr v is adjacent to a verter u iff
they are joined by an edge.

Definition 1.2.3. Vertex degree The degree of a vertex is number of edges
incident to it. We will denote it by the unary function degree(v).

For example, in Figure 1.1a, degree(vs) = 1, degree(vy) = degree(vy) =
degree(vy) = 2, and degree(vs) = 3.

Definition 1.2.4. Simple graph A multi-edge is a collection of two or more
edges having identical endpoints. A self-loop is an edge that joins a single
endpoint to itself. A simple graph is a graph that has no self-loops nor multi-
edges.

Figure 1.1c shows a graph that is not simple because it contains a self-loop
and a multi-edge. In this thesis we consider only simple graphs. Multi-edges,
which are potentially useful for the representation of multiple covalent bonds in
molecules, will be substituted for by labels, to be introduced below (Definition
1.2.14). As a consequence, in Figure 1.1b, the carbon has degree three rather
than four.

Definition 1.2.5. Complete graph A graph is complete iff every pair of
vertices is joined by an edge.



12 MOLECULES, GRAPHS, AND KERNELS

Vi

double

V2

(a) Unlabeled graph. (b) Labeled graph representing the
molecule formic acid.

(¢) Graph that is not simple. (d) Complete graph. (e) Disconnected graph.

t ) Vi k j 3 \
\7]

(f) Rooted graph. (g) Neighborbood  Ni(vi) =
{v1,v2,v3}

Vi 3 Vg
V2
(h) Neighborbood subgraph Q7' = (i) A labeled graph that is isomorphic to
({v1,v2,v3}, {v1v2, V203, v103}),, graph (b).

Figure 1.1: Example graphs.
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Definition 1.2.6. Rooted graph A graph is rooted when we distinguish one
of its vertices, called the root.

We denote a rooted graph G with root vertex v with G,.

When comparing graphs, it is useful to consider substructures that are larger
than individual vertices or edges. The simplest substructures we discern are
linear in nature: walks and paths.

Definition 1.2.7. Walk A walk in a graph G is a sequence of vertices W =
Vg, V1, ..., Uy Such that for j =1,...,n, the vertices v;_1 and v; are adjacent.
The length of a walk is the number of edges (counting repetitions).

Definition 1.2.8. Path A path is a walk such that no vertex is repeated, except
at most the initial (vy) and the final (v, ) vertex (in this case it is called a cycle).

In the context of molecules, a cycle is more commonly called a ring.

Definition 1.2.9. Topological distance The topological distance between
two vertices, denoted d(u,v), is the length of the shortest path(s) between them.

Since we will not use any other distance measure between the vertices of a single
graph, we can without ambiguity omit the adjective ‘topological’.

In Figure 1.1a, we see that the greatest distance between any two vertices is
three.

Definition 1.2.10. Connected graph A graph is connected if there exists a
walk between each pair of vertices.

See Figure 1.1e for an example of a disconnected graph. We denote the class of
simple connected graphs with G.

As we will discover in Chapter 2 and to a greater extent in Chapter 3, it
will be advantageous to consider neighborhood subgraphs, a class of compact
substructures that are very different from linear sequences such as paths and
walks.

Definition 1.2.11. Neighborhood The neighborhood of radius r of a vertex
v s the set of vertices at a topological distance less than or equal to v from v
and is denoted by N, (v).

An example neighborhood is shown in Figure 1.1g.

Definition 1.2.12. Induced subgraph In a graph G, the induced subgraph
on a set of vertices W = {w1,...,wr} is a graph that has W as its vertex set
and contains every edge of G whose endpoints are in W.
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Definition 1.2.13. Neighborhood subgraph The neighborhood subgraph
of radius v of vertex v is the subgraph induced by the neighborhood of radius r
of v and rooted in v. It is denoted by Q7.

Figure 1.1h depicts an example neighborhood subgraph.

To represent molecules, we need to label vertices and edges to indicate the
types of the corresponding atoms and bonds. An example of a labeled graph
representing the molecule formic acid is depicted in Figure 1.1b.

Definition 1.2.14. Labeled graph A labeled graph is a graph whose vertices
and/or edges are labeled, possibly with repetitions, using symbols from a finite
alphabet. We denote the function that maps the vertex/edge to the label as
A:(VUE) = X.

Consider Figures 1.1i and 1.1b. Barring the identity of the vertices and edges,
none of the mathematical properties are different between the two graphs.
Without using the identities, we cannot distinguish between them. This is
described more formally by an isomorphism:

Definition 1.2.15. Isomorphism of labeled graphs An isomorphism
between two simple labeled graphs G1 = (V1, E1) and Gy = (Va, E9) is a bijection
¢ : Vi — V5 that preserves adjacency, i.e.

Yu,v € Vi :uv € By < ¢(u)p(v) € Es,
and that also preserves the label information, i.e.
Yo e V:iA(p(w) =Av) A Vuv € E: Ap(uww)) = A(uv).
When there exists an isomorphism between G1 and Ga, we say that they are

isomorphic, or G; ~ Gs.

Figure 1.1i shows a graph that is isomorphic to 1.1b. It has no structural
properties that differ from those of 1.1b, in other words the graphs are
structurally indistinguishable. The isomorphism is

P(v1) = u
P(v2) = uz
¢ Vigy = Viy 4 o(v3) = u2
P(va) = ug
¢(U5) = Us

Definition 1.2.16. Graph invariant An isomorphism invariant or graph
invariant is a graph function ¢ : G — S for which holds that

VG1,G2 € G: Gy = Gy = Y(Gr) = Y(Ga)
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The codomain S can be an arbitrary set, but we prefer sets that are structurally
simpler than graphs, such as the set of natural numbers N. The equality of two
images 1(G1) and ¢ (G32) can then be verified trivially. If it doesn’t hold, we
know that the graphs are not isomorphic.

If a graph invariant never maps two non-isomorphic graphs to the same image,
we call it an isomorphism certificate.

Definition 1.2.17. Isomorphism certificate A certificate for isomorphism
is an isomorphism invariant ¢ : G — S such that

VG1,G2 € G: Gi = Gy & (G1) = P(G2)

Some graph invariants are very cheap to compute, e.g. the number of vertices
or edges. However, there is no known isomorphism certificate algorithm for G
with polynomial time complexity, nor is it known whether one exists.

1.3 Kernel methods

Kernel methods have been proved to achieve state-of-the-art performance in
many machine learning tasks. Due to their versatility they can be employed in
domains where the instances are most conveniently represented in a structured
form, such as sequences, and especially important to us, graphs. This property
makes them an excellent choice to tackle machine learning tasks in bioinformatics
and chemoinformatics, where nucleic or amino acid sequences are naturally
represented as linear chains, and molecules are represented as graphs.

The main idea in the kernel approach is to devise a computationally efficient
way to calculate the similarity between two instances. If the similarity measure
possesses certain qualities as described below, the task of building a specific
class of machine learning models can be cast into a convex optimization problem.
Convexity guarantees the existence and computability of a globally optimal
solution?, that is, there is no risk to obtain approximate models that have just
reached local optima, as in the case of neural network techniques. To solve the
convex optimization problem the practitioner can tap into a vast literature on
optimization solvers and advanced techniques to speed up the computation. For
a reference on the kernel approach in machine learning, see (Cristianini and
Shawe-Taylor 2000) or (Scholkopf and Smola 2002). We follow the notation in
(Haussler 1999).

4The global optimum (hence the learned model) is unique when governed by a positive
definite kernel, i.e. Vep,...,cny € R: Zij cic;K;ij > 0 or equivalently all eigenvalues are

strictly positive.
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Definition 1.3.1. Positive semi-definite matrix A symmetric real matrix
K is positive semi-definite, iff

Ver, ..., en ER:ZCiCjKij >0
ij

or equivalently iff all its eigenvalues are nonnegative.

An eigenvalue is a scalar A such that Kv = Av for some nonzero vector v (the
corresponding eigenvector). We will not consider positive semi-definiteness in
asymmetric or complex matrices.

Definition 1.3.2. Kernel Given a set X and a function K : X x X — R, we
say that K is a kernel on X x X iff it satisfies two conditions:

o K is symmetric, i.e. Yo,y € X : K(x,y) = K(y,x), and
e K is positive semi-definite, i.e. for any N > 1 and any x1,...,xnx € X,
the matriz defined by K;; = K(x;,x;), is positive semi-definite.
We will also more concisely say that K is a kernel on X.

If each # € X can be represented as a feature vector

$(x) = [p1(2)p2(2) . .. pa(@)] "

such that K is the ordinary Iy dot product

d
K(z,y) = (¢(x), d(y)) = Z@(az)@(y)

then K is a kernel.  This is easy to see: denoting the feature matrix by
® = [p(z1) - d(xn)], we can write K = T @, hence >y ciciKiy = c'dTdc=
(®c) T dc = > (@e)? > 0.

The converse is also true, under weak assumptions on X and K (Mercer 1909,
Courant and Hilbert 1953). That is, a given kernel K can be represented as
K(z,y) = (¢p(x), ¢(y)) for some choice of feature map ¢ : X — R¢, d € NU{oc}.
In particular, it holds for any kernel K over X x X where X is a countable set.
The vector space R? induced by ¢ is called the feature space. If X is finite, then
the square matrix ® " ® that holds all dot products is called the Gram matriz
or Gramian.

There are many operations on kernels that preserve the kernel property. In
(Cristianini and Shawe-Taylor 2000) it is explained that the following operations
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are permitted:

K(z,y) = Ki(z,y) + ¢ c>0 (1.3.1)
K(z,y) = cKi(z,y) c>0 (1.3.2)
K(z,y) = Ki(2,y) + Ks(,7) (1.3.3)
K(z,y) = Ky(z,y)Ka(z, 1) (1.3.4)
K(z,y) = Ki(e(@), 0(y)) (1.3.5)
K(z,y) = eK1@w) (1.3.6)
K(z,y) = —2a@y) (normalization) (1.3.7)

K(z,2)K(y,y)

From Equations 1.3.1-1.3.4 it follows that any polynomial with positive
coefficients also preserves the kernel property. We will refer to polynomials or
exponentials of previously introduced kernels as composed kernels. There are
two more derived kernel types that will be useful in this thesis:

Definition 1.3.3. Haussler zero-extension If S C X and K is a kernel
on S x S then K may be zero-extended to be a kernel on X x X by defining
K(x,y) =0 ifx ory is not in S.

Definition 1.3.4. Feature zero-extension If K is a kernel on X x X
characterized by the feature map ¢, then K', characterized by ¢, where

d
(¢'(x), &' (y)) = Zamﬁi(l’)sbi(y) a; €{0,1}

s a zero-extension of K.

From Equation 1.3.5 it is easy to see that any zero-extension of a kernel is a
valid kernel.

1.4 Support vector machines

We will briefly sketch the principles of what is likely the most common kernel
method in machine learning: the Support Vector Machine (SVM) (Vapnik
1995). A more detailed description can be found in e.g. (Suykens et al. 2002).
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Y

Figure 1.2: The hyperplane of a linear classifier with linearly separable data in
a 2D space.

The original setting is that of binary classification. Consider a training set
{z1,yr},k =1...N where z;, € R? are the input instances and y, € {—1,+1}
are their respective classes. A linear classifier will be of the form

y(x) = sign(w 'z + b). (1.4.1)

Such a classifier describes a hyperplane w 'z 4 b = 0 in RY. Examples on one

side of the hyperplane classified as positive, and the others as negative. The
|w " 2z +b|
llwll2

| - [|2 denotes the lo norm: ||w||z = VwTw. Unless a training point is on the
hyperplane, we can rescale the problem such that V& : |w 'z + b > 1, with the
equality holding for the points nearest the hyperplane.

Euclidean distance between a point z; and the hyperplane is , where

At first, assume that a perfect linear classifier exists. We say that the examples
are linearly separable. Figure 1.2 depicts such a situation in a low-dimensional
space. Perfect classification implies that

Vi yr(w 2, +b) > 1. (1.4.2)

Given linearly separable data, there are infinitely many perfect classifiers. A
good and canonical choice is the one which maximizes its margin, that is, the
one which maximizes the distance between the hyperplane and the nearest
positive and negative training examples. This is equivalent to minimizing ||w||.
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Training the maximum margin classifier involves solving the following
optimization problem:

1
argmin=w ' w (1.4.3)

w,b 2
subject to Vk € {1,..., N} : yp(w ap +b) > 1 (1.4.4)

Using N Lagrange multipliers ay, for the constraints, the primal problem can
be reformulated as the equivalent dual problem:

N N
1 T
arg max — 3 Z YrYi1Ty, Tiogap + Z oy (1.4.5)
k=1 k=1
N
subject to Vk € {1,...,N}: > agyp =0, x>0 (1.4.6)
k=1

In the dual problem, the input instances x; appear only as dot products x;xl.
If the instances zj are not real vectors (as is the case for molecular structures),
we can substitute a suitable kernel for the dot products. The instances are then
implicitly mapped to the kernel’s feature space.

The dual problem has the form of a convex Quadratic Programming problem
(Fletcher 1987). If the problem matrix defined by Ky, = z x; is (strictly)
positive definite®, a unique solution is guaranteed. There are no local optima
in any case. There exist various efficient algorithms for solving this type of
problem.

For most problems, only a limited number of instances lie on the margin.
This means that most of the constraints 1.4.4 will be inactive: the left-hand
product is strictly larger than one. This, in turn, means that in the dual
problem, the corresponding «aj will be zero. The learned model then does not
use the corresponding training examples hence we do not need to store them
nor compute the corresponding kernel values when evaluating the model.

If the data is not separable, we can add tolerance for misclassifications by
introducing slack variables £ in the constraints (Inequality 1.4.4):

N
1o
argqgr}égiw w—l—ckz_:lfk (1.4.7)

subject to Vk € {1,..., N} :yp(w o +b0) =1 &, & >0 (1.4.8)

5Recall that a Gramian is at least positive semi-definite.
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The positive constant ¢ governs the bias-variance trade-off: with increasing c,
the model mispredicts fewer training examples at the cost of becoming more
complex and potentially overfitting the training data.

In the equivalent dual problem, this adds an upper bound to the Lagrange
multipliers:

N N
1 T
arg max — 3 Z YrYiTy, Ty + Z oy (1.4.9)
k=1 k=1
N
subject to Yk € {1,...,N}: > agyr =0, 0< oy <c (1.4.10)

k=1



Chapter 2

Augmented molecular graphs

Molecular graphs are a compact representation of molecules, but may be
too concise to obtain optimal generalization performance from graph-based
machine learning algorithms. Over centuries, chemists have learned what are the
important functional groups in molecules. In this chapter, we introduce a simple
method to incorporate this type of background knowledge in molecular graphs:
we insert additional vertices with corresponding edges for each functional group
and ring structure identified in the molecule.

In sections 2.4 and 2.5, we investigate in detail the effect of the proposed
augmentation method on the predictive performance of existing graph kernel
based QSAR models. Experimental evidence on a wide range of ligand-
based tasks and datasets shows clear advances of predictive power. When
the augmentation technique is used with the recent Pairwise Maximal Common
Subgraphs Kernel, we achieve a significant improvement over the current state-
of-the-art on the NCI-60 cancer dataset in 28 out of 60 cell lines, with the other
32 cell lines showing no significant difference in accuracy. Finally, on the Bursi
mutagenicity dataset, we obtain near-optimal predictions.

This chapter is based on (De Grave and Costa 2010b)! and (De Grave and
Costa 2010a).

L An updated version of (De Grave and Costa 2010b) is reproduced here with permission.
Original copyright 2010 American Chemical Society.
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2.1 Introduction

Virtual screening is an increasingly important component of the search for
novel drug lead compounds (Lengauer et al. 2004). There are two fundamental
approaches: target-based? and ligand-based. The target is a protein linked to
the disease. In target-based virtual screening, the goal is to find compounds
which interfere with the normal biological function of the target, usually by
reversibly (non-covalently) binding to it. This is achieved by docking: searching
a mutual conformation of the target and the potential ligand with sufficiently
low binding energy. One can use docking to estimate the affinity only if the 3D
structure of the target protein is available in sufficient detail.

In contrast ligand-based screening does not require specific knowledge about the
protein structure, but ranks or classifies molecules in a database according to
their similarity to known active and inactive molecules. The most critical aspect
of accurate ligand classification is how to represent molecules for algorithmic
processing (Wale et al. 2008). In this chapter, we describe a novel method
for representing molecular graphs. A graph, as we saw in Deold finition 1.2.1,
is a mathematical structure, consisting of a set of vertices (also called nodes)
and a set of binary relations between vertices, called edges. It is natural to
represent a molecule as a graph where atoms are vertices and bonds are edges.
In fact, graph theory and chemistry advances are historically tightly linked
(Brown 2009). Most small molecules can be losslessly represented by their
molecular graph. That is, if care is taken to encode stereogenic centers properly,
a synthetic chemist could in principle reproduce the exact molecule from the
information contained in an atom-bond graph®. Molecular graphs are also a
very compact and efficient representation. Common file formats for molecules,
such as MDL mol and Sybyl mol2, essentially store an atom-bond graph.

2Target-based drug discovery is also known as structure-based, where structure refers to
the 3D structure of the target protein.

3This holds only for small molecules. Additional information can be embedded in the way
a macromolecule is folded, which is not captured in their atom-bond graph alone. Even in
some rather small molecules can extra information arise when the conformational space is
disconnected by steric hindrance or other forces. The extra information is which partition of
the conformational space is occupied by the molecule. Knotanes (Lukin and Voégtle 2005)
or molecular knots are a special case of such partitioning. In this thesis, we are concerned
primarily with drug-like molecules, which are small and do not usually have a special topology.
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2.2 Molecular graph augmentation

2.2.1 Motivation

Even though atom-bond graphs are a representation that is both compact and
potentially lossless, they are not necessarily the best representation for a machine
learning algorithm to achieve maximal predictive performance. We say that an
algorithm has good generalization capabilities when it can predict a property,
such as the level of a certain biological activity of unseen instances, after learning
from a limited number of observations. When human experts have to make such
predictions, they access prior knowledge about the behavior of molecules that
has been built up by generations of chemists. The knowledge has been gained
by observing numerous phenomena in the past, directly or loosely related to
the property under study. The value of the prior knowledge (or background
knowledge) can be expressed as a number of “free” extra observations of the
property under consideration. To see why, consider the equivalence class notion
induced by the donor/acceptor property?. Assuming that the activity of a
molecule remains unchanged when a donor is present in a specific position, then
the set of molecules obtained by swapping functional groups that maintain the
presence of the donor atom in that specific position are all equivalent. This
equivalence property can be either encoded specifying (in a compact way) the
notion of donor/acceptor or by explicitly enumerating all molecular variants
that are equivalent.

A computer algorithm, in contrast to the human expert, when presented
molecules encoded in their non-redundant atom-bond representation, has access
only to the direct observations. It is therefore natural to try to encode the prior
knowledge of chemists, either as part of a special-purpose learning algorithm,
or as part of the representation of the molecules as they are presented to the
algorithm. We will take the latter option. Although the idea of altering the
information encoded on the chemical graph is not novel by any means, we
will take a novel augmentation approach: we start from the atom-bond graph
representation and add background knowledge, more specifically we annotate
functional groups and rings as they are described by most chemical textbooks,
using extra vertices. In the remainder of the chapter we will use the general
term moiety to refer to either a functional group or a small ring.

4A hydrogen atom attached to an electronegative atom is a hydrogen bond donor. An
electronegative atom is an acceptor. Given suitable geometry, a hydrogen bond may form
between a donor and an acceptor. Hydrogen bonds play an important role in the biological
activity of molecules.
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2.2.2 Adding moiety nodes to an atom-bond graph

It has long been established that chemistry can be explained by underlying
laws of physics. Yet only recently it has become clear that the full and exact
information about a molecule’s behavior is contained in the electron density
field (Mezey 2009). However, for practical and computational purposes, the
continuous, three-dimensional field must be discretized at some point. Functional
groups are essentially an empirically established, discrete set of electron density
cloud characteristics that remain fairly constant for a definite group of atoms,
independent of their environment (Bader et al. 1994). Functional groups can
hence be considered to be an information-dense discretizing approximation of
molecular behavior.

DMax (Ando et al. 2006), developed under the lead of Luc Dehaspe, is an
Inductive Logic Programming (ILP) (De Raedt 2008¢c) system with specialized
background knowledge to tackle chemical and biological problems. It is related
to the ACE relational data mining system (Blockeel et al. 2009), from which it
inherited some components, such as the query refinement operator and the Prolog
system hipP®. The version of DMax for QSAR rule induction is called DMax
Chemistry Assistant (DCA). The program finds rules describing (potentially
complex) substructures and properties of molecules that are positively or
negatively correlated with the measured biological activity. For this purpose,
the tool has a sophisticated built-in library to calculate functional groups and
rings of a compound (Vandecasteele and Van Craenenbroeck 2002), which it
uses as building blocks for more complex rules. The identified moiety instances
are stored in a special-purpose relational database. In this chapter, we extract
information from this database to construct augmented graphs. All 77 moieties
for which nodes are added, are listed in Table 2.1.

DCA defines a hierarchy of moieties to be able to discover activity-correlated
rules with the most appropriate specificity. For example, ‘any amide group’
is more general than ‘sulfonamide’ If there is pertinent evidence in the
observations, DCA can hypothesize that in a specific location the presence
of a sulfonamide is critical (probably in addition to other requirements in nearby
locations). However, if the data contains counterexamples that achieve a high
level of activity without the sulfone, DCA will allocate more credence to the
alternative hypothesis: that any type of amide group is sufficient. In this
thesis, we make use only of the most specific moiety definitions. Since we do
not explicitly add generalized functional group concepts such as ‘any amide
group’ or ‘any ether’, we will rely entirely on the machine learning algorithm
for generalization. We also exclude composed concepts, such as phenol or urea.

5hipP is an acronym for high performance Prolog. It was previously known as ilProlog —
Prolog for inductive logic programming.
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A possible extension of the method is to use additional nodes to represent more
general concepts in the hierarchy, or encode them using extra labels.

It is important to stress that simple subgraph matching is not sufficient to
identify moieties, for two reasons:

e The matching may be context-sensitive. For example, a nitrogen is not
considered an amine if it is connected to a carbonyl group. Instead, the
atoms collectively act as an amide function.

e Some structural variation may be allowed, such as resonance structures
or bioisosteres. For example, a hetero-non-aromatic ring may contain any
non-carbon atom.

In DCA, functional group identification is implemented by means of logic
programming®. Some of the functional groups defined in DCA are difficult
to express concisely in the popular molecular pattern language SMARTS.
This is because DMax’s programming language Prolog is Turing-complete®,
whereas SMARTS lacks even variables?. The illustrative source code excerpt in
Figure 2.1 shows DCA’s Prolog code for ether and methoxy. A subexpression for
a thiocarbonyl group cannot be predefined in standard SMARTS, so one has to
repeat the definition at every location where it is used. The SMARTS query that
is equivalent to DCA’s ether is [0C[C; !$(*H3);!$(*=0);!$(*x=$(S;*!*))])
[C; '$(xH3) ; 1 (+=0) ;1§ (+=$(5;*!%))]].

To elucidate the augmentation process, Figure 2.2 shows the composition of the
augmented graph of ribavirin, a nucleoside antimetabolite antiviral agent. The
basis is the atom-bond graph as defined by the molecule’s structural formula,
where atoms are vertices labeled with the atom type, and bonds are edges labeled
as either single, double, triple, or aromatic. Hydrogen atoms are omitted. We
used DCA’s aromaticity perception. It verifies Hiickel’s rule for (systems of)
5- and 6-rings. In the case an O, N, or S atom is included in the ring between
single bonds, the ring can also be aromatic. DCA’s aromaticity perception is
more limited than some other software packages, e.g. it doesn’t look at atoms
outside of the ring. This limitation influences subsequent perception of moieties,
though we did not try to isolate the effect and are hence not sure whether the
effect is detrimental to the generalization performance.

6For an introduction to logic programming, see e.g. (De Raedt 2008a).

"However, one could compose an alternative set of interesting patterns using SMARTS.

8Turing-completeness of a programming language means that a Turing machine (Turing
1937) can be implemented in the language. This is equivalent to the notion that any
computable function can be programmed in the language. All general purpose programming
languages are Turing-complete, and therefore fundamentally equivalent.

9Variables are available for the restricted purpose of ring closures. The Daylight SMARTS
Toolkit does allow to bind names to subexpressions.
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benzene ring

pyrrole ring

furan ring

thiophene ring

pyrazole ring

imidazole ring

pyridine ring

pyridazine ring

pyrimidine ring

pyrazine ring

(other) hetero-aromatic ring
(other) non-hetero-aromatic ring
hetero-non-aromatic ring
non-hetero-non-aromatic ring
methyl

phosphate

phosphonate

phosphinate

miscellaneous phosphor
acylhalide

halide

carboxylic ester
thio-O-carboxylic ester
methoxy

ether

carboxylic acid
thio-O-carboxylic acid
alcohol

conjug. base of a carboxylic acid
conjug. base of a thio-O-carboxylic acid
oxide

ketone

aldehyde

diazo

azide

nitro

nitrile

iminium ion

amide

thioamide

sulfonamide

sulfinamide

oxime

thioxime

imine

hydroxylamine
thiohydroxylamine

amine

n-hydroxyamide

n-sulfanylamide
hydroxyammonium
sulfanylammonium

ammonium ion

nitroso

thio-S-carboxylic ester
dithiocarboxylic ester

thioether

thio-S-carboxylic acid
dithiocarboxylic acid

thiol

conjug. base of a thio-S-carboxylic acid
conjug. base of a dithiocarboxylic acid
sulfide

n-hydroxythioamide
n-sulfanylthioamide

sulfoxide

sulfinic acid

sulfinic ester

conjugated base of a sulfinic acid
sulfonic acid

sulfonic ester

conjugated base of a sulfonic acid
sulfone

metal ion

counterion

(other) heteroatoms

aliphatic chain

Table 2.1: List of all moiety types introduced during augmentation.
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functional__group (Name, Path) :—
atom (Atoml,c),
sym_ bond (Atoml , Atom3, single ),
atom (Atom3,0),
sym_bond (Atom3, Atom4, single ),
atom (Atom4,c),
Atom4 > Atoml,

(
(

(AtomT = Atoml; AtomT = Atom4),

(

carbonyl group ([AtomT|_])
)
) —>
(omitted)

thiocarbonyl group ([AtomT| ])

( (AtomC = Atoml ; AtomC = Atom4),
methyl group ([AtomC|RestPath]) —>
Name = methoxy_ group,
concatenation ([Atom3] ,[AtomC|RestPath],Path)

Name = ether ,
Path = [Atom3]

Figure 2.1: Partial DMax source code for methoxygroup and ether. One can
see that the matching of the functional groups is context-dependent. E.g., an
ether cannot be adjacent to a methyl group.

To obtain the augmented graph, the following steps are performed:
1. Vertices for all moieties defined in the background knowledge are added
to the atom-bond graph.

2. We add part-of edges between the moiety vertices and their constituent
atoms. Atoms can be part of multiple moieties.

3. The moieties are joined with an edge labeled as: a) fused when their
constituent atom level subgraphs share one or more vertices; or as b)
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[:] Hetero aromatic ring

O Carbon (JHetero non-aromatic rinc
Q@ Nitrogen DAICO,hOI
Q Oxygen (OJAmide
(OEether
(Jaliphatic chain
i s FUSEd
—Solggtlﬁe - Connected
—— Aromatic —— Saturated
----------- Part of

Figure 2.2: Molecular graph augmentation: (a) structure of ribavirin (input),
(b) identification of functional groups and rings, (¢) the moieties are encoded as
extra nodes in the graph, which are added to the original structure to obtain
(d) the augmented graph.

connected when their constituent atom level subgraphs do not have any
vertex in common, but there exists an edge connecting vertices belonging
to the two different moieties.

4. Edges connecting any moiety to an aliphatic chain'® are not labeled as
connected but as either c) saturated if the chain is saturated!!, or d)
unsaturated otherwise.

In the ribavirin illustration, the 1,2 4-triazole is not in the list of defined groups
and is therefore represented by a vertex labeled as general hetero-aromatic ring.

10 An aliphatic chain is a maximal group of connected carbon atoms that are not part of a
ring or another functional group.
11 An aliphatic chain is saturated if there are only single bonds between the carbons.
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Moieties may share atoms, e.g. in ribavirin the oxygen in the hetero non-
aromatic ring also functions as an ether.

As a result of the augmentation, the graph kernels have access to a large subset of
the BK-Level-1 background knowledge from (Ando et al. 2006), which primarily
consists of the definitions of moieties and their relationships.

Finally, note that the method we present makes use of 2D information only;
that is, we do not label stereogenic centers in any way and any model based on
our representation is therefore unable to distinguish between stereoisomers.

2.2.3 Related molecular graph representations

Several alternative graph representations of molecules have been described for
use in virtual screening. Previous approaches tended to use leaner, more abstract
representations rather than an enriched one. A prime example are reduced
graphs, first introduced by Gillet et al. for substructure searching and later
adapted for similarity searching (Takahashi et al. 1992, Gillet et al. 2003, Barker
et al. 2003). The key idea is to omit irrelevant details from the molecule and
retain a more abstract graph. A node in the reduced graph may represent
multiple atoms in the original graph. Several abstraction types are used,
giving rise to different reduced graph types. For example, each ring may be
reduced to a single node labeled R, a set of recognized functional groups may
indiscriminatively be represented as nodes labeled F, and all other atoms can be
mapped to catch-all link nodes if they separate the rings and features, giving rise
to a Ring/Feature reduced graph with just three node types. The most detailed
level of abstraction for functional groups in (Gillet et al. 2003) are hydrogen
donors and acceptors. Reduced graphs allow to find more structurally dissimilar
molecules than virtual screening by fingerprinting standard molecular graphs. In
the process, unfortunately, most implementations sacrifice some generalization
performance. An exception is (Stiefl et al. 2006) which introduced a variant
called extended reduced graphs (ErG) with better generalization performance
than standard Daylight fingerprints.

The most similar approach to the method proposed here may be the one
by (Takahashi et al. 1992). There, the authors compute a graph of specific
functional groups, unlike later work where more abstract concepts have been
used. The vertices are labeled with topological distances (multiple if there are
different paths).

The representation of molecules by feature trees was first proposed in (Rarey and
Dixon 1998). A molecule graph is converted to a tree by iteratively collapsing its
minimal-length cycles into single nodes. Each node in the tree is associated with
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a vector of chemical features, such as approximated Van Der Waals volume and
hydrogen donorship. The features for larger subtrees can be computed from the
features of its parts, e.g. by summation. A similarity function must be provided
for each feature. The direct similarity of two subtrees is computed as the
weighted sum of the similarity of their features. For comparing two molecules,
the algorithm tries to find a coordinated way of splitting the molecules in
subtrees such that the highest aggregate direct similarity of matched subtrees
is obtained. The tree representation is a theoretically attractive middle ground
in between graphs, where most operators are computationally expensive, and
vectors, which lack expressiveness. As opposed to the feature trees algorithm,
the approach taken in this thesis separates the representational concern from
the similarity computation. This allows us to delegate the computation of the
similarity to a graph kernel, which is positive semi-definite, a property so far
not attributed to feature tree similarity scores. A kernel, unlike a non-kernel
similarity score, allows the direct use of kernel-based machine learning models,
such as support vector machines.

2.3 Graph kernels

In this chapter, we investigate the effect of graph augmentation on the QSAR
modeling performance of kernel-based classifiers. Kernel methods have proved
to achieve excellent generalization performance in many machine learning
tasks. Recall from Section 1.3 that a kernel is essentially a similarity measure
that possesses the mathematical properties of symmetry and positive semi-
definiteness. It is associated with a feature map. The kernel function values
correspond to the scalar product of the image of two instances translated to
the feature space. Vice versa, the ability to describe a similarity measure as a
scalar product in some vector space guarantees that the similarity is a kernel.
It is often convenient to describe a kernel in terms of its feature map.

Here, we are concerned with small molecule classification, therefore we look
into kernel methods for graphs, for which an increasingly large literature exists
(see (Gértner 2003) for references). In this chapter, we compare three different
types of graph kernels: the Equal Length Shortest-Path Kernel, the Weighted
Decomposition Kernel, and the Pairwise Maximal Common Subgraphs Kernel.
The choice is motivated by the desire to sample diverse approaches within
the graph kernel techniques: the Equal Length Shortest-Path Kernel considers
long distance interactions between pairs of vertices in a graph, the Weighted
Decomposition Kernel considers the local information in the neighborhood of
the vertices in a graph, while, finally, the Pairwise Maximal Common Subgraphs
Kernel considers the occurrence of shared large subgraphs.
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2.3.1 Equal Length Shortest-Path Kernel

An efficient yet effective family of graph kernels was proposed in (Borgwardt and
Kriegel 2005). We will concentrate on the variant with the best accuracy-speed
trade-off, the equal length shortest-path kernel (ELSPK). In this thesis, we use
our own implementation of the (zero-extended, see below) ELSPK, which we
will call pairwise distance kernel (PDK) for reasons that will become clear in
Chapter 3.

The idea is to compute the similarity between two graphs by comparing all the
respective pairs of vertices annotated with their topological distances. This is
achieved by

1. calculating the shortest path distance between all pairs of vertices using
Floyd-Warshall’s algorithm (Floyd 1962, Warshall 1962); and subsequently

2. computing an all-pairs-shortest-paths kernel on edge walks of length 1 on
an appropriately modified graph.

Formally, a graph G is transformed into a graph S such that there exists an
edge between two nodes in S if they are connected by a path in G (i.e. S is the
complete graph of the vertex set of G when G is connected). Every edge in S
is labeled by the shortest distance between these two nodes, and we denote it
with the term “distance-edge”. Given the vertex set Vg and edge set Fg, the
ELSPK is defined as:

K(S,8) =Y > kV(ee) (2.3.1)

e€Es e/ €Ey
where k() is a positive semi-definite kernel on edge walks of length 1.

The choice to require equal lengths means that k(!) is the exact matching kernel
over edges, where two edges match if they have the same label and if the labels
of their vertices also match:
KD (e, ey = 5(e, ¢') = { 1 if A(v) = A(v") and A(u) = A(u') and A(e) = A(e')
0 otherwise

(2.3.2)
where e = uv, A(v) is the vertex label, and A(e) is the edge label, i.e. in this
case the topological distance between v and v in G.

To obtain PDK, we specialize k(1) to its zero-extension parameterized by a
maximum distance d, that is, we consider:

W, [ ED(e ) if Xe)=Ae)<d
kg (e €) = { 0 otherwise (2:3.3)
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Hence, PDK considers all pairs of vertices up to a maximum distance d
and counts how many exact matches there are between the distance-edge
sets representing the two original graphs. In Figure 2.3 we give a graphical
representation of the distance-edge set induced considering a given single vertex.

-=ZZZIZZSzas
=z

Figure 2.3: The set of distance-edges induced by a single vertex for the ELSPK
(or PDK). On the left, the original graph G is depicted. The table on the right
shows only the descriptors induced by the vertex of interest, the highlighted
nitrogen. The kernel will complete the table for all other vertices. Two molecules
are then compared by counting the elements in the intersection of their respective
tables.

2.3.2 Decomposition kernels

We first introduce the general class of decomposition kernels (or convolution
kernels) to facilitate the explanation of the Weighted Decomposition Kernel.

Let x € X be a composite structure. We define x1,...,zp to be the parts of x.
The set of parts needs not be a partition of the composite structure, i.e. the
parts may “overlap”.

Each part x4 is in a set Xy for d =1,...,D, with D € N*, and each X, is a
countable set. Let R be the “parts-of” relation, defined on the set X; x ... X
Xp x X, such that R(xy,...,zp,x) is true iff z1,...,2zp are the parts of x.
We denote with R=!(z) the inverse relation that yields the parts of z, that is:

R Yz)={21,...,2p : R(z1,...,2p,2)} (2.3.4)
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In (Haussler 1999) it is demonstrated that, if there exist a kernel K4 over X x Xy
for each d = 1,...,D, and if two instances x,y € X can be decomposed in
T1,...,2q and y1,...,yq, then the following generalized convolution:

D
K(z,y) = > 11 Ka(za, va) (2.3.5)

xl,.A.,xdeRfl(af) d=1
Y1,y €ERT ()

is a valid kernel called a convolution or decomposition kernel'?. A decomposition
kernel is thus a sum (over all possible ways to decompose a structured instance)
of the product of valid kernels over the parts of the instance.

2.3.3 Weighted Decomposition Kernel

The Weighted Decomposition Kernel (WDK) is a specialization of a decomposi-
tion kernel, introduced in (Menchetti et al. 2005). The idea is to compare not
just individual vertices, but a larger context associated with each vertex. More
precisely, each vertex v in a graph G is characterized by a context, which is
a region of topological nearby elements, not farther from v than a predefined
maximum distance [. The similarity between two graphs is then computed in
terms of the similarity of the set of their vertices V,, weighted by the similarity
of the their respective contexts.

Formally:

K(G,G) = Z Z 5(v,0") - kW (v,0") (2.3.6)

veVg v €V
where the similarity between two vertices v and v’ is computed by the exact
matching kernel:
n 1 if A(v) = ()
Ov,v) = { 0 otherwise (2.3.7)

where A(v) is again the vertex label.

The context kernel k() is a set kernel computed over the edges in the
neighborhood subgraphs:

kD (v, ") Z Z S(e,e’) (2.3.8)

eeEQ;) e EE 2o

12To be precise, the valid kernel is the zero-extension of K to X x X since R™!(z) is not
guaranteed to yield a non-empty set for all x € X.
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where (e, ¢’) was defined in Equation 2.3.2 and the neighborhood subgraph
in Definition 1.2.13.

The similarity of two node contexts is thus defined as the number of exact
matches between the edges present in the contexts of v and v'. In Figure 2.4
we give a graphical representation for the context edge set of two vertices.
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o
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-

Figure 2.4: Context edge set for two vertices according to WDK with context
radius [ = 2. The two highlighted nitrogens can contribute to the similarity of
the molecules because their atom type matches. How much they contribute,
depends on the context they occur in: it is the number of exact matching edges
in their respective contexts, which is 4.

2.3.4 Pairwise Maximal Common Subgraphs Kernel

The Pairwise Maximal Common Subgraphs Kernel (PMCSK) (Schietgat et al.
2009, Schietgat et al. 2011, Schietgat 2010) is a kernel built over structural keys
that is computed in two steps: at first a set of relevant subgraphs is extracted
from all possible pairs of instances; the subgraphs are then used to provide a bit
vector encoding for a graph in the following way: the bit at position 7 is asserted
if the i-th subgraph is present in the graph; finally the similarity between two
graphs is computed via a Jaccard similarity coefficient (Jaccard 1901).

The Jaccard similarity coefficient, also known as Jaccard index and as Tanimoto
coefficient (which generalizes the similarity index to real-valued features
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(Tanimoto 1957)), is considered a state-of-the-art similarity score for the
classification of small molecules based on fingerprints (Willett 2006). The
similarity score is computed by counting the number of common elements (i.e.
the set-intersection) between the two instances as a fraction of the total number
of elements that occur in both instances (i.e. the set-union). Formally, if an
instance x has |x| bits asserted, ' has |z’| bits asserted and they share |z A 2’|
asserted bits, then the Tanimoto similarity score is a real number in the interval
[0,1] computed as:

|z A 2|

jz] + |2/ = Jw A a!|

This similarity score is clearly symmetric. In (Gower 1971, page 868) it is
proved™® that it is also positive semi-definite, so it satisfies the Mercer conditions
for a Mercer kernel. It is hence appropriate to use the terms ‘Tanimoto kernel’
and ‘Pairwise Maximal Common Subgraphs Kernel’.

The novelty of the PMCSK lies in the definition of the relevant/interesting
subgraph: a subgraph is relevant if it is the maximal common subgraph between
two instances belonging to the dataset. This criterion differs from the usual
structural keys approaches in that it does not use a pre-defined dictionary of
fragments, nor does it consider the set of all fragments up to a predefined
maximum size.

Computing the maximal common subgraph in the general case is an NP-hard
problem. Fortunately, there exists a polynomial-time algorithm if one considers
only outerplanar graphs in combination with the block-and-bridge-preserving
(BBP) subgraph isomorphism (Schietgat et al. 2008).

Definition 2.3.1. Planar graph A graph is planar if it has a planar
embedding, that is, it can be drawn in the plane in such a way that no two edges
intersect except at a vertex in common. The regions formed by the edges in a
planar embedding are called faces. There is one unbounded face, which is called
the outer face.

Definition 2.3.2. Outerplanar graph An outerplanar graph is a planar
graph that can be embedded in the plane in such a way that all of its vertices lie
on the boundary of the outer face.

Intuitively, a graph is outerplanar when it can be embedded in the plane in such
a way that all of their vertices lie on the outside of the graph. In Figure 2.5 a)
we give an example of a non-outerplanar molecule: here the graph cannot be
drawn on the plane in such a way that the highlighted vertex is reachable from

13The Jaccard index corresponds to the dichotomous variates case of Gower’s similarity
coefficient.
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the outside of the graph. Since the vast majority (/290% of the molecules for
each of the four datasets used in this chapter) of small molecule graphs are
outerplanar, this restriction does not represent a severe limitation in practice.
This was first observed by (Horvéath et al. 2006). While non-outerplanar graphs
do not contribute to the identification of the MCSs, the presence of the MCSs
extracted from pairs of outerplanar graphs is still used to build their vector
encodings.

Finally, the BBP subgraph isomorphism is a special case of the general
subgraph isomorphism. In BBP isomorphism we distinguish special subgraph
configurations called blocks and bridges. A block is a maximal set of edges such
that every pair (of these edges) belongs to a common cycle. In chemical terms,
a block is a ring system. A bridge is an edge such that the number of connected
components increases when the edge is removed. In chemical terms, bridges
are bonds that are not in a ring. The BBP isomorphism prescribes that only
bridges of a graph G can be mapped to bridges of the other graph G’ and edges
of blocks of G can be mapped only to edges of blocks of G'.

In Figure 2.5 b) and c¢) we give an example of the consequences on the
identification of a maximal common subgraph under the general notion of
subgraph isomorphism and under the BBP notion.

a) b) )

Figure 2.5: a) Example of a non-outerplanar graph; b) a maximal common
subgraph under general subgraph isomorphism; ¢) a maximal common subgraph
under BBP subgraph isomorphism

An additional point in favor of the PMCSK is that the block-and-bridge-
preserving subgraph isomorphism seems to produce better quality subgraphs
for several chemoinformatics tasks when compared with the general subgraph
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isomorphism; that is, it has been experimentally observed that the induced
predictive models exhibit better performances (Schietgat et al. 2009) when the
subgraphs are extracted under the BBP isomorphism.

2.4 Experimental setup

2.4.1 Datasets

To determine the utility of the augmentation method, we selected four datasets
from three different domains: oncology, virology, and toxicology (in vivo and in
vitro).

NCI-60

The Developmental Therapeutics Program (DTP) at the U.S. National Cancer
Institute (NCI) has checked a large number of compounds for evidence of the
ability to inhibit the growth of human tumor cell lines'4. The discretised and
roughly balanced subset used by (Swamidass et al. 2005) has become a popular
binary classification benchmark for QSAR algorithm research, often referred
to as NCI-60, NCI60, or just NCI. The benchmark dataset contains growth
inhibition measurements on 60 cell lines, even though DTP had previously
evicted one of those cell lines because it was essentially a replicate of another
(Nishizuka et al. 2003). Each cell line has inhibition data on about 3500
compounds. There are 3910 distinct compounds in the set in total.

HIV

The DTP also runs an AIDS antiviral screening, which has checked a large
number of compounds for evidence of protection against HIV-1. The October
1999 release of the database!® contains the structures of 42687 molecules. Each of
the compounds was tested twice, and 422 were confirmed to be active (CA), 1081
are moderately active (CM), and 41184 are inactive (CI). Sometimes, Kramer’s
subset of 41768 molecules (Kramer et al. 2001) is used to benchmark machine
learning algorithms. The full set has also been used before, e.g. in (Ceroni
et al. 2007) There are three binary classification tasks commonly considered for
this dataset: distinguishing between CA and CM, between CA+CM and CI,
and between CA and CI.

Mhttp://dtp.nci.nih.gov/docs/cancer/cancer_data.html
Shttp://dtp.nci.nih.gov/docs/aids/aids_data.html
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Binary class Original class Simplified description

CE Clear Evidence of carcinogenic activity
positive P Positive

SE Some Evidence of carcinogenic activity

. NE No Evidence of carcinogenic activity

negative .

N Negative

IS Inadequately Studied
(omitted) EE Equivocal Evidence

E Equivocal

Table 2.2: Classes in the Predictive Toxicology Challenge. Source: http:
//www.predictive-toxicology.org/data/ntp/ntp_results.txt

PTC

The 2000-2001 Predictive Toxicology Challenge (PTC) (Toivonen et al. 2003)
was devised to stimulate the development of machine learning techniques
for predictive toxicology models. The data originates from the US National
Toxicology Program (NTP). The training and test sets have a different class
distribution and a different prevailing mode of action (Benigni and Giuliani 2003),
therefore we only use the (corrected) training set, which contains 417 molecules.
The aim is to predict the carcinogenicity of the compounds in different rodents,
in particular male mice (MM), female mice (FM), male rats (MR), and female
rats (FR). Because the PTC dataset is small compared to the three other
datasets, we will report the performance of algorithms only as averages over the
four tasks. We use the binary classification version of PTC, with the classes
CE, P, and SE translated to positive, and the classes N and NE translated to
negative (cfr. Table 2.2).

Bursi

Kazius et al. (Kazius et al. 2005) have constructed a dataset of 4337 molecular
structures with corresponding Ames data'®. Ames is a short-term in vitro assay
designed to detect genetic damage caused by chemicals and has become the
standard test to determine mutagenicity. The distribution is 2401 mutagens
and 1936 nonmutagens.

16http://www.cheminformatics.org/datasets/bursi/
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2.4.2 Evaluation measures

We will evaluate the generalization performance of the kernels and the
augmentation method by the area under the receiver operating characteristic
(AUROC) (Gribskov and Robinson 1996). The ROC is the plot of the true
positive rate (recall) versus the false positive rate (false alarm rate). An AUROC
score of 100% indicates perfect separation of positives from negatives, whereas
a score of 0% indicates that all negatives were selected before the first positive.
An algorithm that predicts a random order has an expected AUROC of 50%.
This holds for any class distribution, because the ROC is based on rates rather
than absolute counts.

We also report the ROCsg score (Gribskov and Robinson 1996), which is the
area under the ROC up to the first 50 false positives'”. Figure 2.6 illustrates
both AUROC and ROC5q. The ROCs5g provides similar insights as lift graphs
and gives an idea of how reliable the predictions that the method considers
most trustworthy effectively are. A ROCjsq score of 100% again indicates perfect
separation of positives from negatives, whereas a score of 0% indicates that
none of the top 50 molecules selected by the algorithm were true positives. The
expected ROCj5g of a random prediction algorithm depends on the number of
negatives NV in the test set:

25/N if N > 50

50% otherwise (24.1)

IE'r'a'rLdO'm;v'red(R()C%O) = {

2.4.3 Experimental goal and setup

We are now well equipped to perform experiments to answer two questions
about the proposed methods:

Q1 Does the augmentation of molecular atom-bond graphs with moieties
improve the predictive performance of graph kernels in a support vector
machine?

Q2 How do augmented graph kernels compare to the current QSAR state-of-
the-art?

17In order to avoid the size of the dataset having an excessive impact on the score, the
horizontal axis is rescaled such that a value of 1.0 on the axis corresponds to the 50th false
positive.



40 AUGMENTED MOLECULAR GRAPHS

>

100% ——
gormel=
' z‘,—g‘é/——
True S é}gz
positives 574 &
O),', (".
RN O(Q",
& &
& S
Q_/l Qo
ROCsg—{Z7 AUROC
50 instances 100%

False positives

Figure 2.6: ROC curve. The AUROC of the classifier is the entire shaded area,
given that the graph is plotted in the unit square. The ROCsq score is the dark
shaded area divided by the area of rectangle r.

We tested the predictive performance of the SVM-Light (Joachims 1999) support
vector machine implementation by 10-fold cross-validation. The folds were
always stratified'® and identical for all methods.

SVM-Light was run with all parameters at their default value except for the
cost factor (-j), which was set to the prevalence ratio of negative to positive
examples as suggested by (Morik et al. 1999). Each of the kernels was normalized
(Equation 1.3.7).

In the following we report method-specific observations.

PDK

The maximum distance parameter d has been optimized by inner cross-validation
for each training fold of the Bursi dataset. The range considered was 4, 6, 8,
...26. For the other datasets, we used the value that was selected most frequently
in the Bursi dataset: 14 for atom-bond graphs and 24 for augmented graphs.

181n stratified cross-validation, the number of examples of a given class is the same (plus or
minus one) in each test set.
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WDK

We used a context radius ! of 4 for the WDK, motivated by the results on the
HIV dataset by (Menchetti et al. 2005).

In this chapter, in order to have a clearer comparison, we employ a simpler
setup than in (Menchetti et al. 2005). In particular we 1) do not compound
the kernel with a Gaussian kernel, 2) we do not use the information on the
partial charge over single atoms, and 3) we do not use the information about
the context complement (that is we do not weigh the similarity of two nodes
by considering the edge set similarity of the edges that are not part of the
vertex context). In this way the analysis of the advantages and disadvantages
of different methods can be compared on a clearer and fairer basis since the
only information used stems from the atom and bond types.

PMCSK

Unfortunately the molecular graph augmentation procedure as detailed above
cannot be directly used with the PMCSK since the presence of the part-of
edges in the augmented graphs make them non-outerplanar. To circumvent this
difficulty, we operated as follows: the MCS descriptor generation method was
run separately on the atom-bond graphs and the moiety graphs, both of which
are outerplanar on their own for the vast majority of drug-like molecules. More
specifically we observe that 90-92% of the atom-bond graphs are outerplanar
in all datasets considered and that the fraction of the moiety graphs that are
outerplanar ranges from 73% in the HIV dataset to 91% in the PTC dataset.

Finally, the bit-vector representations for the atom-bond graphs and the moiety
graphs are concatenated in order to obtain the overall joint representation. We
will use the notation PMCSK(G,,,,) for this approach.

aug

To reduce the runtime for the HIV dataset, only the relatively small set of
“positive” molecules (either CA or CA+CM) were used to derive maximal
common subgraphs.
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2.5 Results and discussion

2.5.1 Q1I1: Does the augmentation of molecular atom-bond
graphs with moieties improve the predictive perfor-
mance of graph kernels in a support vector machine?

Table 2.3 shows the average per-fold cross-validated AUROC and ROCjq scores
for the three described kernels on all four datasets, both for atom-bond graphs
and for augmented molecular graphs. The standard deviation over the ten
folds is also shown. Note that the number of folds influences the height of the
reported ROC5q, since a higher number of folds means smaller test sets, while
the cutoff number of false positives stays at 50. Indeed, for PTC, the ROCs¢
for each of the 10 folds is equal to the AUROC due to the small number of
instances.

The answer to Q1 is clear from Table 2.3: augmentation was substantially
beneficial with regard to generalization capacity. All tested tasks and all kernels
benefit from augmentation. When computing the relative error reduction

e—¢e

RER =

€

where e is the error of the original method and e’ is the error of the novel
method!?, we observe an average reduction of 20% for the WDK and PDK
(with a remarkable 45% error reduction when the PDK is used on the Bursi
dataset) while the PMCSK presents a more modest 5% average error reduction.
Note that diminishing marginal returns are to be expected as performance
increases. The ROC5( results confirm that the augmentation is also effective
in increasing the performance for what are considered the most trustworthy
predictions by the WDK and PDK methods with an average RER of 17% (4%
for the PMCSK).

Note that the WDK results reported in Table 2.3 are worse than those obtained
in (Ceroni et al. 2007) since we use the basic WDK and did not implement all
refinements of (Menchetti et al. 2005).

Due to space and time constraints, there obviously remain a large number of
different graph kernel approaches, such as (Gértner et al. 2007, Riesen and
Bunke 2009, Rupp et al. 2007), for which we do not obtain direct experimental
evidence whether the augmentation procedure presented in this chapter leads
to significant predictive performance increase. As a general remark, we note

19Note that we have here abused the notation and consider e = 1—AUROC rather than
e = l—accuracy
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Table 2.4: Descriptive statistics of unaugmented and augmented molecular

graphs for the Bursi dataset. With avg. degree(Ve) we mean Y-y, def‘f;'(v)

Mean Min Quartile 1 Quartile 2 Quartile 3 Max

avg. degree(Vg) 2.12 0 2 2 3 4
avg. degree(Vg,,,)  3.78 0 3 3 4 81
Vel 16.9 2 11 16 21 214
\7 2308 4 15 21 28 294
|Eq| 17.88 1 11 17 23 217
1Eg,..| 4361 4 25 39 56 542

that the augmentation affects several key characteristics of the input graphs, for
example on the Bursi dataset we observe the following changes: the vertex and
edge label alphabet is increased from 13 to 69 and from 4 to 9 respectively; the
vertex degree distribution and the vertex and edge count distribution changes
as shown in Table 2.4. For some graph kernels these differences (increased
average label alphabet and degree size, and number of vertices and edges) can
lead to a significant increase in the expected runtime, a negative aspect that
has to be weighted against the expected performance increase. For example,
both the method proposed in (Riesen and Bunke 2009) and the one proposed
in (Rupp et al. 2007), make use of the Kuhn-Munkres assignment algorithm
(Munkres 1957) that has a O(|V|?) complexity. The method from (Horvath
et al. 2004) instead counts the number of cycles in a graph and can suffer from
the many cycles introduced by the part-of edges added by the augmentation
procedure. Here, as in the PMCSK case, a possible workaround would be to
eliminate such edges and consider the moiety graph as a disconnected component
w.r.t. the original chemical graph.

For the three types of kernels that we have selected, we observe only a modest

runtime overhead: 1.5 times for PDK and WDK and negligible for PMCSK.

This latter result can be explained by the small size of the moiety graphs; the
number of vertices (edges) is approximately one third of the number of vertices
(edges) in the standard molecular graphs. As a consequence, the additional
runtime spent by the PMCSK algorithm on the moiety graphs is two orders of
magnitude lower than the time spent for the standard molecular graphs.

In Table 2.5 we report the runtime (in seconds) required for the augmentation
pre-processing step compared to the actual kernel computation. Obviously, the
augmentation step is of linear complexity in the number of molecules, while
the Gram matrix computation is quadratic. The throughput on the large
HIV dataset of the latter, dominant step is about 430,000 molecule-molecule



RESULTS AND DISCUSSION 45

Table 2.5: Runtime cost of graph augmentation: CPU time in seconds to
calculate the Gram matrix for each kernel, without and with augmentation.
The time required for augmentation itself is indicated separately.

(*) For the PMCSK on the HIV data, the subgraphs were derived only from
the 1503 confirmed active or moderately active molecules.

NCI-60 HIV PTC Bursi
Number of molecules 3910 42687 417 4337
Augmentation time 3.5-102 3.4-102 34-10" 1.2-107
PDK(G) 4.2-10! 3.9-10° 1.0-10° 3.6-10!
PDK(Gaug) 7.7-10! 4.2-10% 2.0-10° 5.7-10
WDK(G) 1.8-103 1.6-10° 8.0-10° 1.1-10°
WDK(Ggug) 2.3-103 2.3-10° 1.4-10' 1.5-103
PMCSK(G) 2.8-10° 3.3-10* (*) 6.2-10> 3.5-10°
PMCSK(wag) 2.8-10° 3.3-10* (*) 6.3-10> 3.5-10°

comparisons per second for PDK, 8,000 for WDK, and just 70 for PMCSK.
The programs were executed on an Intel Core2 Quad Q9550 CPU (2.83GHz),
except for the HIV dataset which was run on an Intel Xeon E5420 CPU
(2.5GHz) due to 64-bit support of the operating system. The programs are all
essentially single-threaded. The table shows net consumed CPU time, except
for the augmentation process where we were only able to measure wall clock
time. The time for the PDK is for our own implementation; its performance
characteristics may bear little resemblance to Borgwardt et al.’s original ELSPK.
In (Borgwardt 2007) a runtime for ELSPK on PTC is reported which is an
order of magnitude higher than PDK’s runtime.

2.5.2 Q2: How do augmented graph kernels compare to the
current QSAR state-of-the-art?

NCI-60 The best published kernel for the NCI-60 datasets before our own
results in (De Grave and Costa 2010b) and (Costa and De Grave 2010) was the
Graph Fragments (GF) kernel described in (Wale et al. 2008). For comparison
with the state-of-the-art, we used the GF kernel on NCI-60 on the same cross-
validation folds as for the other kernels. Graph Fragments, as it is implemented
by its authors, is not a general graph kernel, but is highly specialized for
molecular atom-bond graphs. For example, one of the built-in constraints is
that nodes cannot have a degree larger than 5. This prevented us from using the
kernel on the augmented graphs, or even the separate moiety graphs as for the
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PMCSK. Furthermore, we did not implement the length-differentiated min-max
kernel, but rather used the descriptors produced by the AFGen program in the
same experimental settings as for all other kernels.

According to the binomial sign test at the 5% level, PDK performed worse than
GF on all cell lines, except one where there was no significant difference. WDK
performs worse than GF in 25 cell lines, while for the remaining 35 cell lines the
null hypothesis of equal performance could not be rejected. PMCSK, however,
performed significantly better than GF in 28 cell lines and worse in none.

HIV WDK (Menchetti et al. 2005) is the method with the highest reported
AUROC (84.2%) for the CA vs. CM task in HIV. In the recent paper (Swamidass
et al. 2009) an AUROC of 84.5% was reported on the CA+CM vs. CI task.
Wale et al. report an AUROC of 95.0% for the CA vs. CI task, using Acyclic
Fragments.

PTC Wale et al. also report an AUROC of 71.1% for PTC using Path
Fragments and 71.0% using GF.

Bursi To our knowledge, the highest AUROC on the Bursi dataset was obtained
by Saigo et al., who report a best AUROC of 88.9% using gBoost (Saigo
et al. 2009), and an accuracy of 82.5%. The training accuracy of 83% in (Kazius
et al. 2005) was achieved with a manually constructed model, using all data
without cross-validation. However, Kazius et al. do use a smaller, separate test
set, where the model counterintuitively achieves a slightly higher accuracy of
85%. They report that the average interlaboratory reproducibility error is 15%,
which provides an approximate upper bound on the achievable accuracy. The
accuracy obtained with PMCSK(GY,,,,) was 85%, equal to the estimated upper
bound.

Finally, the answer to Q2 is that the PMCSK operating on the augmented
molecular graphs exhibits a predictive performance that is competitive with
state-of-the-art results, in particular on the NCI-60 and Bursi datasets. The
predictive power of the other kernels (PDK and WDK) is also much improved
when working with the augmented graphs. The performance gap with respect
to more complex and expensive kernels is significantly reduced.
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2.6 Conclusions

The major contribution of this chapter is the introduction of a simple but effective
way to incorporate background knowledge in graph-based representations of
molecular data. To demonstrate the effectiveness of the proposed approach, we
tested several graph kernel models on the augmented representations. Moreover,
the proposed technique has been tested on a wide range of different types of
chemoinformatics classification tasks. In all cases we observe a consistent
improvement of the predictive performance. Finally, when providing the
background knowledge to the PMCSK, we found that it significantly outperforms
the current state-of-the-art algorithm on the NCI-60 dataset in 28 of the 60 cell
lines, with the other 32 cell lines showing no significant difference in accuracy,
and it obtains near-optimal results on the Bursi mutagenicity task.

The software for augmentation, including DMax Chemistry Assistant, is available
at no cost at http://dtai.cs.kuleuven.be/dmax/ .


http://dtai.cs.kuleuven.be/dmax/

Chapter 3

Neighborhood Subgraph
Pairwise Distance Kernel

In this chapter, we introduce a novel graph kernel called the Neighborhood
Subgraph Pairwise Distance Kernel. The kernel decomposes a graph into all
pairs of neighborhood subgraphs of small radius at increasing distances. We
show that using a fast graph invariant we obtain significant speed-ups in the
Gram matrix computation. Finally, we test the novel kernel on a wide range
of chemoinformatics tasks, from antiviral to anticarcinogenic to toxicological
activity prediction, and observe competitive performance when compared against
several recent graph kernel methods.

This chapter is based on (Costa and De Grave 2010) and (De Grave and
Costa 2010a).

3.1 Introduction

Since the introduction of convolution kernels in (Haussler 1999), the
decomposition approach has been the the guiding principle in kernel design for
structured objects. Recall from Section 2.3.2 that, according to this approach,
a similarity function between discrete data structures can be obtained by
decomposing each object into parts and by devising a valid local kernel between
the subparts. For over ten years, machine learning researchers have exploited
the remarkable property that it is possible to efficiently compute this type of
kernels even when objects admit an exponential number of decompositions. This

48
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is possible if an efficient method to enumerate the parts can be produced and if
the sum over a potentially exponential number of local kernel evaluations can be
performed in polynomial time (e.g. through dynamic programming). However,
as the dimension of the feature space associated with the kernel becomes
exponentially larger, there is an increasing probability that a significant fraction
of the feature space dimensions will be poorly correlated with the target function.
As a consequence, even when using large margin classifiers, one can fail to obtain
models with good generalization performance (Ben-David et al. 2002). Possible
remedies include down-weighting the contribution of larger fragments and/or
bounding a priori their size. Alternatively one can try to identify a strong bias,
relevant to the task at hand, and consider only a selected subset of structures
to limit the dimension of the feature space without degrading the prediction
performance. Here we limit the extracted substructures by design, following
the physico-chemical intuition that the full molecule’s behavior is contained in
its electron density field. As we saw in the previous chapter, the continous field
can be discretized using the notion of functional group, empirically discovered
by chemists since a long time. In essence, a functional group is a specific
molecular subgraph which can be viewed as characteristic local electron density
distribution that remains fairly constant, independent of the environment. In
the same spirit, in this chapter we employ pairs of neighborhood subgraphs of
increasing sizes (i.e. subgraphs induced by all “nearby” vertices, see Section 1.2).
Since each vertex in a molecular graph gives rise to a constant, small number
of such subgraphs, the neighborhood graphs can be efficiently enumerated in
linear time. In Section 3.3 we show how to perform quick equality matches
between large neighborhood subgraphs, which allows us to obtain very fast
Gram matrix computation runtimes. We empirically verify in Section 3.7 that
the proposed approach yields predictive models with competitive performance
on a wide range of bio- and chemoinformatics tasks.

3.2 Neighborhood Subgraph Pairwise Distance Ker-
nel

In the following we define the Neighborhood Subgraph Pairwise Distance Kernel
(NSPDK) as an instance of a decomposition kernel (see Section 2.3.2). We will
again use the notation introduced in Chapter 1. In particular, recall that a
neighborhood subgraph 0¥ is the subgraph induced by the neighborhood of
radius r of v and rooted in v (Definition 1.2.13).

We define the relation R, 4(Ay, By, G) between two rooted graphs A, B,, and
a graph G to select all pairs of neighborhood subgraphs of radius r whose roots
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are at distance d in a given graph G:

Rya(Ay, Bu,G) & (G € GA Ay, By € {0 : 2 € Vo) Ad(u,v) =d)  (3.2.1)

We define &, 4 over G x G as the decomposition kernel on the relation R, 4, that
is:

fira(G,G') = > 5(A,, A!)6(By, B.) (3.2.2)
{Av,Bu|Rr,a(Av,Bu,G)}
{A;mB;/ IRr,d(A;/ 7B:1,’ 7G/)}

where the ezact matching kernel 6(x,y) is 1 if x ~ y (i.e. if the labeled graph
x is isomorphic to y) and 0 otherwise. In words: k, 4 counts the number of
identical pairs of neighborhood graphs of radius r at distance d between two
graphs (see Figure 3.1).

H,N H,N H,N
-0 —— 0 6}
N N N
L on L Lon
N/ N/ N/
HO\ﬁQ Hoﬁ/ HO o
HO OH HO OH HO OH
~ N
N N

\ H,N o o
/o B Y= 0 -5 0 0 — SI/
N A\ N7

Figure 3.1: Tllustration of pairs of neighborhood graphs for radius » =1,2,3
and distance d = 5. Note that neighborhood graphs can overlap.

The Neighborhood Subgraph Pairwise Distance Kernel is finally defined as:

K(G,G) =) k(GG (3.2.3)
r d
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For efficiency reasons however, in this work we consider the feature zero-extension
of K obtained by imposing an upper bound on the radius and the distance
parameter:

r*

g
Ko (G, G) =) kralG,G) (3.2.4)
r=0 d=0
That is, we are limiting NSPDK to the sum of the &, 4 kernels for all increasing
values of the radius (distance) parameter up to a maximum given value r* (d*).
Furthermore we consider a normalized version of &, 4, that is:

Rra(G,G') = fr a6, G) (3.2.5)
’ Vrra(G, G)ira(G, G7)

to ensure that relations of all orders are equally weighted regardless of the size
of the induced part sets’.

Finally, it is easy to show that the Neighborhood Subgraph Pairwise Distance
Kernel is a valid kernel as: 1) it is built as a decomposition kernel over the
countable space of all pairs of neighborhood subgraphs of graphs of finite size;
2) the kernel over parts (the exact matching kernel) is a valid kernel; 3) the zero-
extension to bounded values for the radius and distance parameters preserves
the kernel property; and 4) so does the normalization step.

3.3 Graph invariant

The NSPDK includes an exact matching kernel over two graphs which is
equivalent to solving the graph isomorphism problem (ISO). Since the existence
of (deterministic) polynomial algorithms for ISO is still an open problem, we
have to resort to either of two strategies:

¢ limit the class of graphs under consideration and solve ISO exactly; or
 give an approximate (fast) solution of ISO on general graphs.
The former option is viable for molecules because they have bounded degree,

in which case a polynomial algorithm exists (Luks 1982). Here we opt for
the latter solution since we are mainly concerned with application domains

LAs the number of neighborhood graphs grows exponentially with the radius, large
(infrequent) subgraphs tend to dominate the kernel value with negative effects on the
generalization performance of predictive systems.
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where the number of graphs to be processed is very large? and application
specific pre-processing might alter the class of the input graphs. For example,
molecular graph augmentation as discussed in Chapter 2 makes the graphs
non-outerplanar, which is why we had to present separate atom-bond and moiety
graphs to the PMCSK.

We implement an approximation of the exact matching kernel 6(G,, G},/) in
two steps:

1. We compute a fast graph invariant encoding for Gj, and G}, via a label
function A9 : G, — ¥*, where G, is the set of rooted graphs and X* is the
set of strings over a finite alphabet 3.

2. We make use of a hash function H : ¥* — N to confront H(A\(G})) and
HN(G)))-

In other words, we produce an efficient string encoding of graphs from which
we obtain a unique identifier via a hashing function from strings to natural
numbers. In this way, the isomorphism test between two graphs is reduced to a
fast numerical identity test. Note that we cannot hope to exhibit an efficient
certificate for isomorphism in this way, but only an efficient graph invariant at
most, i.e. there will be cases where two non-isomorphic graphs are assigned the
same identifier.

The graph encoding A\?(G},) that we propose is best described by introducing
new label functions for vertices and edges, denoted A\™ and A° respectively. A\"(v)
assigns to vertex v the concatenation of the lexicographically sorted listed of
distance-label pairs (d(v, u), A(w)) for all u € G}, Since G, is a rooted graph we
can exploit the knowledge about the identity of the root vertex h and include,
for each vertex v, the additional information of the distance from the root
node d(v,h). A°(uv) assigns to edge uv the label (A" (u), A" (v), A(uv)). A9(Gp)
assigns to the rooted graph G}, the concatenation of the lexicographically sorted
list of A\®(uv) for all uv € Eg,. In other words, we relabel each vertex with a
string that encodes the vertex distance from all other labeled vertices (plus the
distance from the root vertex); the graph encoding is obtained as the sorted edge
list, where each edge is annotated with the endpoints’ new labels. Algorithm 1
shows pseudocode for computing the invariant and Figure 3.2 illustrates the
computation for a concrete graph.

The label function A9(G}) only needs to operate on connected graphs, for a
neighborhood subgraph is always connected. We will now sketch why A9(G},) is
a graph invariant.

2The ZINC database lists the structure of over 18 million chemical compounds that are
commercially available. Over 13 million of these are drug-like.
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Algorithm 1 Rooted graph invariant A9(G},)

1: Given: graph G = (V, E), root h € G, vertex and edge label function A
2: Return: rooted-graph invariant string A\9(Gp,)
3:

4: Compute all distances d(u, v)

5. for all w € V do

6: D« multiset{(d(u,v), A\(v))|lv € V}

7. A"(u) + concat(d(u, h), sort(D))

8: end for

9: for all wv € E do

10:  A°(uw) < concat(A"(u), A" (v), A(uv))

11: end for

[y
N

. E « multiset{\*(uwv)|uv € E}
2 M(Gyp) « concat(sort(E))
: return A9 (Gy)

— =
W

Lemma 3.3.1. Isomorphism preserves distances. Given an isomorphism ¢
and two isomorphic simple graphs G1 = (V1, E1) and Gg = (Va, E3):

Yu,v € V i d(u,v) = d(p(u), d(v))

Proof. (Sorlin and Solnon 2004, page 292) If ¢ is an isomorphism, then
w € B < ¢(uw)e(v) € Ey. Therefore, vg,v1,...,v, is a path in Gy iff
d(vg), d(v1), ..., d(vy) is a path in Go. Thus, vg,v1,...,v, is a shortest path
in Gy iff ¢(vg), p(v1),...,d(vy) is a shortest path in Gy. Hence, the length of
the shortest path(s) between v and v, equals the length of the shortest path(s)
between ¢(v1) and ¢(vy,). O

Since the distances are preserved (Lemma 3.3.1) and also the labels
(Definition 1.2.15), we find that the multisets® ID; and Dy (see Algorithm 1 line
6) are equal for isomorphic graphs G; and Gg. The isomorphism will then also
preserve A" (v). Note that the lexicographic sorting is essential for the graph
invariance: we cannot concatenate the multiset in an arbitrary order and expect
the strings to be equal. By Definition 1.2.15, also A(uv) will be preserved, hence
also A°(uv). The multisets E; and Ey are thus equal for isomorphic graphs, and
so are their sorted concatenations.

Finally, we resort to a Merkle-Damgérd construction based hashing function for
variable-length data to map the graph encoding string to a fixed-length integer.
For additional performance and to reduce memory use, the intermediate A™(u)

3 A multiset or bag can contain multiple instances of the same element.
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NSPDK

Figure 3.2: Example computation of the rooted graph invariant \9(G,, ). Line

numbers refer to algorithm 1.

values are also hashed. It is trivial to control the size of the feature space by
choosing the hash codomain size (or alternatively the size in bits of the returned
hashed values)*. Reduced-size feature spaces may be useful for very-large-scale
applications where memory and time is of great concern, but for the moderately
sized data sets in this chapter we used 32-bit encoding of neighborhood pairs

with satisfactory performance (Table 3.2).

4Naturally there is a tradeoff between the size of the feature space and the number of hash

collisions.
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3.4 Algorithmic complexity

The time complexity of the NSPDK depends on two key procedures:

1. the extraction of all pairs of neighborhood graphs Q27 at distance d =
0,...,d", and

2. the computation of the graph invariant for those subgraphs.

The first procedure can be efficiently implemented by factoring it into a) the
extraction of QY for all v € Vi and b) the computation of distances between
pairs of vertices whose pairwise distance is less than d*. For this latter step
we can repeat a breadth-first (BF) visit up to distance d* for each vertex in
O(|Va||Ecl). Note that, on graphs with bounded (low) degree, the complexity
is more realistically modeled as a linear function of |V| since a small d* implies,
in practice, that each bounded BF visit can be performed in constant time. The
complexity of point a) is linear in the number of edges in the neighborhood
(constant in practice for small 7).

The complexity of point 2 (the computation of the graph invariant for
neighborhood graphs) can be analyzed in terms of i) the computation of
the string encoding A\9(G},) and ii) the computation of the hash function
H(M(Gh)). Part i) is dominated by the computation of all pairwise distances
in O(|Vg, ||Eq,|) and the sorting of the relabeled edges, which has complexity
O(|Ve,||Eg,|log|Eg,|) since edges are relabeled with strings containing the
distance information of the endpoints from all other vertices. The hash function
complexity (part ii)) is linear in the size of the string.

We conclude that the overall complexity
O(IVal|Va, || Ec, |log | Eg,|) (3.4.1)

is dominated by the repeated computation of the graph invariant for each vertex
of the graph. Since this is a constant time procedure for small values of d* and
r*, we conclude that the complexity of NSPDK is in practice linear in the size
of the graph.

Note finally that, to reduce space complexity, we do not manage the hash
collisions, as this would force the algorithm to keep in memory all the encoding
key - hashed value pairs.
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3.5 Related work

The NSPDK combines in a kernel fashion ideas present in two popular
chemoinformatics fingerprint methods: the circular substructure and the atom
pair representation.

A circular substructure representation encodes the immediate neighborhood of
an atom. It does so by assigning an initial code to an atom based on the atom
type and other information such as the number of bonds, the electric charge,
donor/acceptor tendency, etc. The code for an atom and all its neighborhood is
then hashed to produce second order encodings. The process is then iterated a
given number of times k. The order k corresponds to the radius in bonds up to
which features are generated and typically £ = 1 or 2. Popular descriptors of this
type are the Extended Connectivity Fingerprints (ECFP) and the Functional
Connectivity Fingerprints developed at SciTegic (now Accelrys) which have
been shown to be effective in similarity search operations (Hert et al. 2004).

The atom pair representation is an adaptation of the pharmacophore points
technique to the 2D rather than 3D structural representation. Here all pairs of
atoms are encoded together with the length of the shortest path between them.
Each atom is typically described by its type and the number of non-hydrogen
atoms to which it is bonded or in terms of its binding properties such as being
a cation, anion, neutral, hydrogen bond donor/acceptor, hydrophobic, etc .
Popular descriptors of this type are the CATS (Chemically Advanced Template
Search) (Schneider et al. 1999) and the Similog keys (Schuffenhauer et al. 2003)
where the number of occurrences of a particular pair (rather than its presence or
absence as it is more usual in conventional fingerprint representations) is used.
Typically only pairs for distances up to 10 bonds are used (Hert et al. 2004).

3.6 Empirical evaluation

We primarily want to answer two questions about the proposed kernel:
Q1 How does the generalization performance of NSPDK compare to other
recent graph kernels?

Q2 How does the experimental runtime of NSPDK compare to other fast graph
kernels?
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3.6.1 Datasets

We will reuse all four datasets introduced in Section 2.4.1: NCI-60, HIV, PTC,
and Bursi. To supplement these small molecule datasets, we add one dataset
that contains of a different type of graph.

D&D

The D&D dataset of 1178 protein structures was constructed by (Dobson and
Doig 2003) and transformed by (Shervashidze and Borgwardt 2009) into a
problem of binary classification of graphs, where the task is to distinguish
enzymes from non-enzymes. Each protein has been converted into a graph,
considering the amino acids as nodes® and considering two nodes linked if their
3D distance in the folded protein is less than 6 angstroms. Note that, while
small molecules induce graphs with ~ 30 nodes, protein graphs result in much
larger graphs (=~ 300 nodes), with some instances exhibiting several thousands
of vertices.

3.6.2 Benchmarking graph kernels

In the following we briefly describe several other graph kernels that will be
used for benchmarking the proposed approach. In particular we restrict our
attention to kernels that do not decompose the graph in walks or paths as it has
been shown in (Menchetti et al. 2005) and (Shervashidze and Borgwardt 2009)
that they tend to exhibit lower accuracy and have higher runtimes. Here we
consider the Graph Fragment Kernel (GFK) introduced in (Wale et al. 2008), the
Weighted Decomposition Kernel (WDK) by (Menchetti et al. 2005), the Pairwise
Maximum Common Subgraphs Kernel (PMCSK) introduced in (Schietgat
et al. 2009), the Neighborhood Subgraph Kernel (NSK) similar in spirit to the
fast kernel presented in (Shervashidze and Borgwardt 2009), and the Pairwise
Distance Kernel (PDK), similar to the Equal Length Shortest-Path Kernel by
(Borgwardt and Kriegel 2005).

GFK The GFK feature space is obtained considering all connected subgraphs
up to a given maximum number of edges. GFK differs from NSPDK as
it considers an unbiased (i.e. all possible) type of subgraph rather than
neighborhood subgraphs. Note that GFK induces larger explicit representations

5The node label alphabet has size ~ 90 rather than 20 as the various types of ambiguities
are explicitly encoded as additional labels.
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of molecular graphs even when limiting the subgraph size to relatively small
values: on average more than 516 + 381 features per molecule are generated
when allowing subgraphs with less than 8 edges on the NCI-60 dataset. NSPDK,
in a comparable setting, generates 28 + 9 different neighborhood subgraphs per
molecule, yielding 251 + 143 features when considering subgraph pairs up to
maximum distance 5.

WDK In the WDK (Section 2.3.3) the neighborhood of a given radius is first
associated to each vertex in a graph. The WDK is then computed as the
product of an exact matching kernel over the vertex label with a kernel over
the neighborhood edge multiset. Here the edge label information is augmented
with the endpoints labels. Among the differences between WDK and NSPDK
there are: the single vs. pairwise subgraph approach, and the “soft” similarity
match vs. the “hard” isomorphism match of neighborhood subgraphs.

PMCSK The PMCSK (Section 2.3.4) feature space is obtained considering
the maximum common subgraph (MCS) between all pairs of instances in
the training set. The authors show that, although the computation of the
maximum common subgraph in the general case is an NP-hard problem, one can
employ a polynomial-time algorithm if only outerplanar graphs are considered
in combination with a special case of subgraph isomorphism called block-and-
bridge-preserving (BBP) subgraph isomorphism (Schietgat et al. 2008). In
addition to the pairwise vs. single subgraph approach, PMCSK differs from
NSPDK in the specific type of subgraphs considered (MCSs vs. neighborhood
graphs).

NSK In the NSK the feature space is obtained considering the neighborhood
subgraphs of increasing radii up to a maximum radius 7*. The NSK features
are similar in spirit to those obtained by the circular substructure approach
(see Section 3.5).

PDK The PDK (Section 2.3.1) computes the similarity between two graphs
by comparing all pairs of vertices annotated with their pairwise distance. We
consider the zero-extension of PDK up to a maximum distance d*. The PDK
features are similar in spirit to those obtained by the atom pair representation
approach (see Section 3.5).

The NSK and the PDK are special cases of NSPDK: NSK is obtained considering
the NSPDK with a maximum distance d* = 0 while PDK is obtained considering
the NSPDK with a maximum radius * = 0. The optimal value for the remaining



EMPIRICAL EVALUATION 59

free parameter (r* for NSK and d* for PDK) is experimentally determined via
cross-validation.

3.6.3 Empirical properties of the NSPDK

We measured the size of the neighborhood graphs used in the computation of
NSPDK with radius ranging between 1 and 4 for the NCI-60 dataset, obtaining
3, 6, 10 and 13 vertices respectively (and approximately the same values for
the edge count). We observe that NSPDK can consider significantly larger
subgraphs if compared to the GFK (7 edges) with comparable runtimes (see
Section 3.7).

We tested how well the graph invariant proposed in Section 3.3 approximates
an isomorphism certificate on chemical graphs. On subgraphs extracted from
the NCI-60 dataset the approximation is perfect: there are no non-isomorphic
subgraphs in the set that received the same identifier. The exact isomorphism
test has been computed via the VFLib Graph Matching Library®.

We computed the number of hash collisions when encoding pairs of neighborhood
subgraphs at distances ranging from 0 to 10, on the NCI-60 dataset: for
neighborhood subgraphs of radius 2 we do not have collisions, for radius 3 we
have 2 collisions out of 551198 unique pairs and for radius 4 we have 15 collisions
out of 667505 unique pairs. We conclude that the error introduced by hashing
collisions is in practice negligible.

3.6.4 Experimental setup

We tested the predictive performance of SVM-Light (Joachims 1999) by stratified
10-fold cross-validation, keeping folds identical between kernels.

We evaluated the generalization performance of the kernels and the augmentation
method by the area under the receiver operating characteristic (AUROC) (the
plot of the fraction of true positives versus the fraction of false positives).

A number of parameters were optimized by internal cross-validation on the Bursi
data. We allowed each kernel to be optionally composed with a polynomial
kernel of degree 3, 5, or 7, or with an RBF kernel with gamma equal to
0.1. The trade-off between training error and margin (¢ in Equation 1.4.7)
was selected from {1,10,100}. The maximum radius r* was selected from
{0,1,2,3,4,5}, and maximum distance d* from {3,4,5,6,8,10,12,14,20}. Augmented

Shttp://amalfi.dis.unina.it/graph/db/vflib-2.0/doc/vflib.html
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and unaugmented graphs were optimized separately. The most frequently
selected parameter values for each kernel as found in Bursi were then used
for the other datasets, except for D&D where they were optimized separately
due to the different nature of the data. For D&D, only radii up to three were
considered.

All kernels were normalized before composition, using Equation 1.3.7. The cost
factor (-j) was set to the prevalence ratio of negative to positive examples in the
training set. All other SVM-Light parameters were left at their default value.

We used a radius of 4 for the WDK, motivated by the results on the HIV dataset
by (Menchetti et al. 2005).

For GFK we used the AFGen program of (Wale et al. 2008) to obtain the
feature vector. The maximum subgraph size was set to the default value of
7 edges. We did not implement the length-differentiated min-max kernel but
rather used the same extensive kernel parameter optimization as for all other
kernels. We could not run AFGen on augmented graphs because these exceed
its hard-coded maximum node degree.

The same code, with the appropriate parameter settings, has been used for the
NSPDK, NSK and PDK.

PMCSK was not optimized as described above, but used a Tanimoto kernel, no
cost factor, and internally cross-validated values for ¢ as in (Schietgat et al. 2009).

Composition with a third degree polynomial was chosen for all kernels except for
unaugmented PDK and WDK which used fifth degree, and augmented NSPDK
which used a linear kernel. The parameter ¢ was always 1 except for augmented
NSPDK where it was 10. The optimal choice for r* was 3, except for augmented
NSK where 2 was sufficient. There was some variation in the choice of d*: 12
for unaugmented PDK, 3 for augmented PDK, 5 for unaugmented NSPDK and
4 for augmented NSPDK.

3.7 Results and Discussion

In Table 3.1, we present an overview of the AUROC performance for an SVM
model trained with different graph kernels over unaugmented and augmented
molecular graphs (denoted G and G4 respectively). In the same table we
indicate in boldface the methods with highest accuracy, or not significantly worse
according to the binomial sign test at p < 0.05. We observe that the proposed
NSPDK is never significantly worse than the most accurate method. We note
moreover that NSPDK performance compares favorably with the best results
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reported in (Wale et al. 2008) (the state-of-the-art on HIV and NCI-60 to the
authors’ knowledge). As a side note, we report that the relative error reduction,
when using the augmented molecular graphs vs. the unaugmented ones, varies
from 5% for PDK, to 3% for WDK, to 1% for PMCSK, NSK and NSPDK;
this result is in agreement with the intuition that graph methods sensible to
larger fragments automatically capture most of the functional group related
information. The error rates of augmented NSK and NSPDK on Bursi are about
14.5%. Unaugmented NSPDK and augmented PMCSK achieve 15%. Since
(Kazius et al. 2005) mention that the average interlaboratory reproducibility
error of Ames tests is 15%, one cannot hope, on this dataset, to do much better.

Results for the D&D dataset have been computed only for NSK and NSPDK due
to infeasible runtimes for WDK and PMCSK, and unmet hard-wired constraints
on the vertex labels and degree for GFK. NSK achieved AUROC 81.4% with
radius 0 (and around 80% with higher radii), while NSPDK achieved 85.9%
with radius 1 and maximum distance 3 (85.5% with higher radii). The runtimes
for the D&D Gram matrix computation were 7.9 - 102 and 8.2 - 102 seconds
respectively. We observe that NSPDK achieves a 30.2% error reduction over the
best results reported by (Shervashidze and Borgwardt 2009) with comparable
runtimes.

In Table 3.2 we report the runtime required for the Gram matrix computation
for the different kernels, normalized but not composed. Augmented molecular
graphs have a significantly larger number of vertices and edges, hence are slower
to process. The time required for augmentation is shown separately. Obviously,
the augmentation step is of linear time complexity in the number of molecules,
while the Gram matrix computation is quadratic. The programs were executed
on a single core of an Intel Core2 Quad Q9550 CPU (2.83GHz), except for the
HIV dataset which was run on an Intel Xeon E5420 CPU (2.5GHz) due to
64-bit support of the operating system.

We observe that:

e The runtime for the WDK neighborhood soft matching is one order of
magnitude higher than the graph invariant identity test for NSPDK.

e The runtime for extracting and matching maximum common subgraphs
for all pairs of molecules in PMCSK is three orders of magnitude higher
than the graph invariant extraction and identity test for NSPDK.

¢ Runtimes for random walk kernels and tree kernels are, as reported in
(Shervashidze and Borgwardt 2009), five to six orders of magnitude higher
(estimated on two NCI datasets) than for NSPDK.
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Table 3.1: Generalization performance of kernels on unaugmented and augmented molecular graphs

NCI-60 HIV HIV HIV PTC Bursi
(avg.) CAvs.CM CACMvs. CI  CA wvs. CI (avg.)

AUROC (%)
GFK(G) 77.8 £23 82.0 £ 4.7 828 £ 1.9 93.9 £ 2.6 62.6 £ 10 89.6 £ 0.3
WDK(G) 711+ 24 83.1 + 4.3 829 £ 1.8 94.0 + 3.4 62.1 + 7.7 88.0 £ 04
WDK(Gaug) 80.0 £+ 2.3 84.2 + 4.3 83.9 £ 1.7 95.0 £ 2.7 65.1 + 8.7 90.8 £ 0.2
PMCSK(G) 79.6 £ 2.2 82.6 + 6.2 81.8 £ 2.2 93.0 £ 3.7 64.5 £ 8.8 90.5 £ 1.3
PMCSK(G,.,) 80.3 + 2.2 82.8+ 6.2 83.2 £ 2.1 934 + 34 65.6 + 8.8 91.5 £ 1.1
PDK(G) 73.4 £ 2.6 81.6 + 4.6 777+ 1.9 92.6 + 3.2 61.2 £ 9.7 82.7 £ 0.3
PDK(Gaug) 77.8 £ 24 82.1 + 4.2 83.4 £ 21 94.5 £ 2.4 64.6 £ 9.9 89.3 £ 0.3
NSK(G) 79.1+22 84.2 £ 4.9 84.3 £ 2.0 95.3 £ 1.5 674 £ 94 91.6 £+ 0.2
NSK(Gaug) 794+ 22 844+ 4.5 84.1 £ 2.2 949 + 2.1 67.1 £ 9.3 91.8 + 0.2
NSPDK(G) 795 +22 83.9£5.6 83.8+21 95.6+1.3 69.3+£9.5 91.7 £ 0.3
NSPDK(Gaug) 80.1 £ 2.2 84.1 + 4.8 84.9 £ 2.1 95.1 +2.0 68.9 + 9.8 92.0 =+ 0.2
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Table 3.2: Net CPU time of graph kernels in seconds

NCI-60 HIV PTC Bursi
Number of mol. 3910 42687 417 4337
Aug. time 3.5-102 3.4-10% 3.4-10% 1.2-10°
GFK(G) 3.5-101  1.4-10* 3.1-10° 7.3-10
WDK(G) 1.8-10° 1.6-10° 8.0-10° 1.1-10°
WDK (G gug) 2.3-10%  23-10° 1.4-10' 1.5-103
PMCSK(G) 2.8-10° 3.3-10* 6.2-102 3.5-10°
PMCSK(Gy,,) 2.8-10° 3.3-10" 6.3-10*° 3.5-10°
PDK(G) 4.2-10*  39-10* 1.0-10° 3.6-10!
PDK(Gyug) 7.7-101  4.2.10% 2.0-10° 5.7-10%
NSK(Q) 6.2-101  3.1-10® 2.8-10° 5.1-10°
NSK(Gaug) 3.5-102 6.0-10% 1.4-10' 2.0-102
NSPDK(G) 1.2-10>  1.0-10* 3.4-10° 1.1-10?
NSPDK(Gguy)  4.6-102  1.9-10* 1.6-10' 2.9-102

* MCSs derived only from the 1503 CA-CM molecules.

3.8 Conclusions
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In this chapter, we presented a novel and fast graph kernel based on exact
matching between pairs of small subgraphs. Empirical results confirm the
intuition that using relatively large fragments in a pairwise fashion improves

generalization performance on a wide range of bio- and chemoinformatics tasks.
Moreover, the use of fast graph invariant procedures allows a speed-up of several
orders of magnitude for Gram matrix computations when compared with kernels

based on soft matching or more complex subgraph definition.

The source code of the kernel can be obtained from http://dtai.cs.kuleuven.

be/ml/systems.
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Chapter 4

kLog: a Language for Logical
and Relational Learning with
Kernels

Having observed both excellent generalization capabilities and fast kernel
evaluation using NSPDK for prediction tasks for molecular graphs (Chapter 3),
one may wonder whether the technique can also be applied to machine learning
problems outside the domain of molecular graphs.

This question has inspired a system, called kLog, that permits to apply the
principles and infrastructure of graph kernel based learning to more general data:
relational databases. This is achieved through a process called graphicalization:
the transformation of relational representations into graphs. In the current
chapter, we will briefly describe the main concepts and the high-level design of
the kLog system. The chapter is based on a homonymous draft paper by Paolo
Frasconi, Fabrizio Costa, Luc De Raedt, and the author of this thesis (Frasconi
et al. 2011).

The NSPDK itself is included as one of the default kernels in kLog. After all,
NSPDK is a generic graph kernel and thus can operate on arbitrary graphs.
Whether its feature set of neighborhood subgraph pairs forms a suitable learning
bias, depends on the property to be learned and on the input graphs. One can
expect better results when the input graphs are molecule-like. In particular,
molecular graphs have a bounded degree, and the number of vertices one can
reach with increasing distance from any starting node, rises only gradually with
the distance. In Section 4.3.2, we will propose modifications that make the

64
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kernel suitable for a broad class of graphs.

4.1 Relational learning with kernels

The field of statistical relational learning (SRL) is populated with a fairly high
number of models and alternative representational approaches, a state-of-affairs
often referred to as the “SRL alphabet soup” (Dietterich et al. 2008, De Raedt
et al. 2008). Even though there are many differences between these approaches,
they typically define a model as a probability distribution over possible worlds
or interpretations (explained in Section 4.2). In the machine learning literature
(De Raedt 2008b), interpretations are often used to model relational learning
problems because they naturally support the modeling of entities as well as the
relationships amongst them. It is also this representation that is adopted in
kLog.

However, unlike typical statistical relational learning frameworks, kLog does not
employ a probabilistic framework but is rather based on linear modeling. We
assume that interpretations are sampled identically and independently from a
fixed distribution. They are represented as input-output pairs z = (z,y) where
z and y are sets of facts. The task is to a learn a function that will map the
inputs to the output.

To construct a model, a feature vector ¢(x,y) is first associated with each
interpretation. A linear model F(z,y) = w'¢(z,y) is then used to score the
interpretation. Prediction is the process of maximizing F with respect to y.
Learning is the process of fitting w to the available data, typically using some
statistically motivated loss function that measures the discrepancy between the
prediction f(z;) = argmax, F(z;,y) and the observed output y; on the i-th
training instance.

Linear modeling on features covers a number of commonly used algorithms.
Support vector machines (SVM, see Section 1.4) optimize for small ||w|| plus
the hinge loss function. That is, examples on the correct side of the margin
do not cause any loss, and the remaining examples cause a loss linear to their
distance to the correct margin. Logistic regression maximizes the conditional
likelihood of outputs given inputs, which can be seen as minimizing a smoothed
version of the SVM hinge loss. Naive Bayes maximizes the joint likelihood of
inputs and outputs.
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4.2 Data modeling

kLog builds upon logical and relational data representation, which is closely
related to the classic entity-relationship (E/R) data model, a commonly used
design tool in database development, see e.g. (Garcia-Molina et al. 2009). The
main ontological assumption is that the domain can be described by objects
and relations. Relations are also called predicates. Being based on clausal logic,
kLog employs the notation and the semantics underlying the programming
language Prolog and the database formalism Datalog.

kLog learns from interpretations. An interpretation is essentially a set of ground
atoms. A ground atom r(cy, ...c,) is a relation symbol r of arity n followed by
an n-tuple of constants ¢;. The relation symbol r is also known as the predicte
name. We denote by C the set of constants (objects) in the domain and by R
the set of relations.

An interpretation contains all the atoms that are true and all atoms not in the
interpretation are assumed to be false. It can therefore also be regarded
as a set of tuples in a relational database. So, in database terminology,
interpretations correspond to instances of a relational database. In logic
programming terminology, we are using so-called Herbrand interpretations.

Because of the close similarity between the semantics of klLog and databases,
we will borrow a few terms from database theory. For example, we will use
the term column to refer to the set of constants that, in a given intepretation,
appear as the i-th argument in true ground atoms of a certain relation.

kLog makes some assumptions on valid interpretations. In particular:

A.1 (Object types). The set of constants C is partitioned into a set of entity
identifiers £ (or identifiers for short) and a set of property values V).
Identifiers are themselves partitioned into k subsets &i,...,&; called
entity-sets.

A.2 (Finiteness). The interpretations are finite sets of atoms.

A.3 (Typed relations). For every relation, every column consists of either
property values or identifiers from one particular entity-set. The type
signature for a relation r/m € R is an expression of the form

r(role; :: typey, ..., role,, :: type,,)

where, for all j =1,...,m, type; € {&1,..., &, V} and role; is the role of
the j-th column of r. The type signature is closely related to the type
declarations that are typical in logical and relational learning.
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A.4 (Keys). The primary key of every relation consists of the columns whose
type belongs to {&1,...,&}. The relational arity of a relation is the
length of its primary key. As a special case, relations of zero relational
arity are admitted and they must consist of at most a single tuple in any
interpretation®.

A.5 (E-relations and R-relations). For every entity-set &; there is a
distinguished relation r/m € R such that: r/m has relational arity 1 and
has a key of type &;. These distinguished relations are called E-relations
and describe entity-sets, possibly with (m — 1) attached properties as
satellite data. The remaining |R| — k relations are called R-relations or
relationships®. Thus, primary keys for R-relations are tuples of foreign
keys.

It should be clear that there is an intimate connection between the kLog data
model and the E/R data model. The main difference is perhaps the restriction
that primary keys must be tuples of identifiers. Whereas property values can
be presented to a learning algorithm, identifiers are taken to contain no useful
information outside their primary function of identifying their entity?>.

While the above assumptions put some limitations on the expressiveness of the
language, kLog can effectively represent a wide family of interesting relational
learning problems.

4.2.1 lllustration

To illustrate the above framework, consider the E/R diagram shown in Figure
4.1 on the left. The E/R diagram can be transformed straightforwardly in the
following type signature:

shape(shape-id::self, color::property, outline::property)
in(container::shape, contained::shape)

The relation in is an R-relation, while shape is an E-relation. The type self
refers to the fact that the first argument of the relation shape contains the
primary key of the relation. Furthermore, all references to the type shape will
refer to that column. The primary key of in consists of the columns container

1This kind of relations is useful to represent global properties of an interpretation.

2Note that the word “relationship” specifically refers to the association among entities
while “relation” refers the more general association among entities and properties.

3To illustrate the concept, it makes no sense to predict whether a patient suffers from a
certain disease based on her social security number.
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shape(4,red,square). shape(green,sqare) n -
shape(3,red,triangle). shape(red,square)

(
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(
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Figure 4.1: Graphicalization in the Bongard domain. Left: E/R diagram.
Center: one interpretation z. Right: the corresponding G.

and contained. The roles of the columns appear in the E/R diagram. They will
be important when graphicalizing the interpretation. As one can already see
in Figure 4.1 on the right, the roles are used to label edges in the graphical
representation of the interpretation. The middle part of Figure 4.1 contains one
possible interpretation using this E/R diagram or signature. It contains ground
atoms (or tuples) such as shape(0,green,square), where shape is the relation, 0
an identifier and green and square two property values.

The use of the interpretations for graphicalization will also enable the repre-
sentation of symmetric relationships such as bond(atomid::atom,atomid::atom)
in kLog by using the role of a column more than once. In this way, each
bond can be represented by one tuple only, while a more traditional relational
representation, which is directional, would require two tuples.

4.2.2 Extensional and intensional relations

An interpretation is a set of tuples or atoms, but as in deductive databases
these tuples can be either listed explicitly, or they can be deduced using rules.
In kLog this is realized by allowing the user to specify relations as extensional,
in which case the tuples have to be listed explicitly, or intensional, in which
case they are defined through Prolog clauses?.

In the previous example, we can now add the intensional predicate inside
(with type signature inside(container::shape,contained::shape) using the following
definite clauses:

4The programmer can choose to restrict herself to Datalog notation, in which case
termination can be guaranteed.
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inside(X,Y) :- in(X,Y)
inside(X,Y) :- in(X,Z), inside(Z,Y)

The first clause states that whenever Y is in X, it is also inside X. The second
states that whenever there exists a Z such that Z is in X and Y is inside Z that
also Y is inside X. Thus these clauses define inside as the transitive closure of in.

The ability to specify intensional predicates through clauses is most useful for
introducing background knowledge in the learning process. As explained in
Section 4.3.2, features for the learning process are derived from a graph whose
vertices are ground facts in the database; hence the ability of declaring rules that
specify relations directly translates into the ability of designing and maintaining
features in a declarative fashion. This is one key characteristic of kLog and, in
our opinion, one of the key reasons behind the success of related systems like
Markov logic.

4.2.3 Modeling small molecules

The kLog setting encompasses a relatively large ensemble of machine learning
scenarios. The simplest one is classification of independent interpretations. The
problem of small molecule classification as studied in the previous chapters is
covered by this setting. It was pioneered in the relational learning setting in
(Srinivasan et al. 1994). Each molecule is an instance. There is one E-relation,
called atom (with properties such as element and charge), one relationship of
relational arity 2, called bond (with a bond_type property to distinguish among
single, double, triple, and resonant chemical bonds), and a zero-arity relationship
called mutagenic distinguishing between positive and negative instances. A
second E-relation fgroup can be used for representing moieties as in Chapter 2,
plus R-relations fgmember, fg_fused, fg_connected, and fg_linked for storing
which atoms belong to which moiety, and how moieties are interconnected.
Figure 4.2 shows the domain representation in kLog that is (almost) equivalent
to augmented molecular graphs, assuming interpretations in DMax Chemistry
Assistant format®. The main remaining difference is that an edge in an original
augmented graph representation corresponds to a vertex plus two edges in a
kLog graph, as illustrated in Figure 4.3. Distances are therefore twice as large in
the kLog graphs. kLog can be configured to operate as an SVM in the NSPDK

5The DMax Chemistry Assistant knowledge base needs to be reformatted slightly to satisfy
Assumption A.1 that all entity identifiers are unique over the domain rather than over just a
primary key column. To ensure this, it is sufficient to prepend an entity-set identifier to each
entity identifier. Interpretation demarcation syntax also differs between the two systems.
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feature space, thereby, for this data representation, essentially implementing
the model presented in Chapter 3.

begin_domain.
signature atm(atom_id::self, element:property)::intensional.
atm(Atom, Element) :- a(Atom,Element), \+(Element=h).

signature bnd(atom_1@b::atm, atom_1@b::atm, type:.property)::intensional.
bnd(Atom1,Atom2,Type) :-
b(Atom1,Atom2,NType), describeBondType(NType,Type),
atm(Atom1,_), atm(Atom2,_).

signature fgroup(fgroup_id::self, group_type:.property)::intensional.
fgroup(Fg, Type) :- sub(Fg,Type,_).

signature fgmember(fg::fgroup, atom::atm)::intensional.
fgmember(Fg,Atom):- subat(Fg,Atom,_), atm(Atom,_).

signature fg_fused(fg1@nil::fgroup, fg2@nil::fgroup)::intensional.
fg_fused(Fg1,Fg2):- fus(Fg1,Fg2, AtomList).

signature fg_connected(fg1@nil::fgroup, fg2@nil::fgroup,
bondType::property)::intensional.
fg_connected(Fg1,Fg2,BondType):-
con(Fg1,Fg2,Type,_AtomList),describeBondType(Type,BondType).

signature fg_linked(fg::fgroup, alichain::fgroup, saturation:;property)::intensional.
fg_linked(FG,AliChain,Sat) :-
linked(AliChain,Links,_BranchesEnds,Saturation),
( Saturation = saturated -> Sat = saturated ; Sat = unsaturated ),
member(link(FG,_A1,_A2),Links).

signature mutagenic::extensional.
end_domain.

Figure 4.2: Domain specification for augmented small molecules.

4.3 Graphicalization and feature generation

The goal is to map an interpretation z = (z,y) into a feature vector ¢(z) € F.
This enables the application of several supervised learning algorithms that
construct linear functions in the feature space F. Features can be either
computed explicitly or exploited implicitly, via a kernel function K(z,z') =
(¢(z), d(2")). Kernel-based solutions are very popular, sometimes allow faster
computation, and allow infinite-dimensional feature spaces. On the other
hand, explicit feature map construction may offer advantages in our setting, in
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%oublc

(a) Atom-bond. (b) kLog (functional group omitted).

bnd(double)
b b

Figure 4.3: Representation of unaugmented ethene.

particular when dealing with large scale learning problems (many interpretations)
and structured output tasks (exponentially many possible predictions). Our
framework is based on two steps: first an interpretation z is mapped into an
undirected labeled graph G.; then a feature vector ¢(z) is extracted from G.,
or alternatively a kernel function on pairs of graphs is computed.

There are several motivations that justify this intermediate graphicalization step.
First, and perhaps most importantly, graphicalization is a novel technique that is
related to propositionalization, a well-known technique in logical and relational
learning to transform a relational representation into a propositional one®. The
motivation for propositionalization is that one transforms a rich and structured
(relational) representation into a simpler and flat representation in order to be
able to apply a learning algorithm that works with the simple representation.
To the best of our knowledge, current propositionalization techniques typically
transform graph-based or relational data into an attribute-value learning format,
or possibly into a multi-instance learning one’, but not into a graph-based
one. The graphicalization approach that we introduce does not transform
the data into an attribute-value form but rather into a graph-based format.
This enables us to apply graph kernels, and in this way upgrade these kernels
to accept relational input. Second, there is an extensive literature on graph
kernels and virtually all existing solutions can be plugged into the learning
from interpretation setting with minimal effort. This includes implementation
issues but also the ability to reuse existing theoretical analyses. Third, it is
notationally simpler to describe kernels and feature vectors defined on graphs,
than to describe the equivalent counterpart using the Datalog notation.

6For a brief introduction to propositionalization, see (De Raedt 2008b, p.106-109).
"In multi-instance learning (Dietterich and Flann 1997) the examples are sets of attribute-
value tuples or sets of feature vectors.
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4.3.1 Graphicalization

The graphicalization process can be interpreted as the unfolding of an E/R
diagram over the data. The E/R diagram is a template that is expanded
according to the given groundings (see Figure 4.1). Given an interpretation z,
we construct a bipartite graph G, = (V,, E.) as follows.

vertices V, = z, i.e. there is a vertex for each ground atom (database tuple).
Vertices are labeled by the predicate name of the ground atom followed by
the list of property values (identifiers do not appear in the graph labels).

edges uv € E, if u,v € z, u is an E-tuple, v an R-tuple, and the primary key
of u occurs as a foreign key in v. The edge is labeled by the role of u in v.

Labels are tuples rather than single elements as in Definition 1.2.14.

4.3.2 Graph kernel

Learning in kLog is performed using a suitable graph kernel on the graphicalized
instances. While in principle any graph kernel can be employed, there are
several requirements that the chosen kernel has to meet in practice. On the
one hand, the kernel has to allow fast computations, especially with respect
to the graph size, as the grounding phase in the graphicalization procedure
can in principle generate very large graphs. On the other hand, we need a
general purpose kernel with a parameterized bias to ease the injection of domain
knowledge by the user.

In the current implementation, kl.og uses an extension of the Neighborhood
Subgraph Pairwise Distance Kernel (NSPDK, Chapter 3). While the original
kernel is suitable for sparse graphs with discrete vertex and edge labels, in the
following we propose an extension to deal with dense graphs and with graphs
whose labels are tuples of mixed discrete and numerical types, as occur in graphs
that result when we apply the graphicalization procedure to relational datasets.

Domain knowledge bias via kernel points and viewpoints

At times it is convenient, for efficiency reasons or to inject domain knowledge
into the kernel, to winnow the neighborhood subgraphs. We provide two ways to
do so, via the notion of kernel points and viewpoints. These are sets of vertices
induced by a user defined binary partition function PX(G) (PY(G) respectively)
over the vertex set of G. We indicate that a vertex v is a kernel point with
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v € PE(G), or v € PY(G) for a viewpoint. The neighborhood subgraphs are
limited to be those rooted in PX and PV.

krd(G,G') = > 5(Ay, AL )YO(By, B))
{Ay,Bu|Rr,a(Ay,By,G)AEPY (G)Av,uc PX(G)}
{A!,,B! /IRy a(A!,,B,,G") A €PY (G )NV u' e PE(G)}
(4.3.1)

Kernel points are typically vertices of some specific semantic types that are
believed to represent information of high importance for the task at hand.
Vertices that are not kernel points do contribute to the kernel computation
but only by their presence in the neighborhood subgraphs of kernel points. In
Figure 4.2, the predicate neighborhood marks relations which produce kernel
points.

Viewpoints allow a finer selection and restrict only one of the elements in the
pair A,, B,. Viewpoints are used to generate features for a specific example
when a single interpretation contains multiple learning examples.

Dealing with dense graphs

The idea of counting exact neighborhood subgraph matches to express graph
similarity is adequate when the graphs are sparse, that is, when the edge and the
vertex set sizes are of the same order. When graphs are dense, vertices exhibit
large degrees and the likelihood that any two neighborhoods with a nontrivial
radius match in an exact way is almost always zero. The similarity notion then
becomes degenerate. In these cases a better solution is to allow for a soft type
of match between subgraphs. Although there exist several graph kernels that
allow this type of match, they generally suffer from very high computational
costs (Vishwanathan et al. 2010). Instead we resort to an idea introduced in
the WDK (see Section 2.3.3): we consider the multinomial distribution (i.e.
the histogram) of the vertex labels in the subgraph part. When dealing with
dense graphs the exact match between the two pairs of neighborhood subgraphs
§(A,, A!)6(By, Bl,) can be replaced by the following soft match®:

(A0, Bu), (4, Bl ) = Y S(M0),A(E)) (4.3.2)

i€Va,UVB,
'€V UV,
! !

where A(v) is the label of vertex v.

8Note that the pair of neighborhood subgraphs are considered jointly, i.e. the labels are
extracted from all vertices belonging to either of the subgraphs in the pair.
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Generalized labels

A standard assumption for graph kernels is that vertex and edge labels are
elements of a discrete domain. However, in kLog the information associated
with vertices is comprised of a predicate name and the list of property values
and can be more conveniently represented as a generic tuple containing mixed
discrete and real values. In order to extend the kernel to deal with this data
type we define a projector operator A\;(v) that returns the ¢-th component of
the tuple associated to vector v. In addition we indicate with A, the projector
operator associated to the predicate name. We can now extend the hard match
and the soft match kernel definitions and introduce a novel kernel type.

The hard match kernel is upgraded to deal with tuple labels simply by redefining
the label function as A(v) = concat (A, (v), A1 (v), A2(v),- -+, Ae(v)). In practice
we encode the whole tuple as a single element of a discrete domain.

When upgraded to deal with tuple labels, the soft match kernel becomes:

K((Av, Bu), (A, Bl)) = Y (mp(i), Ap (i) Y 5N (d), )\t(z”))> .
’iGVAUUVBu t
i/EVA/ , UVB;’/
(4.3.3)
Thus, two subgraph pairs are compared by the overlap of their histograms for
each property column.

An intermediate type of kernel can be devised by combining a variant of the
hard (kpg) and the soft (kg) matching notions in the product k = kg - kg. Let
A=), and let ky ((Ay, By), (4L, B.,)) = 6(Ay, Ay )0(By, By ) i-e. £y is the
hard match kernel when we consider as vertex label the predicate name. Let
ks be a kernel where the histograms for each property are matched in a soft
way provided that the vertex has identical encoding as computed in Section 3.3
by AV:

ks (Ay, Bu), (A, BL)) = Y (5(/\”@)7/\”(@"))ZMMUW(@")))
1€Va,UVE, t
i€V, , uVB;/
(4.3.4)
in this way only the properties of vertices that correspond exactly in the two
subgraphs are compared.

When dealing with real values, it suffices to substitute the exact match operator
(-, ) with the product. We distinguish the projection operators A; for discrete
properties with subscript d and those for real properties with subscript r. We
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Table 4.1: One-relation tasks in kLog.

Relational arity

# properties 0 1 2
0 Binary Binary Link prediction
classification of classification of
interpretations entities
1 Multiclass / Multiclass / Attributed link
regression on regression on prediction
interpretations entities
>1 Multitask on Multitask Multitask
interpretations predictions on attributed link
entities prediction

can then compute the inner kernel between vertices 7 and ¢’ as:

Fovert (1,7) = G(Ap (), Ap (') <Z 5 (Ma(i), Aa(@) + Ar(z’))\r(i’)> . (4.3.5)
d r

4.4 Learning

kLog’s representation is essentially a function F(z,y) = w'é(x,y) over
interpretations (z,y), where ¢ is a feature map defined by a graph kernel
G and w is a weight vector. Alternatively, F(z,y) = >, ;K ((z,v), (i, v:)),
where the (x;,y;) are interpretations from the training set. This formulation
assumes that the following are given:

o a set of E- and R-relations together with their signatures,

e a background theory that specifies the definition of each intensional
predicate,

e a graph kernel K defining the feature map ¢, and
o a training set of interpretations {(z;,y;)}.
In addition, it will be convenient to assume that the outputs y consist of a fixed

set of relations O. Depending on the type of relations in O, one can distinguish
different types of task (Table 4.1).

There are three main aspects a model in kLog needs to take care of:
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1. Compute F(x,y) = w'¢(x,y) or, alternatively,

F(z,y) = Z%‘K((%y)» (wi,9:))

2. Maximize F'(z,y) with respect to y:

)
f(x) = argmax F(z,y)
3. Fit w (or a) to the data.

The first step mainly involves representational issues and exploitation of
background knowledge, in particular, the definition of a suitable feature space
via intensional relations and via details of the kernel function.

The second step mainly involves optimization but declarative aspects of the
language and background knowledge may play a role. In particular, there may
be constraints that legal values of y need to satisfy.

The third step is accomplished by introducing a regularized functional via a loss
function that measures the discrepancy between y; and f(z;) on the training
data. Depending on the choice of the loss function, the choice of the regularizer,
and the choice of the optimization strategy used to minimize the regularized
functional, different learning algorithms are obtained.

Actual implementations of learning algorithms in kLog are called models. Several
alternative models are available in the current literature and many of them
are pluggable into kLog. For instance, classification problems could be solved
by one of many variants of SVM, as well as by logistic regression or random
forests. Similarly, multi-task learning or collective classification could be handled
by means of trivial algorithms or by means of algorithms capable of taking
correlations and interdependencies into account. The latter are in principle
more powerful but often at the expense of runtime. Most models rely on some
optimization algorithm to fit the parameters to the data and again a given
model could take advantage of alternative solutions (e.g. SVM could use the
SMO algorithm in the dual space, or stochastic gradient descent in the primal
space). Finally, kLog is able to specify supervised learning problems for which
no clever (i.e. better than trivial) algorithmic solutions are known, e.g. collective
regression.
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Figure 4.4: Results (AUROC) on the Bursi data set for augmented (left) and
unaugmented (right) graphs. Lines on the z axis indicate kernel and SVM
hyperparameters (from top to bottom: maximum radius r*, maximum distance
d*, and regularization parameter c.

4.5 Experiments

The kLog technical report (Frasconi et al. 2011) contains more details on
kLog and describes a diverse set of additional experiments (the University of
Washington domain, WebKB, IMDb, and biodegradability) which we will omit
in this text.

4.5.1 Bursi

An elementary kLog script is shown in Figure 4.5. The script instantiates an
NSPDK feature generator with maximum radius »* = 4 and maximum distance
d* = 12. Subsequently, tenfold cross-validation is performed of an SVM model
using a polynomial kernel of degree 5 on top of the NSPDK features. With a
more sophisticated script, most of the experiments of Chapter 3 can be closely
approximated.

Figure 4.4 shows the results for the Bursi dataset (see Section 2.4.1). They are
relatively stable with respect to the choice of kernel hyperparameters and SVM
regularization and essentially match the best results reported in Section 3.7.
Recall that due to the minor representational difference illustrated in Figure 4.3,
distances between atoms or functional groups are twice as long in kLog graphs
as in normal atom-bond graphs. Equivalent hyperparameters r* and d* in kLog
are therefore twice as high as in Chapter 3.
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bursi_demo(Dataset) :-
klog_flag(klog_master,verbosity,3),
new_feature_generator(my_fg,nspdk),
klog_flag(my_fg,radius,4),
klog_flag(my_fg,distance,12),
attach(Dataset),
new_model(model1,libsvm_c_svc),
klog_flag(modeli,c,1),
set_klog_flag(model1,kernel_type,1),
set_klog_flag(model1,degree,5),
set_klog_flag(kfold_random_seed,1112),
stratified_kfold(mutagenic, 10, model1, my_fg, muta_stratum, Performance),
writeln(performance(Performance)).

Figure 4.5: kLog script to perform 10-fold stratified cross-validation for an
SVM using an NSPDK feature set suitable for molecules. Domain specification
(Figure 4.2) and utility predicate omitted.

4.5.2 Other applications

A second generation of kLog applications has been presented at the 2011
International Conference on Inductive Logic Programming (ILP) (Van Haaren
and Van Den Broeck 2011) (Kordjamshidi et al. 2011). The challenging task in
applications is to design the structure of the graph or graphs. When the domain
specification is written such that neighborhoods in the graphs form coherent
units of information with gradually increasing detail as the radius grows, kLog
can perform well.

In national football (soccer) competitions (Van Haaren and Van Den Broeck
2011), all teams in a given league play against each other. Due to the full
connnectivity, it makes little sense to represent the competition as a single
interpretation (except possibly with a slicing-based approach). Neighborhoods
above a certain, small radius would capture the entire interpretation. Instead,
the authors chose to represent each match as an independent interpretation.
Little structure then remains and the kLog-based approach essentially
degenerates to a weighted form of conventional propositionalization.

A natural language processing (NLP) application (Kordjamshidi et al. 2011,
Figure 1) in which the goal is to predict the presence of a word triplet that
expresses a spatial relationship (such as {book, on, table}) and the location of
each of its constituent words in a sentence, is a more structured domain and
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kLog can produce impressive results (88% precision? and 94% recall'?).

The NLP application also demonstrates the usefulness of kLog as a machine
learning programming language. Background knowledge such as which lexical
classes are eligible to take which roles in a spatial relationship, can be easily
encoded by an intentional relation. Stratification is available and the user can
add custom functionality such as specific subsampling strategies in Prolog or
C++.

The need to conform strictly to the E/R model is a minor challenge in some
applications. In particular, the constraint that relationships are only between
entities (there can be no relationships between relationships) occasionally
requires the introduction of artificial entities. For the NLP application, we
advised the authors to introduce candidate word function entities in addition to
candidate word function relationships since spatial relationships cannot connect
word function relationships directly. This workaround is always possible, but
may be inelegant.

The requirement that primary keys are unique in the entire domain confuses
new users and frequently requires extra effort from the user to comply with. I
remain convinced that this design choice is suboptimal.

4.6 Conclusions

NSPDK (Chapter 3) has inspired kLog, a relational learning system that
combines the computational efficiency of linear models with a very expressive
representational language. It is moreover possible to specify a sophisticated
learning bias. This is achieved through graphicalization of the data, rather than
(direct) propositionalization.

The user is firmly in control during all steps of the learning process.
Graphicalization is completely user-specified by means of a domain specification,
which permits the definition of intensional predicates. The graph kernel can be
chosen and parameterized. Finally, several learning algorithms (models) can be
chosen from.

9Precision is the fraction of predicted spatial relationship triplets that are true.
10Recall is the fraction of true spatial relationships that are predicted as such,
cfr. Section 2.4.2
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Overview of Part |l

One aspect that is central in scientific discovery, as well as in many engineering
studies, is that of determining the next experiment to be carried out. In
practice, a researcher can only perform a limited number of experiments. How
the experiments should be chosen depends on the goal of the research. The
goal may be to obtain an accurate model of the system under study over its
entire domain, using as few experiments as possible. This is the subject of
the discipline of active learning. However, in many cases, large areas of the
domain are of little interest, and we rather want to find the best instances
(substances, compositions, designs) as evaluated on an unknown target function;
again using limited experimental resources. This goal is, we believe, the more
common one in chemistry, partly because chemical space is so large. It is the
question that we will investigate in this second part of the thesis. We will
assume that information can only be obtained by testing specific instances for
their performance, whereby some cost is incurred.

In chemical terms: whereas the previous part descibed methods for the accurate
and efficient prediction of the activity of given molecules, in this part, we
will explore methods that deal with the inverse problem: finding molecules
that exhibit a desired activity level. Effectively, input and output have been
interchanged.

Chapter 5 describes this task in the context of drug discovery, in particular
lead compound screening. We identify a number of suitable algorithms for the
selection of screening candidates. The algorithms are compared in silico against
each other and against traditional, non-incremental, high throughput screening.
Chapter 5 is based primarily on (De Grave et al. 2008a).

The algorithm described in Chapter 5 is implemented and being tested in the
wet lab practice by the drug discovery robot scientist project at the University
of Aberystwyth. This high-profile project comprises the development of Eve,
an autonomous robotic system to demonstrate the end-to-end automation of
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scientific discovery in the field of drug discovery. Eve is described in Chapter 6.

Chapter 7, based on (Cano Odena et al. 2008) and (Cano Odena et al. 2011),
shows that the use of optimization algorithms need not be restricted to the small-
molecule ligand area of the chemical space, and can just as well be applied to the
other extreme of the weight scale of organic molecules: polymers. In particular,
we consider the problem of the synthesis of cellulose acetate nanofiltration
membranes. Nanofiltration membranes can remove low molecular weight trace
contaminants in water that cannot be removed efficiently by conventional
biological or physico-chemical treatments. However, membrane performance
depends strongly and non-linearly on several parameters involved in membrane
synthesis. It is important to find the physical parameters of the casting process
that yield the best performance, as well as the optimal composition of solvents,
monomer, and additives. Optimization algorithms can reduce time and material
consumption to direct membrane synthesis towards better separation properties
(selectivity) of the targeted compounds combined with useful fluxes.



Chapter 5

Active k-optimization for
efficient ligand screening

As mentioned in the overview of Part II, an important task in many scientific
and engineering disciplines is to set up experiments with the goal of finding the
best instances (substances, compositions, designs) as evaluated on an unknown
target function using limited resources. We study this problem using machine
learning principles, and introduce the novel task of active k-optimization. The
problem consists of approximating the k best instances with regard to an
unknown function and the learner is active, that is, it can present a limited
number of instances to an oracle for obtaining the target value. We use an
algorithm based on Gaussian processes for tackling active k-optimization, and
evaluate it on a challenging set of tasks related to structure-activity relationship
prediction.

This chapter is based on (De Grave et al. 2008a) and (De Grave et al. 2008b).

5.1 Introduction

In this chapter we apply machine learning principles to select the next experiment
in lead compound screening, an important step early on in the drug discovery
process, in which many chemical compounds are screened against a biological
assay. The goal of this step is to find a few hit compounds within the entire
compound library that exhibit a very high activity in the assay. The task is
akin to many other scientific and engineering disciplines, where the challenge is

83
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to identify or design those instances that have optimal performance according
to some criterion that needs to be optimized. For instance:

e In coherent laser control, the goal is to find the laser pulse that maximally
catalyzes a chemical reaction (Form et al. 2007).

¢ In nanofiltration membrane design, it is important to find those parameters
of the process that yield the best permeability for water while still
effectively filtering polutants, even those of very small molecular weight.
This problem is discussed in detail in Chapter 7.

The common characteristic in this type of application is that the target criterion
surface is unknown to the scientist or engineer, and only partial information
can be obtained by testing specific instances for their performance. Such tests
correspond to experiments and can be quite expensive.

In lead compound screening, it is not sufficient to find just a single optimal
example. The optimal compound might ultimately not be usable as a starting
point for the next step in the drug discovery process for various reasons unrelated
to its performance in the assay. Therefore, a number of alternatives need to be
found as well. Ideally, these near-optimal alternatives would be quite different
from each other and each would have a different method of action, to increase
the probability that one of them will eventually pass clinical tests. In the current
chapter we will not explicitly consider this secondary concern of diversity. The
challenge then is to identify the k best performing instances using as few
experiments as possible. We will refer to this task as active k-optimization.

This task is closely related to global function optimization. It is also related
to active learning in a regression setting (Cohn et al. 1996), where the goal is
to find a good approximation of the unknown target function by querying for
the value of as few instances as possible. Whereas this approach allows one to
identify the best scoring instances, it is also bound to waste resources in the
low scoring regions of the function. Thus, in contrast to active regression, an
extra ingredient is added to the problem that is reminiscent of reinforcement
learning. The learner will have to find the right balance between exploring the
space of possible instances and exploiting those regions of the search space that
are expected to yield high scores according to the current approximation of
the function. Finally, active k-optimization differs also from active concept-
learning as has already been applied to structure-activity relationship prediction
(Warmuth et al. 2003) in that a regression task has to be performed.

This chapter is organized as follows: in Section 5.2 we formalize the problem, and
in Section 5.3 we propose a Gaussian process model for tackling it. In Section 5.4
we investigate a number of different strategies for balancing exploration and
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exploitation. We evaluate our approach experimentally in Section 5.6. Finally,
We discuss related work and possible extensions in Section 5.7.

5.2 Problem statement

Drug lead compound screening approaches typically assume the availability of
a large, diverse, and fixed library of compounds. Hence, our setting is similar
to the pool-based active learning setting. In this setting, the learner incurs a
cost only when asking for the measurement of the target value of a particular
instance, which must be selected from a known, finite pool. In principle, the
learner may be able to exploit the distribution of the examples in the pool
without cost. To some extent, this setting is therefore also a semi-supervised
learning setting.

The problem sketched in Section 5.1 can be more formally specified as follows:

GIVEN:

¢ a finite pool P of instances,

e an unknown function f that maps instances x € P on their target values

f(x),
e an oracle that can be queried for the target value of any example = € P,

o the maximal number of queries N4, < |P| that the oracle is willing to
answer,

o the number £ of best scoring examples searched for.
FiND:

e the top k instances in P, that is, the k instances in P that have the highest
values for f.

Without loss of generality, we assume that the goal is to find high, rather than
low valued examples.

One can see that the above combinatorial optimization problem is a close relative
to the problem of global function optimization. Algorithms developed in the
discipline of global function optimization only consider k = 1 and are optimized
for continuous domains. Still, largely the same concepts and techniques can be
used.
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From a machine learning perspective, the key challenge is to determine the
policy for determining the next query to be asked, based on the already known
examples. This policy will have to keep the right balance between exploring
the whole pool of examples and exploiting those regions in the pool that look
most promising.

5.3 Gaussian process model

We will use a Gaussian process model (Gibbs 1997) for learning, also known
as Kriging. In this section we briefly review the necessary theory. Detailed
explanations can be found in several textbooks on the subject (Rasmussen
and Williams 2006, Bishop 2006). We will mostly follow (Rasmussen and
Williams 2006).

We first introduce some notation. We assume that there is a feature map
¢:P— Fo— ox) (5.3.1)

mapping examples to a feature vector space F. We denote with Xy =
[£129...2N]T the vector of the N first examples, with Ty = [tita...tx]"
the vector of their target values, and with & = [¢p(x1)P(x2) ... d(xN)] the
feature matrix, where each column is the image of an example (abusing notation
in case F' has infinite dimension).

For our objective criterion, || Tn||pegt_j is the mean' of the k largest elements
of the vector Ty, where we assume all target values to be positive. The notation
|- lpest s is warranted since the function satisfies all properties of a vector
norm under this assumption.

We assume that there is a linear approximate model for the target value ¢t(x) of
instances
m(z) =w' ¢(x) (5.3.2)

(with w € F a weight vector) such that the values of the modeling error
t(x) — m(x) for examples randomly drawn from the pool P are independently
Gaussian distributed with zero mean and variance o?. We use the following
notation to denote that a random variable has a Gaussian distribution:

P (t(z) — m(x)) = N(0,0%). (5.3.3)
or even more compactly
t(x) —m(z) ~ N(0,02). (5.3.4)

1For our purposes, a sum would be equally suitable.
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We can now compute the probability density of observing precisely T in the
instances Xy for any given parameter vector w, a function which is known as
the likelihood.

N
P(Iy|@y, w) = [[ P(Tilé(z:), w) (5.3.5)
N
- H/\/ (w(zi),07) (5.3.6)
N 2
= H eXp < ¢($Z)> ) (5.3.7)
= (27702 n/z exp( — |Tn —w' ®y] ) (5.3.8)
=N (v dy,0° (5.3.9)

1 ifi=j

We use I to represent the identity matrix, I;; = §(¢,5) = { 0 otherwise

Our prior belief for the vector of the coefficients w is Gaussian with zero mean
and covariance matrix .

w e~ N(0,5,) (5.3.10)

We can compute the posterior P(w|Ty, ®x) from the prior and the likelihood
using Bayes’ rule

P(w|<I>N)P(TN|(I>N,w)

P(w|TN7®N) = P(TNl(I)N) (5311)
= PlIN|®N) (5.3.12)
x P(w)P (Tn|®yn,w) (5.3.13)
XN (0,p0) N (w @y, 0%]) (5.3.14)

1 1
o exp (—QwTE;iuD exp (—%2 TN — wT<I>N]2> (5.3.15)
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Adding the two exponents gives
w| Ty, Xy ~ N (0, B, N) (5.3.16)
where the mean wy and variance ¥, y are

WN = O’izzw,N(I)NTN
Sun = (07208 +3,0) 7

For a new example z, we can then estimate the target value by

Ll X, T s~ N (036 (2), ()T S () (5.3.17)

By defining a kernel k as
B(w,9) = 6(2) Spud(y) (5.3.18)
and using the following abbreviations for vectors of kernel values
k(we, Xn) = [k(2a, 21)k(20, 22) . E(zs, 28)]
(XN, 2y) = [k(ze, 21) (2, 22) .. k(2e, 2n5)] = k(24, Xn) T
(XN, Xn) = [k(z1, XN)k(z2, XN) .. k(zn, XN)]

for a matrix of kernel values (known as the Gram matrix), we can express the
posterior distribution of ¢, without explicitly refering to feature space:

XN, T, @i ~ N (t, var(ts)) (5.3.19)
where

fo = k(we, Xn) (K(Xn, Xn) +02In) " Ty (5.3.20)

var(t.) = k(. 2.) — (2., Xn) (k(Xn, Xn) + 02 In) " k(Xn,2.) (5.3.21)

Exact computation of the model requires a matrix inversion of cubic complexity,
O (N 3). There are several reduced-complexity approximations available, e.g.
the Informative Vector Machine (Lawrence et al. 2003). If the examples are
numerous and the feature space is small, it is more economical to compute in
feature space instead (Equation 5.3.17).
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5.4 Selection strategies

Different example selection strategies exist. In geostatistics, they are called
infill sampling criteria (Watson and Barnes 1995, Sasena 2002). In this chapter
we do not consider repeated measurements, unlike in reinforcement learning
where actions can be reconsidered.

Maximum variance In active learning, in line with the customary goal of
inducing a model with maximal accuracy on future examples, most approaches
involve a strategy aiming at greedily improving the quality of the model in regions
of the example space where its quality is lowest. One can select new examples
for which the predictions of the model are least certain or most ambiguous.
Depending on the learning algorithm, this translates to near decision boundary
selection, ensemble entropy reduction, version space shrinking, and others. In
the Gaussian process model, it translates to mazimum variance on the predicted
value or arg max(var(t.)).

Maximum predicted Since our goal is not model accuracy but finding good
instances, a more appropriate strategy is to select the example that the current
model predicts to have the best target value, or arg max(t.). We will refer to this
as the mazimum predicted strategy. For continuous domains, this strategy is not
guaranteed to find the global optimum, or even a local optimum (Jones 2001).
It is easy to see why: the model is never refined in areas where sparse initial
data tentatively indicates low values, but where the lack of available data may

hide high values.

Optimism A less vulnerable strategy is Cox and John’s lower confidence bound
criterion (Cox and John 1997), which we will refer to as the optimistic strategy.
The idea is not to sample the example in the database where the expected
reward ¢, is maximal, but the example where t. + b - y/var(t,) is maximal.
The parameter b is the level of optimism. It determines the balance between
exploitation and exploration. It is obvious that the maximum predicted and
maximum variance strategies are special cases of the optimistic strategy, with
b =0 and b = oo respectively.

In a continuous domain, this strategy is not guaranteed to find the global
optimum because its sampling is not dense (Jones 2001, pages 362-363).
Informally, dense sampling means that the method will eventually sample from
any given interval, no matter how small, if enough experiments are performed.
It must do so independent of the target values 7. A criterion that doesn’t
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perform dense sampling, may miss a global optimum that is “hidden” in an
inconspicuous interval. However, in the setting that we are considering, the
pool P is finite, which makes this theoretical flaw less relevant.

Figure 5.1a illustrates the three strategies introduced so far. The remaining
two strategies are illustrated in Figure 5.1b.

Max Max  Optimistic—>
variance predicted

\% y

Predicted activity

——t
Probability density
2 e B

" Improvement probability

Expected improvement

Current k-th best
Prediction =*='="="

°
2

1 2 3 4 5

J“}‘q_ 'lm‘}b" -O%é mg vwgf ”‘éf Predicted activity
(a) (b)

°

Figure 5.1: Optimization strategies for a learned model with uncertainty
estimates.

Most probable improvement Another strategy is to select the example z 1
that has the highest probability of improving the current solution, an idea first
proposed by (Kushner 1964) and much later adapted by (Mockus 1989) and
others. One can estimate this probability as follows. Let the current step be N,
the value of the set of & best examples be || Ty (|})ogt_, and the k-th best example
be x4k, n) with target value t4, n). When we query example zy 1, either
tn+1 is smaller than or equal to ty(x, n), Or tn41 is greater. In the first case,
our set of k best examples does not change, and |Tn11llpest—x = TN Ihest — k-
In the latter case, x4 will replace the k-th best example in the set and the
solution will improve. Therefore, this strategy selects the example x4 that
maximizes P (t N+1 > by, N)). We can evaluate this probability by computing
the cumulative Gaussian

P (tns1 > tapn)) :/ N (te,var(t,)) dt (5.4.1)

Ly (k,N)
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where ¢ 1 and var(ty1) can be obtained from Equations 5.3.20 and 5.3.21. In
agreement with (Lizotte et al. 2007), we call this the most probable improvement
(MPI) strategy.

Maximum expected improvement Yet another variant is the strategy used in
the Efficient Global Optimization (EGO) algorithm (Jones and Schonlau 1998).
EGO selects the example it expects to improve most upon the current best, i.e
the one with highest

E [max (0,t — tgxn))] = /OC (t = tumwn)) N (t,var(ty)) dt . (5.4.2)

Ly (kN

This criterion is called mazimum expected improvement (MEI).

5.5 Stopping criterion

In real-world applications it is not only important to find a solution quickly,
but also to know when the optimal (or an adequate) solution has been found.
The trade-off one has to make here is between budget and quality.

In a large number of situations, one will have a fixed budget and the goal will be
to have an optimal solution when the budget is exhausted. Sometimes however,
one can save significantly on the budget when a slightly suboptimal solution is
acceptable or when the risk of having a suboptimal solution is small.

One approach is to bound the probability that any of the non-queried examples
is better than the k-th best example so far. From Equation 5.4.1 we can compute
for a particular example z that has not been queried the probability that its
target value ¢ will be larger than ¢4 ). We can then write

z€P\XnN

which is a tight upper bound if the individual probabilities P (f(;v) > t#(hN))
are small (as is the case when we consider to stop querying) and independent.

5.6 Experimental Evaluation

As sketched in the introduction, we shall experimentally evaluate our collection
of methods in the area of high throughput screening in the context of drug
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lead discovery. In particular, we shall evaluate the algorithms on the US
National Cancer Institute (NCI) 60 anticancer drug screen (NCI60) dataset
(Shoemaker 2006). In this chapter, we will not use the discretised subset of
(Swamidass et al. 2005) that was described in Section 2.4.1, as we did throughout
Part I, but we will rather turn to the original screening data because the model
described in this chapter is capable of using, and in fact presumes, real-valued
training data.

The NCI DTP repository contains measurements of the inhibitory power of tens
of thousands of chemical compounds against 59 different? cancer cell lines. NCI
reports the log-concentration required for 50% cancer cell growth inhibition
(GI50) as well as cytostatic and cytotoxic effect measures, but we only used the
log GI5¢ data. Real world drug discovery screening operations often include
non-toxicity in the measure to optimize for. For example, one could optimize
for a large specificity index, usually defined as the log-ratio of the concentration
of 50% toxicity for healthy cells to the concentration of 50% effectivity (in this
case, growth inhibition of the cancer cells).

To perform a measurement, each compound is diluted repeatedly, yielding a
geometric series of concentrations. The Gl5qg is then interpolated between the
log-concentrations just above and below 50% inhibition, or obtained via a more
sophisticated growth curve fit. The actual Glsg can turn out to be outside the
range of concentrations chosen a-priori. In that case, one only knows an upper
or lower bound for the value, and a new measurement for that compound must
be performed to collapse the interval to a point value. We ignored such out of
bounds measurements.

Repeatedly fitting a Gaussian process model in feature space would result in
O (N3, - |P|) complexity for exact computations®. To avoid this, we used a

linear kernel k(x,y) = ¢(z) " ¢(y) (implying X, = I) with a limited number of
features and performed all computations in input space (Equation 5.3.17).

The chemical structure of each compound was represented as 1024 FP2
fingerprints*, calculated using Open Babel 2.1.0 (Guha et al. 2007). FP2
fingerprints represent the presence or absence of paths of up to seven atoms.
All features are therefore binary, whereas our model allows (and assumes) real-
valued features, but this proved no obstacle. The fingerprints are highly similar
to the commercial de facto standard Daylight fingerprints when the Daylight
Toolkit is configured to use up to seven atoms (up to eight atoms being the

20ne of the originally 60 cell lines was evicted because it was essentially a replicate of
another (Nishizuka et al. 2003).

3Recall from Section 5.2 that Nyqaz is the experimental budget and |P| is the number of
compounds in the pool.

40pen Babel never actually uses the last three bits. Depending on the dataset, other bits
may also be unused.
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default). We now know that this descriptor set is weak (McGaughey et al. 2007)
and future research is recommended to try longer paths or altogether different
descriptors (such as NSPDK, see Chapter 3, or McGaughey et al’s TOPOSIM).
A larger descriptor space, however, may require hashing to an acceptably small
space or computing in input space (Equation 5.3.19) using an approximate
Gaussian process model.

To improve interpretability of the experiments, an equally sized pool of
2,000 compounds was randomly selected from each assay. This also saved
computational resources, though it would have been possible to use the entire
dataset, for all algorithms are only of complexity O (N2, - |P|) as long as the
number of features dim(F') is constant.

The algorithms were bootstrapped with GIsy measurements of ten random
compounds. Since the result depends on this random boot sample, each
experiment was repeated 20 times and the results were averaged.

In each assay, NCI measured some compounds repeatedly. For these compounds,
the dataset lists the standard deviation among the measurements, as well as
the average. In order to estimate the measurement error for each assay, we used
the unweighted average standard deviation over all repeated measurements in
the assay. This value was used as the standard deviation ¢ in the Gaussian
term of our model in Equation 5.3.4.

To evaluate our algorithms in practice, we recorded ||T ||} eqt_, @ a function
of the fraction of compounds tested. For every setting (selection strategy,
value of k), these functions were then averaged over the 59 datasets considered.
Figure 5.2 plots these curves for k € {1, 10,25,100} for all described strategies
and random selection. For the optimistic strategy, we tested optimism levels of
0.5, 1, and 2.

Table 5.1 lists for several budgets Np,., which strategy is best (attains the
highest |Tn,,.. lhest _1)- The budget is shown as a percentage of the pool size.
For each different strategy, the table then also gives the Wilcoxon signed-rank
test p-value for the null hypothesis that the difference between the top-k values

of this strategy and those of the best strategy is on average 0.

We are now well equipped to answer four important questions about our
algorithm:

Q1 Do active k-optimization strategies isolate valuable instances quicker than
random selection?

Q2 What is the relative performance of the different selection strategies listed
in Section 5.47
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Q3 Do strategies that take k into account perform better than strategies that

do not?

Q4 Can the stopping criterion (Equation 5.5.1) be used to decide when a
near-optimal solution has been found?

NCI60 k=1 NCI60 k=10
1 T r 1 T :
—c
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Figure 5.2: The value of || Tn|l,est_, in each step, for all proposed active
learning strategies and random selection, averaged over 20 runs for each of the
59 datasets. A log scale is used on the horizontal axis to reveal the performance
for small as well as large budgets. The vertical axis is scaled to place the
aggregate target value of the overall £ best compounds at one and the worst k
compounds at zero.
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Budget 10% 15% 20% 25% | 10% 15% 20%  25%
k 1 10
Max predicted 0.305 0.304 0.039 0.088 | 0.106 0.497 0.040 0.021
Optimistic b=0.5 Best Best 0.282 0.392 | 0.274 0.456 0.251 0.111
Optimistic b=1 0.837 0.776 Best Best | 0.141 0.390 Best Best
Optimistic b=2 0.898 0.472 0.094 0.229 | 0.179 0.298 0.179 0.298
Max variance € € € € € € € €
MPI 0.946 0.538 0.108 0.174 | 0.455 0.230 0.189 0.052
MEI 0.037 0.057 0.005 0.047 | Best Best 0.934 0.809
Random € € € € € € € €
Budget 10%  15%  20%  25% 10%  15%  20%  25%
k 25 100
Max predicted 0.074 0.437 0.015 0.015 | 0.046 0.063 0.003 0.010
Optimistic $=0.5 0.202 0.319 0.177 0.192 | 0.197 0.118 0.007 0.022
Optimistic b=1 0.280 0.634 Best Best | Best Best Best Best
Optimistic b=2 0.083 0.673 0.264 0.478 | 0.042 0.170 0.016 0.068
Max variance € € € € € € € €
MPI Best Best 0.385 0.141 | 107° 0.005 0.003 0.001
MEI 0.487 0.184 0.158 0.083 | 0.254 0.492 0.019 0.001
Random € € € € € € € €

Table 5.1: Performance of active k-optimization strategies. The strategy that
achieved highest || Tn||,ost_, after selecting the indicated percentage of all
compounds is marked Best. For the other strategies, Wilcoxon signed-rank
p-values are shown, where a p-value below a given significance level indicates
that the strategy is inferior. € indicates that p < 1078 .

5.6.1 Expedience

From the results presented in Table 5.1 and Figure 5.2, one can see that random
example selection clearly performs worse than all other selection methods in
all settings, except for the maximum variance strategy which does still worse
for large budgets, especially for k = 100. We can conclude that the answer to
question Q1 is positive, because actively choosing examples with one of the
presented strategies substantially speeds up the finding of examples with high
target values.

It is remarkable that the starting points of the random strategy are lower for
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higher k. This is due to the fact that the distribution of target values is skewed:
the lower end of the range of target values is more sparsely populated than the
area of very large target values (presumably because finding a good compound
encourages researchers to test similar compounds, which are likely to perform
similarly). In this way, || Tn|l)ast_ decreases only slowly while || Tn ||l worst—s
(the average of the k smallest elements of Tl) increases quickly for larger k.
This causes the value of a random sample to be lower when scaled to a [0, 1]
interval. That the non-random strategies start higher than the random strategy
for £k = 25 and k£ = 100 is due to the fact that there are only 10 bootstrapping
examples, and the non-random strategies actively select 15 (for k = 25) or 90
(for k = 100) examples before they can be evaluated for the first time.

5.6.2 Relative performance

Unsurprisingly, one can see that querying the maximally uncertain example
is (in contrast to settings where one tries to optimize accuracy) not a good
k-optimization strategy.

Overall, on the NCI60 datasets, the optimistic strategy with an optimism level
of 1 was most robust. In all situations considered, it performed either best or
not significantly worse than the best strategy. The difference with 2 and 0.5
optimism is more consistent for higher values of k. In Figure 5.2 we can see
that the relative differences between the optimistic, maximum predicted, and
MEI strategies are modest. A possible contributing factor is that the data set
is skewed and not the result of random screening.

Note that we exploited the information in the NCI datasets about the accuracy
of the measurements. For other datasets that do not allow to estimate the
noise level in the input data, it may be harder to come up with a good value
for var(t.). One can use a maximum likelihood estimate, at the cost of some
robustness (Sasena 2002).

Greedily querying the example for which the highest target value is predicted,
performs slightly worse than the optimistic strategy. The MPI strategy performs
worse than the optimistic strategies in the very beginning, except for k = 1. It
performs (and allegedly behaves) similarly to the maximum variance strategy
when it hasn’t seen many more examples than the 10 random bootstraps. From
about 5% for k = 10 and 10% for k = 25, its performance is competitive and
sometimes best, but it again becomes suboptimal for high budgets. The MEI
strategy performs extremely well for k£ = 10, but is outperformed in some other
settings. This concludes our answer to question Q2.
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5.6.3 Utility of advance knowledge of k

In Table 5.2 and Figure 5.3 we see that the active learning strategies that
explicitly take k into account, perform far better than their global optimization
(k = 1) peers, except for the warmup of MPI. However, from question Q2 we
learned that the most robust strategy on our datasets, 1-optimism, performs
as well. Since optimism does not rely on prior knowledge of k, the answer to

question Q3 is negative.

Budget 100%  15%  20%  25%
MPI Egrger = 1 1077 € € €
MEI Egrger = 1 € € € €
MPI Etgrger = 25 DBest Best Best Best
MEI Ktgrger = 25 0487  0.184 0.394 0.640

Table 5.2: Influence of prior knowledge of k£ on the performance of k-dependent
strategies. The k-dependent strategy finding the best || v} gt o5 18 indicated
(kevar = 25). For the other strategies, we show p-values for the null hypothesis
of equal performance. ¢ indicates that p < 1078 .
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Figure 5.3: The value of | T [|pegt o5
in each step, for the MPI and MEI
strategies, optimizing for either k=1
or k=25.

~log(optimal-current)

10!
—log(P(gain))

10

Figure 5.4: Stopping criterion: the
negative logarithm of the difference
between the optimal solution and
current solution plotted against the
negative logarithm of predicted prob-
ability of suboptimality according to
Equation 5.5.1
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5.6.4 Stopping criterion

To evaluate the stopping criterion, we used Equation 5.5.1 to estimate
the probability P (39& eP\Xn: flx) > t#(k’N)) that there exists an unseen
example in the pool P which is better than the k-th best seen so far. We did so
during one experiment with the MPI strategy for every dataset, and recorded
these probabilities together with the differences between the solution at that
point and the optimal solution. In this way, we can evaluate how much value
one would lose on average if one would stop the screening when the probability
of finding anything better would drop below a certain threshold.

In Figure 5.4, the negative logarithm of the differences between solution so
far and optimal solution, i.e. —log (”f(P)”best—k - ”TNHbest—k)’ is plotted
against the negative logarithm of the estimated probability that there is still

a better solution, i.e. —log (P (3z € P\ Xy : f(®) >ty n))). The standard
deviations on the points in this curve are all below 0.2.

From Figure 5.4 one can see that there is a good relation between the estimated
probability that the best solution has not yet been found and the optimality
of the current solution. In particular, when the stopping criterion predicts a
very small probability of finding a better solution, one can be confident that
querying more examples will not be very useful. This answers question Q4
positively.

5.7 Related work and possible extensions

To summarize, we introduced the active k-optimization problem in a machine
learning context, we developed an approach based on Gaussian processes to
tackling it, and we applied it to a challenging structure-activity relationship
prediction task, demonstrating good performance.

This chapter is related to several articles that combine kernel methods and
Gaussian processes both in the machine learning and the global optimization
communities. In machine learning one aims at improving prediction accuracy,
and common strategies select the most uncertain examples, or select the
examples that maximize information gain. In global optimization, Gaussian
processes are a popular surrogate to save on expensive function evaluations
(Sasena 2002, Lizotte et al. 2007). The advances in global optimization were
preceded and inspired by geostatistics (Watson and Barnes 1995). One can easily
recognize the MPI, MEI, and maximum variance concepts in the theoretical
work of Watson and Barnes.
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In the area of lead compound screening, active learning has so far only been
applied for classification or regression purposes but not for optimization. E.g.
(Warmuth et al. 2003) shows that the maximum-predicted strategy works
well for discriminating rare active compounds from inactives using an SVM.
Furthermore, the NCI database has been used as benchmark for several machine
learning approaches, e.g. (Swamidass et al. 2005, Ceroni et al. 2007, Menchetti
et al. 2005), and see also Chapters 2 and 3. Note that most machine learning
papers use the discretised Glsg of a specific subset of compounds (Swamidass
et al. 2005) to evaluate binary classification algorithms, whereas in this chapter
we used the real GlIsg of a different subset. As the results show, classification
of compounds can be learned to a certain extent, but accurate prediction
(classifying borderline cases) is still harder than finding extreme values as in
our setting.

Two interesting further questions for research are

1. whether one could make further gains by devising a strategy that also
takes into account a budget that is fixed from the start, and

2. whether one can select several examples to be queried together in a single
batch before getting the target values for all of them. This is often needed
in high throughput screening (HTS).

To address the first question, one could e.g. focus the first fraction of the budget
more on exploration and the last part only on exploitation.

The second question requires one to spread selections over the space in order to
avoid obtaining too many correlated values (Guestrin et al. 2005). A few authors
have touched upon this problem in the context of surrogate-based optimization,
but the batch size was algorithm driven as opposed to application constraint
driven, e.g. (Jones 2001). This raises a more general problem: given some
collected X, Ty training data and a pool P of examples that one could query
next, select n new examples to query. In such a situation, it may not be optimal
to select examples that individually optimize some criterion. In the ideal case,
one would like to optimize the joint contribution of the entire batch. E.g. if
k = 1, the probability that querying examples xny 41 ...2Ny1y, would improve
the solution would be

P (max{tN_H . tN-i—n} > t#(k,N) ‘ XNaTN) (571)

which evaluates to the integral of a Gaussian over a union of half-spaces. For
large n, it is nontrivial to select the n examples for which this value is maximized.
However, one can efficiently select zn41... 2N, in order, such that in every
step the example x4 is selected that maximizes

P (max{tN+1 .. -tN+i} > t#(k,N) ‘ XNJFZ‘,hTNJrZ‘,l) . (572)
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The batch selection generalization of the MEI heuristic would be the

arg max  of:
IN+1--TN+n

E [max (0, (tN+1 - t#(k,N)) gee ey (tN+n - t#(k,N)))] (573)

= / .. / (max (EN41s--stNtn) — t#(k,N)) SN (t;7var(t*)) drny1...drNin
ok, N)

(5.7.4)

o</--~/max (N1 s tNgn) - N (b, var(ty)) dongr - .. dT N4y (5.7.5)

Ly (k,N)

We will reiterate this problem in the next two chapters.



Chapter 6

Eve: the drug discovery robot
scientist

A robot may not injure humanity,
or, through inaction, allow
humanity to come to harm.

Zeroth Law of Robotics
Isaac Asimov

In the previous chapter, we have demonstrated that selection strategies based
on a Gaussian process model can successfully select chemical compounds to be
tested in an expensive assay. In this context, “success” means that relatively
few experiments (compounds tested) are required to find the good compounds
in the library. In this chapter, we will find out how the optimization algorithms
can be implemented in a real-world laboratory.

6.1 Introduction

An important practical consideration when implementing an automatic selection
procedure for experiments, is to what extent the execution of the experiments
can also be automated. Since the decision making is already automated by
the algorithm, the system clearly becomes more valuable when the need for
human intervention for the mindless execution of the prescribed experiments is
reduced. An even more desirable system would be obtained if one manages to

101
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also automate the objective interpretation of the experiments. The ultimate
system would be one in which all aspects of the endeavour are fully automated.
Since, in some sense, the system then performs research independent of human
intervention, we may call it a scientist — a robot scientist.

More precisely, a robot scientist is a system which automates all aspects of the
scientific discovery process: it generates hypotheses from a computer model of
the domain, designs experiments to test these hypotheses, physically performs
the experiments using robotic systems, interprets the resulting observations,
updates its domain model accordingly, and repeats the cycle. The distinctive
feature compared to regular lab automation systems, data analysis software,
and experimental design tools, is that a robot scientist is able to autonomously
execute the entire closed loop of scientific discovery. It can continuously refine
its model of the world through rational experimentation.

Eve (Sparkes et al. 2010) is the second robot scientist developed at the lab of
professor Ross King at Aberystwyth University in Wales. The earlier robot
scientist is called Adam (King et al. 2009). There was also an earlier prototype
which was not fully automated (King et al. 2004). Adam and Eve still need
human intervention for physical work that is outside of their core experimental
capabilities, such as restocking, waste disposal, and other maintenance chores.
Their makers therefore consider them prototypes of an ideal, fully autonomous
robot scientist.

Adam performs yeast culture growth experiments with the yeast Saccharomyces
cerevisiae. Its goal is to find out which genes code for metabolic enzymes that
are known to exist in the organism, but for which the gene is not yet identified.
Adam has already discovered the genes for several such enzymes, contributing
new knowledge to biology.

Whereas Adam performs pure biological research, Eve is a drug discovery
researcher. It is a system to demonstrate the automation of closed-loop
learning in drug screening and design, that is, demonstrate machine learning
and automated quantitative structure-activity relationship (QSAR) deeply
integrated into the drug screening and design processes. The main goal is to
ultimately improve both the efficiency and quality, as well as reduce the cost,
of drug discovery.

In this chapter, we describe an algorithm for experiment selection that we
developed for Eve, starting from the active k-optimization framework exhibited
in Chapter 5. We will first describe the details of Eve’s design that determine
which types of experiments can be performed on the robot.
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6.2 Eve’s anatomy

6.2.1 Hardware

Since we have not contributed to Eve’s hardware design, we rely on (Sparkes et al.
2010), the documentation at the project’s website!, and personal communication
with the design team for a description of Eve’s design and capabilities. Some of
the text is taken from (Sparkes et al. 2010).

Eve’s laboratory robotic system (Figure 6.1) contains a set of instruments
designed to give the system the flexibility to prepare and execute a broad variety
of biological assays, including: cellular growth assays, cell based chemical
compound screening assays, and cellular morphology assays. There are three
types of liquid handling instruments included in the system, one of which
uses advanced non-contact acoustic transference. For observation of assays,
the system contains two multi-functional microplate readers capable (with
the appropriate filters) of recording measurements across a broad range of
both excitation and emission wavelengths. There is also an automated cellular
imager capable of taking images of the well contents of microplates using both
bright-field and a broad range of other wavelengths. The primary biological
assays used on Eve create one or more fluorescent protein markers that can be
detected on the readers and imager, such that Eve can not only quantify the
amount of marker produced using the readers, but also potentially localise it to
specific cellular regions or organelles using the imager. FEve also utilises control
software for the robotic system that is flexible enough to allow to reconfigure the
experimental process. Both hardware and software subsystems are designed to
allow rapid reconfiguration to carry out a number of different biological assays.
The designers claim that the system is equivalent to the best systems available
in the pharmaceutical industry.

6.2.2 Compound library

Eve initially uses a robot-accessible compound library of 14,400 chemical
compounds: the Maybridge HitFinder™ library. This compound library was
developed specifically to contain a diverse range of compounds. It was selected
as a subset of a large compound library by a two-stage filtering process based
first on Lipinski’s Rule of Five (Lipinski et al. 1997) to reduce the set to
200,000 compounds, then secondly by using a pharmacophore fingerprinting
process (Butina 1999) and cluster analysis to further reduce the set to 14,400
compounds. HitFinder is not a large compound library by industrial standards;

Ihttp://wuw.aber.ac.uk/en/cs/research/cb/projects/robotscientist/
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Figure 6.1: Eve: (top) overview, (bottom) close-up of part of the machine.
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Figure 6.2: Standard microtiter plates of 96, 384, and 1536 wells. Eve uses
384-well plates with opaque walls during normal screening operation. Public
domain image from NCI.

a pharmaceutical company may have many hundreds of thousands or even
millions of compounds in its primary screening library. The aim of the robot
scientist project is to demonstrate the proof-of-principle that incorporating
machine learning and QSARs into the screening process can improve on the
current mass screening approach.

6.3 Screening operation

6.3.1 High throughput screening

As any modern screening lab, Eve uses microtiter plates or microplates
(Figure 6.2) to handle all liquids. Microplates are rectangular arrays of wells,
each of which can contain a different experimental solution.

Eve is physically capable of screening at a moderately high throughput rate
of over 10,000 compounds per day, at a single concentration and assuming
no imaging is required. For the yeast growth assays it uses, throughput is
primarily limited by the need to repeatedly monitor the yeast cultures as they
grow. In high throughput mode, Eve can simultaneously incubate 8 microplates,
containing up to 320 compounds each?, and still observe the fluorescence of
the cultures at an adequate frequency to record detailed growth curves. Three
yeast strains can be observed simultaneously if they express different fluorescent

2Some of the 384 wells are used for validation compounds, background fluorescence
measurements, and other overhead necessary to obtain reliable measurements.
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colors. The yeast cultures are grown for two days, giving a throughput of 1280
compounds per day. In this mode, the compounds to be screened can only be
selected at the source plate level, in predefined groups of 320 compounds.

The Eve system includes all necessary software components to allow it to perform
cycles of targeted drug screening. There are three stages to this approach; mass
screening, hit verification, and hypothesis-driven targeted screening. For each
of these stages, experiment design software generates the biological experiment
plans, which combine chimeric yeast target strains and chemical compounds.

6.3.2 Cherry picking

Eve starts a screening project in high throughput mode, continuously monitoring
the results. When a sufficient number of tentative hits has been detected, it
stops the mass screen and verifies the tentative hits. The microplate layout used
for the verification is very different from high throughput mode, where only a
single well is assigned to each compound. Each compound is tested at multiple
concentrations and several redundant copies are made at each concentration, so
that accurate dose-response characteristics can be observed. Currently, a series
of eight dilution steps are used, comprising an equidistant series on a logarithmic
concentration scale. Six replicates of each dilution series are distributed over the
plate to avoid measurement errors as much as possible. Eight compounds can
thus be fit on a 384-well plate. Since Eve can read the growth curves of eight
simultaneously incubated plates, the optimal batch size for detailed screening is
64 compounds. This mode of operation is called cherry picking mode, because
the compounds layed out on the experimental microplates can be arbitrarily
picked from the library. By contrast, each high throughput screening microplate
is a diluted copy of one of the mother plates in the library.

After verifying the hits, Eve then switches to a more targeted approach, using
machine learning and QSARs to relate the experimental results to the chemical
structures of the compounds and possibly other background knowledge of
the assay. It will generate hypotheses about what it considers would be useful
compounds to test next. It then plans the (cherry picking) screening experiments
to test these hypotheses, performs these experiments on the robotic system, uses
machine learning to analyse these results, and then iteratively cycles around
testing other compounds until it can identify the best set of lead compounds for
the target. Eve will first test those compounds which are available from its own
compound library, then suggest other compounds that are commercially available
and should be tested. Potentially, Eve could even suggest new compounds that
should be synthesised for testing.



HIT EXPANSION 107

Eve’s hardware assembly was completed in early 2009. At the time of writing,
parts of the low-level cherry picking software are still under development, but the
high throughput screening of a few assays (Section 6.7.1) had been completed.

6.4 Hit expansion

6.4.1 Comparing traditional hit expansion with support vector
regression

The data from exhaustive high throughput screening of the HitFinder library for
activity against Plasmodium vivazx, a prevalent malaria parasite, was modeled
by Support Vector Regression (using SVM-Light) using the NSPDK (Chapter 3)
over augmented graphs (Chapter 2). The model was used to select 11 additional
compounds for purchase from the 56,391 compound Maybridge Screening
Collection library (the 12 highest predicted compounds except one which
was unavailable). An additional 6 compounds were selected using a more
conservative method: the nearest neighbors (NN) (as measured by traditional
fingerprints) of a strong hit that was manually picked as the most promising
avenue.

The NSPDK parameters for these predictions were set as follows: maximum
radius r* = 2, maximum distance d* = 4, and composition with a polynomial
kernel of degree 3. The hash was limited to 22 bits. The regression SVM’s
training error versus margin trade-off ¢ was set to 1.

6.4.2 Results

The 11 compounds selected with the NSPDK SVR model yielded 1 strong hit
and 3 weak hits. The NN approach was numerically even more succesful with
3 strong hits and 1 weak hit. Note that the abundance of strong hits in the
training set was slightly below 0.1%.

The hits identified by NN are of course far more similar to the training hitlist, and
hence less informative, than the hits found using SVR. The average similarity>
of the strong NN hits to the respective nearest previously known strong hit is
0.813 (0.681 for the most dissimilar). By contrast, the strong SVR hit was very
dissimilar at only 0.263.

3We measure this similarity using the Tanimoto kernel over Open Babel FP2 fingerprints,
see Section 5.6.
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6.5 Teaching Eve active k-optimization

We have adapted the Gaussian process model based algorithm for active k-
optimization, decribed in Chapter 5, to make it suitable for making Eve’s
experiment selection decisions in cherry picking mode. The single, crucial
difference of this application with the setting as exhibited in Section 5.2 is that
for Eve, it is very ineflicient to screen only a single compound and then wait for
the results of that single compound before deciding on the next. As sketched in
Section 6.3, the system uses microplates to handle liquids. Leaving wells on the
microplates empty wastes capacity of the robotic system and in general reduces
the ability to distribute fixed costs (such as the cost of the microplate itself)
over multiple experiments. This is in fact the case for most real-world drug
discovery wetlabs and the problem was already touched upon in Section 5.7.

The use of relatively slow (but reliable and information-rich) cell culture
growth assays makes this limitation even more stark: each experiment takes
approximately two days to grow the yeast culture, independent of the number
of compounds to be tested. Therefore, any practical experiment selection
algorithm for Eve must be able to select a batch of compounds in parallel. As
was mentioned in Section 6.3.2, the optimal batch size for Eve is 64. This
number has been determined only recently. Earlier in the design of the robotic
system, optimal batch sizes of 2, 4, or 8 were projected.

While we have developed a version of the MEI strategy (see Chapter 7) capable
of constructing almost-locally-optimal experiment batches, it is unfortunately
computationally far too demanding for Eve’s large batch size and large number
of training points. Eve is a real-time environment, where the selection of
experiments must happen reasonably quickly to achieve high utilisation of
the expensive robotic laboratory. This would be even more important if fast
protein-based assays are used rather than yeast cell growth assays, as is often
the case in industry?. In this context, decisions must be made in seconds, rather
than hours or days.

Our attempts have failed so far to dramatically optimize the computation of
batch-selection MEI by analytically solving the multi-dimensional version of
integral 5.4.2, which would completely eliminate the need for Monte-Carlo
numerical computation.

4A recent paper (Swinney and Anthony 2011) reveals that phenotypic assays have yielded
more FDA-approved first-in-class small molecule drug discoveries than target-based assays,
even though the latter dominate R&D efforts. Excessive focus on target-based assays may
contribute to high attrition rates and low R&D efficiency. Eve’s yeast growth experiments
occupy a middle ground, combining characteristics of both full disease phenotype reproduction
and focused single-target assays.
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A simple solution to select batches of experiments based on a model-based
optimization heuristic that can only select one experiment at a time, is to
use the algorithm iteratively, each time adding the selected experiment to the
database of experiments that have already been carried out. We simply assume
that the predicted quality of the compound is exactly correct. We choose to
implement in this way the most robustly performing algorithm according to our
in silico experiments exhibited in Section 5.6: Gaussian process model based
optimization with an optimistic selection strategy. When composing a batch
of compounds for experimentation, the heuristic avoids picking an additional
compound that is very similar to any of the already selected compounds,
because the presence of the already selected compounds in its database of
training examples makes it ‘believe’ that the uncertainty in that area of the
chemical space is low. A higher level of optimism d leads to more diversity in
the batch, as well as between batches.

The algorithm is implemented as an Octave 3° program and makes use of Open
Babel 2.2.3 (Guha et al. 2010) FP2 fingerprints and supporting code in Java
and Bash. A persistent, memory-mappable compound feature matrix is kept in
sync with the main relational database containing the compound structures.

6.6 Related work

The work most related to the heuristic was already mentioned in Sections 5.4
and 5.7 on active k-optimization.

Multi-pathogen assay screens require multi-objective optimization, ‘multi’ in
practice being two or three. Eve’s instruments have a technical limit of five
wavelengths. Our current approach does not yet deal with multi-objective
optimization. There is a significant body of literature on multi-objective
optimization with evolutionary algorithms (MOEA). A recent overview of
MOEAs can be found in (Knowles 2009). While these algorithms assume a
continuous example space, or at least an example space equipped with operators
such as mutation and crossover, several of them may be adapted to the chemical
space or to operate on a finite pool of chemicals P if assisted by an appropriate
distance function or kernel. This begs the question whether there is a MOEA
algorithm that would be suitable for guiding Eve’s decision making in cherry
picking mode.

Some properties of MOEAs make them less suitable for implementation in
Eve. Very few MOEAs are frugal in the number of evaluations (experiments)

Shttp://www.octave.org
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required, with the exceptions (Beume et al. 2007, Knowles 2006) achieving their
frugality by assistance from a machine learning model and heuristics like those
exhibited in Chapter 5. According to (Coello Coello 2006, page 13), model-
assisted MOEAs must necessarily be limited to problems of low dimensionality.
This is in agreement with (Knowles and Hughes 2005), although the latter
authors do not put it so strongly. The chemical space is definitely not of low
dimension. The problems we consider, however, have only a finite number of
possible solutions, so the limitiation may be circumvented.

Another issue is that MOEAs are usually tuned to discover the entire Pareto
surface. By contrast, Eve should not search for trade-off compounds that
moderately inhibit several pathogens but that act against none of the diseases
strongly enough to be used in patients. Such compounds are only to be examined
if the experiment yields actionable information for discovering a compound that
is maximally effective on either of the assays.

A recent result that is particularly interesting in the context of Eve is the
efficient computation of the MEI criterion (Equation 5.4.2) for two and three
dimensional targets (Emmerich et al. 2008).

6.7 Cherry picking simulation

6.7.1 Data

At the time of writing, the low-level robotic control software for cherry picking
was not yet robust enough to allow closed-loop experimentation with our
algorithm. Fortunately, the high throughput screening mode was functional:
two multi-strain assay screenings on the entire HitFinder collection had been
completed. Using this first experimental data obtained by Eve, we have
simulated in silico retrospectively what would happen in cherry picking mode in
vitro. However, as described in Section 6.2, high throughput screening data are
of lower quality and of a somewhat different nature than cherry picking data,
so the results should be interpreted with care.

Both assays consisted of three transgenic yeast strains, each presenting a
different foreign Dihydrofolate reductase (DHFR) enzyme. DHFR is an essential
enzyme, so successful blocking of DHFR inhibits growth of the cell culture. A
gene for the removal of toxins was knocked out in all strains in an attempt
to improve the signal-to-noise ratio. Each of the strains also produced a
fluorescent protein of a different color, enabling the microplate reader to measure
the growth of the strains independently. For both assays, two of the strains
featured DHFR obtained from a pathogen, and one of the strains expressed the
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corresponding human DHFR. The pathogens were malaria-causing Plasmodium
falciparum (Pf) and Plasmodium vivaz (Pv), Trypanosoma brucei (Tb) which
causes sleeping sickness, and Schistosoma mansoni (Sm), the parasite causing
intestinal schistosomiasis. The goal is to find a ligand that strongly inhibits at
least one of the pathogen DHFRs, but not the human variant.

6.7.2 Method

We translated the goal into a set of single-objective optimization problems. We
want to maximize these objective functions:

AIV(Human) AIV(Pathogen)

_ compound _ compound
OFPathogen - AIV(Human) AIV(Pathogen) (671)
control control

where I is fluorescence intensity, A indicates that we subtract the (background)
intensity at the start of the growth experiment from the final intensity from
the saturated cell culture, v(Human) and v(Pathogen) are the respective
fluorescent light colors, and compound or control indicates whether a test
compound was present or not. All yeast strains used for the experiments grow
substantially in control conditions and have a substantial default expression of
the fluorescence gene in the control medium, so the objective poses little risk
for numerical instability or division by zero.

Out of 14,400 compounds, 99 were found to be toxic to yeast, or to be
autofluorescent in the spectra used for the assay. In neither case can the
DHFR inhibition level be measured. We excluded these compounds from the
dataset. Since both properties are independent from the target protein under
investigation, it is sensible to also exclude the compounds from future screens.

The efficacy of the optimization procedure was tested on the mass screening data
a posteriori, starting from a small number of randomly screened compounds.
Average scores and standard deviation over many random bootstraps were
collected.

6.7.3 Evaluation method

As in the previous chapter, we compare the measure [|OF||} gt With random
screening. We also evaluate the optimization in terms of how many compounds
are superior to the best compound discovered, but go undetected due to not
screening the entire pool.
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How many superior compounds are left undetected when randomly screening a
part of the pool? Assume for mathematical convenience that no two compounds
in the pool have exactly the same objective function value. The compounds can
then be strictly ordered by increasing value and we assign a sequence number to
each compound: 1,2,...,|P| where |P| is the size of the compound pool P as
in the previous chapter. Random selection screening with a budget for testing
M compounds can be interpreted as selecting without replacement M numbers
from the set {1,2,...,|P|}, following a uniform distribution. To answer the
question of the number of undetected superior compounds, we can compute the
expected maximum number in a sample of size M and subtract it from |P|.

The total number of possibilities to choose M numbers from P is (‘]@). The
number of possibilities to select M numbers of which the maximum is %, is®
( kol ) The expected maximum of the selection is thus

M—-1
A TG o) IV S i g |
S = Xl (012
v Pl
- 6.7.3
7 2 () (o7
M [|P|+1
_ (le)(M+ 1) (6.7.4)
:% (6.7.5)

The equality of Equations 6.7.3 and 6.7.4 can be obtained by induction on

Pascal’s rule (";:1) = (}) + (,"",)- We subtract the expected maximum 6.7.5

from |P| to find the expected number of undetected superiors:

pl - MUPLED) _ [PUM -+ 1)~ M{PI+ ) (6.7:6)

_|PI-M

SN (6.7.7)

We fill in |P| = 14301 and M = 1000, yielding a deficit of about 13.29 compounds
that are superior but not detected by random partial screening.
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Figure 6.3: The value of |[OFp¢|lpest_s (top) and [|OFpylpest_5 (bottom)
discovered after screening a given number of compounds, using optimistic active
k-optimization with an optimism level of 1. Simulation for experiment batches
of 8 compounds.
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Figure 6.4: The value of [|OFrs||)est_5 (top) and [[OFgs,y,|[pest_5 (bottom)
discovered after screening a given number of compounds, using optimistic active
k-optimization with an optimism level of 1. Simulation for experiment batches
of 8 compounds.
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Figure 6.5: The value of [[OFrs||)ast_5 (top) and [[OFgs,|[pest_5 (bottom)
discovered after screening a given number of compounds, using optimistic active
k-optimization with an optimism level of 0.5. Simulation for experiment batches
of 64 compounds.
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6.7.4 Results

Figures 6.3 and 6.4 show the behaviour of the optimistic optimization procedure
for small batch sizes of 8 compounds. The random bootstrap for these
simulations was 16 compounds. Each graph shows a yeast strain containing the
DHFR from a different pathogen. The finely dotted, steadily rising line shows
the result that can be expected from mass screening in a random order. The
coarser dotted line above shows the performance of the compounds discovered by
the optimization procedure. The shaded area indicates two standard deviations
above and below this result”, as it varies for different bootstraps. Any given
large collection of compounds is likely to have on average as much effect on
Human DHFR as on DHFR from a pathogen, thus the mean [[OF|[}qqt_5
over all compounds is near zero for all assays. Evidently, some pathogens are
easier targets than others: there is considerable variation in the maximum
|OF 1,5t _5 in HitFinder, as well as in the ease with which the optimization
algorithm ‘escapes’ from the mass screening performance.

Figures 6.5 shows the behaviour of the same procedure for large batch sizes,
consisting of 64 compounds each. Since a large batch will automatically contain a
larger amount of diversity per experiment, we choose a smaller level of optimism
(b= 10.5). Note that the vertical scale differs between Figures 6.4 and 6.5. For
the investigated budgets of up to 1024 (64 random bootstrap compounds +
15 experiments of 64 compounds), there is only a remarkably low degradation
of performance versus the setting in where one can pick a new batch every 8
compounds, depicted in Figure 6.4.

Table 6.1 shows the number of missed superior compounds after screening
1000 compounds (including the bootstrap) out of 14301. Random partial
screening leaves undetected many more top-valued compounds, than does active
k-optimization. The magnitude of the difference depends of course on the
assay. Again there seems to be some tentative degradation of performance when
increasing the batch size from 8 to 64.

On average, when screening 1000 compounds with batches of size 8, the
optimization algorithm finds the fifth best compound in the library. From
Equation 6.7.7 we know that random screening requires the testing of 2859
compounds to obtain the same quality, a nearly threefold greater expenditure.

6First choose k, then choose the remaining M — 1 numbers from the list 1,2,..., (k — 1).
"The shaded area is four standard deviations high.
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Pathogen Pf Pv Tbh Sm Tb Sm
Batch size 8 8 8 8 64 64

Optimism level k 1 1 1 1 0.5 0.5
Optimistic optimization | 6.4 3.3 3.1 3.2 4.6 4.6
Random screening 13.3

Table 6.1: Number of missed superior compounds after screening 1000
compounds.

6.8 Future library expansion

The library will be extended with the Johns Hopkins Clinical Compound
Library (JHCCL) (Chong et al. 2006), a small library exclusively containing
drug compounds approved by the US Food and Drug Administration (FDA),
by a similar institute in another country, or undergoing phase two clinical trials.
The number of single-compound substances (of which the structural formula is
available) is 1,700 — significantly lower than the number in (Chong et al. 2006).
Screening data from the HitFinder library was modeled by Support Vector
Regression (using SVM-Light) and NSPDK (Chapter 3) over augmented graphs
(Chapter 2). The comparison between the a priori predictions for JHCCL and
the wet lab measurements will provide an independent in vitro validation of the
NSPDK QSAR method.

6.9 Conclusions

The Robot Scientist Eve provides an excellent platform for the development
of new QSAR modeling techniques, as well as machine learning, planning, and
optimization algorithms.

NSPDK was used for the first time in a wet lab to select 11 compounds
for purchase and screening against Plasmodium vivaxz. A new strong hit was
discovered, even though active compounds are exceedingly rare and the selection
was very dissimilar to the hits in the training set. A further three compounds
showed weak activity.

We have implemented an active k-optimization algorithm for the selection of
compound batches during cherry picking screening. The algorithm seems to
work reasonably well: it obtains good compounds after fewer experiments than
unguided screening, according to simulations with all data that Eve has obtained
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so far. Vice versa, there are only very few compounds left in the library that
are superior to the best compound detected in 1000 experiments.

Using smaller batches, i.e. executing more cycles of the discovery loop, may
allow discovery of top compounds in fewer experiments, but in any case the
gain is gradual rather than dramatic for an eightfold batch size reduction.

When selecting small batches of experiments, the algorithm requires nearly
three times fewer experiments than random screening to find the fifth best
compound in the library.



Chapter 7

Optimization of cellulose
acetate nanofiltration
membranes

When the well’s dry, we know
the worth of water.

Benjamin Franklin

Nanofiltration and reverse osmosis membranes can remove trace contaminants
of low molecular weight from water that cannot be removed efficiently by
conventional purification treatments. The performance of a membrane depends
on several parameters involved in its synthesis. These include compositional
(polymer concentration, solvent) as well as non-compositional parameters
(temperature, annealing time). We used a genetic algorithm to direct membrane
synthesis towards better separation of the targeted compounds, combined with
a useful flux.

High throughput filtration experiments were carried out to evaluate the
capability to retain ibuprofen in water. Ibuprofen is one of the smallest
relevant micropollutants in drinking water. Membranes with up to 96%
ibuprofen retention and adequate permeability were obtained, which also showed
competitive NaCl retention and twice the permeability compared to membranes
prepared via classical line search optimization.

We also explore an alternative optimization method, based on nonlinear Gaussian

119
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process modeling and the expected improvement criterion, the basics of which
were covered in Chapter 5.

This chapter is based on (Cano Odena et al. 2011) and (Cano Odena et al. 2008).

7.1 Introduction

The ever growing worldwide water demand, together with stricter regulations
for potable and waste water, leads to the need for better cleaning technologies
to reduce the concentration of micropollutants (pharmaceuticals, endocrine
disrupting compounds, etc) in water streams. These micropollutants are mostly
of anthropogenic origin. Their presence in water has an impact on environmental
and human health. The prioritisation of organic micropollutants removal from
surface and ground water is motivated by different criteria, such as their toxicity
and their presence in drinking water (Verliefde 2008).

Pressure-driven membrane technologies are well suited to remove trace
contaminants. The term nanofiltration (NF) is used for the filtration of particles
of around 1 nanometer, whereas the term reverse osmosis (RO) is used at pore
sizes of around 0.1 nanometer. Cellulose acetate (CA) is a common polymer
used for NF and RO membranes (Morao et al. 2005, Hofman et al. 1997). It has
been commercially available since the 70s. (Sourirajan 1977) CA is inexpensive,
presents relatively good resistance against chlorinated agents commonly used
to disinfect water and is obtained from sustainable sources. However, some
challenges still go unsolved, such as the need of an improved chemical stability
and a high rejection of organic compounds combined with high water fluxes.
Asymmetric membranes, consisting on a thin dense layer that determines the
selectivity above a porous sublayer acting as support and providing mechanical
stability, are interesting for these applications. (Haddada et al. 2004) They
are commonly prepared via phase inversion, which comprises the controlled
transformation of a thermodynamically stable polymeric solution into a solid
porous phase (Mulder 1996). The final performance depends on multiple
factors, including the composition of the polymeric solution (solvents, polymer
concentration, additives) and non-compositional parameters at the level of the
membrane synthesis process and post-treatment (evaporation time, temperature,
annealing time) (Vandezande et al. 2008, Idris et al. 2002).

The optimization of the multiple parameters is complex as well as time and
effort consuming. Genetic Algorithms (GA) are stochastic search techniques
inspired by the principles of evolution and natural selection found in nature.
The successive generations of experiments are created by applying evolutionary
operators (mutation and cross-over). A membrane that is experimentally
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found to be more successful will have more offspring and more variants in
the following generation of experiments. Populations thus evolve in a self-
adaptive way towards the optimal solution (Goldberg 1989). Genetic algorithms
have already been used in the pharmaceutical industry (Casault et al. 2007),
material development (Hoogenboom et al. 2003), and catalysis (Casault et al.
2007) leading to successful implementation. These tools have also proven to
be extremely useful in membrane technology to develop better performing
membranes, directing membrane composition towards improved separation
properties (Gevers 2005, Vandezande et al. 2009, Bulut et al. 2006). In such
an approach, it is possible to obtain maximum output while reducing time and
material consumption (Vandezande et al. 2009). Also they have been used to
select the operating variables of the process to optimize the performance of the
membrane system (Murthy and Vengal 2006).

Despite their potential, the use of these optimization strategies would be
extremely time and material consuming. The availability of high throughput
(HT) experimentation enables rapid and accurate collection of large datasets,
essential for the implementation of combinatorial synthesis, together with
miniaturization (cost and waste reduction) (Vandezande et al. 2005, Zhou
et al. 2009).

In this chapter, we consider the optimization of CA-based NF/RO membranes
to be applied for salt and micropollutants removal in aqueous streams. The
influence of both compositional and, for first time, non-compositional parameters
will be explored by using a GA. We will benchmark the membranes for ibuprofen
retention from water. Ibuprofen is a non-steroidal anti-inflammatory drug. It is
one of the smallest molecules of relevant micropollutants currently present in
drinking water (Verliefde et al. 2007). Its successful removal may also indicate
removal of all other micropollutants present in the water. Moreover, ibuprofen
is the third most consumed pharmaceutical worldwide (Buser et al. 1999).
Although its concentration in drinking water is normally below the ‘Human
Health Limit’, a general concern exists due to the lack of detailed knowledge
about the potential mixture toxicity, which occurs for combinations of certain
pharmaceutical compounds that lead to health risks despite being present in
very low concentrations (Verliefde et al. 2007). Finally, for selected cases, the
membrane performance will be also evaluated for NaCl retention in water in
order to compare it with the performance obtained via a classical optimization
strategy.
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7.2 Methods

7.2.1 Membrane synthesis search space

The membrane solutions consist of CA dissolved in a mixture of solvents and
non-solvents in a variable ratio. The components were selected based on the
literature (Duarte et al. 2006, Lonsdale 1972). The polymer content ranges
from 12 to 25 wt% (percent of mass) and the methanol content between 0 and
25 wt%. The concentration of acetone was kept constant at 20 wt%. Dioxane
completes the composition up to 100 wt%.

The membranes are prepared by depositing a film of the polymeric solution
on top of a support. After a certain evaporation time (30, 60, 90, or 120 sec),
the films are immersed in a coagulation bath. Finally, a thermal annealing
treatment follows, by immersing the membranes during 2, 6, 10, or 14 minutes
in a water bath at constant temperature (65, 70, 75, 80 or 85 °C). All three
non-compositional parameters were taken to be discrete variables because a
continuous range of values was deemed impractical for experimentation.

A membrane design is thus specified by an array of five values: two compositional
parameters (CA and methanol concentration) and three non-compositional
parameters (evaporation time, annealing time, and annealing temperature).
The design space is only five-dimensional as the concentration of dioxane is a
dependent parameter due to the constraint to have a composition total of 100
wt%.

7.2.2 High throughput filtration experiments

Membrane performance was evaluated in dead-end filtration experiments of
a feed solution of 5 mg/1 ibuprofen in water at 40 bars. They were carried
out by using a custom designed High Throughput module (Figure 7.1). Tt
allows the simultaneous testing of 16 membranes. All experiments were carried
out in duplicate. If the relative standard deviation was higher than 10%, a
third replicate was tested. Permeabilities (L/m?2h bar) were measured directly.
Retentions were calculated as (1-Cp/Cf)*100% where Cf and Cp refer to the
solute concentration of the initial feed and of the permeate respectively.
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Figure 7.1: High throughput apparatus module for dead-end filtration
experiments: overview (left); detail of the positions of the membranes in the
module (right).
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(b) representation in the two-dimensional coordinate space with coordinates in
the range [0,100].

7.2.3 Evaluation of membrane performance

Membrane performance was evaluated with an objective function (OF) that
combines the permeability (P) and the retention (R). The threshold retention
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(Rinreshotd) was 50 % (A). The target performance (Riqrger) was defined as
100 % solute retention and a water permeability (Piarget) of 2 L/m2h bar (B)
(Figure 7.2a). In order to adjust the weight of each component in the OF, the
measured values of permeability (Pcasured) and retention (Rieasured) of the
membranes were transformed to new coordinates ranging from 0 to 100 (Cq,
C,) according to the following equations:

Pmeasure
C = min (100, (d> x 100) (7.2.1)
Ptarget
Rmeasured - Rthreshold) >
Cy =max (0, x 100 7.2.2
2 < < Rtarget - Rth'reshold ( )

The OF values were calculated by the subtraction of the distance BC from AB
in the coordinate space, following the formula:

OF = AB—BC = \/((131 — A1)® + (B2 — A2)27\/(Bl —C1)* 4 (B2 - C2)

(7.2.3)
Where the coordinates of A, B, and C after transformation by Equations 7.2.1
and 7.2.2 are (0, 0), (100, 100), and (Cyq, Cs) respectively. The calculation of
OF in this particular case is:

OF = AB — BC = v/100% + 1002 — \/(100 — C1)% + (100 — C2)*

The closer the measured and target values are, the higher will the OF value be
(Figure 7.2b). Figure 7.4 shows isometrics for the OF.

7.2.4 Genetic algorithm

The combinatorial optimization of the membranes was carried out by applying
a GA, saving the time and effort required for a complete systematic one-by-one
screening of each parameter. The algorithm was coded in a Microsoft Excel
spreadsheet using Visual Basic for Applications. An overview of the GA steps
is presented in Figure 7.3.

Population size The population size was selected to be a multiple of 16 because
the HT setups permit 8 and 16 simultaneous membrane synthesis and testing
simultaneously. In related work, a population size of 64 was selected for 8
parameters (Bulut et al. 2006). Since the total number of parameters to be
optimized here is only 5, a population size of 48 should be adequate.
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Figure 7.3: Overview of the genetic algorithm optimization steps.

Initialization The membrane designs of the first generation were generated
randomly. That is, for each parameter, a value was randomly selected in
the ranges presented in Section 7.2.1. Note that although the independent
parameters were each drawn from a uniform distribution, the resulting
distribution of the dependent parameter dioxane is not uniform.

Evolutionary operators The parents for every next generation were selected
with the roulette wheel method, proportional to their fitness (OF). In the present
study, only crossover and quantitative mutation were applied. Qualitative
mutation was not considered as it involves the addition or elimination of one
of the components. In our setting, the exclusion of one of the parameters
would lead to an unfeasible combination. Crossover creates new individuals
by exchanging a fragment of the digits between two individuals at a random
position in the sequence of parameters. In quantitative mutation (hereafter
referred to as mutation) the value for one randomly selected parameter changes.
If the parameter is continuous, Equation 7.2.4 is applied:

e = (1 +t) - 2 (7.2.4)

where t is a random number that controls both the direction and relative size
of the mutation, sampled uniformly from the range [-0.5,40.5].

The mutation method was inspired by (Wolf et al. 2000). However, in the
present study, in order to improve coverage of the design space, values cannot
just mutate by £50%, but also by any smaller fraction. The compositional
parameters were rounded to the nearest integer weight percentage, to avoid
unfeasibly small variations of the compositional ratios, potentially exceeding
the precision of the experimental method and apparatus. Whenever z*" is out
of range, a new t is drawn and the procedure is repeated.
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The mutation of a non-compositional, discrete parameter is calculated with
Equation 7.2.5. The value changes into the nearest higher or lower value,
depending on the direction, determined by a random variable s which can be 1
or -1.

aew = gold 4 g Ayl (7.2.5)

K2

When the result of the mutation exceeds the range of the parameter, the opposite
extreme value is assigned.

The frequency to apply each operator (W;) depends on the relationship between
the values of OFp.s; and OF,,cqn, as follows:

B x OFean
Wcrossover = QA= 7.2.6
OFbest ( )
Wmutation =1- Wcrossover (727)

B is a control parameter and is set to 1.

7.3 Results and discussion

7.3.1 Observations for the four generations

First generation Some of the membranes in the first generation were defective,
with extremely high permeability and practically no retention.

The membranes with the highest permeabilities generally had a relatively low
polymer contents (12-15 wt%), which is in agreement with the literature (Liu
and Bai 2006, Saljoughi et al. 2009). However, membranes with a low polymer
concentration do not always have a high permeability.

Second generation All 48 second-generation membranes could be synthesized,
but two of them presented defects and were assigned an OF value of zero.

The OFpes: value in the second generation was 63.4, lower than in the first one.
The same effect has been observed in previous work (Vandezande et al. 2009).
The OF,,eqn was 31.8, slightly lower than the first generation value (34.9).
Clearly, the overall performance of the population has not yet improved.

Third generation All of the 48 membranes could be cast but 6 showed defects
and lack of stability. The OFpes; and OF,,cqn were 89.5 and 37.7 respectively,
both higher than the previous generations.
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Fourth generation The probability of applying the crossover operator, which
creates more diversity in the population, was lower than in the previous
generations. All 48 membranes could be tested and none presented defects.

According to a Student t-test, the OF values in the fourth generation are
higher than random sampling (first generation) at a 5% significance level. On
average, the membranes in this generation featured higher retention but lower
permeability than the third generation.

Table 7.1: Frequency of the operators, membrane performance and OF values
of the four generations.
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1 - — 34.9 86.2 M1-8 87.73 1.01 0.405 51.3
2 0.594 0406 31.8 634 M2-12 90.35 049 0.502 31.6
3 0496 0.504 37.7 89.5 M3-47 82.50 1.23 0.366 56.6
4 0.635 0.365 43.2 85.3 M4-37 77.85 1.31 0.506 42.1

7.3.2 Overall results

The summary of the results of the 4 generations is presented in Table 7.1.
Detailed results are presented in Figure 7.4. The first two generations can be
characterized as tending towards high permeability, whereas the later generations
generally achieved high retention.

The distribution of the membrane performance over the 4 generations is
presented in Figure 7.5. It shows clearly that there is a general increase
in the OF values in the 4*" generation. The highest OF value corresponds to
a membrane of the 3" generation. Previous work showed a faster progress
(Vandezande et al. 2009). A possible explanation is that we did not discard
membranes with sub-treshold retention, but rather assigned a low OF.

The 10 membranes with the highest OF values of all 192 membranes are
presented in Table 7.2. In general, these membranes present ibuprofen retentions
below 90 %. However, the 7" membrane in the ranking (M2-12) has a very good
retention (90 %) combined with a reasonable permeability (0.49 L/m?2h bar),
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Figure 7.4: Water permeability and ibuprofen retention of all membranes of
the four generations. The target point and three objective function isometrics
are also shown.

being comparable to the values for CA-based membranes for RO applications
(Duarte et al. 2006).

In hindsight, the permeability target in this optimization was too ambitious;
therefore high permeabilities were obtained at the expense of retention.

7.3.3 Application to water desalination

No prior literature on CA membranes for ibuprofen separation exists, so there
is no direct benchmark. In order to compare the performance of the obtained
membranes with CA membranes in the literature, NaCl filtration experiments
were carried out.
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Figure 7.5: Change in the distribution of membrane quality over the four
generations.

A total of 5 membranes (the best membrane in terms of OF, and the two best ones
for retention and permeability) were selected to perform 5g/1 NaCl filtration
experiments in order to compare with earlier CA-membrane optimizations
reported in the literature. The results are presented in Table 7.3.

Membrane M3-47 retains 83% NaCl, which is as high as the best CA membrane
reported in the literature (Duarte et al. 2006), while its water permeability
is twice as high (1.2 relative to 0.6 L/m?h bar). Duarte et al. prepared 45
different membranes and performed a classical optimization by fixing all but
one parameter and screened parameters one by one. None of those membranes
reached performances (permeability combined with selectivity) as good as some
of the best membranes in our project. This indicates that there are parameter
combinations that lead to superior performance, which were missed by the
traditional line search optimization approach.
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Table 7.2: Selection of the 10 membranes with the highest OF values. Results
are the average of 3 replicates at 40 bar, room temperature.
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= O o= A < B < = O A~ ~
M3-47 19 7.5 54 20 60 2 75 895 1.2 825
MI-8 13 14 52 20 30 14 85 8.1 1.0 87.7
M4-20 19 7.5 54 20 30 2 75 853 1.3 778
M3-21 18 12 50 20 60 6 80 723 09 794
M3-39 19 7.5 54 20 120 2 75 717 1.1 734
M4-11 12 23 45 20 30 10 75 66.7 0.7  80.00

M2-12 20 13 47 20 60 14 80 634 0.49 90.35
M3-11 13 12 55 20 30 14 80 629 0.49 89.45
M1-4 13 6.2 608 20 60 6 75 629 0.96 70.57
M4-46 12 17 51 20 60 14 70 627 0.69 77.95

7.4 Active optimization

In this section, we describe an alternative optimization method, for which we
currently lack sufficient experimental results?’.

7.4.1 Active optimization of membrane designs

As an alternative to the genetic algorithm, we have developed a version of the
optimization algorithm described in Chapter 5 to select membranes for testing.
As in Chapter 6, a key difference with the original algorithm is the requirement to
select batches of experiments rather than one at a time. Unlike the experiments
performed by the robot scientist Eve, the synthesis of membranes is performed
by humans. It is more expensive and more time consuming to synthesize a

1Unfortunately, due to several factors outside our control, only three batches of eight
membranes have been synthesized, including the bootstrap batch.
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Table 7.3: Desalination performance of key membranes. Results are the average
of 3 replicates at 40 bar, room temperature.
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M3-47 82.55 1.2  89.53 highest OF

M4-8  79.69 0.06 44.29 2nd highest retention
M4-28 41.70 0.09 45.99 highest retention

M4-47 37.82 37.7 41.42 highest permeability
M2-4  26.08 11.4 41.42 2nd highest permeability

membrane than for Eve to test a single compound (amortized over one or
more microplates). This allowed us to spend more computation time to choose
optimal experiments.

We opted for the maximum expected improvement criterion (MEI), which
readily generalizes to batch selections. Recall its definition (Equation 5.7.3):

E(gain) = E [max (0, (tN+1 — t#(k,N)) e (tN+n — t#(k,N)))]
However, the generalization is not trivial to compute.

A first step in our algorithm is to rescale all membrane parameters to the same
numerical range.

The physical properties of a CA membrane are known to depend non-linearly
on the synthesis parameters. To allow our model to capture the non-linear
behaviour, we use the popular exponential kernel for representing the similarity
of membrane designs:

k(x,y) = exp <—x2212) +od(x,y) (7.4.1)

where od(z,y) is the regularization term.
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7.4.2 Computation of the expected improvement of a batch
of experiments

We assume that there is a linear model in the vector space induced by the
kernel:

OF (x;) = w ' ¢(x;) (7.4.2)

We know the posterior distribution of w under a Gaussian process model
(Equation 5.3.16) and we will here write its mean as w € R% and its covariance
matrix as ¥ € R¥*?, We can now rewrite Equation 5.7.3 as:

exp (—3(w —w) "7 Hw — w))

(2m)1/2 /5]

E(gain) = / l_rznoz}').(n(ngb(xi) —b;) dw (7.4.3)

where:

 vectors ¢(x;) ERY i=1...n
. bi:t#(ka) eER,¢i=1...n.

« $(wo) =0, b =0

Since we want to find argmax,, .., (E(gain)), we can drop the constant factors:

E(gain) / igbégn(wT¢($i) —b;) exp (—;(w —w) 'S w —w) | dw
" (7.4.4)

We need to circumvent the problem that d can be very high — for the exponential
kernel it even degenerates to infinity! To this end, we apply a coordinate
transformation® ¢(z;) — z} such that all coordinates other than the first n are
0, for all z}. Then, we need only to integrate over the first n dimensions. With
@ a suitable d x n matrix of full rank, we can substitute

o(x;) = Qx;
w = Qu’
w = Qu'
Y =QYQ
by = b,

2For brevity we write «/ rather than ¢/(z;).
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Equation 7.4.4 then becomes

1 _
E(gain) oc | max (w' o} —b])exp <2(w’ — ') Y (' — ) ) dw’

w’ 1=0...n

(7.4.5)
An appropriate transformation matrix @ is obtained from the QR~decomposition
of & = [¢p(x1)d(x2) ... Pp(xn)]. The matrix R will then contain the non-zero new
coordinates z}. We don’t need @ itself — fortunately, for its number of rows
d is infinite. Since the Gramian ®'® is symmetric and positive semi-definite,
it is sufficient to compute its Choleski decomposition ®'® = LLT with L
a lower triangular matrix. We can then use the columns of LT as the new
representations ;.

A potential issue is that the x; are likely to be not randomly distributed in space,
but can probably be grouped in clusters of vectors pointing in similar directions.
This may have a negative influence on the stability of the computation of the
decomposition.

We can eliminate ¥’ by substituting

w = VY w,

o = VYo
oo o

i \/g
b, = Cb;

where C' is a constant meant to keep z7 € [—1,+1]". We then get

1
E(gain) / max (w] z7 — b)) exp(fi(w* —w) T (w, —w*))dw, (7.4.6)

We can further substitute
Wy = wy +w*
b = b} +w*a

to get

Wy 1=0...5

1
E(gain) x / ‘maxj(w;mf —b¥)exp (—211};111#) dwy (7.4.7)
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Symbolic integration of Equation 7.4.7 is very difficult. A viable numeric
integration option was proposed by Bart Vandewoestyne. He also provided an
elegant Monte Carlo integration implementation in Matlab (Vandewoestyne
2008). We optimized the code by specializing it for our purposes. The result is
described in Algorithm 3.

Algorithm 2 sketches the optimization algorithm. The accuracy achieved by
Monte-Carlo integration is proportional to the logarithm of the number of
samples. We also developed a parallelized version for the supercomputer of our
university using the Matlab Distributed Computing Engine. The evaluation
of candidate membranes is trivially distributed over multiples nodes with
negligible synchronization traffic. (Some computation could be traded off
against synchronization by finer-grained cycles of attrition and approximation
refinement. )

To bootstrap the optimization cycle, a first batch is composed with a Latin
hypercube design (McKay et al. 1979). This is a scheme for stratified sampling
from a hyperrectangle in a multidimensional space. The idea is to split each
dimension of the hyperrectangle in as many identically sized intervals as there
are samples to be taken. Each interval receives exactly one sample. Algorithm 4
gives a straightforward adaptation of Latin hypercubes for discrete design
spaces.

7.5 Conclusions

An evolutionary search strategy together with the use of HT experimentation
permitted the search of a multi-parameter space in the real-world application
domain of filtration membrane synthesis. For the first time also non-
compositional parameters of the synthesis process have been included in a
GA-based optimization procedure.

Over the four generations, an improvement of the overall performance was
observed. High-performance membranes were thus developed for the retention
of micropollutants from aqueous streams with a very good retention (up to
96%) of the small target compound ibuprofen, combined with a permeability
of 0.7 L/m?h bar, which is in the normal range of CA-based reverse osmosis
membranes.

Moreover, a membrane design was found with the same NaCl retention and
twice the permeability value reported in the literature.

We have also generalized the optimization algorithm introduced in Chapter 5
to work with arbitrary nonlinear kernels, if the training examples are not too
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Algorithm 2 MEI optimization with batch selection

1: Given: membrane design space D, the N already tested membranes Xy,
their permeabilities Py, and their retention Ry

2: Return: the next 8 membranes to be tested and their expected OF
3: P < enumerate all possible membrane designs in D
4: OFyN < Equation 7.2.3
5: Rescale all features such that Vi, j : X;; € [—/1/5,/1/5]
hence maz (| X;|) =1
6: for all X; € P do
7. G + Gram matrix of the exponential kernel for Xy U {X;}
8  Gconot — Choleski transform of G
9: XiCh"l < coordinates of X; in Ggopo

10: end for

11: Compute bfé from Equations 7.4.3-7.4.7

12: XcGhosen < d)

13: Fit a Gaussian process model to Xﬁh"l, OFy

14: for all j=1...8 do

15:  for all XFhel ¢ PChol\ (XMl U Xoppsen) do

16: Compute gain with low-resolution Monte-Carlo numeric integration

(20,000 samples) using Algorithm 3

17:  end for

18:  For the 3000 membranes with the highest gain, compute medium-
resolution Monte-Carlo numeric integration (200,000 samples)

19:  For the 100 membranes with the highest gain, compute high-resolution
Monte-Carlo numeric integration (2,000,000 samples)

20:  Xchosen < XChosenJ the membrane with the highest gain

21: end for

22: return The untransformed design parameters of Xcposen and

E (OF(XChosen))

plentiful. Finally, we have also shown how to construct arbitrarily sized batches
of experiments according to the maximum expected improvement criterion.
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Algorithm 3 Monte Carlo integration of a function proportional to the expected
improvement

1:

11:

Given: feature matrix X, integration lower limits b, number of samples
s>1
Return: approximation for Equation 7.4.7 (accuracy proportional to log(s))

n < number of features (rows in X)
m < number of membranes (columns in X)
w < n samples of A/
T4 maX(O,maxj:L__m(ijXj —bj))
foralli=2...sdo
w < n samples of N/
7+ (max (0, max;—1._m(w] X; —b;)) —r)/i
end for
return r

Algorithm 4 Latin hypercube for a discrete design space

1:

Given: number of features |{f;}|, all possible values f;; for each feature f;,
number of desired output designs o = 8

2: Return: a Latin hypercube sample from the design space
3: for all p = 1...|{f;}| do {Take a stratified sample of size o from the

uniform distribution over {f,;}.}

4:  Multiset S}, < LﬁJ copies of all f;.
Jpi
5. Add to S, a simple random sample without replacement of size o — |S,|
from the uniform distribution over {f,,}
Cp + random permutation of .S,
7: end for

8: return C =[Cy...Clpy "




Part 111

Conclusions

137



Chapter 8

Conclusions

To prevent the recurrence of misery is,
alas! beyond the power of man.

(Malthus 1798)

8.1 Summary of contributions

In this thesis, I have explored two avenues where machine learning can help
drug discovery: predictive models of in vivo or in vitro effects of molecules, and
the selection of efficient experiments based on such models.

In the first part, I have presented methods to improve the predictive power of
graph kernel based molecule classifiers. A first approach was the annotation of
molecular graphs with functional groups (Chapter 2). All earlier attempts to
modify molecular graphs were in the direction of simplification and abstraction.
By contrast, we extended the graph representation. The graph kernel based
machine learning algorithm can then use both high-level functional, and low-level
atomic information, so achieving larger AUCs.

Functional groups often imply very specific configurations of only a few atoms.
Mimicking this in a chemically-agnostic graph kernel leads to the notion of
neighborhood subgraphs. Atomic neighborhoods (or atomic environments) are
not new, in fact the commercial software package Pipeline Pilot contains an
implementation. Apart from the comparative study of a number of graph
kernels, our contribution (together with Fabrizio Costa) in this area is twofold:
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we use neighborhood pairs at given distances from each other, rather than single
neighborhoods, and we introduce an efficient method to encode all pairs of
atomic neighborhoods in a molecule as a sparse vector. The learning bias of
an SVM using these vectors is suitable for a wide range of QSAR tasks. For
example, the accuracy of Ames toxicity predictions is as high as the actual
in vitro test in the wet lab.

The combined efficiency and predictive power of the NSPDK graph kernel, as
applied to molecule classification problems, motivated a larger group of people
to devise a novel way to learn from general relational data: transform the data
into a graph and apply a graph kernel or feature generator (Chapter 4). The
graphicalization is governed by a domain definition language which allows for
intensional predicates. The graph kernel and learning algorithm can be selected
and configured by the user. Preliminary, yet unpublished experiments indicate
great promise for this technique.

In Part II the learned models are a means rather than an end. The end goal of
drug discovery research is typically not obtaining an accurate predictive model
of the activity of each and every imaginable compound, but rather the invention
of a few compound lines that exhibit a superior activity-toxicity trade-off. In
Chapter 5, we establish this goal as a new setting in machine learning. We
apply surrogate-based optimization to the problem and evaluate how well the
different available selection strategies work in the domain of drug screening.

The algorithm is extended to batch selection in Chapter 6, where we also
establish its utility in practice through its integration into the robot scientist
Eve.

Finally, in Chapter 7 a variant of the algorithm is adapted to the discovery of
filtration membranes. For this application, it was necessary to plan batches of
several experiments, as well as to compute in instance space rather than feature
space.

8.2 General discussion and future work

8.2.1 QSAR

Significant progress has been made in ligand-based QSAR since the introduction
of fingerprints, with ever new variations on feature trees, kernels, and other
similarity measures. However, the phase of diminishing returns has set in. There
is only so much information to be extracted from a given amount of pure ligand
data.
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The grass is not greener at the target-based side of the fence. No foolproof
docking method exists. A single docking method may work very well on one
target protein but perform poorly on another — even worse than random
selection (McInnes 2007, Figure 1). While the holy grail of drug discovery is to
skip the approximative extrapolation over ligands entirely and to simulate the
biological system from first principles, this is still a very distant goal. Simulating
a full cell system with the complex dynamics of interacting macromolecules,
small molecules, membranes and transport effects will remain infeasible for some
time. Even the models for the affinity in just a single ligand-target complex
(docking) are inadequate. Schneider (Schneider 2010) goes so far as to use
the terms “stagnation” and “grossly inaccurate”. It is no surprise then, that
target-based methods are outperformed by ligand-based methods (McGaughey
et al. 2007). Fortunately, Moore’s law continues to make computation cheaper,
which can be traded in for some additional accuracy or diversity in docking
algorithms. Analogous to the use of ensembles in machine learning, it has been
recognized in the QSAR literature that it makes sense to use a variation of
methods (Sheridan and Kearsley 2002).

At the ligand-based side, further progress is likely to be significant only if more
knowledge can be brought in to a problem, other than raw ligand structures.
We have taken a step in this direction with the augmentation of molecular
graphs using background knowledge on functional groups. There is clearly
room for more in this direction. A straight-forward next step would be to
take into account that some functional groups are bioisosteric. This can be
accounted for with a functional group kernel, or a hierachy of augmentation
nodes. A good indication that this may work, is that molecule kernels tend to
perform better when using partial charges, which can be seen as an alternative
approximation of the same underlying chemical phenomenon. We also plan to
upgrade our current kernel to also take 3D shape into account. It is essential
for such a method to be either conformation-independent, or at least to support
multi-instance learning to allow for multiple conformations.

For fundamental progress, we need to reformulate the problem. Today’s drug
discovery databases contain not only screening information on one target, but
on many targets. These targets are sometimes closely related. The knowledge
about these targets is also steadily increasing. Clearly, methods able to take
advantage of this information have an edge, be it kernel fusion, transfer learning,
statistical relational learning, or some combination thereof. A similar direction
has been taken in docking, in the form of learned scoring functions. It would
be interesting to pursue such an approach to the QSAR problem.
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8.2.2 Optimization

Machine learners entering the QSAR field may find that their work is ignored
by drug discovery researchers. The reason for this is that the key problems
faced in drug discovery are essentially not a traditional machine learning setting.
As we have hopefully made clear in the second part of this thesis, the goal is
not as much to create an accurate model, as it is to optimize a function in
chemical space. Luckily for the machine learner, this task is daunting without
an excellent, well-regularized surrogate model of the function. It is also essential
to estimate the reliability of the model in the different regions of chemical space.

A related issue that machine learners need to be aware of, is that the evaluation
methodology in drug discovery differs from the evaluation method most
commonly practiced in machine learning, internal cross-validation. The drug
discovery setting more often than not violates the dogma of machine learning,
that training and test sets are identically distributed. In such circumstances, a
method is adopted only if it has been proven on independent test sets — from a
different region of the chemical space. Such extrapolation is intrinsically hard.

Scaffold hopping is an important capability of virtual screening methods. It
is the ability to identify active compounds that have an entirely different
scaffold (or basic backbone structure) from the already known actives. Scaffold
hopping is the chemist’s way not to get stuck in local optima. Sensible global
optimization algorithms also have to be designed not to become trapped into
local optima. They must explore, not just exploit. Because this behaviour is a
key design principle, we expect that global optimization methods as presented
in this thesis will do well in terms of scaffold hopping. Unfortunately, no precise,
mathematical definition of scaffold hopping exists.

Active k-optimization algorithms have the potential to become a principled
alternative to diversity-based screening selections. However, to become widely
adopted, a number of improvements need to be made which require further
investigations. It should be studied how different approximate GP models
(subset of regressors, of data, projected process, ...) influence the optimization
loop. This may enable the use of an arbitrary kernel even when confronted
with a large amount of training data, rather than having to revert to a low- or
moderate-dimensional feature space. Once we have more flexibility in choosing
a kernel, the question that immediately emerges is how much effort one should
devote to choosing the kernel and learning its hyperparameters?

Next to more powerful models, it is also possible that one could make further
gains by devising a strategy that takes into account a budget that is fixed from
the start. Exploration can then be more concentrated in the early phase.
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From the Eve project, it is clear that efficient selection of large batches of
experiments is essential in drug discovery. It is desirable to study alternative
heuristics and their impact on the performance of the optimization. In this
regard, it is also relevant to investigate the relation to different surrogate-
enhanced evolutionary approaches which can typically generate large batches.

It is unclear how well our current approach fits into the “intelligent robot” vision.
More explicit knowledge representation and the possiblity to gather types of
knowledge, other than pure function approximation would surely fit better.
Also from an optimization performance standpoint, breakthrough improvements
will require the injection of more background knowledge into the optimization
problem. A good first choice is to investigate a possible marriage of transfer
learning with surrogate-based optimization. For successful transfer learning,
information on the (correlations between) targets will need to be represented.

8.2.3 kLog

kLog is a machine learning language, therefore the horizon of what can be
done is very wide. Several theses can be devoted to algorithms for solving
the advanced problems that kLLog can specify, such as collective classification,
collective regression, and learning multiple relations (kLog’s mildly restricted
form of structured output learning). Improving the practical usability also has
value, for example strategies can be introduced for the automatic selection and
tuning of the graph kernel — possibly based on kernel target alignment on
small samples. Closer to the core subject of this thesis, the representational
capabilities of kLLog may be useful to tackle multi-task QSAR learning. It
is trivial to represent in kLog highly complex domains of biological studies,
with related species, proteins, and ligands. It is probably nontrivial to devise
a combination of representation and kernel that reliably outperforms current
single-target models. The potential significance for drug discovery of a system
with that capability goes without saying.
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