Preserving Aspects via Automation: a Maintainability Study

Aram Hovsepyan, Riccardo Scandariato, Stefan Van Baelen, Wouter Joosen
IBBT-DistriNet, Katholieke Universiteit Leuven

Leuven, Belgium
Email: first.last@cs.kuleuven.be

Abstract—This paper presents an empirical study comparing
two alternatives for generating code from aspect-oriented
models. In an aspect “disrupting” process, an object oriented
implementation in Java is automatically generated from do-
main specific models, comprising a mix of UML (for core
functionality) and DSLs (for qualities like security and perfor-
mance). In an aspect “preserving” process, an aspect oriented
implementation in Aspect] is automatically generated from
the same models. In both alternatives, a number of subjects
are asked to perform several maintenance tasks requiring the
addition and improvement of functionality. The results show
that, in most of the cases, the AO alternative provides for
shorter maintenance cycles.

Keywords-Experimental study; domain specific modeling;
model driven engineering;

I. INTRODUCTION

Separation of concerns is a key software engineering
principle to master the increased complexity of today’s
software applications. This work focusses on aspect oriented
techniques. In this context, separation of concerns can be
achieved at several levels of abstraction, ranging from re-
quirements (early aspects) to implementation code (aspect
oriented programming). At design level, aspect oriented
modeling (AOM) is a promising evolution towards a new
dimension in the modularization and separation of concerns.

The aspect oriented modeling community, backed up by
the advances of the model driven engineering community,
advocates model composition as a way to reduce and even
eliminate the need for aspect oriented implementation arti-
facts, such as pointcut specifications. However, in a previous
work the authors have provided evidence that preserving the
separation of concerns from design to code (by generating
an aspect oriented implementation from the aspect oriented
models) can lead to improved maintainability with respect
to the case of generated object oriented code [1]. At the
modeling level, the previous study used Theme/UML [2]
as the uniform way of modeling all concerns. Would similar
results be observed when a different AOM technique is used?

This paper accounts on a new experimental study that
provides answers to the above question. In particular, we
analyze the case of domain specific modeling (DSM) as
a form of AOM. DSM is a design methodology involving
the systematic use of domain specific languages (DSLs) to
represent the various facets (i.e., concerns) of a system.

Serge Demeyer
Universiteit Antwerpen
Antwerp, Belgium
Email: first.last@ua.ac.be

DSLs are compact languages providing notations that is
very close to the problem domain and quite intuitive for
the domain experts and, as a consequence, they reduce and
bridge the abstraction gap between the problem and the
solution domains. Finally, note that a single DSL is rarely
sufficient to describe all the system facets, hence a number
of DSLs are typically used in combination to describe all
the views of a complex system. In this respect, DSLs and
the DSM paradigm provide an approach to separation of
concerns and can be regarded as a form of AOM [3], [4].
This study compares two alternatives:

1) Aspect “disrupting” process (OO treatment): An ob-
ject oriented implementation in Java is automatically
generated from domain specific models, comprising a
mix of UML (for core functionality) and DSLs (for
qualities like security and performance).

2) Aspect “preserving” process (AO treatment): An as-
pect oriented implementation in Aspect] is automati-
cally generated from the same models.

In both alternatives, a number of subjects are asked to
perform several maintenance tasks that require the system to
be modified at the modeling level (addition and improvement
of functionality), a new version to be generated, and the
generated code to be adapted. Ultimately, the experimental
study will answer to the following research question: Are
maintenance cycles, on average, shorter when the AO al-
ternative is used?. The results show that, indeed, the AO
alternative is more favorable in most of the cases.

The presented study observes the test subjects from two
complementary perspectives. On one hand, the effort spent
by the subjects is objectively measured and compared. On
the other hand, subjects are administered a series of ques-
tionnaires that help understand the results of the experiment.

The rest of the paper is structured as follows. In Section II,
we describe the problem statement in detail. In Sections III
and IV, we present the design of the experimental user study
followed by a statistical analysis of the obtained results. In
Section V, we describe the questionnaires and their results.
In Section VI, the threats to the validity of this study
are discussed. Finally, Sections VII and VIII conclude the
paper by presenting the related work and summarizing our
findings.

II. PROBLEM STATEMENT REVISITED

The two alternatives introduced in Section I and compared
further on in this work are explained in detail here. This sec-
tion also elaborates on the motivations behind the selection
of the technologies used in this experiment.

A. Modeling Level

Access control composition Functionality composition Service-level
policies - > <—> agreements
XACML mode umL mode WSLA

Figure 1. Modeling with DSLs

As described in Figure 1, this paper investigates the case
of applications designed via multiple modeling languages.
The core functionality of the application is modeled via
a UML model, while the access control policies (security
concern) and the service level agreements (performance
concern) are specified using two DSLs. An integrated DSM
approach should allow the developer to select either a
suitable DSL for a given concern (if such candidate exists)
or to fall back on the default setting of using, e.g., UML.
Indeed, a general purpose modeling language like UML
remains very suitable for the specification of certain system
concerns, such as most functionality related issues.

For specifying the application-level access control policy,
XACML is selected, while the service level agreement is
modeled via WSLA. The selection of the security and
performance concerns is motivated by their key relevance
in virtually any realistic software project. The selection of
the sub-concerns (access control policies and service level
agreements) was mandated by the availability of existing
DSLs.

The choice of XACML [5] was motivated by a number
of factors. First, XACML is well known, widely accepted,
and standardized. It is a declarative DSL that allows the
specification of fine grained and context aware access
control policies. Moreover, XACML features a reference
architecture proposing a standard for the deployment of
the necessary software modules within an infrastructure to
allow efficient enforcement of all XACML policies. Finally,
there is a solid open source implementation for Java that
provides a complete support for all the mandatory features
of XACML.

Concerning service level agreement (SLA) languages, we
have surveyed the literature [6], [7], [8], [9] and selected
WSLA [7] based on its maturity, academic status, tool
support, available documentation, and feature set. Further,
WSLA has been used as the starting point for the design of
the upcoming standardized SLA language [10]. Interestingly,
WSLA features a reference deployment architecture, as
XACML. A complete implementation was not available,
and the authors had to implement additional infrastructure
to support the enforcement of WSLA agreements. In this

respect, the reference architecture was a solid guideline for
authors in order to avoid misinterpretations.

Finally, two composition models are used as glue. There
is a growing number of approaches that address the problem
of DSL composition [11], [12]. However, they require that
the input DSLs belong to the same technical space, i.e.,
share a common metamodel. In this work, we leverage an
approach developed by the authors in previous work and
that doesn’t suffer from the previously mentioned limitations
[4]. It is based on the concept of a concern interface, which
bridges between concerns expressed in different modeling
languages.

B. Implementation Level

Starting from the same set of models, two different
implementations are generated via two tool chains. The code
generation is semi-automatic, as behavior is not defined at
the modeling level and should be manually implemented in
the code. Note that the code generation uses the concept of
protected regions [13] in order to make sure that subsequent
code generation steps do not overwrite any any manually
added modifications. Details of the code generation specifics
are further described in [4].

The first alternative is depicted in Figure 2(a). The con-
cerns are merged at the modeling level by means of model
composition and object-oriented source code is produced.
Even though model composition does not necessarily imply
the use of object-oriented programming languages, it is
the closest match in terms of abstractions used. Traditional
AOM approaches (e.g., [14], [15], [16]) implicitly suggest to
perform the composition at the modeling level that produces
an integrated system view. This eliminates the need for
aspect composition at the implementation level.

The second alternative is depicted in Figure 2(b). The
concerns are kept modularized all the way down to the
source code. A model-to-code transformation tool is used
to transform each modularized concern to the code level.
The composition models are reflected at the code level by
a set of aspect-oriented pointcuts. The composition itself
is performed by the aspect code weaver that produces a
composed byte-level code (not shown on the figure). Several
AOM approaches follow this alternative (e.g., see [2], [17]).

Note that in addition to the common modeling approach,
both alternatives leverage on reusable components (i.e., a
policy evaluation service and a SLA evaluation service)
in order to evaluate the access control policies and SLA
descriptions. Such components are suggested by the corre-
sponding reference architectures and are preserved in the
two alternatives as such.

The choice between the two alternatives is not neutral.
Rather, it has a direct impact on several dimensions, such
as the productivity of developers, the quality of the final
product, the ease of maintenance of the artifacts, and several
other matters. In the remainder of this paper we focus

Mt:sgrg ﬁgﬁ?r?\ composition Functionality composition Service-level
policies model [¥ om0 [* m | _agreements
1

(2) xacmL \ (5) WsLA

Implementation
Level

Policy
evaluation
service

SLA
evaluation
service

00 implementation

0+@-Q

(a) OO treatment

Modeling | Access control - Service-level
Level policies - > Funtz}l[‘o”rza\lly < -p-| agreements
(3) XAcmL ©) (3) wsta

Access
control

@Aspea

Implementdtion
Levg

SLA
evaluation
service

Policy
evaluation
service

\| Ao | - >
pointcuts ~.] Ao -
pointcuts

(b) AO treatment

Figure 2. Alternative treatments

on maintainability and we propose a detailed empirical
evaluation strategy to compare the two alternatives.

Note that both alternatives start from the same specifica-
tion at the modeling level. We are interested in investigating
the potentially beneficial effect of preserving the separation
of concerns from models to code. In this respect, the effort
that is necessary at the modeling level in order to carry out
the maintenance tasks is (i) common to both alternatives and
(i1) a confounding factor. Furthermore, the effort to generate
the two alternatives is the same as it is fully automated.
Therefore, we have factored out the model modification step
in our experiment design.

III. DESIGN OF EXPERIMENTAL STUDY

In order to measure which of the two processes (OO or
AO) provides better support over the maintenance cycles,
we have mapped the notion of maintainability info an effort
metric. The time necessary to execute the maintenance tasks
is used to estimate the maintenance effort. We refer to this
measure as the EFFORT in the rest of the paper. This metric
is measured in a series of controlled experiments executed
by a number of experimental subjects.

Note that the EFFORT measure includes both the under-
standing time and the change execution time. Indeed, the
most common approach when performing a maintenance
task is to switch back and forth between understanding and
changing, thus it is quite difficult to identify (and hence,
measure) the two activities apart.

In this section we present the application, the selection of
the maintenance tasks, the selection of the subjects and the
experiment execution details.

A. Screening Lab Application

For the purposes of our study we have selected an
application developed within the context of an e-health
research project. The project focuses on a large-scale plat-
form to share clinical information among multiple health-
care providers. The application represents a screening lab
system and is used to carry out mammographic images of
patients. Screening lab was selected because it is a realis-
tic application from the domain of enterprise applications
requiring complex and dynamic access control policies as
well as compliance with service-level agreements. Figure
3 illustrates the overall architecture of the application. Ini-
tially three web services (ReadingService, ScreeningService
and ScreeningSubjectService) are deployed on the server.
Each web service consists of a number of web operations
that manipulate data stored in a MySQL database. The
service consumers are three controllers (ReadingController,
ScreeningController and ScreeningSubjectController) that
create HTML views and send them back to a web-based
client. As these web services are accessible via the HTTP,
each request is first processed by the authorization engine
(XACML Engine). The authorization engine parses the access
control policies specified in XACML and decides whether
a request permission should be granted or denied. Certain
operations within the web services should guarantee a certain
level of service. ScreeningSubjectService should comply
with the throughput SLA (i.e., support a minimum num-
ber of completed operations per second). ScreeningService
should comply with both the throughput SLA as well as
the response time SLA (i.e., the measured response time
should be less than a certain threshold). Hence, relevant
SLA parameters should be measured and persisted. Each
SLA-compliant web service should carry out the necessary
measurements itself. Two internal SLA-related web services
(ThroughputSLAService and ResponseTimeSLAService) are
used in order to persist the collected measurements.

ScreeningLab Server

ReadingController
C—— Service
>
ScreeningSubject creeningSubject
> S:D
(\:"Y::I 1 Controller Service
*®

~ . —4 i
N ScreeningController Scree_mng
C—— Service
XACML
policies ‘

—

[
MySQL
Database

ThroughputSLA
Service

esponseTimeSLA
" Service

Engine

SLA Compliance Monitor
D
WSLA Condition
policies | Evaluation

Screening Lab Application: Overall Architecture

Figure 3.

Two reference implementations (OO and AO) have been
produced starting from the models. First, the two skeletons

Table I

INTERNAL ATTRIBUTES OF THE TWO IMPLEMENTATIONS

Metric 00 AO
Lines of Code (LOC) 2127 | 2153
Coupling between components (CBC) 71 75
Concern diffusion over components (CDC) 11 8
Concern diffusion over operations (CDO) 27 24
Concern diffusion over lines of code (CDLOC) 24 12

Table II

SUMMARY OF THE MAINTENANCE TASKS

Task number and description

Impact

T1. Introduce a conclusion service that allows ra-
diologists to create conclusions on readings. In-
troduce a double reading performed by two ra-
diologists. Once the second reading is created, a
conclusion should be automatically created.

Modification to
the functionality
with impact on
the access control
concern.

T2. Introduce an image postprocessing service
that must comply with both response time and
throughput SLAs. Modify the implementation of

Modification of
the functionality
with impact on

the screening operation so that once created an im- | the SLA concern.

age is postprocessed before added to the database.

T3. Modify the system so that radiographers are | Modification
granted a fair-use access to the patient data. Each | to the access
access to patient data should be logged and once | control concern
the number of accesses exceeds a certain threshold, | with impact on
access should be denied. functionality.

T4. The throughput SLA specification is updated | Modification to
where the throughput calculation formula is mod- | the SLA concern
ified to account for current CPU load. Adjust the | with impact on
system so that CPU load measures are persisted. functionality.

have been generated via the tool chains and, subsequently,
the behavior has been manually implemented. As shown in
Table I, the two implementations have about the same size
(cfr. LOC).

We have assessed the two implementations w.r.t. the
internal attributes like coupling [18] and concern diffusion
[19]. These are indicators of code quality and are often
argued to be predictors of maintainability, although no solid
evidence has been provided by studies so far. As shown
in Table I, the software metrics are very similar (with the
exception of CDLOC) and it would be difficult to promote
one alternative on these grounds.

B. Maintenance Tasks

For the experimental study we have used the screening
lab application introduced in the previous section. We have
designed four maintenance tasks so that the tasks are of
comparable (although not equal) difficulty. For the selection
of each task the rationale was to have tasks that involve
changes to a single concern, however with impact on at least
one other concern. As we are dealing with an experiment as
the choice of our empirical research strategy each task is
relatively confined and requires a limited amount of time to
a successful completion. Table II presents each maintenance
task in detail and summarizes the impact of the required
modifications.

Table III
BACKGROUND OF THE EXPERIMENTAL SUBJECTS

Subject | Years
D seniority

Experience
ava | Aspect]] UML| XACML| WSLA

—

Group| 10
00 12

Group| 7

._.
~J|

G| | L L] Laf LAl LIf LA 1] W 1] W] 1| W W W W

L] 1 L LI NI LI L B = 1| = = = 1O 1| 19| —

W W] B DI WO 1| W W] == DI D[B D WI| 1| 19| W2

= 00| = = 1of = 19| =] =] = =] = =] = =] o] —

N e e [S S (G IS SN Y [NG [FS [P [NG [

C. Subjects

For the selection of subjects we have resorted to the conve-
nience sampling scheme. We have enrolled 17 volunteering
participants, fifteen of whom were post-graduate researchers
at our lab and two more post-graduate researchers from the
LORE lab at the University of Antwerp. We have screened
the subjects using a questionnaire in order to assess their
skills over the technology stack that was used throughout
the application. Based on the results of this questionnaire
the subjects were assigned to two groups, following the OO
and the AO treatments respectively. In theory, the learning
process of the involved technologies (e.g., WSLA) is not a
confounding factor. However, in practice, even if it is, the
experiment design makes sure that this confounding factor
is evened out over the two groups. Table III presents the
subjects’ group assignments and their detailed profiles in
terms of their knowledge of each technology. The numbers
1, 2 and 3 stand for limited, competent and expert knowledge
respectively.

D. Experiment Execution

The design of the experiment described in details in this
section has been tested in a pilot phase, prior to the ac-
tual experiment execution. During the pilot experiment, the
complete experiment setup, including the guiding materials,
tutorials and toolset, was validated and fine-tuned. This
guaranteed a smooth execution with the actual test subjects.
For instance, we have modified the description of task T2,
we have corrected the documentation of the database API,
etc.

Before the actual experiment started, each subject was
given a tutorial on the application architecture, the DSM ap-
proach, web services, access control (XACML) and service-
level agreements (WSLA). Participants who were assigned
to the AO treatment were also given a short recap on Aspect]

Subject [1. Read 4. Maintain the code | Incorrec Correct
Start the task (time tracking)

6. Fill out
questionnaire

2. Modify

Supervisor 3. Regenerate
P the models the code

Figure 4. Test workflow

solution
correctness

syntax.

Prior to the execution of the measured maintenance tasks,
each subject was asked to perform two warmup tasks. The
first task required the addition of a new role, i.e., a supervisor
role who is allowed to perform any action on any resource.
For the second task the participants had to make an existing
web operation compliant with the response time SLA. The
goal of the warmup tasks, which covered a balanced mix of
modifications, was to give the participants more hands-on
experience with the application and to provide them with
sufficient insight into the functionality, access control and
SLA concerns.

The subjects participated one by one in supervised ex-
perimental tests. The maintenance tasks were executed on
a workstation using MagicDraw for modeling and Eclipse
for model transformations, code generation and coding.
Accordingly with the best practices in empirical software
engineering, we have used randomization of the task order
in order to improve the precision of the results.

Figure 4 illustrates the workflow of each test. In order to
complete a maintenance task assigned in Step 1, one needs to
firstly modify the models (Step 2), regenerate the code (Step
3) and then manually complete the produced implementation
(Step 4). This study focusses on the effect of preserving
separation of concerns from models to code. In that respect,
the time necessary to modify the models is not interesting,
especially in light of the consideration that both groups
work on the same models and the code regeneration steps
are identical in both treatments. In fact, the modeling time
represents a confounding factor. In order to factor out the
differences in EFFORT that might emerge due to subjective
modification of the models, in our experimental setup the
modifications of all UML, XACML and WSLA models
were done by the supervisor. Per each task, the supervisor
would perform and explain the modeling adjustments to the
subject and generate the code (cfr. lower part of the figure).
Afterwards the participant would be asked to complete the
maintenance task.

After the completion of each task, automated unit testing
was launched by the supervisor (Step 5) in order to ensure
the correctness of the produced solution. In case any errors
were found, the subject was asked to fix them until the test
was passed.

In order to measure the EFFORT, we have developed
a web-based time recorder tool that was used by the ex-
periment supervisor to start/pause/stop the time tracking

Table IV
DESCRIPTIVE STATISTICS FOR EFFORT (IN SECONDS)

00 AO
Task | Mean St. dev. Mean St. dev. Reduction of EF-
FORT
Tl 1024.38| 352.077 | 706.29 | 110.521 | 31.1 %
T2 645.22 | 158.680 | 1239.75| 399.351 | -92.1 %
T3 1036.11] 551.750 | 459.57 87.753 55.7 %
T4 362.75 93.744 230.63 66.350 36.4 %

per maintenance task. The timer was started right after the
supervisor had regenerated the code and stopped when the
subject reported to be ready. At that point the test suite
was run. In case of failure, the additional time spent by
the subjects in fixing their solution due to a failed test was
accounted as well. In total, only 4 errors (2 for each group)
have been observed out of 68 executed maintenance tasks
and no task was failed more then once by the same subject.
Note, also, that the time spent by the supervisor in modifying
the model, explaining the changes and regenerating the code
was not accounted in the measurements.

We have administered a total of six questionnaires at
different points in time. Participants were asked to fill out
an initial questionnaire immediately after the warmup tasks.
Each task was followed by a questionnaire (Step 6). A final
questionnaire was required at the end of the experiment.
The purpose and details of all questionnaires is described in
section V.

E. Experimental Hypotheses

Per each task, we want to study the correlation between
the treatment used (AO or OO) and the EFFORT (time).
Specifically, we are interested in understanding whether the
AO treatment gives a competitive edge.

For each task, we test the (effective) null hypothesis Hy:
woo = kao, with alternative hypothesis Hi: poo > pao,
where 1100 and pao represent the average EFFORT for
each treatment. Note that the tested null hypothesis is the
worst case for the true null hypothesis Hy: poo < prao-

IV. ANALYSIS OF THE RESULTS

In this section we present the results of the experiment
execution followed by their interpretation and a discussion
of the threats to the validity of our experiment.

A. Outlier Analysis and Descriptive Statistics

First of all, we have performed an outlier analysis in order
to determine the data points that deviate markedly from the
rest of the data set. Figure 5 illustrates the outliers by means
of box plots. The performance of subject 17 (OO treatment)
is an outlier in Tasks 1 and 4. Two more outliers are found
for Tasks 1 and 3 (AO treatment). Outliers are removed from
the following statistical analysis.

Table IV presents the descriptive statistics for the EF-
FORT spent per task, in seconds. The results show that the

T1 T2 T3 T4
17
3 |] 3 | 8 |
g 2 2 g
a 2 L o
[} [[} [}
E| 7 E o E o E o
~ g g ~ g = g4
ﬁ : : ﬁ o 17
g L
AO 00 A0 00 A0 00 AO 0O
Figure 5. Box plots
Table V
NORMALITY TEST
Task 1 Task 2 Task 3 Task 4
00 AO 00 AO 00 AO 00 AO
p-values | 0.318| 0.397| 0.161| 0.552| 0.200| 0.918| 0.845| 0.355

AOQ treatment performed better in three out of four tasks (T1,
T3 and T4) and the effort reduction is substantial (>31%).
However, the AO treatment performed much worse in the
case of Task 2.

B. Statistical Analysis

The first step towards the selection of an appropriate
statistical method is the normality test. Table V presents
the results of the Shapiro-Wilk test for normality, which is
the most suitable test given the relatively small data set.
The test results indicate that the dependent variables are
indeed normally distributed (p > 0.05). Hence, we can use
parametric tests, which are known to have better power.

Table VI presents the results of the “two independent
samples” t-test (2-tailed). According to these p-values, we
can assert that the above-mentioned conclusions are statisti-
cally significant for all tasks. Hence, we can reject the null
hypothesis for all the tasks. However, given the descriptive
statistics, it is obvious that for task T2 the correlation is in
the opposite direction than expected.

Finally, we have also retrospectively investigated the
power of the statistical test performed, i.e., the probability
that the test rejects a false null hypothesis. Table VII

Table VI
2-TAILED T-TEST
Task 1 | Task 2 | Task 3 | Task 4
p-values | 0.040 0.003 0.014 0.006

Table VII
POST-HOC POWER ANALYSIS

Task 1 | Task 2 | Task 3 | Task 4
Effect size 1.18 -2.01 1.37 1.63
Noo 8 9 9 8
Nao 7 8 7 8
1-8 0.56 0.97 0.71 0.86

illustrates the results of the post-hoc power analysis, per
task. The commonly accepted value (1 — 3 > 0.8) is clearly
reached for the tasks T2 and T4. The relatively smaller
size of the two compared populations (Npoo and N4p) is
compensated by a very large effect size. For T3 the value is
close to the threshold. For T1 the threshold is not met. In
this case, the effect size is somewhat smaller (but still ample
enough). Hence, a larger population size would increase the
power.

C. Interpretation of the Results

The nature of the tasks had an impact on the results and
in this section we provide some possible explanations of the
obtained results.

The first task (T1) required modifications to system func-
tionality with an impact on the crosscutting access control
concern. In particular, the task required that access control
check is skipped whenever the web operation is called
internally from another web service. This requires a rela-
tively complex conditional statement over the interception
by the access control engine. The AO treatment results
in lower EFFORT values as Aspect] offers more powerful
abstractions to express such conditional statements related
to the program execution flow (i.e., the cflow construct).

The second task (T2) required modifications to system
functionality with an impact on the service-level agreement
concern. Although the AO treatment required fewer mod-
ifications to the SLA concern, this treatment has resulted
substantially higher EFFORT values. The main cause is that
the calculation of the response time for one of the methods
should have excluded the execution time of certain opera-
tions called within the method. Hence, participants needed
a very fine-grained control over the method execution.
While the Java implementation was very straightforward, the
Aspect] code was clearly a challenge to all participants due
to the lack of language features for this case. Most of the
subjects in the AO group have actually removed the aspect
and resorted to the non-modularized Java solution.

Finally, both the third (T3) and the fourth (T4) tasks
required modifications of crosscutting nature. The AO treat-
ment required fewer modifications and they were also more
modular and “cleaner” compared to the OO treatment.
This factor has affected the measurements in favor of the
AO treatment for both tasks. This perception comes from
the observations of the experiment supervisors and is also
confirmed by the subjects in their questionnaires (especially

for T3), as described in Section V-C.

V. QUESTIONNAIRES

The purpose of administering the questionnaires was
twofold. First, we wanted to validate a number of assump-
tions regarding the experiment setup. If not confirmed, they
could result in additional threats to the validity of the exper-
iment. Second, we were looking for explanations supporting
the quantitative data collected during the experiment. In this
respect, we gathered the opinions of the participants to see
whether they confirmed our intuitive understanding about
the cause-effect relationship between the treatment and the
dependent variable, i.e., the EFFORT.

In total, six questionnaires were administered, namely
after the tutorial, after each task and at the end of the
whole experiment. Each questionnaire consisted of a series
of closed (multiple-choice) questions. Each closed question
was formulated as a statement (positive or negative) and the
participants had to indicate the degree to which they agreed
with it. The available values ranged from 1 to 5, where 1
stands for “strongly disagree” and 5 for “strongly agree”.
We have deliberately chosen a mix of both affirmative and
negative connotations for the statements in order to avoid
introducing bias. Further, critical questions (e.g., about the
assumptions on the experiment design) have been asked
twice, using different statements. Finally, in case the subject
was not in agreement with the proposed statement (values
1, 2, or 3 for the positive connotations and 3, 4 or 5 for the
negative ones), she was asked to elaborate on the motivations
via an open question.

A. Questions

Table VIII presents the questions from the six question-
naires, and the median value of the answers, which separates
the higher half of the population from the lower half. Q17
and Q18 ask the participants to indicate which tasks were the
most and least difficult to perform. Tables IX and X present
for each task how many times the subjects have indicated
that a given task is the most and least difficult, respectively.

B. Validation of the Experiment Design

This section analyzes the results of the questionnaire
responses in the light of the assumptions that we have made
concerning the experiment design.

Assumption 1: the provided tutorials and warmup tasks
were sufficient to acquire a fair understanding of the overall
DSM approach.: The median of the obtained answers to
Q1 confirm this assumption. Only one participant from the
AO group has given the score of 3 and stated that deeper
explanation of the code structure would be useful.

Assumption 2: the provided tutorials and warmup tasks
were sufficient to grasp the working of the Screening Lab
application in order to perform the maintenance tasks.:
In order to backup this assumptions we have used two

Table VIII
QUESTIONS AND MEDIAN RESULTS

Question Median Median|
00 AO

Initial| QI. The provided guidance materials 5 4

(explanation, tutorials and the tool) were clear

and sufficient to grasp the overall approach.

Q2. The warmup exercises were sufficient to 4 4

understand the application architecture and

design.

Q3. The provided explanation was sufficient to 4 4

obtain a basic understanding of how XACML
works within the application.

Q4. The provided explanation was sufficient to 4 4
obtain a basic understanding of how WSLA
works within the application.

After | Q5. I could easily understand the required 4 4
Taskl| modifications.
Q6. I could easily pinpoint the exact places 4 4
where changes should occur.
Q7. I would revisit my solutions if I had the 3 2
chance (e.g., extra time).
After | Q8. I could easily understand the required 5 5
Task2| modifications.
Q9. I could easily pinpoint the exact places 5 3
where changes should occur.
Q10. I would revisit my solutions if I had the 2 4
chance (e.g., extra time).
After | QI1. I could easily understand the required 4 4
Task3| modifications.
Q12. T could easily pinpoint the exact places 4 4
where changes should occur.
Q13. I would revisit my solutions if I had the 3 2
chance (e.g., extra time).
After | QI14. I could easily understand the required 5 5
Task4| modifications.
Q15. T could easily pinpoint the exact places 5 5
where changes should occur.
Q16.. I would revisit my solutions if I had the 2 1

chance (e.g., extra time).

Final | Q17. Which tasks were the most difficult to see table IX

perform.
Q18. Which tasks were the easiest to perform. see table X
Q19. After the warm up, I wasn’t sure about the | 2 2

overall working of the application.

Table IX
REPORTED MOST DIFFICULT
TASK. FREQUENCIES.

Table X
REPORTED LEAST DIFFICULT
TASK. FREQUENCIES.

Task | OO | AO Task | OO | AO
T1 6 2 T1 1 2
T2 0 8 T2 7 0
T3 5 1 T3 2 4
T4 0 0 T4 9 8

similar questions. Q2 is affirmative and has been asked after
the tutorials and before the execution of the maintenance
tasks. Q19 is negative and has been asked at the end of the
experiment. The median for both questions is on the positive
side and supports the assumption. In more detail, eight par-
ticipants gave a score of 3 (neutral) to either Q2 or Q19, but
only two to both. These participants suggested to increase
both the difficulty and the number of the warmup tasks. All
participants indicated that after the first experimental task

the working of the application was clear. Hence, any replica
of this experiment should consider adding an extra warm up
task.

Assumption 3: the provided tutorials and warmup tasks
were sufficient to understand how XACML and WSLA work
in the application.: This assumption is backed up by the
answers to questions Q3 and Q4. One subjects actually
suggested to lessen the explanation about the access control
concern as it is straightforward.

Assumption 4. the description of all tasks was clear and
understandable for every participant.: The median value for
Q5, Q8, Q11 and Q14 clearly indicate that the tasks were
well understood by all participants.

Assumption 5: all tasks were of comparable difficulty.:

Tables IX and X provide answers to question Q17 and Q18
regarding the task difficulty. All subjects in both treatments
have indicated that T4 was one of the easiest tasks. In
retrospect, we have realized that the most difficult part of
this task were the modifications at the modeling level, which
were actually performed by the supervisor.
Surprisingly, the rest of the answers seemed to depend on
the treatment. The participants using the OO treatment have
said T1 and T3 to be difficult. All participants from the AO
group have reported T2 to be difficult, which is reported as
easy by the participants using the OO treatment.

C. Validation of the Results
Questions Q6, Q7, Q9, Q10, Q12, Q13, QI5 and Q16

indicate the ease of finding the places where changes should
occur and the perceived quality of the solution by the
participants. Overall, the subjects could easily find the places
where modifications were needed (except for Task 2, AO
group). This suggests that understandability plays a lesser
role in the total effort. The subjects also confident about the
quality of their solution except for: (i) Task 1, OO group, (ii)
Task 2, AO group, and (iii) Task 3, OO group. The reported
quality of the executed tasks is to be used as an extra layer
of assurance that goes beyond the checks performed by the
automated test suite. The following paragraph elaborate on
the motivations provided by the subjects in the diverging
cases mentioned above.

Task 1.: The median metrics for the OO group indicate
that the subjects were not sure about the quality of their
solutions. Their doubts were substantiated as many of them
had introduced a security threat. Indeed, i.e., they were
using the ‘null’ subject as a guard condition for adding an
automated conclusion object.

Task 2.: Five of the eight subjects from the AO group
were unsure where the modifications should occur at the
code. Further, six out of eight were unhappy about the
quality of their solutions. This is due to the fact that the
Aspect] does not offer simple means to deal with very fine-
grained execution control flow, which are necessary for this
task. Hence, the subjects started looking for a more complex

Aspect] constructs and most of them have eventually decided
to break up the aspect.

Task 3.: The median for the OO group indicates that the
subjects were unsure regarding the quality of their solution.
The reported reason lies on the amount of code they had to
duplicate.

Task 4.: None of the participants from neither of the
groups had problems.

VI. THREATS TO VALIDITY

We discern between two types of threats to validity ap-

plicable to our experiment and we describe them separately.

1) Internal Validity:

« One of the possible threats to the internal validity is the
familiarity of each subject with the set of technologies
that were used throughout the experiment. However,
the average level of knowledge across the treatment
groups, both self-reported by the subjects (see Table
IIT) and observed by the experiment supervisor, was
approximately the same. Moreover, we have reduced
the impact of the required skills to mainly Java and
Aspect], as the modifications at the modeling level were
executed by the supervisor.

o Another threat to the internal validity is the sub-
jects’ increasing understanding of the the screening
lab application, i.e., the learning effect. Although the
questionnaires have indicated that the warmup tasks
were sufficient to acquire a good understanding of the
application architecture and design, eight participants
have mentioned that the warmup tasks were possibly
insufficient. However, by opting for a randomized order
of execution of the tasks we have minimized this threat.

o During the execution of the experiment, the subjects
may react differently over time. E.g., subjects may
become bored or tired, or they may become more or
less positive to one or another treatment. However, we
did not notice any serious effects and this threat can be
discarded.

o The subjects’ knowledge of the purpose of the eval-
uation is also a threat to the internal validity. Hence,
participants may not be impartial to the outcome of the
experiment. Given the constant supervision, this threat
has been minimized.

2) External Validity:

« For starters, a potential threat is the inclusion of non-
professional programmers in the experiment. However,
studies have hinted that the differences between stu-
dents and professionals can be less than one could
imagine. For instance, in [20] Runeson states that the
differences are significant when comparing undergradu-
ate and graduate students. However, the differences are
small between graduate students and professionals.

o For the purposes of internal validity we have elim-
inated the need for performing any modifications at

the modeling level. Obviously, this choice could affect
the external validity of the results. That is, subjects
have less options to gain further insight into the code
structure while thinking in terms of models. We have
tried to minimize this threat by performing the model-
ing modifications immediately before each maintenance
task and by explaining the modifications.

« An important threat to the external validity of the study
is the relative small size of the applications and of the
maintenance operations. Provided the time-frame we
had (1 afternoon per subject) we had to make a trade-off
in order to keep the tasks doable. Real-life maintenance
operations may take several days or even longer. In
addition, longer maintenance operations may require an
iterative switching between models and code.

o Another threat is the limited scope of the maintenance
operation types (e.g., no refactoring). Also, the chosen
tasks might not be representative of real-word situa-
tions. However, we have tried to simulate “typical” and
“diverse” maintenance operations given the scope of the
study (addition and improvement of functionality).

o The results could be specific for the selected technol-
ogy stack, although as described in section II each
technology is a good representatives for the involved
discipline. The same reasoning applies to the adoption
of the specific AOM approach of this study, but to a
smaller extent, as this is the second study we perform
with two different modeling techniques.

o Also, the results could be specific to the chosen do-
mains or applications. As illustrated for Task 2, there
are examples where AO code does not pay off and,
thus, the OO treatment is favored.

« Finally, it could also be difficult to generalize the results
to other kinds of concerns not used in this study.

VII. RELATED WORK

The results of this paper complement our previous study
[1] where Theme/UML is used as an AOM approach.
To the best of our knowledge, there are no other exist-
ing empirical studies that evaluate alternative development
processes, which transform a modularized design into an
implementation as described in section II. In this section
we present the existing empirical efforts in the field of AO
vs. OO comparisons that are complementary to our work.
Two groups of empirical studies involving the AO and OO
paradigms are known in the literature.

The first group explores and compares the use of AO
against OO programming languages purely from the code
perspective. In [21] Tonella and Ceccato assess the effect of
the migration of the so-called aspectizable interfaces in Java
programs to Aspect]. Their study focuses on maintainability
and understandability and concludes that the migration to
an AO platform provides externally observable benefits.
Hannemann and Kiczales in [22] and Garcia et al. in [23]

investigate the improvements of the Aspect] implementation
compared to the Java implementation of GoF patterns fo-
cusing on code modularity and code reuse. In [24] Cacho et
al. study the aspectization of design patterns in the context
of existing software systems and evaluate the interactions
between pattern implementations. They focus mainly on the
scalability of AOP for composing GoF patterns. In [25]
the authors present a quantitative and qualitative study that
assesses the positive and negative impacts of using an AO
language in developing software product lines. The study
focuses on design stability in terms of modularity, change
propagation and feature dependency. An evaluation of how
AO mechanisms support enhanced incremental development
and avoid early design degradation is presented in [26].
Hanenberg et al. [27] investigate the development times of
crosscutting concerns using OO and AO techniques.

The second group performs a comparison of AO and OO
paradigms at the modeling level only. In [28] the authors
assess how suitable each paradigm is in the context of
distributed real-time and embedded systems in terms of
reusability of model elements. In [29] the authors analyze
the impact of aspect on conflict resolution in the context
of model composition. All these studies conclude that AOM
offers benefits compared to the traditional OO modeling with
respect to understandability, maintainability and composition
conflict resolution.

Our work is situated across the two groups of studies and
complements them by investigating which software devel-
opment process alternative is likely to be more beneficial
when it comes to maintainability.

VIII. CONCLUSIONS

The aspect oriented modeling community has been implic-
itly advocating the use of model driven techniques as an im-
plementation strategy for concern composition that reduces
the need for aspect oriented artifacts at the implementation
level. In this paper we have investigated whether an aspect
“preserving” process relying on an AO implementation
offers benefits in the context of maintainability compared
to a “disrupting” process that generates a streamlined OO
code. Based on an DSM approach that leverages on the use
of UML for the specification of the core functionality and
DSLs for the specification of non-functional concerns (such
as, access control and service level agreements) we have
discovered that in three out of four cases the AO alternative
shortens the maintenance cycles.

Obviously, we cannot draw too-broad conclusions from
this experiment. However, these results are in line with the
findings of our previous empirical study based on the use of
Theme/UML. This initial, combined evidence clearly calls
for the inception of a research path in this area, e.g., to
further investigate and characterize the maintenance patterns
that influence the results.

ACKNOWLEDGMENT

This work is partially funded by the Flemish government
institution IWT, by the Interuniversity Attraction Poles Pro-
gramme Belgian State, Belgian Science Policy, and by the
Research Fund K.U.Leuven.

(1]

(2]

(3]

(4]

(3]

(6]

(7]

(8]

(9]

(10]

(11]

(12]

[13]

(14]

[15]

REFERENCES

A. Hovsepyan, R. Scandariato, S. V. Baelen, Y. Berbers, and
W. Joosen, “From aspect-oriented models to aspect-oriented
code? the maintenance perspective,” in 9th International
Conference on Aspect-Oriented Software Development, 2010.

E. Baniassad and S. Clarke, Aspect-Oriented Analysis and
Design: The Theme Approach. Addison-Wesley, 2005.

S. Cook, “Separating concerns with domain specific lan-
guages,” in Modular Programming Languages, ser. Lecture
Notes in Computer Science, 2006, vol. 4228.

A. Hovsepyan, S. Van Baelen, Y. Berbers, and W. Joosen,
“Specifying and composing concerns expressed in domain-
specific modeling languages,” in 47th International Confer-
ence Objects, Models, Components, Patterns, 2009.

OASIS, “Core specification: Extensible access control markup
language (XACML) v2.0.”

S. Frglund and J. Koistinen, “Quality of services specification
in distributed object systems design,” in 4th USENIX Confer-
ence on Object-Oriented Technologies and Systems, 1998.

IBM Corporation, “Web service level agreement (WSLA)
language specification,” http://www.research.ibm.com/wsla/.

D. D. Lamanna, J. Skene, and W. Emmerich, “SLAng: A
language for defining service level agreements,” in 9th IEEE
Workshop on Future Trends of Distributed Computing Systems
(FTDCS), 2003.

V. Tosic, H. Lutfiyya, and Y. Tang, “Web service offerings
language (WSOL) support for context management of mo-
bile/’embedded XML web services,” in International Confer-
ence on Internet and Web Applications and Services, 2006.

Grid Resource Allocation Agreement Protocol Working
Group, “WS-Agreement specification,” http://www.ogf.org.

M. Emerson and J. Sztipanovits, “Techniques for metamodel
composition,” in DSM Workshop, 2006.

A. Zito, Z. Diskin, and J. Dingel, “Package merge in uml
2: Practice vs. theory?” in 9th International Conference on
Model Driven Engineering Languages and Systems, 2006.

SINTEF, “MOFScript,” http://modelbased.net/mofscript/.

O. Barais, J. Klein, B. Baudry, A. Jackson, and S. Clarke,
“Composing multi-view aspect models,” in 7¢h International
Conference on Composition-Based Software Systems, 2008.

A. Hovsepyan, S. Van Baelen, Y. Berbers, and W. Joosen,
“Generic reusable concern compositions,” in 4th European
Conference on Model Driven Architecture Foundations and
Applications, 2008.

[16]

[17]

(18]

[19]

[20]

(21]

(22]

(23]

[24]

[25]

[26]

(27]

(28]

[29]

Y. R. Reddy, S. Ghosh, R. B. France, G. Straw, J. M. Bieman,
N. McEachen, E. Song, and G. Georg, “Directives for com-
posing aspect-oriented design class models,” Transactions on
AOSD, vol. 3880, 2006.

S. Hanenberg, D. Stein, and R. Unland, “From aspect-oriented
design to aspect-oriented programs: tool-supported translation
of JPDDs into code,” in International Conference on Aspect-
Oriented Software Development, 2007.

S. Chidamber and C. Kemerer, “A metrics suite for object ori-
ented design,” IEEE Transactions on Software Engineering,
vol. 20, no. 6, pp. 476-493, 1994.

C. Sant’anna, A. Garcia, C. Chavez, C. Lucena, and A. von
Staa, “On the reuse and maintenance of aspect-oriented
software: An assessment framework,” in Brazilian Symposium
on Software Engineering, 2003.

P. Runeson, “Using students as experiment subjects - an
analysis on graduate and freshmen student data,” 2003.

P. Tonella and M. Ceccato, ‘“Refactoring the aspectizable
interfaces: An empirical assessment,” IEEE Transactions on
Software Engineering, vol. 31, no. 10, pp. 819-832, 2005.

J. Hannemann and G. Kiczales, “Design pattern implementa-
tion in Java and Aspect],” in Conference on Object-Oriented
Programming, Systems, Languages and Applications, 2002.

A. Garcia, C. Sant’Anna, E. Figueiredo, U. Kulesza, C.
Lucena, A. von Staa, “Modularizing design patterns with
aspects: A quantitative study,” in International Conference
on Aspect-Oriented Software Development, 2005.

N. Cacho, C. Sant’ Anna, E. Figueiredo, A. Garcia, T. Batista,
and C. Lucena, “Composing design patterns: a scalability
study of aspect-oriented programming,” in 5th International
Conference on Aspect-Oriented Software Development, 20006.

E. Figueiredo, N. Cacho, and C. Sant’Anna, et al., “Evolving
software product lines with aspects: an empirical study on de-
sign stability,” in 30th International Conference on Software
Engineering, 2008.

P. Greenwood, T. Bartolomei, E. Figueiredo, and A. Garcia,
et al., “On the impact of aspectual decompositions on design
stability: An empirical study,” in 21st European Conference
on Object-Oriented Programming, 2007.

S. Hanenberg, S. Kleinschmager, and M. Josupeit-Walter,
“Does aspect-oriented programming increase the development
speed for crosscutting code? an empirical study,” in Inter-
national Symposium on Empirical Software Engineering and
Measurement. 1EEE Computer Society, 2009, pp. 156-167.

M. Wehrmeister, E. P. Freitas, D. Orfanus, C. E. Pereira,
and F. J. Rammig, “Evaluating aspect and object-oriented
concepts to model distributed embedded real-time systems
using RT-UML,” in 17th IFAC World Congress, 2008.

K. Farias, A. Garcia, and J. Whittle, “Assessing the impact
of aspects on model composition effort,” in 9th International
Conference on Aspect-Oriented Software Development, 2010.

