
pre-print: The 15th Int’l Conference on Advanced Robotics (ICAR), 20-23 June 2011, Tallinn, Estonia, pp. 501 - 506.

Active, lifelong sensor synchronization:
a Kalman filtering approach

Eric Demeester, Johan Philips, Alexander Hüntemann, Emmanuel Vander Poorten and Hendrik Van Brussel

Abstract— In robotics and in many other fields, time synchro-
nization between a host computer and sensors or other comput-
ers is essential for many reasons. Whereas past approaches have
focused on phase and frequency estimation, little discussion
seems to be available in literature on adopting uncertainty on
these estimates to determine whether synchronization is out of
bounds and to actively decide when to synchronize again to
reduce uncertainty. This paper presents an algorithm to per-
form such active synchronization based on a Kalman filtering
approach. The performance of the algorithm is illustrated by
synchronizing a Hokuyo URG laserscanner with a computer.

I. INTRODUCTION

Time synchronization between different clocks is essential
in many domains for many reasons. In robotics for example,
such time synchronization is important when fusing data
of different sensors, which may provide data at different
frequencies. This is especially important when robots are
moving at high speed as compared to their sensors’ refresh
rate, as was experimentally proven in the Darpa Grand and
Urban Challenges [1]. Furthermore, it is useful to predict
when new sensor data will become available, so that they
can be processed as soon as they are available and that no
time is lost by actively polling the sensor to retrieve data that
is not yet there.

The time synchronization algorithm described in this pa-
per was adopted on our wheelchair platforms [2] (one is
shown in Fig. 1(a)) for synchronization between a PC and
several Hokuyo and other (in-house built) laserscanners. It
proved to be useful for various reasons. First of all, time
synchronization proved to be important for expressing data
from different sensors in a central coordinate frame. Simply
expressing the most recent scans from both laserscanners
in the robot’s coordinate frame at the time of reception of
a new scan yields inconsistencies between the scans when
the robot is moving, as shown in Fig. 1(c). Therefore it is
important to know the time at which data are generated.
Secondly, we have used this time synchronization algorithm
to correct scans for motion blur, which occurs when the robot
is moving while a scan is taken, see e.g. Fig. 2. Thirdly, using
scan matching and accurate timestamps, we can estimate
the sensor’s speed, and thus the robot’s speed. Fourthly, we
used the timestamps to predict when new sensor data will be
available, in order to avoid polling the data buffers in vain
and in order to access new sensor data from the moment they
are available to increase reaction time to new data.

All authors are with the Department of Mechanical Engineering,
Catholic University of Leuven, 3001 Heverlee, Belgium,
eric.demeester@mech.kuleuven.be.

(a)

(b) (c)

Fig. 1. One of our robotic wheelchairs equipped with two Hokuyo
laserscanners (a). Naively time stamping the scans when receiving them,
and plotting the two most recent ones is fine as long as the robot is not
moving (b), but yields inconsistent results once the robot moves, even at
moderate wheelchair speeds and for close-by objects (c). The coordinate
frames indicate the pose of the two Hokuyo laserscanners.

Fig. 2. The left and right figure respectively show motion deblurring
for a laserscan taken when rotating in clockwise and in counterclockwise
direction. The coordinate frame denotes the lidar’s frame. The top figures
show the scan before motion deblurring, positioned on an a priori map using
a scan matching algorithm. The bottom figures show the scans after motion
deblurring. Such motion deblurring can be performed thanks to accurate
time stamps.



pre-print: The 15th Int’l Conference on Advanced Robotics (ICAR), 20-23 June 2011, Tallinn, Estonia, pp. 501 - 506.

Fig. 3. Performing a “synchronization action” or a “time request” refers
to the host system asking the remote system for its current time trem. Using
this time and the measured roundtrip delay, synchronization between the
two systems can be performed.

The remainder of this paper is organized as follows.
Sections I-A and I-B respectively introduce some concepts
and requirements regarding time synchronization, which will
be used throughout the paper. Section II gives a concise
discussion on the large amount of literature regarding time
synchronization. Section III describes a Kalman Filtering
approach to time synchronization, which allows to decide
whether or not the clocks are synchronized, when to send
new synchronization messages, and when to poll the data
buffers to retrieve the latest sensor information. Section IV
describes the performance of this Kalman filtering approach
when applied to synchronization between a computer and a
Hokuyo URG laserscanner. Section V concludes the paper
and presents future work.

A. Concepts and notation

In the remainder of the paper, we will refer to a host
system trying to synchronize with a remote system, where
the host system wants to express time stamps coming from
the remote system in its own time reference. In order to do
so, the host will perform “synchronization actions” or “send
time requests”, i.e. the host will ask the remote system for the
remote time, as shown in Fig. 3. The host typically measures
the roundtrip time and uses this for synchronization.

B. Requirements and functionality

With the synchronization algorithm in Section III, we
pursue the following functionality. The main purpose of the
algorithm is to synchronize a host clock with a remote clock
continuously, so that the robot does not have to be halted for
any period in order to synchronize. Synchronization means
both correct phase and correct frequency synchronization. A
synchronization approach should provide four functions:

1) Estimate the phase and frequency of the remote clock
(F1).

2) Convert remote times to host times using a clock model
(F2).

3) Decide when to take a new synchronization measure-
ment (F3).

4) Decide whether or not the host and remote clocks are
synchronized (F4), and be aware of synchronization
loss.

Furthermore, we would like a synchronization algorithm
to adhere to the following requirements as much as possible:

• Accuracy (R1). Ideally, a synchronization accuracy of
ms or sub-ms is required for our robotic wheelchair
application. Suppose we want to estimate the robot’s
speed from subsequent distance measurements and their
time stamps. A timestamp error ε, a distance sensor with
a refresh period of ∆t and a robot with a maximum
linear velocity vmax result in a maximal error ev on the
linear velocity estimate of:

ev =
smax

∆t
− smax

∆t+ 2ε
=

smax2ε

∆t (∆t+ 2ε)
,

where ε can be both positive and negative and smax
represents the distance travelled during ∆t when driving
with a linear velocity of vmax (similar for rotational
velocities). For a Hokuyo URG sensor with a period of
around 10 Hz, an electric wheelchair with a maximum
linear speed of around 15 km/h = 4.17 m/s, and
an allowed error on the velocity estimate of ev,rel =
ev/vmax = 5% of the maximum speed, the allowed
synchronization error equals:

ε =
ev,rel∆t

2 (1− ev,rel)
= 2.6 ms.

• Fast synchronization (R2). The host should synchro-
nize as fast as possible with a remote clock at startup
or after loss of synchronization. At startup, at most a
couple of seconds are allowed. Re-synchronization after
loss of synchronization should be even faster, as the
robot may be up and running and may have to be halted
to await synchronization. Waiting may be an option
for autonomous robots, but it is not acceptable when
it affects a human driver as well.

• Robustness (R3). Ideally, the synchronization algo-
rithm is robust against loss of synchronization, clock
resets, and time-varying clock characteristics.

• Independence of other sensors (R4). Synchronization
may be obtained by using additional internal or external
sensors, for which robot motion (or some other cou-
pling) is required to detect the same events with various
sensors. Since this would limit the applicability of the
approach, we prefer to have an algorithm that does not
require these other sensors.

• Limited use of resources (R5). The computational
complexity should be as low as possible, with both a
limited use of CPU time and memory.

• Generic (R6). The algorithm should work on as many
types of sensors as possible.

• As little loss of data as possible (R7). Asking a sensor
for its current time may cause loss of data. Hence, these
synchronization requests should be limited in frequency.

• Assess the uncertainty on the phase and frequency
estimation (R8). This uncertainty is e.g. required when
estimating the uncertainty on the robot’s velocity from
an uncertain estimate of travelled distance and an un-
certain estimate of passed time.



pre-print: The 15th Int’l Conference on Advanced Robotics (ICAR), 20-23 June 2011, Tallinn, Estonia, pp. 501 - 506.

II. RELATED WORK

Time synchronization between clocks of various systems
has been studied since the end of the seventies [3], and a
large amount of research exists in this field.

Many existing algorithms are meant to synchronize com-
puters in networks and distributed systems [4]. Perhaps the
most known and used method for computer time synchro-
nization is the Network Time Protocol (NTP) [5]. In this
protocol, four timestamp values are exchanged, after which
a host system computes the time offset and also selects the
best server among a group.

Also, several algorithms have been designed to synchro-
nise computers and sensors. In [6], synchronization between
a Hokuyo laserscanner and a computer is performed using
NTP timestamps. A large set of time stamps is gathered
from the laserscanner after which the time offset and clock
drift are estimated using a least squares method. A similar
approach is followed in [7], who propose to perform synchro-
nization actions during 30 s, each 6 minutes. Ideally, such
synchronization should be performed continuously with as
little hinder for robot motion as possible (R2).

Another way to synchronize a host system and one or
more sensors is to use events that are detectable by several
of them. For example, robot motion is detectable by both
vision sensors and odometry sensors. In [8], this idea is used
to synchronize both vision and odometry to each other. In
the absence of robot motion however, this approach cannot
be used (R4).

In [9], a jitter estimation method is proposed. This method
does not actively ask for the sensor time, but uses only the
time stamps given by the sensor to esimate possible jitter on
the arrival time of sensor data.

To the best of our knowledge, none of the approaches
that synchronize with sensors give a principled way to
determine (1) when synchronization is lost (or when new
synchronization actions are required in order to prevent loss
of synchronization), and (2) when to sample data buffers. For
this reason, we explored the possibility of using a Kalman
filter that assesses the uncertainty on its estimates and uses
this uncertainty for functionality F1 to F4. Since this ap-
proach contains logic to decide when synchronization actions
should be taken to reduce uncertainty on synchronization, we
denoted it an active approach.

III. KALMAN FILTER BASED TIME
SYNCHRONIZATION

A. Representation of the remote clock model

Since the host system has to take all synchronization-
related decisions, the functions below are described in terms
of a host clock that estimates the time of a remote clock.
The relationship between the host and the remote clock can
be a non-linear function:

trem = f(thost).

In many cases, this relationship can be approximated rather
well (certainly for small time intervals) as a linear model

with a time offset toffset and a scale factor α (the clock drift
rate):

trem = α · (thost − tref) + toffset,

where tref is the host clock time corresponding to the remote
clock time toffset.

B. General procedure for Kalman filter based synchroniza-
tion

We adopt a Kalman filter [10] to estimate the model’s
parameters α and toffset. The general procedure to update the
model of the remote clock is depicted in Algorithm 1. This
algorithm returns true in case the clock model is updated
successfully. The model starts in a non-initialized state, i.e.
filterInitialised ← false. From time to time, this model
will be updated with a measurement of the remote clock.
For this, the host sends a time request to the remote system,
and measures the round trip time when receiving the remote
clock’s time trem. The covariance σ2

rem on the remote time
is assumed to be known, e.g. by calibration. In our imple-
mentation, the host time thost corresponding to the remote
time is taken to lie in the middle of the measured round trip
interval, and its standard deviation σhost is taken to equal half
the round trip interval. The measured values {thost, σ

2
host} and

{trem, σ
2
rem} are used as input to Algorithm 1. Sections III-

C, III-D and III-E describe the functions of Algorithm 1
in more detail. Section III-H describes the logic to decide
when to request a new remote time, and thus to execute
Algorithm 1.

Algorithm 1 Remote clock model update.
1: Input: {thost, σ

2
host} and {trem, σ

2
rem}.

2: if filterInitialised ≡ false then
3: initialise state (trem, 1, Pinit, thost, σ2

host).
4: filterInitialised← true.
5: return true.
6: else
7: predict state (thost, σ

2
host).

8: if correct state (thost, σ
2
host, trem, σ

2
rem) ≡ true then

9: return true.
10: else
11: initialise state (toffset, α, Pinit, tref, σ2

ref).
12: predict state (thost, σ

2
host).

13: return correct state (thost, σ
2
host, trem, σ

2
rem).

14: end if
15: end if

C. Kalman filter state and state initialization

The Kalman filter state x is chosen to consist of two
elements:

x =

[
toffset
α

]
.

The covariance P on the state x is continuously updated as
well:

P =

[
σ2
oo σ2

oα

σ2
αo σ2

αα

]
.



pre-print: The 15th Int’l Conference on Advanced Robotics (ICAR), 20-23 June 2011, Tallinn, Estonia, pp. 501 - 506.

Furthermore, two additional variables are kept in memory,
the reference time tref and its variance σ2

ref.
The Kalman filter state is initialized the first time a

synchronization measurement is obtained (line 3 in Algo-
rithm 1), and whenever state correction did not succeed
(line 11 in Algorithm 1). Function initialise state() does the
following operations:

x =

[
trem
1

]
for line 3 or

[
toffset
α

]
for line 11,

P = Pinit,[
tref
σ2

ref

]
=

[
thost
σ2

host

]
for line 3 or

[
tref
σ2

ref

]
for line 11.

D. State prediction

In order to predict the state xp and covariance Pp for a
given future time thost with covariance σ2

host (lines 7 and 12
in Algorithm 1), a system model xp = f(x,u) is adopted,
where the input u equals ∆ = thost− tref and the uncertainty
on the input equals σ2

∆ = σ2
host + σ2

ref:

f :

{
toffset,p = α ·∆ + toffset

αp = α

Furthermore, the covariance is predicted:

Pp = ∇fxP∇fTx +∇fuσ2
∆∇fTu + Q,

where Q represents the process noise on the system model
f , and where

∇fx =

[
1 ∆
0 1

]
,

∇fu =

[
α
0

]
.

E. State correction

The state is corrected using the remote system time trem
as a measurement, with variance σ2

rem. For this, first the
Normalised Innovation Squared (NIS) value is determined:

ν = trem − toffset,p ,

s = σ2
rem + σ2

oo,p ,

NIS =
ν2

s
.

The NIS value is χ2 distributed. A NIS value above a
chosen threshold MAX_NIS or below MIN_NIS indicates
that the prediction of the remote time is outside the chosen
confidence interval, meaning that either the model or the
measurement is incorrect. In that case, the state correction
is considered to be unsuccessful and correct state() returns
false. If on the contrary the NIS value lies within the
boundaries of acceptance, the state x is updated as follows:

H =
[
1 0

]
,

K =
Pp ·HT

s
=

[
σ2
oo,p/s
σ2
os,p/s

]
,

toffset = toffset,p +K11 · ν ,
α = αp +K21 · ν .

In the above equations, H represents the measurement func-
tion which expresses the measurement trem as a function
of the state x: trem = Hx = toffset. Furthermore, the
reference time tref and its variance σ2

ref are set to trem and
σ2

rem respectively. The covariance P is updated as follows:

P = (I−KH) ·Pp .

F. Decision: synchronized or not at time t?

In order to determine whether the model for the remote
clock still yields precise enough predictions at a certain time
thost with covariance σ2

host, the state x is first predicted at time
thost using predict state(). We propose to decide that the host
and remote system are still synchronized if the uncertainty
on the offset toffset and on the clock drift factor α are below
a chosen threshold:

σ2
oo ≤ THRESHOLD_P_OO_SYNCH,

σ2
αα ≤ THRESHOLD_P_AA.

G. Conversion of remote time to host time

If data are accompanied by time stamps, these time stamps
are expressed in the remote system’s time frame. These need
to be converted into the host’s time frame. If we get as input
trem and variance σ2

rem, we can compute the corresponding
host time thost and variance σ2

host (once the Kalman filter is
initialised) as follows:

thost =
trem − toffset

α
+ tref

= g (trem, toffset, α, tref)

The uncertain variables on the right hand side of this
expression are trem, toffset, α and tref. Their joint covariance
matrix is modelled to be:

Ptot =


σ2

rem 0 0 0
0 σ2

ref 0 0
0 0 σ2

oo σ2
oα

0 0 σ2
α o σ2

αα

 .
Hence, the uncertainty on thost equals:

σ2
host = ∇g ·Ptot · ∇gT

=
σ2

rem

α2
+ σ2

ref +∇b ·P∇bT ,

where

b =
[
− 1
α − trem−toffset

α2

]
.

H. Determination of new synchronization actions

The determination of when to ask for a new remote time
is based on the prediction of when the uncertainty on the
state x, σ2

oo and σ2
αα, will exceed a chosen threshold:

1) If the model is not yet initialised, or if the predicted
variance σ2

αα+qαα on the scale factor α is larger than
threshold MAX_P_AA, it is decided to synchronize as
soon as possible.

2) Else, it is computed for which future time instant thost
the additional condition of limited variance on the
offset is violated. Let ∆ = thost − tref. The future time



pre-print: The 15th Int’l Conference on Advanced Robotics (ICAR), 20-23 June 2011, Tallinn, Estonia, pp. 501 - 506.

instant can be computed by considering the predicted
variance on the offset:

σ2
oo + 2∆σ2

os + ∆2σ2
αα + α2

(
σ2

ref + σ2
host

)
+ qoo

≤ MAX_P_OO_PRED

This is a quadratic inequality in ∆. If no solution is
found, it is decided to synchronize as soon as possible.
If more than one solution is found, the smallest ∆ is
chosen. It is decided to send a new synchronization
message in time tref + ∆.

IV. EVALUATION OF KALMAN FILTER BASED
SYNCHRONIZATION

This section evaluates the proposed synchronization with
respect to the requirements of Section I-B and discusses
its performance when applied to the synchronization of a
computer with a Hokuyo URG scanner.

A. Evaluation with respect to requirements

The synchronization algorithm described in Section III
addresses all four functional requirements: estimate phase
and frequency (F1), conversion of remote times to host
times (F2), decision of when to send a new synchronization
message (F3) and being aware of synchronization loss (F4).

The requirements regarding accuracy (R1), speed of syn-
chronization (R2), robustness (R3) and loss of data (R7)
will be discussed for the application to the Hokuyo URG in
Section IV-B.

The approach does not require other sensors or robot
motion to perform synchronization, and therefore adheres to
R4. The algorithm needs only very limited CPU and memory
resources (R5), and proceeds in a constant time fashion
O(1) with a fixed and known number of multiplications and
additions per model update.

The proposed Kalman Filter synchronization algorithm is
generic (R6) in the sense that it does not assume any specific
information regarding sensors. The only assumption it makes
is that the sensor’s current time can be asked for.

The approach assesses the uncertainty on its estimates, and
therefore adheres to requirement R8.

Furthermore, the algorithm is straight forward to imple-
ment.

B. Verification of requirements for Hokuyo URG

We applied the algorithm of Section III to synchronize
actively and continuously a host computer Atom Mini-
ITX 1.6 GHz running Windows XP with a Hokuyo URG
laserscanner. For this, the parameters in Table I were adopted.
Fig. 4(a) shows a plot of PC time versus Hokuyo time. The
red circles denote actual measurements of the Hokuyo time
at certain PC times. These measurements correspond to the
synchronization measurements. The blue points in the figure
denote predictions by the Kalman filter synchronization
algorithm. As can be seen from the figure, the linear model
for the remote clock is acceptable for the Hokuyo URG.
As a consequence, the Kalman filter performs quite well.
Fig. 4(b) shows the first seconds of a typical start-up. As

TABLE I
PARAMETERS OF THE KALMAN FILTER BASED TIME SYNCHRONIZATION

ALGORITHM FOR THE HOKUYO URG SCANNER.

Parameter Value

Pinit

[
1 · 106 0

0 1 · 106

]

Q

[
6 · 10−10 0

0 8 · 10−9

]
σ2

rem 1 · 10−9

MIN_NIS 1 · 10−3

MAX_NIS 5

THRESHOLD_P_OO_SYNCH 1 · 10−4

THRESHOLD_P_AA 1

MAX_P_OO_PRED 25 · 10−6

(a) (b)

Fig. 4. PC time versus Hokuyo time (a) and zoom into the first seconds
(b). Both times start from zero, since their first time stamp was subtracted
from all subsequent time measurements, to make the plots more easily
interpretable. The green dots indicate at which time stamps the PC and
Hokuyo are synchronized. When sending time requests (red circles), no
green dots are plotted.

can be seen, more synchronization messages are performed
at the beginning in order to reduce the uncertainty on the
state estimate of the remote clock. As shown in the figure,
synchronization typically occurs within one second, and is
seldomly lost afterwards. This adheres to requirement R2.

Fig. 5(a) shows the interval between synchronization mes-
sages. At startup, synchronziation messages are typically sent
at a higher frequency. This situation evolves to a constant
interval of around 40 s for the (conservative) parameter
settings of Table I. Typical roundtrip times for our PC and
Hokuyo lie around 4 ms, as shown in Fig. 5(b).

The accuracy on the time conversion and predictions is
shown in Fig. 6(a). This figure shows the error between
the Hokuyo time as predicted by the Kalman filter, and the
real Hokuyo time, and this for each moment at which a
synchronization action is performed. As can be seen from
the figure, the error on the time prediction is typically below
2 ms, for time periods of around 40 s. In between these
synchronization actions, the time error is even lower. Hence,
this adheres to requirement R1. The estimated uncertainty
on remote times is shown in Fig. 6(b). As expected from
Fig. 4(a), the scan period of the Hokuyo is not changing



pre-print: The 15th Int’l Conference on Advanced Robotics (ICAR), 20-23 June 2011, Tallinn, Estonia, pp. 501 - 506.

(a) (b)

Fig. 5. Time between successive synchronization requests (a) and typical
roundtrip times (b).

(a) (b)

Fig. 6. Error between predicted time by the Kalman filter and the actual
Hokuyo time trem (a), and uncertainty on the estimate of trem (b).

very fast, see Fig. 7(a). The Kalman filter estimates the scan
period well, with sub-ms resolution. The uncertainty on the
scan period even seems slightly conservative and could be
even improved.

When processing time synchronization requests by the PC,
the Hokuyo scanner goes into a special timing mode during
which no scans are taken. Hence, a number of scans may
be lost when asking for the Hokuyo time. Fig. 7(b) shows
the time difference between successive scans. From this, it
can be seen that 1 to 2, and from time to time 3, successive
scans are lost when performing a synchronization operation.
For our wheelchair application this was acceptable, though
we would like to improve on this (R7). Since both scanners
observe the front of this robotic wheelchair, a safe strategy
would be to synchronize both scanners at different times, so
that the front of the wheelchair is always being observed.
Though dedicated tests on robustness (R3) still have to be
performed, during our experiments the wheelchair PC did

(a) (b)

Fig. 7. Estimated Hokuyo scan period (a), which is known to lie around
100 ms, and the uncertainty thereupon. Time between successive scans (b),
which should be around 0.1 if no scans are lost.

not loose synchronization with the two Hokuyos, even when
running time-consuming localisation, planning and obstacle
avoidance algorithms.

V. CONCLUSIONS AND FUTURE WORKS

This paper presented a synchronization algorithm based
on Kalman filtering, with a focus on synchronization with
sensors that run at a fixed frequency. Several requirements
for such synchronization algorithms were set up, and exist-
ing approaches were compared to these requirements. Our
algorithm was evaluated by synchronizating a PC with the
popular Hokuyo URG sensor. The algorithm adheres to most
of the requirements, though robustness was not specifically
tested yet. Furthermore, the algorithm assumes the remote
system can reply with its own time. In the near future we
would like to test the algorithm on other types of Hokuyos
and hardware.

VI. ACKNOWLEDGMENTS

The research leading to these results has received funding
from the European Communitys Seventh Framework Pro-
gramme FP7/2007-2013 - Challenge 2 - Cognitive Systems,
Interaction, Robotics - under grant agreement No. 248873-
RADHAR.

REFERENCES

[1] Martin Buehler, Karl Iagnemma, and Sanjiv Singh, The DARPA Urban
Challenge, Autonomous Vehicles in City Traffic, vol. 56 of Springer
Tracts in Advanced Robotics, Springer Berlin / Heidelberg, 2009.

[2] Eric Demeester, Alexander Hüntemann, Dirk Vanhooydonck, Gerolf
Vanacker, Hendrik Van Brussel, and Marnix Nuttin, “User-adapted
plan recognition and user-adapted shared control: A bayesian approach
to semi-autonomous wheelchair driving”, Autonomous Robots, vol. 24,
no. 2, pp. 193 – 211, February 2008.

[3] Leslie Lamport, “Time, clocks, and the ordering of events in a
distributed system”, Communications of the ACM, vol. 21, no. 7,
pp. 558 – 565, 1978.

[4] B. Koninckx, H. Van Brussel, B. Demeulenaere, J. Swevers, N. Mei-
jerman, F. Peeters, and J. Van Eijk, “Closed-loop, fieldbus-based clock
synchronisation for decentralised motion control systems”, in Proceed-
ings of the CIRP 1st international conference on agile, reconfigurable
manufacturing, Ann Arbor, MI, 2001.

[5] David L. Mills, “Internet time synchronization: The network time
protocol”, IEEE Transactions on Communications, vol. 39, no. 10,
pp. 1482 – 1493, October 1991.

[6] Alexander Carballo, Yoshitaka Hara, Hirohiko Kawata, Tomoaki
Yoshida, Akihisa Ohya, and Shin’ichi Yuta, “Time synchronization
between sokuiki sensor and host computer using timestamps”, in
Proceedings of IEEE International Conference on Multisensor Fusion
and Integration for Intelligent Systems, Seoul, Korea, August 20 - 22
2008, pp. 261 – 266.

[7] Fredy Tungadi and Lindsay Kleeman, “Time synchronisation and
calibration of odometry and range sensors for high-speed mobile robot
mapping”, in Proceedings of the Australasian Conference on Robotics
and Automation, Jonghyuk Kim and Robert Mahony, Eds. December
3 - 5 2008, Canberra, Australia, ISBN 978-0-646-50643-2.

[8] Munir Zaman and John Illingworth, “Interval-based time synchronisa-
tion of sensor data in a mobile robot”, in Proceedings of the Intelligent
Sensors, Sensor Networks and Information Processing Conference,
December 14 - 17 2004, pp. 463 – 468.

[9] E. Olson, “A passive solution to the sensor synchronization problem”,
in Proceedings the 2010 IEEE/RSJ Intl. Conference on Intelligent
Robots and Systems, Taipei, Taiwan, October 18 – 22 2010, pp. 1059
– 1064.

[10] Yaakov Bar-Shalom, X.-Rong Li, and Thiagalingam Kirubarajan,
Estimation with Applications to Tracking and Navigation, John Wiley
& Sons, Inc., 2001.


