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Abstract. In the present study, a large scale, structured problem regarding the 

routing and rostering of security personnel is investigated. Structured problems 

are combinatorial optimization problems that encompass characteristics of more 

than one known problem in operational research. The problem deals with 

assigning the available personnel to visits associated with a set of customers. 

This objective just described, reflects the rostering characteristic of the 

problem. In addition, the different geographic locations of the customers 

indicate the requirement of routing. A new benchmark dataset for this complex 

problem is presented. A group of high-level problem-independent methods, i.e. 

hyper-heuristics, is used to solve this novel problem. The performance and 

behaviour of different hyper-heuristics for the presented benchmark dataset are 

analysed.  

Keywords: vehicle routing, personnel rostering, hyper-heuristic 

1. Introduction 

Security personnel routing and rostering deals with the complex problem of assigning 

security tasks at different locations to the members of staff. Task duration and staff 

requirements vary and so do the skills and contracts of the personnel. 

The problem presented can be considered a combination of two well-known, hard 

problems: the vehicle routing problem with time windows (VRPTW) (Cordeau et al. 

2001) and the personnel rostering problem (Burke et al. 2004). More specifically, full 

attention is given to the multi-depot variant of the VRPTW (MDVRPTW) allowing 

the model to come closer to the real-world situation. The MDVRPTW has received 

limited attention in the literature. Cordeau et al. 2001 present results for a tabu search 

algorithm and introduce new benchmark instances for the MDVRPTW. Polacek et al. 

describe the application of a variable neighbourhood search algorithm and report an 

improvement for 10 of the 20 Cordeau benchmark instances. Ostertag et al. 2009 use 

a memetic algorithm to solve a large real world MDVRPTW, with up to 1848 

customers to be serviced.  

In contrast to the MDVRPTW, personnel rostering has received ample attention 

over the last decades. Burke et al. 2003 present the application of a tabu search hyper-



heuristic to a nurse rostering problem. The hyper-heuristic produces schedules of 

similar quality as those produced by a (tailor-made) genetic algorithm. The authors 

illustrate the high level of generality that a hyper-heuristic provides by applying it to 

another scheduling problem. Bilgin et al. 2009 present a hyper-heuristic approach to a 

nurse rostering problem in Belgian hospitals. For 16 out of 18 problem instances their 

hyper-heuristics perform significantly better than a variable neighbourhood search 

algorithm, for the two remaining instances their performance is similar. 

The home care scheduling problem (HCSP) exhibits similar characteristics as the 

problem investigated here. The difference lies in the limited complexity of the 

personnel rostering aspects in the HCSP. For example, typically, the scheduling 

horizon is set to one (Bertels and Fahle 2006) (or five (Begur et al. 1997)) days. 

In the literature, hyper-heuristics have been investigated under two main types: 

selection hyper-heuristics and generation hyper-heuristics (Burke et al. 2010). 

Selection hyper-heuristics are composed of different components to manage a set of 

search mechanisms. Choice function (Cowling et al. 2001), reinforcement learning 

(Nareyek 2003, Ozcan et al. 2010), case-based reasoning (Burke et al. 2002), 

simulated annealing (Bai et al. 2005, Burke et al. 2010) and genetic algorithms (Han 

and Kendall 2003) are some example techniques that have been employed to build 

effective selection hyper-heuristics. For generation hyper-heuristics, the idea is to 

automatically generate low-level search strategies. Here, genetic programming (Burke 

et al. 2006) is the preferred approach.  More details about hyper-heuristics are 

available in Burke et al. 2010, Burke et al. 2009. 

In the present study, the problem of routing and rostering security personnel is 

studied. Various selection hyper-heuristics are applied to a set of real-world problem 

instances. In the next section, the details of the problem are explained. In Section 3, 

the details of the solution strategy with applied hyper-heuristics are presented. 

Experimental results are analysed in Section 4. In the last section, concluding remarks 

and future ideas are discussed.  

2. Problem Description 

Let G = (V, A) be a complete graph with vertices V = {v1, …,vd, vd+1, …,vn} and arcs A 

= {(vi, vj) : vi, vj in V, i ≠ j}. The nodes D = {v1,…,vd} represent the depots, and nodes 

N = V \ D represent the jobs that need to be performed by the security personnel. 

These jobs will be referred to as visits. 

With each depot vj in D, a number of personnel kj is associated, who start and end 

their tours in the depot vj. Let Pj = {p1,…,pk} be the set of security guards at each 

depot. In the problem presented, depots are associated with homes of security guards 

and each employee leaves for the first visit on his or her route straight from his or her 

home. Typically, kj = 1 for every vj in D, which means that there is only one 

employee at each depot. However, other situations are possible, when e.g. two 

colleagues live at the same place.  

With each security guard pi in Pj, a set of skills Si = {s1,…,sm} is associated. 

Furthermore, a list of regions is specified in which a security guard is allowed to 

perform visits. If a security guard is assigned to a visit that is located outside the 
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guard’s allowed regions, a penalty will be incurred. Finally, a contract describing a set 

of workforce related constraints is specified for each security guard. Table 1 shows an 

overview of these constraints. 

Table 1. Workforce related constraints. 

Maximum number of consecutive working days 6 

Maximum consecutive working time per day (minutes) 720 

Maximum working time per week (hours) 37 

Maximum working time per month (hours) 175 or 190 

Minimum rest time between two working days (hours) 5 

Maximum number of consecutive working weekends 2 

Preferred number of days worked per week 5 

 

All security guards are assumed available 24 hours per day. By defining the 

constraint that limits the maximum working time per day, they can only be assigned 

for 720 minutes in that period. Every security guard should return to his or her depot 

before this predetermined time limit is reached. Note that the working time per day is 

continuous. Apart from the legal workforce related constraints, which are identical for 

every employee, the available security personnel can be heterogeneous in any of the 

above described characteristics. 

Every visit vi in N can have an earliest and latest start date [ei, li], with li ≥ ei, as 

well as a time window for each day, defined by a start and end time [t
s
i, t

e
i]. 

Furthermore, a duration di is defined, so that t
e
i ≥ t

s
i + di. Note that the earliest and 

latest start dates lie anywhere between the start and the end of the scheduling period. 

Lastly, a set of required skills, Ri = {s1,…,sm}, is specified. 

The benchmark problems used in this paper are based on real world data by the 

company Fascinating IT Solutions (www.fit.be). The data describe the characteristics 

of the security personnel and details about as to when visits have been executed. This 

means that every visit in the provided data has a tight time window, i.e. li = ei and t
e
i 

= t
s
i + di . In order to diversify the available benchmark problems, a second set of 

instances was created. In this second set, the parameters relating to the time windows, 

[ei, li] and [t
s
i, t

e
i], are adjusted in such a way that for some visits the time window is 

no longer tight. This is done by relaxing the time window with a value ri = α . di , with 

α having a uniformly distributed chance of being either 0.5 or 1. Half of the resulting 

value ri is then added to t
s
i, and the other half to t

e
i. New values for ei and li are 

determined by adding a randomly chosen number of days from a uniform distribution 

between 0 and 4 to the original values of ei and li. If, by extending ei (or li) the bounds 

of the scheduling period are exceeded, the earliest (or latest) start date is removed for 

that visit. 

For every benchmark problem, the length of the scheduling period is set to 31 

days; the number of skills is 16 and the number of regions is 10. An overview of 

specific properties is given in Table 2. To give other researchers the opportunity to 

investigate new solution approaches for this problem, the benchmark instances have 

been made publicly available at http://allserv.kahosl.be/~pieter/securityguards.html.  

The goal is to construct a set of routes in which every security guard starts from his 

or her depot and returns to the same depot. All visits in N need to be assigned to a 

security guard, and the start time of service has to be determined. The constructed 



schedule should minimize the number of required employees as well as the required 

travel and waiting time for each employee. Furthermore, several requirements of both 

security personnel and customers are considered: violation of a visits’ time window, 

violation of required skills, allowed regions and of the legal workforce related 

constraints. A weighted objective function is used to evaluate a candidate solution, in 

which the incurred penalties scale linearly with the amount of violation. 

Table 2. Properties of the benchmark problems. 

Name Nr. of guards Nr. of visits 

district0 62 1560 

district1 348 4217 

district2 120 1714 

district3 113 2193 

district4 192 5252 

district5 389 5139 

3. Selection Hyper-heuristics 

A traditional selection hyper-heuristic operates on a set of low-level heuristics for 

indirectly solving a problem instance. A low-level search heuristic can be any method 

that is capable of finding a solution or constructing a part of a solution for a problem 

instance. A selection hyper-heuristic chooses a heuristic and applies it to a solution. 

This selection procedure is carried out by a heuristic selection mechanism. After 

applying the selected heuristic, the constructed solution is examined based on its 

problem-independent characteristics, e.g. its quality, by a move acceptance 

mechanism. These consecutive operations are repeated at each decision step and 

terminated until a given stop criterion is reached. 

A single-point search perturbative selection hyper-heuristic framework is used in 

this paper. This framework operates on a single complete solution and executes 

perturbations on this solution. The employed hyper-heuristic components are 

discussed in the following subsections. 

3.1 Heuristic selection 

In the present study, the selection operation is performed by two heuristic selection 

mechanisms, namely simple random (SR) heuristic selection and adaptive dynamic 

heuristic set (ADHS). SR is a naive but effective method that randomly chooses 

heuristics. ADHS behaves in a more selective way. The aim of ADHS is to determine 

the best heuristic subset for the current search region. In Algorithm 1, the details of 

ADHS are presented. In the given pseudo-code, a phase refers to a number of 

iterations for measuring the performance of the heuristics. Tabu is a status type for 

heuristics that are excluded for a number of phases (d). This value is calculated as 
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nd 2 , whereby n refers to the number of heuristics. Whenever a heuristic is not 

tabu anymore, its status is changed to non-tabu and added back to the heuristic set.  

 

Algorithm 1: ADHS  

1. Check performance (pi) of the heuristics during a phase  

2. Assign a score (QIi in {1,2.,…,n}) to each heuristic (LLHi) based on its performance, with 

respect to the pre-determined performance metric 

3. Exclude the heuristics having smaller scores than the average (avg) of all scores 
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4. Change the status of the excluded heuristics to tabu  

5. Change the status of the heuristics whose exclusion finishes to non-tabu 

Equation (1) shows the performance metric used to determine QI values. Each 

element which is multiplied by a weight (wi) refers to a performance related feature.  

The first performance feature is used to measure the capability of finding new best 

solutions. For the calculation, the number of new best solutions (Cp,best(i)) discovered 

during a phase (p) by heuristic i is used together with the speed of the heuristic. 

Cp,equal(i) and Cp,moves(i) are the counters showing the number of equal quality 

solutions generated and the number of moves performed by heuristic i during a phase. 

The outcome of this feature shows a value related to the number of new best solutions 

that can be found by the heuristic until the search is terminated. The second and third 

performance features show the fitness improvement (fp,imp(i)) and fitness worsening 

(fp,wrs(i)) per spent execution time (tp,spent(i)) by heuristic i during a phase. The last two 

sub-performance metrics refer to the overall improvement (fimp(i)) and worsening 

(fwrs(i)) yielded by heuristic i per spent execution time (tspent(i)) until that time. tremain 

indicates the remaining execution time. In addition, the weights for the performance 

features are set as w1 >> w2 >> w3 >> w4 >> w5. This allows the different features to 

be used according to their importance. In particular, if a heuristic discovers a new best 

solution, then there is no need to check other features to determine its QI value. 
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Tabu duration adaptation: The number of phases denoting the amount of time that a 

heuristic will be excluded (i.e. the time a heuristic is tabu), is determined in advance 

as mentioned above. Whenever the punishment of the excluded heuristic expires, it 

re-joins the active heuristic set. However, it is obvious that when an unsatisfactory 



heuristic repeatedly re-joins the active set, the effectiveness of the hyper-heuristic can 

decrease. Therefore, instead of fixing the tabu duration for each heuristic, this value is 

updated when necessary. The adaptation method increments the tabu duration of a 

heuristic if it is excluded again after the phase in which it re-joined the heuristic set. It 

is incremented until the corresponding value reaches 2dinitial. If this heuristic is not 

prohibited after a phase, then its tabu duration is set to dinitial again. 

 

Phase length adaptation: The phase length (phlength) is calculated using a predefined 

value, i.e. phfactor, as ndd 2,phfactor  . In this formula, n refers to the number of 

heuristics in the current heuristic set. That is, the size of the heuristic set affects 

phlength.  The other adaptation element is associated with the speed of the non-tabu 

heuristics. At the end of each phase, the speed of performing one move based on the 

average speed of the non-tabu heuristic is used to determine the phlength. If the current 

heuristic set is slow, then phlength is assigned a smaller value.   

 

Learning automata based selection: For efficiently using an elite heuristic subset, 

the performance of the heuristics with respect to their improvement capabilities 

during each phase is taken into account. For this purpose, heuristics are selected based 

on their performance related probabilities maintained by learning automata [20]. In 

particular, a linear reward-penalty update scheme is used. The corresponding 

probability vector is reset at the beginning of each phase.  

3.2 Move acceptance 

For the experiments, five move acceptance mechanisms are used: adaptive iteration 

limited list-based threshold accepting (AILLA), improving or equal (IE), simulated 

annealing (SA), great deluge (GD), late acceptance (LATE). The implementations of 

SA and GD are from [19]. The pseudo-code of LATE and AILLA are given in Fig. 1 

and Fig. 2 respectively.   
                   

Input – L: list length (l=10) 

Variables – I: number of iterations, v: selected index from the list 

Initialize – Set all the list elements to the initial fitness 

1. v = I%L;                            

2. if f(S’) ≤ f(Sv) then 

3.      S  ← S’;                         

4.      f(Sv) = f(S);            

5. end 
6. I = I+1;        //increase the number of iterations by 1     

 

Fig. 1. Pseudo-code of the late acceptance. 

 

Input – k: initial iteration limit (k=150), l: list length (l=10), K: iteration limit for adaptation  

  (K=5k=750) 
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Variables – i: threshold index for the list, w_iterations: the number of consecutive  

                     worsening moves, adapt_iterations: the number of iterations before increasing  

                   the threshold level 

Initialize – Fill the best fitness list with the initial fitness 

1. if adapt_iterations ≥ K then 

2.        if i < l-1 then                            

3.                 i++;                                //increase the threshold value 

4.        end 

5. end 

6. if f(S) < f(S’) then 

7.        S ← S’; 

8.        w_iterations = 0; 

9.        if f(S’) < f(Sb) then 

10.                  i = 1; 

11.                  Sb ← S’; 

12.                  w_iterations = adapt_iterations = 0; 

13.                  bestlist.remove(last);       //remove the last element in the list 

14.                  bestlist.add(0,f(Sb));         //add new best solution to the beginning of the list 

15.         end 

16. else if f(S’) = f(S) then 

17.        S ← S’; 

18. else 

19.        w_iterations++; 

20.        adapt_iterations++; 

21.        if w_iterations ≥ k and f(S’) ≤  bestlist(i) then 

22.                   S ← S’; 

23.                   w_iterations = 0; 

24.        end 

25. end 

 

Fig. 2. Pseudo-code of the adaptive iteration limited list-based threshold accepting. 

 

Each of the used move acceptance mechanisms accepts solutions of better or equal 

quality. For diversifying the search process, SA accepts worsening solutions based on 

a probability calculated as shown in equation (2). GD accepts worsening solutions 

using a threshold value determined based on the quality of the initial solution (finitial) 

as well as a linearly decreasing ratio for the remaining execution time (tremain) over the 

total execution time (ttotal) as illustrated in equation (3). LATE maintains the history of 

previously visited solutions for deciding about new solutions. Similarly, AILLA also 

maintains a history. However, it waits for a number of iterations denoting 

consecutively visited solutions (k) before diversifying the search. To indicate the 

hardness of finding new best solutions, k is updated whenever a new best solution is 

found. The simple update process is depicted in equation (4).  
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4. A Two-phase Approach 

A two-phase strategy involving the application of hyper-heuristics was designed to 

solve the routing and rostering problem. In the first phase, the best order of visits and 

assignments of these visits to the available personnel are searched for. The start time 

of each visit is determined by its earliest possible starting time as well as by the 

availability of the corresponding personnel. If no change occurs in the rest of the 

route, the start time remains unchanged during this first phase. The search is 

performed on a smaller space compared with the search space of the original problem.  

In the first phase, the hyper-heuristic operates on a set of simple low-level 

heuristics (LLHs). The idea behind utilising such simple heuristics is to show that 

good quality solutions can be reached by simple operations instead of complex, highly 

problem-dependent moves. These heuristics are the following:  

 

 LLH0: swap two randomly selected visits between two randomly selected routes 

 LLH1: move the most conflicting visit in a randomly selected route to the best 

position in another randomly selected route. 

 LLH2: move a randomly selected visit from a randomly selected route to another 

randomly selected route. The best location to move the visit to is determined based 

on the quality of the route. 

 LLH3: move a randomly selected visit from a randomly selected route to another 

randomly selected route 

 LLH4: swap two randomly selected visits in a randomly selected route 

 LLH5: reverse a number randomly selected consecutive visits in a randomly 

selected route 

 LLH6: move a randomly selected visit in a randomly selected route 

 LLH7: scramble randomly selected consecutive visits in a randomly selected route 

 LLH8: exchange two randomly selected consecutive visits belonging to two 

randomly selected routes 

 LLH9: move a number of randomly selected consecutive visits from a randomly 

selected route to another randomly selected route 

The second phase is dedicated to improving the solution by performing simple 

changes on visiting times. A time shifting parameterised heuristic is employed with 

four different parameter settings. They consist of sliding a visit +10 minutes, -10 

minutes, +20 minutes and -20 minutes. In the experiments, this phase is handled by an 

SR-IE hyper-heuristic. 
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5. Experiments 

Each hyper-heuristic was tested on 12 problem instances using a Pentium Core 2 Duo 

3 Ghz with 3 GB memory. Each test was repeated 10 times per instance. The 

execution time was limited to 10 minutes per run. As described in Section 2, some of 

the time windows are relaxed in instances district0 to district5. In addition, the 

experiments were also performed on the same instances with tight time windows 

(instances district0-etw to district5-etw). 

Table 3 shows the results of the hyper-heuristics with SR as selection mechanism. 

Results based on the best solutions at each run indicate that SR-AILLA, SR-SA and 

SR-IE show similar performance. SR-LATE performs better than SR-GD. However, 

they both perform significantly worse than the first three hyper-heuristics (based on 

the Wilcoxon signed-rank test with 95% confidence level.)  

Table 3. The average fitness values with standard deviation for hyper-heuristics with SR. 

Instances 
SR-AILLA SR-SA SR-IE 

AVG STD AVG STD AVG STD 

district0 3,44E+08 2,66E+07 3,16E+08 1,88E+07 3,39E+08 4,73E+07 

district1 2,84E+05 1,63E+04 2,82E+05 1,31E+04 2,87E+05 1,71E+04 

district2 1,16E+05 2,13E+05 1,72E+05 3,71E+05 5,31E+04 4,76E+04 

district3 8,70E+04 2,23E+04 1,16E+05 1,10E+05 8,76E+04 2,39E+04 

district4 1,17E+08 2,19E+07 1,14E+08 2,33E+07 1,27E+08 2,43E+07 

district5 4,26E+05 7,62E+04 1,05E+07 3,16E+07 4,49E+05 1,24E+05 

district0-etw 1,54E+08 5,63E+07 1,41E+08 2,78E+07 1,45E+08 3,75E+07 

district1-etw 1,05E+05 1,10E+04 1,31E+05 8,53E+04 1,02E+05 6,07E+03 

district2-etw 6,85E+04 5,92E+04 1,31E+05 1,88E+05 6,33E+04 4,38E+04 

district3-etw 1,55E+05 2,13E+05 6,55E+04 6,57E+04 8,18E+04 6,71E+04 

district4-etw 6,20E+07 9,19E+06 6,31E+07 1,06E+07 6,09E+07 1,01E+07 

district5-etw 4,78E+05 4,82E+05 3,88E+05 1,11E+05 3,54E+05 1,33E+05 

 
SR-LATE SR-GD 

AVG STD AVG STD 

district0 8,06E+08 5,79E+07 1,65E+09 9,57E+07 

district1 2,89E+05 1,33E+04 3,38E+08 1,83E+08 

district2 4,55E+05 1,11E+06 5,07E+08 1,43E+08 

district3 3,24E+05 7,33E+05 3,99E+07 7,00E+06 

district4 6,92E+08 1,12E+08 1,00E+09 1,52E+08 

district5 2,37E+08 2,36E+08 3,52E+09 5,51E+08 

district0-etw 4,47E+08 6,12E+07 1,15E+09 1,71E+08 

district1-etw 1,28E+05 4,05E+04 2,01E+08 1,36E+08 

district2-etw 1,15E+05 1,20E+05 4,22E+08 9,50E+07 

district3-etw 1,61E+05 4,01E+05 4,07E+07 2,84E+07 

district4-etw 2,70E+08 6,51E+07 5,70E+08 9,23E+07 

district5-etw 1,01E+08 9,45E+07 2,07E+09 4,24E+08 



3.1 Adaptive dynamic heuristic set strategy 

 

Table 4 presents the performance of the set of significantly better hyper-heuristics 

from Table 3 with the ADHS selection mechanism instead of SR. These results 

indicate that ADHS provides further improvements over SR.  

Table 4. The average fitness values with standard deviation for the top hyper-heuristics from 

Table 3 with ADHS. 

Instances 
ADHS-AILLA ADHS-SA ADHS-IE 

AVG STD AVG STD AVG STD 

district0 3,39E+08 2,66E+07 3,18E+08 1,81E+07 3,12E+08 1,27E+07 

district1 2,79E+05 6,37E+03 2,82E+05 1,26E+04 2,83E+05 1,21E+04 

district2 5,87E+04 6,15E+04 3,83E+04 2,85E+04 7,56E+04 1,44E+05 

district3 8,62E+04 2,72E+04 8,87E+04 1,67E+04 1,03E+05 4,36E+04 

district4 6,02E+07 1,45E+07 5,75E+07 1,09E+07 5,73E+07 1,39E+07 

district5 4,10E+05 7,44E+04 5,09E+05 1,96E+05 4,99E+05 1,35E+05 

district0-etw 1,39E+08 1,61E+07 1,24E+08 1,38E+07 1,21E+08 9,22E+06 

district1-etw 1,02E+05 7,86E+03 1,28E+05 7,36E+04 1,22E+05 3,45E+04 

district2-etw 2,61E+04 1,83E+04 4,43E+05 1,24E+06 2,59E+04 1,14E+04 

district3-etw 4,28E+04 2,64E+04 4,22E+04 2,61E+04 7,34E+04 7,40E+04 

district4-etw 3,34E+07 7,81E+06 3,34E+07 7,55E+06 3,51E+07 1,00E+07 

district5-etw 3,70E+05 8,00E+04 4,75E+05 2,48E+05 3,42E+05 4,98E+04 

 

 
Fig. 3. The number of moves performed by each heuristic during the run by ADHS-AILLA on 

(a) district2-etw run 3, (b) district4-etw run 5. 

 

Fig. 3 shows the number of moves performed by the existing heuristics under 

ADHS-AILLA for two instances. ADHS behaves differently during the run by 

selecting certain heuristics more often and excluding others relying on the 
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performance changes. In addition, its behaviour is different on different instances. In 

conclusion, high-level search approaches utilising a group of low-level algorithms 

require online learning for better judgement of the changing characteristics of the 

search space.  

In general, the quality of the solutions for instances with extended time windows is 

better than for instances with tight time windows. This is a useful result to show the 

effectiveness of softening time windows, in accordance with Taillard et al. 1997.  

6. Conclusion 

The presented routing and rostering problem contains the characteristics of two 

combinatorial optimization problems. In the literature, it is common to encounter 

problems with only a routing aspect, e.g. the vehicle routing problem, or a personnel 

rostering aspect, e.g. the nurse rostering problem. In this paper, a problem was 

modeled that combines both routing and rostering characteristics concerning the 

assignment of jobs to a security crew. A suite of generic approaches, i.e. hyper-

heuristics, was introduced for addressing a set of varying instances. A detailed 

performance analysis was conducted based on experiments with real-world data. The 

results show that the generic hyper-heuristics can generate satisfactory results, i.e. 

schedules which could be used in practice.  

In the future, the problem will be extended by increasing the number of visit types, 

adding resource availabilities and providing multiple contract options. For the hyper-

heuristics, a feedback mechanism will be built allowing communication between 

hyper-heuristic components. 
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