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ABSTRACT

Modern type systems for programming languages usually incorpo-
rate additional information useful for program analysis, e.g., ef-
fects, control flow, non-interference, strictness etc. When design-
ing a typing predicate for such systems, a form of logical derivation
rules is normally taken. Despite the expressivity of this approach,
the straightforward implementation of an appropriate type checker
is usually inefficient in terms of stack consumption and further op-
timisations. This leads to a significant gap between an analysis and
program implementing the analysis.

In this paper we demonstrate an application of techniques inves-
tigated by Danvy et al. to derive an abstract machine for typing
from the traditional recursive descent approach. All used tech-
niques are off-the-shelf and no appropriate correspondence theo-
rems between an initial type system and the derived abstract ma-
chine needs to be proven: they are instead corollaries of the correct-
ness of inter-derivation and of the initial specification. Whereas a
recursive descent is something straightforward to implement based
on declarative typing rules, the derived abstract machine exposes
behaviour similar to Landin’s SECD machine and gives a solid ba-
sis for further optimizations using abstract interpretation.
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1. INTRODUCTION

Type systems in programming languages are a well-established
way to ensure fundamental properties of programs. The principle
“well-typed programs do not go wrong” introduced by Milner [19]
and followed by “well-typed programs do not get stuck” by Wright
and Felleisen [27] give an idea of some very basic of these prop-
erties, such a program execution progress. However, modern type
systems are also targeted to infer more specific program properties
such as possible computational effects, non-interference, control-
flow information and strictness [21, 26, 28, 14]. These enhance-
ments inevitably affect the implementation of a type inference al-
gorithm, making it significantly harder to evaluate and to reason
about. Therefore, in program analysis one should always distin-
guish between an analysis and a program to implement the anal-
ysis. The goal of this paper is to bridge this gap and establish a
systematic transition from an expressive definition to an effective
implementation.

1.1 Motivation

Traditionally, type systems are described in terms of logical deriva-
tion rules and can be implemented in the form of recursive descent
as a part of production quality compilers. In this paper we consider
type-checking procedure for simply typed lambda calculus (STLC)
as an underlying algorithm for different implementations. Figure 1
describes well-known typing rules. The computational procedure
for type checking using these rules is a recursive descent, where
a given A-term is recursively traversed, so its type is derived if no
typing errors have been occurred.

Such an approach, however, is difficult to implement effectively
in a presence of multiple computations involving inferred types and
iterative typing fixed-point expressions. For example, in the system
for abstract non-interference [28], types have denotational meaning
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Figure 1: Type system for the simply typed lambda calculus
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Figure 2: A small-step transition system for type checking

associated with appropriate abstract domains. As a consequence,
the type derivation rule for lambda-abstractions demands for ex-
haustive iteration through all elements of a possibly infinite abstract
domain. Even more, the rule for a fixed-point expression computes
a least-fixed point of the sub-derivation for its argument. To imple-
ment this iteration effectively and optimize it easily by switching
domains, one should choose a more operational representation.

The first step towards the connection of type inference by recur-
sive descent and type inference via abstract machines is due Han-
kin and Le Métayer [14]. They provide a description of an abstract
machine-like formalism for implementing type checking and type
inference systems. The described technique is in the spirit of Han-
nan and Miller [15] and yields in several stages an abstract machine
based on the given type derivation rules. That machine strongly
resembles Landin’s SECD machine [18]. The only difference be-
tween the resulting machine and the original SECD machine is that
the former has no “D” component since there is no “dump” in the
corresponding evaluator, so we call the respective artifact SEC ma-
chine following the tradition to name machines after their control
strings. A simplified version of the small-step machine, defined by
its transition relation, is given in Figure 2. The following theorem
has been proven for soundness and completeness of the derived
machine:

THEOREM 1.1. [14] (Soundness and Completeness for =)
I'ke:t iff (S,Te:C)= (t:S,I,C).

One can see that the third component of the abstract machine
(i.e., “C” for control) contains A-terms as control elements, but also
specific tokens, such as Lam, Fun and Arg, with extra bits of con-
text information. Intuitively it is clear that these elements corre-
spond somehow to combination of type constituents in derivation
rules. However the question that remains open is what is a formal
meaning of this correspondence?

The contribution of this paper is a mechanical inter-derivation of
the two above mentioned type inference procedures via the program
transformations used in Reynolds’s functional correspondence be-
tween evaluators and big-step abstract machines [1, 23] and in Danvy
et al.’s work on the systematic deconstruction of Landin’s SECD
machine [9]. The correspondence between a traditional type sys-
tem and a SEC machine for type inference is provided by the con-
struction and inter-derivation of their computational counterparts.
The pleasant consequence is that no soundness and completeness
theorems need to be proven: they are instead corollaries of the cor-
rectness of inter-derivation and of the initial specification [5].

1.2 Paper outline

The remainder of the paper is structured as follows. Section 2
gives an overview of our method, enumerating the techniques in-
volved. Section 3 provides the implementation of type checking
simply typed lambda calculus and describes initial setting for fur-
ther functional transformations. Section 4 describes the set of pro-
gram transformations corresponding to the construction of an ab-

stract machine for type inference from the traditional type infer-
ence procedure in the form of a recursive descent. Section 5 starts
a discussion and provides a brief survey of related work. Section 6
concludes.

2. METHOD OVERVIEW

A diagram with an overview of program metamorphoses is shown
in Figure 3. In the following sections we show that SEC machine
can be derived methodologically from the canonical compositional
type checker by a sequence of meaning-preserving program trans-
formations, such as the continuation-passing style transformation
and defunctionalization [8, 11, 23].

We start by providing an implementation of a traditional type
checker for the STLC in the form of a recursive descent as a start-
ing point for further transformations (Section 3). We successively
refactor it into a stack-threading callee-save evaluator, i.e., one
that pushes its results on an explicit local stack, which is passed
around as a parameter — the component “S” of a control string
(Section 4.1). The obtained evaluator is in non-tail call form, so
we transform it into continuation-passing style (Section 4.2) and
then defunctionalize it (Section 4.3), which leads to the big-step
stack-threading CEK machine. The type environment is still a part
of some defunctionalized contexts, so we extract it as an explicit
parameter of the evaluator, i.e., the component “E” of the control
string (Section 4.4). We introduce an explicit control stack (the
component “C” of the control string) in order to merge together
several mutually recursive transition functions (Section 4.5), which
yields a big-step SEC machine. Finally, we rework the big-step ma-
chine into a small-step one by extracting an iteration function (Sec-
tion 4.6). The final machine is Landin’s SECD machine lacking the
“D” component of its control string, since no explicit control flow
management with dumps is needed for type-checking.

Standard ML (SML) [20] is used as a metalanguage for the im-
plementation and transformations. SML is a statically-typed, call-
by-value language with computational effects. For the sake of brevity
we omit some of the program artifacts, keeping only essential parts
to demonstrate the corresponding program transformation.! Ateach
transformation stage the trailing index of all involved functions is
incremented.

3. INITIAL SETTING

This section provides the initial implementation of a type check-
ing procedure for the simply typed lambda calculus, which will be
used for further transformations in Section 4.

3.1 Terms and types

The abstract syntax of simply typed lambda calculus includes
integer literals, identifiers, lambda-abstractions and applications.
Types are either numeric types or arrow types. Special value T_Error s

I"The accompanying code is available from
http://people.cs.kuleuven.be/ilya.sergey/types-sec.zip
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Figure 3: Inter-derivation

is used for typing errors and cannot be a substituent of any other
type. We implement terms and types with the following SML data

types:

datatype term = LIT of int

| IDE of string

| LAM of string * typ * term
|

APP of term * term

= T_NUM
| T_ARR of typ * typ
| T_ERROR of string

datatype typ

3.2 Type checking procedure

Typing environments Tenv represent bindings of identifiers to types.

They carry typing assumptions about free variables in A-terms. The
value empty corresponds to an empty environment, extend extends
an environment with a new binding of a variable into a type and, fi-
nally, the function lookup extracts the typing assumption, associated
with a particular variable. A lookup may fail, which is reflected by
its return type ’a option 2.

signature TEnv =

sig
type 'a gamma
val empty (string * ’a) gamma
val extend : string * 'a * (string * 'a) gamma ->
(string * ’'a) gamma
val lookup : string * (string * ’a) gamma -> ’'a option
end

The canonical procedure for type checking [22, pages 113-116]
is implemented as a recursive descent.

exception TYPING_ERROR of string

(+ check0 : term * typ gamma —-> typ %)
fun check0 (LIT n, gamma)

= T_NUM
| check0O (IDE x, gamma)
= (case TEnv.lookup(x, gamma) of (SOME t) => t)

| check0 (LAM (x, arg_type, body), gamma)
= let val body_type = check0 (body,
(TEnv.extend (x, arg_type, gamma)))
in T_ARR (arg_type, body_type)

end
| check0 (APP (el, e2), gamma)
= let val T_ARR (tl, t2) = check0 (el, gamma)

val arg_type = check0 (e2, gamma)
in if arg_type = tl
then t2
else raise (TYPING_ERROR "type_mismatch")
end

(+ type_check : term -> typ #)
fun type_check t = check0 (t, TEnv.empty)

2In order to keep to the uniform approach for different semantics
for type inference [17, 25], we leave environments parametrized by
the type parameter ' a, which is instantiated with typ in this case.

3.3 Representation of typing errors
Three kinds of typing errors might occur during type checking:

o Undefined identifier in an environment, corresponds to the
MatchError exception of SML raised in the second clause of
checko function.

e Non-arrow type in a function position, is represented by a
MatchError raised at the top-level of checko function

e A type mismatch between a function parameter type and an
argument type, a TYPING_ERROR exception is raised at the last
clause of checko function.

Moreover, there are at least three different ways to represent typ-
ing errors in practice and propagate the information about them to
the client of the type checker.

1. “Bubbling up”: for results of recursive calls, the type-checking
procedure checks explicitly whether the result is a type error.
If it is, this information is returned immediately to an “upper
level”.

2. Using exceptions: when a type error occurs, the necessary
information for a client of the type checker can be put into
an exception, which is immediately raised. This approach
is employed in the described implementation of the function
checkO0.

3. Continuation dropping: if the type-checker is in continuation-
passing style, one can interrupt the current control flow in
case of a typing error. Then an error value will be returned
instead of applying the continuation to the result [7].

In the following series of transformations we will be switching
between the second and the third approaches.

4. FROM RECURSIVE DESCENT TO SEC
MACHINE

In this section we describe a systematic approach to the con-
struction of an abstract machine for type inference from a tradi-
tional type inference procedure in the form of recursive descent.
The approach takes advantage of Reynolds’s functional correspon-
dence between different ways to represent semantic artifacts [23]
and more recent work by Danvy et al. on the deconstruction of
Landin’s SECD machine [9].

4.1 Extracting a result stack

In the canonical implementation of a type checker the results
of nested calls of the checko function are allocated on local stack



frames of callees. We represent this model explicitly by introducing
local result stacks and passing them around as an explicit param-
eter of check1 function. A data stack, which is the “S” component
of a control string for the machine presented in Section 1, stores
intermediate values after they have been computed but before they
are used. Computing an expression leaves its value on top of the
data stack. Applications expect to find their argument and a func-
tion on top of this data stack. In case of nested calls the immutable
part of the stack is saved by a callee, whereas, a caller is invoked
with a reduced or fresh stack. This kind of evaluator is classified as
a callee-save, explicit stack-threading one according to Danvy and
Millikin [9, Appendix D].

The implementation of the function type_check is changed cor-
respondingly to take the head of the result list as the result of a
computation.

(+ checkl term x typ list x typ gamma -> typ list )
fun checkl (LIT n, s, e)

= T_NUM :: s
| checkl (IDE x, s, e)
= (case TEnv.lookup(x, e) of (SOME t) =>t :: s)

checkl (LAM (x, arg_type, body), s, e)
= let val (body_type :: _) =
checkl (body, nil,
(TEnv.extend (x, arg_type, e)))
in T_ARR (arg_type, body_type) :: s
end
checkl (APP (el, e2), s, e)
= let val s0 as (T_ARR (tl, t2) :: _) =
checkl (el, nil, e)

val (arg_type :: x :: _) = checkl (e2, s0, e)
in if arg_type = tl

then t2 :: s

else raise (TYPING_ERROR "type _mismatch")

end

(* type_check
fun type_check t
= let val (v :: s) = checkl (t, nil, TEnv.empty)
in v end

term —> typ *)

4.2 CPS transformation

The function check1 from the previous section is transformed into
continuation-passing style (CPS). This is done in three steps, as de-
scribed in Danvy’s report [4]. Briefly, each intermediate result of
a computation is extracted into a new local variable, their com-
putations are sequentialized and a new formal parameter, namely, a
continuation is introduced. Thus the intermediate results are named
by the formal parameters of each of the lambda-abstractions that
define the continuation.

(* check2 term * typ list * typ gamma *
(typ list —> typ list) -> typ list =)
fun check2 (LIT n, s, e, k) = k (T_NUM :: s)
| check2 (IDE x, s, e, k)
= k (case TEnv.lookup(x, e) of (SOME t) => t :: s)

check2 (LAM (x, arg_type, body), s, e, k)
= check2 (body, nil, (TEnv.extend (x, arg_type, e))
fn (body_type :: s0) =>
k (T_ARR (arg_type, body_type) :: s))
check2 (APP (el, e2), s, e, k)
= check2 (el, nil, e,

fn (s0 as (T_ARR (tl, t2) :: _)) =>
check2 (e2, s0, e,
fn (arg_type :: x :: _) =>
if arg_type = tl
then k (t2 :: s)
else (T_ERROR "type_mismatch") :: nil))

(* type_check
fun type_check t
= let val (v :: s) = check2 (t, nil,
TEnv.empty, fn x => x)

term —-> typ %)

in v end

Since we CPS-transformed our program, we may replace excep-
tion raising by non-local returns, as it is done now in the last clause
of check2 function: a T_grror is returned directly if a typing error
occurs. This small transformation corresponds to the switching be-
tween the second and third methods of typing error representation
described in Section 3. The resulting procedure, considered as an
interpreter of A-terms, is a traditional continuation-passing one.

4.3 Defunctionalization

The next step is to defunctionalize the continuations in the im-
plementation of the type checker from Section 4.2. The function
space of the considered program is inhabited by the four function
values that arise from considering four function abstractions from
the definitions of functions check2 and type_check: one initial con-
tinuation in type_check and three more in two last clauses of check2.
We therefore partition the function space into four summands and

represent it as the following first-order data type:
datatype cont = CONT_MT

| CONT_LAM of typ * cont * typ list

| CONT_FUN of cont * term * typ gamma
| CONT_ARG of typ * typ * cont

Those defunctionalized continuations represent first-order eval-
uation contexts of type computations on top of the abstract syn-
tax of the calculus. Contexts are produced at places of former
lambda-abstractions (the initial call of the function type_check and
third and forth clauses of the function check2) and consumed by a
“dispatcher”-like function continue3.

(+ check3 : term % typ list * typ gamma * cont —>
typ list =)
fun check3 (LIT n, s, e, C)
= continue3 (C, (T_NUM :: s))
check3 (IDE x, s, e, C)
= continue3 (C, case TEnv.lookup(x, e)
of (SOME t) => t :: s)
check3 (LAM (x, arg_type, body), s, e, C)
= check3 (body, nil, (TEnv.extend (x, arg_type, e)),
CONT_LAM (arg_type, C, s))
check3 (APP (el, e2), s, e, C)
= check3 (el, s, e, CONT_FUN (C, e2, e))

(* continue3 : cont x typ list —-> typ list %)
and continue3 (CONT_MT, s)
= s
continue3 (CONT_LAM (arg_type, C, s),
(body_type :: s0))
= continue3 (C, T_ARR (arg_type, body_type) :: s)
continue3 (CONT_FUN (C, e2, e),
s0O as (T_ARR (tl, t2) :: _))
= check3 (e2, s0, e, CONT_ARG (tl, t2, C))

| continue3 (CONT_ARG (tl, t2, C), (arg_type :: x :: sl))
= if arg_type = tl
then continue3 (C, t2 :: sl)
else (T_ERROR "type _mismatch") :: nil

(* type_check
fun type_check t
= let val (v :: s) = check3 (t, nil,
TEnv.empty, CONT_MT)

term -> typ %)

in v end

The resulting machine is an analogue of the well-known environment-

based CEK machine with an explicit component s for the result
stack [13]. Each tail call implements a state transition of the ma-
chine.

4.4 Extracting an environment to a parame-
ter

One can notice that a type environment is part of the data type
of evaluation contexts. We massage the type checking machine by
extracting an environment to a separate explicit parameter of the



function continued. It will correspond to the component “E” in the
control string of the final abstract machine. Now the constructor
cont_ruN, which is consumed by continue4, does not contain an envi-
ronment as a parameter. We also rearrange parameters of the data
type cont to give it a list-like shape. The data type of contexts is
now as follows:

datatype cont CONT_MT

| CONT_LAM of typ * typ list * cont
| CONT_FUN of term * cont
| CONT_ARG of typ * typ * cont

A next natural step is to take advantage of the list-like structure
of contexts represented by cont.

4.5 Adding an explicit control stack

In this section we introduce the last component of the control
string of the abstract machine, namely, the control stack “C”. The
defunctionalized contexts from the Section 4.4 expose a stack-like
structure with cont_vr as the “empty” element. The structure can
be refactored into a stack of control tokens, corresponding to par-
ticular summands of cont. To unify the structure of states we also
introduce one more extra control token for terms. Control stack
tokens are represented by the following data structure:

datatype control_element C_ARG of typ * typ
C_FUN of term

C_LAM of typ * typ list
C

TERM of term

Former cont_ut element corresponds now to an empty control
stack. Since the domain of control elements is now “lifted” to
control_element, We may safely merge continue4 and checks functions
to get the unified function checks.

(* checkb typ list x typ gamma = control_element list

-> typ list %)

fun check5 (s, e, C_TERM (LIT n) :: C)
= check5 (T_NUM :: s, e, C)
| check5 (s, e, C_TERM (IDE x) :: C)
= check5 (case TEnv.lookup(x, e)
of (SOME t) =>t :: s, e, C)
| check5 (s, e, C_TERM (LAM (x, arg_type, body)) :: C)
= check5 (nil, TEnv.extend (x, arg_type, e),
C_TERM body :: C_LAM (arg_type, s) :: C)
| check5 (s, e, C_TERM (APP (el, e2)) :: C)
= check5 (s, e, C_TERM el C_FUN e2 :: C)
| check5 ((body_type :: s0), e,
C_LAM (arg_type, s) :: C)
= check5 (T_ARR (arg_type, body_type) :: s, e, C)
| check5 (s0 as (T_ARR (tl, t2) :: _), e, C_FUN e2 :: C)
= check5 (s0O, e, C_TERM e2 :: C_ARG (tl, t2) :: C)
| check5 (v2 :: x :: sl, e,
C_ARG (arg_type, result_type) :: C)
= if v2 = arg_type
then check5 (result_type :: sl, e, C)
else T_ERROR "parameter type _mismatch" :: nil

check5 (s, e, nil)
= s

(+ type_check
and type_check t
= let val (v :: s) = check5 (nil, TEnv.empty,
C_TERM t :: nil)

term —> typ *)

in v end

The resulting interpreter is a big-step SEC machine where each
tail call of checks corresponds to a transition. Now we are going to
turn it into a small-step machine by introducing an explicit driver-
loop function.

4.6 From a big-step to a small-step SEC ma-
chine

Since the big-step SEC machine from Section 4.5 has only one

type of control string, it is straightforward to transform it into a

small-step machine by introducing a dedicated driver-loop function

iterateb:

type state = typ list * typ gamma * control_element list

(+ stepé6 : state —-> state x)
fun step6 (s, e, C_TERM (LIT n) :: C)
= (T_NUM :: s, e, C)
| step6 (s, e, C_TERM (IDE x) :: C)
= (case TEnv.lookup(x, e) of (SOME t) =>t :: s, e, C)
| step6 (s, e, C_TERM (LAM (x, arg_type, body)) :: C)
= (nil, TEnv.extend (x, arg_type, e)
C_TERM body :: C_LAM (arg_type, s) :: C)
| step6 (s, e, C_TERM (APP (el, e2)) :: C)
= (s, e, C_TERM el C_FUN e2 :: C)
| step6 ((body_type :: s0), e, C_LAM (arg_type, s) :: C)
= (T_ARR (arg_type, body_type) :: s, e, C)
| step6 (s0 as (T_ARR (tl1l, t2) :: _), e, C_FUN e2 :: C)
= (s0, e, C_TERM e2 :: C_ARG (tl, t2) :: C)
| stepb (v2 :: x :: sl, e,
C_ARG (arg_type, result_type) :: C)
= if v2 = arg_type
then (result_type :: sl, e, C)

else raise (TYPING_ERROR "type _mismatch")

(+ 1terate6 : state -> typ *)
fun iterate6 (v :: s, _, nil)
=V

iterate6 state

= iterate6 (step6 state)

(+ type_check term -> typ *)
fun type_check term
= iterate6 (nil, TEnv.empty, C_TERM term :: nil)

At each step of the execution the machine performs a transition
to a new state and the function iterates checks the termination con-
dition. This last transition completes our chain of transformations.
The transition function of the described small-step SEC machine
corresponds directly to the set of transition rules, given in Fig-
ure 2. Arrow types are consumed implicitly in the last transition
rule being popped from the result stack S with no additional check.
However, the necessary check of type correspondence is performed
thanks to the control element Arg(T,T).

S. DISCUSSION

The approach described in this paper allows one to derive me-
chanically abstract machine operational representation for type deriva-
tions from their computational counterparts, implemented in the
form of recursive descent. However all presented artifacts are hand-
crafted, the implementation of the automatic transformation is to be
addressed in the future work. All described transitions, except en-
vironment extraction as we described it, are well-known for imple-
mentors of interpreters for functional programming languages. In
general, the present technique scales for implementation of many
static analyses defined compositionally in the form of derivation
rules: all one needs to do is to provide a straightforward initial im-
plementation of the appropriate recursive descent. This section dis-
cusses properties of the presented correspondence, its applications
and related work.

5.1 Applications

The transition system described in Figure 2 exhibits some generic
elements, which can be adjusted according to the specific procedure
of computations involving types. As it has been shown through
Sections 4.2—4.5, the control stack elements Lam, Fun and Arg are



derived from defunctionalized continuations. They trigger system-
specific computations involving combinations of previously obtained
types, stored in the result stack S.

Hankin and Le Métayer [14] in their work on lazy types de-
rive an abstract machine similar to the one we have constructed
in this paper. The type system they consider is augmented with
Jensen’s strictness logic [16]. As a consequence, a computational
counterpart for the typing for lambda-abstractions involves iterat-
ing through multiple abstract values of the formal parameter’s type,
that leads to the exponential complexity of the derivation algorithm.
In our transition system this possible pitfall would correspond to
the computation of the third and fifth transition rules in Figure 2.
The abstract machine-like representation allows one to coarsen the
result of a type derivation by choosing different abstract domains
to iterate through when the control element Lam is processed.

The similar idea is applicable to a more recent work on a type
system for security and abstract non-interference by Zanardini [28].
Non-interference refers to the possibility that two computations can
be distinguished by observing some public parts of data. Types in
the described system have denotational meaning and are defined in
terms of abstract value domains and identify properties which do-
mains cannot distinguish. Parity or the sign of an integer, are the
simplest examples of such abstract properties. The appropriate type
system is encoded originally in terms of derivation rules, which in-
volve iterations through possibly infinite semantic domains. From
the abstract machine point of view, such an iteration would be trig-
gered by control stack elements. It does not change the nature of
type to be computed but makes it more precise depending on cho-
sen semantic domains. Thus, an abstract machine-like represen-
tation would give an effective way to control the precision of the
type-based analysis just by redefining the meaning of appropriate
control stack elements.

5.2 Related work

The functional correspondence between different semantics ar-
tifacts has been recently applied to various tasks. Ager et al. [2]
investigate a correspondence between semantics described in terms
of monadic evaluators and languages with computational effects.
They show that a calculus for tail-recursive stack inspection cor-
responds to a lifted state monad. This correspondence allows one
to combine it with other monads and obtain abstract machines with
both tail-recursive stack inspection and other computational effects.
The similar technique applied to the standard call-by-need reduc-
tion for the A-calculus yields a reduction-free stateless abstract ma-
chine and a heapless natural semantics for call-by-need evaluation
[10]. Danvy and Zerny [12] present a purely syntactic theory of
graph reduction for the canonical combinators S, K, and I, where
graph vertices are represented with evaluation contexts and let ex-
pressions. This syntactic theory is expressed as a reduction seman-
tics. Through the series of functional transformations, the authors
derive a store-based abstract machine whose architecture coincides
with that of Turner’s original reduction machine.

Reduction semantics for type checking, proposed initially by
Kuan et al. [17], is another operational view on type inference al-
gorithms. Defined as a set of term-reduction rules, such a term-
rewriting system gives an operational view on the semantics of
type checking, which is useful for debugging complex type sys-
tems, since the developer can trace each step of the type computa-
tion. Dealing with this term-rewriting system requires one to show
explicitly that an underlying type inference algorithm is equiva-
lent to the traditional system described as a set of derivation rules.
For this purpose, appropriate completeness and soundness theo-
rems need to be proven. As it was shown recently by Sergey and

Clarke [25], a correspondence between a traditional type system
and a corresponding reduction-based semantics for type inference
can be provided by the construction and inter-derivation of their
computational counterparts in the spirit of the current work and re-
cently described systematic functional transformations [6].

Anton and Thiemann [3] took reduction semantics for differ-
ent implementations of coroutines from the literature and obtained
equivalent definitional interpreters by applying the same sequence
of transformations we used. The obtained operational semantics
is transformed further into a denotational implementation that pro-
vides a necessary basis to construct a sound type system.

5.3 Future work

In the further research we are going to address scalability issues
of the described approach. In the presence of various pluggable
type systems one may want to augment the typing rules or add
new ones, so the resulting abstract machine will change as well.
The natural question is how to reflect these changes incrementally
without going again through the whole chain of described transfor-
mations. We also leave a comparison of different implementations
of a type checker with respect to performance to the future work.

The relation between attribute grammar approaches and the de-
scribed transformations is another interesting topic of discussion.
Since attributes are functions from AST nodes to attribute values,
type checking can be represented as a computation of such attribute
values. However, the described approach deals with an eager se-
mantics of type checking whereas practical attribute grammars per-
form the value computation lazily. The possible way to unify these
two approaches is to derive a call-by-need semantics for type check-
ing.

6. CONCLUSION

In program analysis, one always has to distinguish between an
analysis as its formal definition and a program that implements it.
This paper proposes a methodology to bridge this gap by using the
inter-derivational method due Reynolds [23] and Danvy et al. [6].
As an example, two implementation of a traditional type checking
algorithm are considered: one in the form of recursive descent and
another in the form of Landin’s SECD machine. The correspon-
dence between these two models is provided by the construction
and inter-derivation of their computational counterparts. Through
a series of behaviour-preserving program transformations we have
shown that both models are computationally equivalent. Starting
from one particular traversal strategy, a family of algorithms is de-
rived. All of them implement this traversal strategy, but exhibit
different computational properties. The result is a step towards
reusing different computational models for compositional program
analyses, such that the equivalence of the models is correct by con-
struction.
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