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Abstract

One of the many crucial issues in fabricating state-of-the-art Complementary Metal Ox-
ide Semiconductor transistors is the precise electrical characterization of Ultra-Shallow
Junctions (USJs) such as the source and drain extension regions. In this work, we eval-
uate the capabilities of the Photomodulated Optical Reflectance (PMOR) technique,
such as implemented in the Therma-Probe (TP) tool, for fast and non-destructive car-
rier profiling in Si. PMOR is an optical pump-probe technique wherein the probe laser
measures the sample reflectance (DC reflectance) as well as the pump-laser-induced
changes in sample reflectance (AC reflectance).

This work first develops a physical model to explain quantitatively the behavior
of the DC and AC reflectances, as measured on both homogeneously doped and non-
homogeneously doped Si. Particular focus is set upon the behavior of offset curves
in which both signals are recorded as a function of the pump-probe beam distance.
The model is based on the quantitative study of the physical origins of a change in
reflectance and in refractive index, complemented with the derivation and the resolution
of the transport equations of the pump- and probe-induced excess carrier and heat
distributions in both homogeneously and non-homogeneously doped Si.

The model is tested on homogeneously doped silicon and on box-like active doping
profiles. Most important of all, this assessment shows that, while the dependence of
both signals upon the depth of the active doping profiles is quantitatively modeled with
a high accuracy, the dependence upon the active doping concentration requires further
improvement.

Finally, the capabilities of PMOR for carrier profiling are evaluated. More partic-
ularly, three techniques are developed for the extraction of information about active
doping profiles from PMOR measurements. The first two techniques are based on the
measurement of the AC reflectance and allow for the determination of the junction depth
of box-like active doping profiles. Whereas one technique proves to have a low accuracy,
the other leads to the fast and non-destructive determination of the junction depth with
sub-nanometer precision and accuracy. The third developed technique is a model-based
full-profile characterization technique combining the use of the AC and DC reflectances.
The technique is able to reconstruct state-of-the-art profiles with a very high precision
but a low accuracy, owing to the remaining modeling errors. In spite of its current low
accuracy, this last development gives a very bright outlook on the possible use of PMOR
for carrier profiling.
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Samenvatting

Een van de vele essentiële aspecten bij het aanmaken van Complementary Metal Ox-
ide Semiconductor transistoren is de nauwkeurige controle van de elektrische karak-
teristieken van Ultra-Dunne Juncties zoals de bron en afvoer extensiegebieden. In dit
werk, evalueren we de mogelijkheden van de gemoduleerde optische reflectietechniek
(PMOR), zoals gëımplementeerd in het Therma-Probe (TP) toestel, voor snelle en niet-
destructieve ladingsdragersdiepteprofilering in silicium. PMOR is een optische pump-
probe reflectietechniek waarbij de probe laser zowel de monsterreflectie (DC reflectie)
als de pump-laser-gëınduceerde veranderingen van de monsterreflectie (AC reflectie) op-
meet.

Dit werk ontwikkelt eerst een fysisch model om kwantitatief het gedrag van de DC
en AC reflecties op homogeen en niet-homogeen gedopeerd Si te verklaren. Bijzondere
aandacht wordt besteed aan het gedrag van offset curves waarbij beide signalen in func-
tie van de pump-probe bundelafstand opgemeten worden. Het model is gebaseerd op
een kwantitatieve studie van de fysische oorsprong van de veranderingen in reflectie
en in brekingsindex en op de afleiding en de oplossing van de transportvergelijkingen
voor de pump- en probe-gëınduceerde excess ladingsdragers en warmteverdeling zowel
in homogeen als niet-homogeen gedopeerd Si.

Het model werd getest op homogeen gedoteerd silicium en op boxdoperingsprofie-
len. Belangrijk hierbij is dat deze testen aantonen dat terwijl de diepteafhankelijkheid
van beide signalen correct kwantitatief gemodelleerd werd, de modelering van de doper-
ingsafhankelijkheid nog verbeterd dient te worden.

Ten slotte werden de mogelijkheden van PMOR voor ladingsdragersdiepteprofiler-
ing geëvalueerd. Drie technieken werden ontwikkeld om informatie over actieve doper-
ingsprofielen te extraheren uit PMOR metingen. De eerste twee technieken zijn gebaseerd
op de meting van de AC reflectie en kunnen de junctiediepte van boxdoperingsprofielen
bepalen. Terwijl de eerste techniek een vrij lage nauwkeurigheid blijkt te hebben, leidt de
tweede techniek tot de snelle en niet-destructieve bepaling van de junctiediepte met een
sub-nanometer precisie en nauwkeurigheid. De derde ontwikkelde techniek is een model-
gebaseerde profielkarakteriseringstechniek die het gebruik van de AC en DC reflecties
combineert. Deze techniek is in staat om state-of-the-art profielen te reconstrueren met
een zeer hoge precisie maar voorlopig nog met een te lage nauwkeurigheid, als gevolg van
de nog resterende modeleringsfouten. Ondanks zijn huidige beperkte nauwkeurigheid,
geeft deze laatste ladingsdragers profileringstechniek wel al heel veelbelovende resultaten.
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Chapter 1

Introduction

At first sight, it may seem surprising that carrier profiling, i.e. electrical characterization,
can be performed with an optical measurement technique. We will, however, show in
this work that these two research fields are linked to each other. This Chapter therefore
briefly introduces both research domains. It is mostly a compilation of results and
insights that have been gathered by colleagues and other researchers who I would like
to deeply acknowledge, since their direct and indirect input has been essential to this
work.

This Introduction starts with the motivation for this work in Section 1.1. The ulti-
mate objective of this thesis being the development of an optical carrier-profiling tool,
we then introduce in Section 1.2 the most commonly used techniques for the charac-
terization of carrier and doping profiles in semiconductors. These techniques prove to
be very useful for the final assessment of the developed technique. Further we shall see
that each has its drawbacks and advantages. After discussing the destructive and/or
contacting techniques in Section 1.2.1, focus is put upon non-destructive, non-contact
techniques for carrier profiling in Section 1.2.2. Most important of all, Section 1.2.2.3
introduces the basics and state of the art of the Photomodulated Optical Reflectance
(PMOR) technique. Finally, Section 1.3 describes the structure of this work.

1.1 Motivation

One of the many crucial issues in fabricating state-of-the-art Complementary Metal
Oxide Semiconductor (CMOS) transistors is the precise electrical characterization of
Ultra-Shallow Junctions (USJs) such as the source and drain extension regions [Figure
1.1(left)]. The currently used low energy ion implantation and fast annealing techniques
allow for very shallow (junction depth Xj < 20 nm) and highly actively doped (peak
carrier concentration Npeak > 1020 cm−3) regions[1] [Figure 1.1(right)]. Furthermore,
much effort is today placed in new techniques such as laser annealing to achieve higher
concentration levels and steeper profiles. However, the shallower these doped regions
become, the more critical their electrical characterization becomes. Small variations in
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z (depth)

Carrier concentration (cm−3)

z (depth)

Npeak > 1020 cm−3

Xj < 20 nm

Xj

Npeak

Figure 1.1: (left) Two-dimensional Scanning Spreading Resistance (Section 1.2.1.4) map of a planar
MOS transistor. The circled regions are the source and drain extension regions, also called ultra-
shallow junctions. (right) Schematic of an ultra-shallow carrier profile such as typically found in the
extension regions of modern transistors.

e.g. the depth of these regions can indeed induce unacceptable changes in the perfor-
mance of the final transistor[102]. The ability to monitor accurately the active doping
profile of these USJs is therefore of critical importance.

Presently, dopant/carrier depth-profiling is usually based on a combination of Sec-
ondary Ion Mass spectrometry (SIMS; see Section 1.2.1.1) for the total profile (only
chemical, not electrical information) and conventional Four-Point Probe (FPP; see Sec-
tion 1.2.1.2) for sheet resistance, i.e. electrical activation. However, the combination
of these techniques suffers from a significant number of disadvantages. First, SIMS is
an off-line technique, applicable only on small pieces of material. Moreover, a mea-
surement on one specific position on a wafer is rather time-consuming (dicing, sample
preparation, measurement, data processing). Second, conventional FPP does not give
any profile information and requires rather large analysis areas (> 1 mm2). Besides,
probe penetration leads to unreliable results on ultra-shallow profiles (< 30 nm) in the
presence of well/halo implants.

Recently some new promising techniques have been emerging. First, Scanning Spread-
ing Resistance Microscopy (SSRM; see Section 1.2.1.4) has shown very powerful two-
dimensional carrier imaging capabilities. However, this off-line technique requires a
complicated and critical sample preparation (destructive technique). Second, new FPP
techniques have emerged, either with virtually zero penetration and a smaller measure-
ment area [Micro Four-Point Probe (µFPP); see Section 1.2.1.5] or with no penetration
whatsoever [Junction Photovoltage (JPV); see Section 1.2.2.1], but each of these also
requires further research and development (sensitivity to surface oxide, surface states,
reproducibility,...).

As a consequence, there is a real need for a new characterization technique for one-
dimensional active dopant profiling which simultaneously:

� is sensitive to the active portion of doping profiles,

� can be used in-line,

2
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� can perform the measurements quickly (5-10 minutes) and with a high repro-
ducibility,

� is nondestructive and applicable to whole wafers (no sample preparation),

� has a high spatial resolution, i.e. only require a minimal analysis area (measure-
ment of small structures),

� extracts quickly the underlying profile with high precision and accuracy on both
depth and concentration.

Among the plethora of existing measurement techniques, optical reflection techniques
are the most promising to combine all the above mentioned requirements. On the one
hand, optical probes do not require any physical contact with the sample, which makes
them a very interesting candidate for in-line noninvasive measurements. On the other
hand, for properly selected wavelengths, reflection techniques offer a very high depth
resolution. We need to distinguish between equilibrium reflection techniques, such as
Model-Based Infrared Reflectometry (MBIR; see Section 1.2.2.2) or Fourier-Transform
Infrared Spectroscopy (FTIR; see Section 1.2.2.2), and modulated reflection techniques,
such as Photomodulated Optical Reflectance (PMOR; see Section 1.2.2.3).

1.2 State of the Art of USJ Characterization

As highlighted in the motivation for this work, several techniques solve partially the
problem which this work is focusing on. In this Section, we therefore first briefly in-
troduce these techniques. The description of each technique is strictly limited to their
properties which are relevant in the framework of our investigations. More informa-
tion can be found through the numerous added references. Further, only routinely used
characterization techniques for silicon are discussed.

Since this work seeks a candidate for non-contact, non-destructive carrier profiling
tool, it is logical to divide this Section into two parts. Section 1.2.1 therefore reviews
destructive and/or contact techniques. Section 1.2.2 then focuses on non-contact, non-
destructive techniques. The latter Section introduces PMOR, the main technique used
in this work.

1.2.1 Contacting and/or Destructive Techniques

The techniques introduced in this Section all either need to make a physical contact
with the structure under investigation or even destroy it. This prohibits their use as
fast nondestructive carrier profiling techniques. In other words, it is clear that none of
these techniques can fulfill the six requirements mentioned in our motivation. They are
only present in this work because they will help us assess and discuss the accuracy of
the final developed technique.

1.2.1.1 Secondary Ion Mass Spectrometry

Although Secondary Ion Mass Spectrometry (SIMS) does not give any activation infor-
mation, it is often considered to be ’the’ reference technique for dopant depth profiling.
As shown schematically in Figure 1.2, SIMS is based on the recording as a function of

3
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Figure 1.2: Principle of a SIMS measurement. The primary ion beam (pink ions) sputters the
sample surface. The secondary ions, i.e. the ionized sputtered atoms (green, blue and red), are then
accelerated towards a mass spectrometer for species determination.

time of the ions sputtered from the sample by a primary ion beam (typically Cs+ or O−

with typical energies 0.5 to 5 keV). The sputtered ions form a secondary ion beam which
is accelerated towards a mass spectrometer for species determination, hence the name
of the technique[97]. SIMS actually measures the number of ionized sputtered atoms of
the considered species as a function of time. One therefore still needs to translate this
raw information into a dopant profile, i.e. a doping concentration as a function of depth.
Theoretically speaking, this can be achieved if one knows the ionization probability (i.e.
the fraction of the sputtered atoms which have been ionized) and the sputter rate (i.e.
the number of atoms sputtered by unit time) of the considered species in the considered
matrix. In practice, the final crater depth is actually measured with a profilometer at the
end of the SIMS measurement. The depth-scale of the doping profile is then obtained by
linear interpolation, assuming a constant sputter rate. As for the doping concentration,
it is obtained by comparison of the measured counts with calibration samples (same
species, same matrix)[97].
Advantageously, this technique has a very high depth resolution. It, further, has a
low detection limit, which allows for a very wide dynamic range. Up to four orders of
magnitude of doping concentrations can typically be achieved on a doping profile, in-
dependently from the doping species or the matrix. However, five critical drawbacks of
SIMS also need to be mentioned here. First, SIMS is a destructive technique (sputtering
is destructive by essence). Second, due to ion mixing[116], SIMS always underestimates
the profile slope (even though this problem is less at low energy[113]). Third, the pres-
ence of a surface oxide, which tends to initially accelerate sputtering[116], leads to a
small underestimation (1-2 nm) of the profile depth, which is problematic especially for
ultra-shallow junctions. Note that the impact of the last two observations leads to a
difficult definition of the junction depth of very abrupt junctions. Fourth, SIMS gives
only chemical information and no electrical information. Combining SIMS with FPP
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Sample

I (a)

V

Xj

Sample

I (b)

V

Xj

Figure 1.3: (a) Schematic of a two-point probe resistance measurement set-up. The pins used to
inject the current (I) are also used for the voltage (V) measurement. (b) Schematic of a four-point
probe resistance measurement set-up. Different pins are used to inject the current and to measure the
voltage.

can, however, alleviate this limitation, as discussed in Section 1.2.1.3. Finally, though
not of application in this work which focuses on Si material, it also has to be mentioned
that it is very complex to measure doping profiles in structures where the matrix changes
(e.g. SiGe/Si), due to the very acute changes in sputter rate of the species of interest
according to the matrix. In spite of all these drawbacks, the wide dynamic range of
SIMS and its ability to measure with quite a good accuracy the local details of a dopant
profile make this technique unavoidable.

1.2.1.2 Conventional Four-Point Probe

Conventional Four-Point Probe (FPP) is the reference technique for the measurement
of the sheet resistance Rs of junction-isolated doped layers. By definition, this critical
parameter reads

Rs =
1∫Xj

0
qµNdz

, (1.1)

where q is the electron unit charge, µ and N are respectively the mobility and concen-
tration of the majority carriers, Xj is the thickness of the doped layer or (electrical)
junction depth and z is depth. Formula (1.1) shows clearly that Rs is nothing but the
integral of the carrier profile (convoluted with the mobility profile).
In-line FPP measurements are the most common resistance measurements. In these mea-
surements, a current is injected between two probes and the induced potential difference
between another two probes is measured [see Figure 1.3(b)]. Contrary to two-point
probe measurements [Figure 1.3(a)], the probes used to inject the current and those
used to measure the potential difference are not the same so as to eliminate the impact
of the probe and contact resistances on the measurements.

FPP is a very versatile [97] and fast technique (a few minutes for detailed wafer map).
However, it suffers from a few drawbacks which are worth reminding. First and foremost,
FPP only gives an integral of the profile of interest (zero-dimensional technique). This
is the least detailed information which can be retrieved about a profile. Second, as
illustrated in Figure 1.3, the probes used in this technique apply a high load (5-100 g)
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on the sample, leading to some probe penetration into the sample (up to 30 nanometers
for a 20 g load). In other words, as the junctions become shallower, FPP starts to
measure not only the sheet resistance of the doped layer, but also the parallel substrate
resistance [27](substrate shorting). This leads to unacceptable underestimation of the
sheet resistance. This effect is limited when the substrate doping is low enough (< 1016

cm−3)[29].

1.2.1.3 Combination of SIMS and FPP

As such, SIMS and FPP only offer partial information about the carrier profiles. SIMS
measures the positions of the dopant atoms, whether they are activated or not and FPP
measures the integral of the carrier profile. However, under the following conditions, full
characterization of the carrier profile can be achieved by combining the two techniques.
First, it must be assumed that the SIMS profile is only active up to a certain peak
concentration Npeak

SIMS. The SIMS profile can therefore be cut off at this level NSIMS
peak above

which all dopant atoms are assumed inactive (see Figure 1.4). Second, the mobility of
the majority carriers in the doped layer must be known. Ideally, it should be measured
e.g. with a Hall technique [97, 88], as carried out in [30]. It can also be calculated based
on the models available in the literature[64, 3]. The active doping profile can then be
deduced by defining Npeak

SIMS such that the integral of the SIMS profile below this level
matches the sheet resistance measured with FPP. In other words, in order to derive the
active SIMS profile, the following equation must be solved for Npeak

SIMS

1∫ zpeak

0

qµNpeak
SIMSdz︸ ︷︷ ︸

qµzpeakN
peak
SIMS

+
∫Xj
zpeak

qµNSIMSdz

= RFPP
s , (1.2)

where RFPP
s is the measured FPP sheet resistance and zpeak is the depth at which the

measured SIMS profile reaches the concentration Npeak
SIMS. The resulting active SIMS

profile of sample IIB-D07T5 is shown in Figure 1.4, where the cut-off level has been de-
termined using Klaassen’s mobility model[64] assuming no carrier scattering on inactive
dopants.

Two final remarks need to be made. First, it is of the utmost importance to realize
that the position of Npeak

SIMS strongly depends on the assumed mobility model and is
therefore not uniquely defined. We illustrate this limitation in Figure 1.5(a), where
we compare the active SIMS profiles derived with two different assumptions on the
mobility. Both models are based on Klaassen’s formula for mobility[64]. First, like
above, mobility model I assumes no scattering on inactive dopants. Even though this
tends to overestimate mobility[30], it is the most widespread assumption. Mobility
model II assumes that all active and inactive B atoms present in the SIMS profile act as
scattering centers, which typically underestimates mobility1. As a result, the obtained
Npeak

SIMS moves to higher values. Second, deriving the carrier profile actually still requires
solving a one-dimensional Poisson equation. However, as shown in Figure 1.5(b), only

1Calculated active doping concentrations much higher than the solubility limit can then be
reached
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Figure 1.4: Derivation from the measured SIMS profile (black) of sample IIB-D07T5 of the active
SIMS profile (red), based on FPP measurement and Klaassen’s mobility model assuming no scattering
on inactive dopants.
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Figure 1.5: (a) Comparison between the active SIMS profile of sample IIB-D07T5 assuming mobility
model I, i.e. no carrier scattering on inactive dopants (red) and assuming mobility model II, i.e. all
dopant atoms of the SIMS profile are scattering centers (blue). This shows that the calculated active
dopant profile depends strongly on the used mobility model. (b) Comparison between the active SIMS
profile (red) shown in Figure 1.4 and the carrier profile derived by solving the one-dimensional Poisson
equation. Negligible difference is observed in the high concentration region.

very limited difference between both profiles is expected in the highly doped region
(above 1018 cm−3). The differences are actually so minute that they are hindered by the
noise on the active SIMS profile. For this reason, we will omit the difference between
the carrier and active doping profiles in this thesis.
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log(I) to ADC

Vb

Conductive Diamond Tip

Silicon sample

Back-contact

Figure 1.6: Principle of an SSRM measurement. A voltage is applied between a very sharp con-
ductive AFM tip and a backcontact. The measured current gives the spreading resistance related to
the local carrier concentration via equation (1.4).

1.2.1.4 Scanning Spreading Resistance Microscopy

Scanning Spreading Resistance Microscopy (SSRM) is a very powerful resistivity-profiling
technique. It has shown its capabilities on a wide variety of materials and structures
[42, 79, 31]. SSRM is based on the measurement of the electrical resistance between
a conductive Atomic Force Microscopy (AFM) tip, scanning the cross-section of the
sample, and a backcontact (Figure 1.6).

If the current path is carefully followed, the series of electrical resistances that are
encountered is the following

Rmeasured = Rtip +Rcontact +Rspreading +Rsample +Rbackcontact, (1.3)

where Rtip is the resistance of the cantilever and tip, Rcontact is the contact resistance
between the tip and the sample, Rspreading is the resistance associated to the spreading
of the current lines in the sample, Rsample is the sample resistance and Rbackcontact is the
backcontact resistance. If one makes sure that the Rspreading is dominant, the measured
resistance reads[124]

Rmeasured = Rspreading =
ρ

4a
=

1

4aq(µnN + µpP )
, (1.4)

where a is the radius of the electrical contact (typically 1 nm [6]), ρ is the local electrical
resistivity of the sample. µn (resp. µp) and N (resp. P ) are respectively the electron
(resp. hole) mobility and concentration. Equation (1.4) shows that a two-dimensional
resistance map obtained by scanning the conductive AFM tip over the sample cross
section gives a direct image of the carrier distribution [Figure 1.1(left)].

The simplicity of equation (1.4) is the strength of SSRM. SSRM being a direct
measurement of the local carrier concentration, it suffers from fewer modeling artifacts
than most techniques. This explains the success of SSRM when applied on new materials.
With SSRM, you directly measure what you need. We will see that this is very different
when it comes to optical techniques.

SSRM suffers, however, from some drawbacks. First of all, SSRM measurements are
typically run on a (cleaved) cross section of the sample, which makes it a destructive and
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Figure 1.7: (a) Raw data of the SSRM measurement of sample IIP-D07T5: resistance profile. (b)
SSRM carrier profile of sample IIP-D07T5 assuming the oxide-Si interface is localized at a 12 nm
depth and assuming a depth-independent mobility of 100 cm2V−1s−1.

time-consuming technique. Second, SSRM is a relative technique relying on calibration
samples for the quantification of the carrier concentrations, which renders the technique
very dependent on the availability, quality and good characterization of these samples.
Third, the Schottky nature of the contact and the presence of surface states[43] prove
to have a dramatic impact on the measurement at low active doping concentration.
Finally, it has to be mentioned that the tip resistance Rtip also limits the sensitivity of the
technique in highly conductive regions. Except for the practical issues, SSRM also shows
quantification problems both on the x-axis (depth scale) and on the y-axis (concentration
scale) of the carrier profile. First, on the x-axis, the position of the oxide-Si interface
(i.e. ’depth zero’) is only determined by the strong decrease in measured resistance
when moving from the oxide to doped Si. This can unfortunately not be done with a
precision better than a few nanometers. For instance, the abruptness of the resistance
profile of Figure 1.7(a), showing the resistance profile measured on sample IIB-D07T5,
is about 1 nm/dec. The carrier profile of Figure 1.7(b) has been obtained assuming the
interface lies at a 12 nm depth. Second, on the y-axis, SSRM carrier extraction shows an
uncertainty due to mobility. As highlighted in equation (1.4), the link between resistance
and carrier concentration still requires the knowledge of mobility. Since SSRM does not
measure mobility, it has to rely on existing mobility models[64, 3]. The profile shown
in Figure 1.7 assumes a carrier mobility of 100 cm2V−1s−1. Using a different mobility
model, conclusions similar to those of Section 1.2.1.3 for the combination of SIMS and
FPP would be drawn.

1.2.1.5 Micro Four-Point Probe

Micro Four-Point Probe (µFPP) is a recently developed sheet-resistance measurement
technique based on FPP. Technically speaking, the improvement of µFPP over con-
ventional FPP comes from the much smaller probe separation (down to 1.5 µm pitch
vs 1 mm in conventional FPP). We here only mention a few of the subsequent advan-
tages, most of them being reviewed and detailed in Ref.[89]. First, obviously, thanks
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to its micron-size measurement head, µFPP is able to measure small structures (high
spatial resolution). Second, due to the small pitch, the technique is much less sensi-
tive to leakage[87] and consequently to the substrate resistance. Third, the low probe
pressure renders µFPP a quasi-zero penetration tool. As a consequence, the problems
due to the deep penetration of conventional probes are avoided. Finally, µFPP has
shown very promising carrier-profiling capabilities on beveled structures[32]. However,
this last application is still under intense investigation (reproducibility, starting point of
the profile,...).

1.2.2 Non-Contacting and Non-Destructive Techniques

By essence, the contacting and/or destructive techniques introduced in the previous
Section cannot fulfill the six requirements for the ideal non-destructive carrier-profiling
technique which is being sought. In this Section, we propose to present the most recently
developed techniques for the non-destructive electrical characterization of ultra-shallow
junctions. In particular, we underline the drawbacks of each technique and show how
this leads us to considering PMOR as the unique potential candidate to solve our needs.

1.2.2.1 Junction Photovoltage

Most of the sheet resistance values presented in this work have been obtained from Junc-
tion Photovoltage (JPV) measurements using, more particularly, the RsL embodiment[45,
77] of Frontier Semiconductor. Note that a similar tool has been developed by Semilab[65].
The principle of JPV measurements lies in the non-contact measurement of the position-
dependent junction potential distribution resulting from the equilibrium between the
generation of excess carriers injected by a low-irradiance light-emitting diode (10−4

W.cm−2), which tend to increase the lateral electric field, and the drift of majority car-
riers in the highly doped region, which tends to decrease the lateral electric field. The
drift current being inversely proportional to the sheet resistance, the measurement of
the lateral distribution of JPV gives access to the sheet resistance[44].

This technique shows clear advantages. First, it is very fast (approximately 10 min-
utes for a 1000 point map) and non-destructive. For moderate junction leakage (≤ 10−3

Acm−2[99]), the technique is able to separate the sheet resistance from the junction
leakage2[46]. It is therefore an ideal technique for fast and accurate sheet resistance
mapping of full wafers. We would, however, like to point out two critical drawbacks of
this technique. First, just like all optical techniques, it is very sensitive to the properties
of the measured material. Moving from Si to other materials (Ge, ...) can therefore
prove to be very complex (new models needed). It is frequently observed that, even in
Si, USJs on a doped halo can lead to wrong or out-of-scale measurements[33]. It has been
proposed that this is due to band-to-band tunneling. Second, the technique has a very
poor spatial resolution due to its cm-sized probe head. As a consequence, JPV-based
techniques, as currently implemented, will remain zero-dimensional electrical character-
ization technique and will not be able to measure ultra-shallow carrier profiles, even

2The name of the technique, “RsL”, actually stands for Rs and Leakage measurement since
it has been shown that the technique is able to measure leakage current simultaneously with
sheet resistance. We will, however, not use or discuss that capability.
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Figure 1.8: Principle of a JPV measurement. The built-in potential is partially screened by excess
carriers, as a result of the illumination of the sample. The majority carriers (stars) in the doped layer
(pink region) consequently drift under the lateral electric field. This lateral drift current, which reduces
the lateral electric field, is inversely proportional to the sheet resistance. Once the steady(-periodic)
state is reached, the potential difference V1 − V2 is an image of the sheet resistance

on a beveled surface. In other words, they cannot solve our need for a non-destructive
carrier-profiling technique.

1.2.2.2 Model-Based Infrared Reflectometry and Fourier-Transform
Infrared Ellipsometry

Reflectometry and ellipsometry are widely used techniques for the determination of the
thickness and optical properties of thin films[54]. Both are based upon thin-film inter-
ference, which is introduced in some more detail and studied in the framework of the
perturbation theory in Chapter 2. Though both techniques are based upon the measure-
ment of the light reflection on the sample under investigation, the measured parameters
differ. While reflectometry measures the reflectance R of the sample, ellipsometry looks
at the ellipsometric parameters, i.e. the state of polarization of the light reflected upon
the sample3, as schematically shown in Figure 1.9.

Model-Based Infrared Reflectometry (MBIR) and Fourier-Transform Infrared El-
lipsometry (FTIR) are two specific implementations of the aforementioned techniques
developed respectively by AMS[56] and SOPRA[35], wherein the wavenumber (i.e. the
inverse of the wavelength) range of the incident light has been optimized to study doped
silicon layers. One of the learnings derived from the Drude model (See Chapter 2) is
that the impact of free carriers on the optical functions of Si is considerable starting

3The ellipsometric parameters are the amplitude tanψe and phase ∆e of the ratio of the par-
allel component Erp/Eip to the perpendicular component Ers/Eis of the reflection coefficient.
The parallel and perpendicular directions refer here to the plane of incidence
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Figure 1.9: . Principle of measurement of thin-film reflectometry and ellipsometry. The reflected

electric field ~Er contains information about the thickness and optical properties of the thin film.
Reflectometry measures the reflectance R while ellipsometry measures the state of polarization of the
reflected light by means of the ellipsometric parameters, i.e. the amplitude tanψe and phase ∆e of

ρellipsometry. ~Er (resp. ~Ei), ~Ers (resp. ~Eis) and ~Erp (resp. ~Eip) are respectively the reflected (resp.
incident) electric field, the component of the reflected (resp. incident) field perpendicular to the plane
of incidence and the component of the reflected (resp. incident) field parallel to the plane of incidence

from the infrared range down to smaller wavenumbers. Both companies have therefore
opted for wavenumbers included between 500 and 6000 cm−1, i.e. wavelengths included
between roughly 1.5 and 20 µm.

As can be expected from the similarities between the two techniques, the results
obtained by both techniques are comparable in many ways. The depth of deep (> 100
nm) layers can be determined with quite a good agreement with SIMS [100]. The derived
carrier concentrations, however, are always overestimated[75]. Further, shallow profiles
cannot be measured due to the low sensitivity to junction depth (long wavelength).
Repeatability measurements prove that these techniques are actually sensitive to the
active dose[75]. Finally, both MBIR and FTIR use quite large (mm-size) beams and, as
a consequence, have quite a low spatial resolution.

The drawbacks of these techniques clearly push towards PMOR and to the Therma-
Probe (TP) embodiment more particularly. First, the reconstruction of ultra-shallow
profiles, due to the low junction depth sensitivity, requires wavelengths shorter than
those used in these infrared techniques. However, at shorter wavelengths, the impact of
the presence of free carriers is strongly reduced (see e.g. the low numerical values for
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the variation in refractive index in Chapter 3), which in turn reduces the signal-to-noise
ratio. TP solves this problem by using a high-power light source so as to keep a sufficient
signal-to-noise ratio and, consequently, high enough measurement reproducibility. In
other words, TP being a high-irradiance reflectometry measurement, it partially solves
the problems encountered by FTIR and MBIR. Second, PMOR measurements offer
intrinsically an independent junction depth measurement. As we will show in Chapter
7, the AC reflectance signal is indeed very sensitive to the depth of the carrier profile.
Further, no direct correlation with dose can be observed. The AC reflectance could
therefore be used as the independent depth measurement that FTIR and MBIR seem
to lack. Note, finally, that the shorter wavelength also enhances the spatial resolution
since a smaller beam radius is then allowed (Rayleigh’s diffraction limit[18]).

As a conclusion, it seems that PMOR has more to offer than MBIR or FTIR. This
would make PMOR an ideal and unique candidate possibly fulfilling the six criteria
mentioned in the motivation for this work.

1.2.2.3 Photomodulated Optical Reflectance

Photomodulated Optical Reflectance (PMOR) is a pump-probe technique wherein a
probe laser measures not only the sample reflectance (i.e. like reflectometry), which we
call the DC reflectance Rdc, but also the variations in reflectance induced by a modulated
pump laser, the so-called modulated or AC reflectance ∆Rac. The modulated reflectance
signal is the most commonly used signal, which is why the technique bears its name.
Figure 1.10 schematically describes the principle of the technique.

Different companies (KLA-Tencor, Semilab, Xitronix) and research groups (e.g. Cen-
ter for Advanced Diffusion-Wave Technologies of the University of Toronto and Labo-
ratoire d’Instrumentation of the Universite Pierre et Marie Curie in Paris) have imple-
mented the PMOR technique either in fab-ready or test-bench tools. Though PMOR
initially showed capabilities for the determination of various transport parameters of
bulk and thin-film metals, semiconductors or superconductors [10, 47, 50, 51, 66](e.g.
thermal conductivity, carrier diffusivity, carrier lifetime), commercial implementations
mostly focus on statistical process control (SPC) monitoring of ion implantation[81, 80,
93, 103, 16, 23, 48, 49, 115]. Importantly, intensive research has also been carried out
to improve the understanding of the complex behavior of the AC reflectance on bulk
semiconductors[90, 52, 82, 84, 83, 120, 121, 70, 24].

Though there has been some discussion about the original paternity of the idea, as
far as the literature can testify, interest in the use of PMOR for carrier profiling initially
started with the work of Borden[4, 17, 15] and Nicolaides[81, 80] respectively with the
BX10 tool of Boxercross (now owned by Semilab) and with the TP630XP tool of Ther-
mawave (now owned by KLA-Tencor). The conclusions of these investigations already
proved experimentally the great promises of PMOR for non-destructive carrier profiling.
Sub-nanometer junction depth resolution seemed finally to be in the reach of optical
techniques. However, theoretically speaking, there was only qualitative understanding
of the dominant physical processes occurring during a PMOR measurement on a non-
homogeneously doped silicon sample. Soon imec became involved[25, 28, 26, 115, 114]
and the combined theoretical and experimental work of Dortu[38, 39, 40, 41, 36] on the
BX10 tool got the theory ever closer to experimental data. However, when it came to
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Figure 1.10: Principle of Photomodulated Optical Reflectance (PMOR). A modulated pump laser
shines on the sample to modify the local refractive index. A constant probe laser measures the sample
reflectance, i.e. the so-called DC reflectance Rdc, simultaneously with the variations in reflectance
induced by the modulated pump laser, i.e. the so-called modulated or AC reflectance ∆Rac. The
numbers indicate the path followed by the probe laser beam.

retrieving information about carrier profiles, the BX10 tool seemed to lack information.
The ability of this tool to measure power curves, i.e. vary its pump power and measure
the induced variations in ∆Rac, did not seem to help much. Besides, as time passed
by, the probe wavelength of the BX10 (980 nm) was becoming obsolete compared to
the junction depths required in real devices. In the meantime, the higher modulation
frequency (1 MHz vs 2 kHz) of the TP630XP had appeared as a potential solution to the
problem by offering two signals (amplitude and phase of ∆Rac) rather than one[29]. Its
shorter probe wavelength (670 nm) also improved significantly the sensitivity to sub-30
nm junction depths.

These two observations, together with the high repeatability of the measurement
(Appendix A.2), were the motivations which initially triggered this work. The ’two-
signal’ approach looked promising though, as we shall prove, the phase actually does
not contain extra information about the profiles (plasma wave has a unique phase and
wavelength; see e.g. Section 6.2). Nevertheless, we will show that TP630XP offers
additional information about the profiles. First, it has the capability to measure offset
curves, i.e. separate the pump and probe beams and measure the variations in ∆Rac

(Chapter 6). Besides offering a much better visibility to the processes involved in the
carrier and heat transport (e.g. you can measure the ambipolar diffusivity, you do not
need to model it, see Section 6.1), offset curves also help decouple the sensitivity to carrier
concentration and to junction depth (see Section 7.1.1). Finally, Rdc being calibrated in
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TP630XP, its direct use is facilitated. As we shall see, this last improvement was also a
determining factor (see Section 7.2).

Though we will come back to these achievements in the course of this thesis as
well as in the Conclusions, some can already be mentioned. First, on the experimental
side, the work included in this thesis has contributed to making PMOR a reproducible
and quantitative technique (see Appendix A.2). Further, the developed procedure for
the signal calibration on undoped samples (Sections 6.1 and 7.2) has broadened the
applicability window of the technique to implanted profiles with and without preamor-
phization. Before our investigations, indeed, most work had been dedicated to box-like
profiles. Second, on the theoretical side, improved understanding also comes out of this
work thanks to the derivation of simplified transport equations to describe the general
ambipolar transport of carriers (Sec. 4.1.1) and heat (Sec. 4.1.2) in semiconductors,
with a thorough discussion of their time-dependent effects (Section 4.1.3). Similarly, the
compact models of Chapter 6 give direct understanding of the general behavior of ∆Rac

and Rdc.
As mentioned above, this work focuses on the TP630XP tool. In other words, while

we often refer to the technique as PMOR, all shown experimental data have been mea-
sured with TP630XP. In particular, the TP630XP (or simply TP) tool is a PMOR
implementation with:

� a 670 nm (1.85 eV) probe laser with 2.5 mW power focused onto an 0.5 µm beam
radius on the sample

� a 790 nm (1.57 eV) pump laser with 13.5 mW power modulated with a 1 MHz
modulation frequency and focused onto an 0.5 µm beam radius on the sample

� the ability to separate the laser beam with a maximum of 4 µm separation on the
sample.

More detailed examples of the experimental setup of PMOR tools can be found in
Ref [85, 105]. The actual setup of the TP630XP being confidential, we are not allowed
to disclose it in this work.

1.3 Outline

The ultimate objective of this work, besides the fundamental investigation of PMOR,
is to develop a quantitative carrier profiling technique out of the TP tool such as it is
described above in Section 1.2.2.3 without any hardware change. For this purpose, we
need to understand why, how and also how much a pump laser can modify the reflectance
of a silicon sample. We therefore propose to build up the necessary understanding of
the processes involved during a TP measurement in the following sequence.

In Chapter 2, we look at the fundamental process accounting for a variation in
the reflectance of an arbitrary sample. In particular, looking first qualitatively at the
relationship between refractive index and reflectance, we sequentially derive analytical
expressions for the variation in reflectance assuming a refractive index perturbation
with various shapes. One important message of this Chapter is that a perturbation of
the reflectance is always a consequence of a perturbation of the refractive index.

In Chapter 3, we investigate the possible causes for a variation in the refractive index
of silicon. This Chapter shows that a perturbation in refractive index is to be expected
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as a result of the presence of free carriers or the change in temperature. In particular,
we quantify these variations for the specific case of the TP probe laser.

In Chapter 4, we look at how light and, more specifically, a high-irradiance modulated
pump laser and a high-irradiance constant probe laser generate carriers and heat in ho-
mogeneously doped silicon samples. We derive and solve the coupled transport equations
for these two quantities in order to quantitatively determine the time-dependent and
position-dependent excess carrier and temperature distributions induced by the lasers.

In Chapter 5, we extend the transport problem to the case of non-homogeneously
doped silicon sample (with particular emphasis on samples presenting highly doped
ultra-shallow layers at their surface).

In Chapter 6, we review the conclusions of Chapters 2 to 5 in order to derive a
complete physical model explaining the behavior of the two measured signals in PMOR,
i.e. Rdc and ∆Rac. The model is assessed based on the comparison with TP signals
measured on homogeneously doped silicon substrates with various doping concentrations
as well as doped layers with varying doping concentration and junction depth.

Based on the learnings of all the previous Chapters, Chapter 7 develops and studies
methods to derive information about carrier profiles from PMOR measurements.
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Chapter 2

Theory of Perturbation of
the Reflectance

In this Chapter, we assume a small perturbation of the complex refractive index ñ(x, y, z, t)
is somehow generated (e.g. by doping, optically injected carriers and/or heat,...) in a ho-
mogeneous silicon sample and we calculate how this perturbation impacts the reflectance
R(x, y, t) of a probe laser shining on the sample.

In all generality, the perturbed refractive index reads

ñ(x, y, z, t) =ñ0 + ∆ñ0(x, y, z) + ∆ñ1(x, y, z) cos[ωt− φ1(x, y, z)]︸ ︷︷ ︸
fundamental

+

+∞∑
j=2

∆ñj(x, y, z) cos[jωt− φj(x, y, z)]︸ ︷︷ ︸
jth harmonic

, (2.1)

where ñ0 is the refractive index of the unperturbed silicon sample, ∆ñ0(x, y, z) is the
time-independent component of the perturbation of the refractive index, ∆ñ1(x, y, z)
and φ1(x, y, z) are respectively the amplitude and phase of the fundamental mode of the
perturbation, ∆ñj(x, y, z) and φj(x, y, z) (j=2,3,...) are respectively the amplitude and
phase of the jth harmonic of the perturbation. Note that ñ0 and ∆ñj(x, y, z) (j=0,1,...)
are all complex numbers. In this Chapter and the following, ω can be understood in
all generality as the fundamental angular frequency of the refractive index perturbation
but, it will become clear in Chapter 4 that ω is the angular modulation frequency of the
pump laser irradiance.

As a result of this perturbation, a probe laser shining on the sample is reflected with
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a perturbed reflectance R(x, y, t) such that

R(x, y, t) =R0 + ∆R0(x, y) + ∆R1(x, y) cos[ωt− Φ1(x, y)︸ ︷︷ ︸
fundamental

]

+

+∞∑
j=2

∆Rj(x, y) cos[jωt− Φj(x, y)]︸ ︷︷ ︸
jth harmonic

, (2.2)

whereR0 is the reflectance of the unperturbed Si sample, ∆R0(x, y) is the time-independent
component of the perturbation of the reflectance, ∆R1(x, y) and Φ1(x, y) are the mag-
nitude and phase of its fundamental mode and ∆Rj(x, y) and Φj(x, y) (j=2,3,...) are
the magnitude and phase of its jth harmonic.

In this Chapter, we explain and express mathematically the relationship between the
perturbed refractive index of equation (2.1) and the perturbed reflectance of equation
(2.2). In order to do so, two physical phenomena, i.e. reflection and optical interference,
as well as their causes need to be introduced.

First, reflection occurs when an electromagnetic wave reaches an interface between
two media with different complex refractive indices (see Figure 2.1). The boundary
conditions of Maxwell’s wave equations indeed show that only a proportion t̃ of the elec-
tromagnetic wave is transmitted through the interface. The rest of it, i.e. a proportion
r̃ = t̃− 1, bounces back or is reflected in opposite direction[18].

Ẽr = r̃ẼiẼi

Medium 1

Medium 2

Ẽt = t̃Ẽi

ñ2

ñ1
= n1 + ik1

= n2 + ik2

r̃ = ñ1−ñ2

ñ1+ñ2

t̃ = 2ñ1

ñ1+ñ2

Figure 2.1: An electromagnetic wave with electric field Ẽi incident on an interface between two

media of respective refractive indices ñ1 and ñ2 is partially reflected with electric field Ẽr and trans-
mitted with electric field Ẽt. The ratio between the reflected (resp. transmitted) and incident electric
fields is given by r̃ (resp. t̃) which follows Fresnel’s reflection formula (2.3) [resp. (2.4)].

In other words, for an incident electric field Ẽi, the transmitted electric field is
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Ẽt = t̃Ẽi and the reflected electric field is Ẽr = r̃Ẽi, where t̃ and r̃ are respectively called
the transmission and reflection coefficients. Mathematically, the reflection coefficient r̃
of a light beam normally incident upon an interface separating two media with different
complex refractive indices ñ1 and ñ2 follows Fresnel’s reflection formula[18], i.e.

r̃ =
ñ1 − ñ2

ñ1 + ñ2
. (2.3)

The electromagnetic wave is therefore transmitted with a transmission coefficient t̃ such
that

t̃ = 1 + r̃ =
2ñ1

ñ1 + ñ2
. (2.4)

The reflectance of the sample is then given by the squared absolute value of the reflection
coefficient, i.e.

R = |r̃|2 . (2.5)

Second, optical interference is the name given to the interaction between two (or
more) coherent light beams of the same optical frequency and polarization meeting in a
region of space[54]. In summary, the interference describes the peculiar way these waves
add up so as to give a total amplitude with is not simply the sum of their amplitudes.

Mathematically, the electric field of a one-dimensional electromagnetic plane wave
in a medium of refractive index ñ can be described as follows[18]

Ẽ = |E| exp(2iπñx/λE + iθE) exp(−iωEt), (2.6)

where |E| is the amplitude of the electric field (its maximum value in time and space),
θE is its phase, λE is its wavelength in vacuum and ωE is its optical angular fre-
quency. If two electromagnetic waves of the same amplitude and different phases Ẽ1 =
|E| exp(2iπñx/λE + iθE1) exp(−iωEt) and Ẽ2 = |E| exp(2iπñx/λE + iθE2) exp(−iωEt)
meet, their amplitudes add up vectorially (or coherently) such that

Ẽ1 + Ẽ2 = |E| [exp(iθE1) + exp(iθE2)] exp(2iπñx/λE − iωEt). (2.7)

Equation (2.7) shows that the resulting amplitude is not solely dependent on the ampli-
tude of the two beams but that it also strongly depends on their phase difference. If the
two waves have the same phase (i.e. θE1 = θE2), the amplitude of their sum is 2 |E|, i.e.
there is constructive interference. On the contrary if the phases of the two waves are in
opposition (i.e. θE1 = θE2 + π), the sum is zero, giving rise to destructive interference.
For other values of the phase difference, the sum will be included between 0 and 2 |E|.
Similarly, in the more general case of waves with different amplitudes |E1| and |E2|,
destructive and constructive interferences result in total fields of respective amplitudes
|E1 − E2| and |E1 + E2|.

One common case of interference arises when a light beam is reflected on two or more
parallel interfaces. The case of two interfaces is well known and widely studied under
the name of thin-film interference[54] (Figure 2.2). In that case, Ẽ1 is the electric field
reflected directly on the top surface (Interface 1) and Ẽ2 is the electric field reflected
on the bottom surface (Interface 2). Due to distance traveled by Ẽ2 in between the two
interfaces, the phase difference between the two reflected electric fields is proportional to
the thickness of the film. The combination of reflection and interference therefore offers
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2. THEORY OF PERTURBATION OF THE REFLECTANCE

a very attractive sensitivity to the thickness of a thin film. This is what makes reflection
techniques so appealing. This experiment is studied in further detail in Section 2.2.

Ẽ2Ẽ1

Xj

Ẽi

θE1 − θE2 ∝ 2Xj

Interface 1

Interface 2

Figure 2.2: Thin-film interference: the electric fields Ẽ1 and Ẽ2 respectively reflected on interface
1 and interface 2 present a phase difference θE1 − θE2 due to the distance traveled by the light in
between the two interfaces. As a consequence, the amplitude of the total reflected electric field varies
with the thickness of the thin film.

Due to interference effects, the mathematical relationships between the components
of ñ(x, y, z, t) and R(x, y, t) vary according to the depth- (i.e. the z-) dependence of
the refractive index perturbation. In this Chapter, we investigate four different cases
of refractive index perturbations and work out these relationships in order of increasing
complexity. First, uniform perturbations are studied in Section 2.1. In this case, the
complex refractive index varies only at the top surface. Second, in Section 2.2, we
consider the case of a box-like perturbation where the perturbed refractive index shows
two abrupt variations, one at the top surface and one at a depth Xj , which we call
the junction depth. Finally, we study the case of a double box-like perturbation (three
abrupt variations) in Section 2.3 before deriving a formula for a perturbation with an
arbitrary depth dependence in Section 2.4.

These analytical expressions are here derived in the case of TP, i.e. for a probe laser
in the red to near infrared (NIR) range normally incident on the sample and for a system
lying in air. As a consequence, the penetration depth of the probe laser 1/αprobe is always
much larger than the total depth of the perturbation of the complex refractive index
(ultra-shallow perturbations) but much shorter than the thickness of the sample (semi-
infinite samples). Further, we make the following three key assumptions so as to keep
the expressions simple and analytical. First, the Si surface is supposed to be oxide-free,
i.e. silicon is in direct contact with air. Second, we consider only laterally homogeneous
refractive index perturbations, i.e. ∆ñj(x, y, z) = ∆ñj(z) (j = 0, 1, ...). These first
two assumptions are discussed into more detail at the end of this Chapter respectively
in Section 2.5.1 and 2.5.2. Finally, all the perturbation components of equation (2.1)
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2.1. Uniform Perturbation of the Complex Refractive Index

are assumed much smaller than ñ0. This linearizes the system (no harmonic mixing)
and therefore greatly simplifies the obtained expressions. In other words, only a DC
perturbation ∆ñ0 of the complex refractive index can induce a DC variation ∆R0 in
reflectance. Similarly, only the fundamental mode of the complex refractive index can
generate ∆R1. Besides, the relationships between the perturbation components of ñ and
R are the same independently from the considered component. We can therefore focus
on a case of a single perturbation, relying on the linearity of the system for the cases of
multiple perturbations. The j subscript (j = 0, 1, ...) is therefore omitted in the rest of
this Chapter.

For the sake of completeness, let us mention that two formulations are available to
solve the considered problem. We propose to solve this problem in the small perturbation
formalism in this Chapter. The alternative formulation, i.e. the direct differentiation,
was derived by Seraphin [101] and Aspnes [9, 7]. With some algebra, it can be shown
that the two formulations are equivalent.

2.1 Uniform Perturbation of the Complex Re-
fractive Index

In this Section, we consider a sample with a complex refractive index (n0 + ik0) mod-
ified by a uniform perturbation (∆nsub + i∆ksub) and would like to calculate how this
perturbation impacts the sample reflectance. The studied situation is depicted in Figure
2.3.

depth

� 1
αprobe

ñ = (n0 + ik0) + (∆nsub + i∆ksub)

ñair = 1

r̃ = 1−ñ
1+ñ

Figure 2.3: A uniform perturbation (∆nsub + i∆ksub) of the refractive index (n0 + ik0) of a
semi-infinite sample.
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2. THEORY OF PERTURBATION OF THE REFLECTANCE

In the case of a perturbed complex refractive index, Fresnel’s formula (2.3) becomes

r̃ =
1− (n0 + ik0)− (∆nsub + i∆ksub)

1 + (n0 + ik0) + (∆nsub + i∆ksub)
. (2.8)

Linearizing formula (2.8) with respect to the perturbation, r̃ becomes

r̃ ≈ 1− (n0 + ik0)

1 + (n0 + ik0)︸ ︷︷ ︸
=r̃0

[
(1− ∆nsub + i∆ksub

1− n0 − ik0
)(1− ∆nsub + i∆ksub

1 + n0 + ik0
)

]

≈ r̃0

[
1− 2

(1− n0 − ik0)(1 + n0 + ik0)
(∆nsub + i∆ksub)

]
= r̃0

{
1−

2
[
(1− n2

0 + k2
0)∆nsub − 2n0k0∆ksub

]
(1− n2

0 + k2
0)2 + 4n2

0k
2
0

− i
2
[
(1− n2

0 + k2
0)∆ksub + 2n0k0∆nsub

]
(1− n2

0 + k2
0)2 + 4n2

0k
2
0

}
,

(2.9)

where r̃0 is the reflection coefficient of the unperturbed sample. The perturbed re-
flectance R = |r̃|2 is therefore

R = |r̃0|2︸︷︷︸
=R0

{
1− 4

(1− n2
0 + k2

0)2 + 4n2
0k

2
0

[
(1− n2

0 + k2
0)∆nsub − 2n0k0∆ksub

]}
. (2.10)

Before concluding this Section, it is interesting to note that ∂R/∂∆ksub is propor-
tional to k0, which is very small in silicon in the red and NIR range[125]. In other words,
a uniform ∆ksub hardly perturbs the reflectance of silicon in the red and NIR range.
Further neglecting all the k0 terms of equation (2.10), the variation ∆R in reflectance
for a homogeneous perturbation simply reads

∆R|homogeneous =
4R0

n2
0 − 1

∆nsub. (2.11)

This formula will prove very helpful for calculating the perturbation of the reflectance
on a homogeneously doped sample, whether it is due to homogeneous doping, optically
injected carriers or heat (Section 6.1).

2.2 Box-like Perturbation of the Complex Re-
fractive Index

We consider here the problem of a perturbation of the refractive index which only shows
two abrupt transitions, one at the top surface and one at a depth Xj , called the junction
depth. The perturbation of the refractive index has a value (∆nl + i∆kl) in the box
and a value (∆nsub + i∆ksub) below the layer. The unperturbed refractive index of the
sample is uniform and equal to (n0 + ik0). This situation is described in Figure 2.4.
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2.2. Box-like Perturbation of the Complex Refractive Index

depth

� 1
αprobe

Xj � 1
αprobe

ñsub = (n0 + ik0) + (∆nsub + i∆ksub)

t̃
↑
l = 2ñl

1+ñl

ñl = (n0 + ik0) + (∆nl + i∆kl)

r̃l = 1−ñl
1+ñl

t̃
↓
l = 2

1+ñl

r̃sub = ñl−ñsub
ñl+ñsub

ñair = 1

Figure 2.4: A box-like perturbation of the refractive index profile shows two abrupt variations,
respectively at the surface and at the interface. The interface is located at a depth Xj assumed to be
much smaller than the penetration depth of the probe laser (1/αprobe).

We recognize here the thin-film interference introduced earlier in the introduction of the
present Chapter.

If we assume that the magnitude of the perturbation of refractive index is too small
to cause multireflections in the box[54], the pertubation of the reflection coefficient is
solely due to the coherent sum of the two reflections occurring respectively at the surface
and at the interface. Further, neglecting the impact of the refractive index perturbation
on the phase of the transmitted electric field, the reflection coefficient is

r̃ = r̃l + r̃subt̃
↑t̃↓ exp(4iπn0Xj/λprobe), (2.12)

where r̃l and r̃sub are the reflection coefficients respectively at the surface and the in-
terface, t̃↓l and t̃↑l are the transmission coefficients through the surface respectively for
incoming and outgoing light.

In analogy to formula (2.9), we have for r̃l

r̃l = r̃0

{
1−

2
[
(1− n2

0 + k2
0)∆nl − 2n0k0∆kl

]
(1− n2

0 + k2
0)2 + 4n2

0k
2
0

− i
2
[
(1− n2

0 + k2
0)∆kl + 2n0k0∆nl

]
(1− n2

0 + k2
0)2 + 4n2

0k
2
0

}
.

(2.13)

As for r̃sub, neglecting all second-order perturbation terms, one obtains

r̃sub =
(∆nl + i∆kl)− (∆nsub + i∆ksub)

2(n0 + ik0) + (∆nl + i∆kl) + (∆nsub + i∆ksub)

≈ (∆nl −∆nsub) + i(∆kl −∆ksub)

2(n0 + ik0)
. (2.14)

It is apparent from the comparison of equations (2.13) and (2.14) that the surface
and interface reflections have very different magnitudes. While the surface reflection is
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2. THEORY OF PERTURBATION OF THE REFLECTANCE

composed of two terms, respectively of the zeroth and first orders, the interface reflection
only shows a first-order contribution. This is due to the fact that, unlike the surface
reflection, the interface reflection only exists because of the perturbation. Since we
neglect all second-order terms, using formula (2.4), we can write

r̃subt̃
↑t̃↓ =2r̃0

(∆nl −∆nsub) + i(∆kl −∆ksub)

(1− n0 − ik0)(1 + n0 + ik0)

=2r̃0

{
(1− n2

0 + k2
0)(∆nl −∆nsub)− 2k0n0(∆kl −∆ksub)

(1− n2
0 + k2

0)2 + 4n2
0k

2
0

+ i
(1− n2

0 + k2
0)(∆kl −∆ksub) + 2k0n0(∆nl −∆nsub)

(1− n2
0 + k2

0)2 + 4n2
0k

2
0

}
. (2.15)

Putting equations (2.12),(2.13) and (2.15) together and neglecting all second-order
terms, this gives for the reflectance

R ≈|r̃l|2 + 2<(r̃?0 r̃subt̃
↑t̃↓ exp(4iπn0Xj/λprobe))

=R0

{
1− 4

(1− n2
0 + k2

0)2 + 4n2
0k

2
0

×
[
(1− n2

0 + k2
0)∆nl − 2n0k0∆kl

−
(

(1− n2
0 + k2

0)(∆nl −∆nsub)− 2k0n0(∆kl −∆ksub)

)
cos(4πn0Xj/λprobe)

+

(
(1− n2

0 + k2
0)(∆kl −∆ksub) + 2k0n0(∆nl −∆nsub)

)
sin(4πn0Xj/λprobe)

]}
,

(2.16)

where r̃?0 is the complex conjugate of r̃0. Assuming again that k0 � n0, the perturbation
of the reflectance is

∆R|box =
4R0

n2
0 − 1

[
∆nl

− cos(4πn0Xj/λprobe)(∆nl −∆nsub) + sin(4πn0Xj/λprobe)(∆kl −∆ksub)
]
.

(2.17)

This equation is of very high importance in this work. It indeed shows the interest
of reflection techniques for the depth-determination of a refractive index perturbation.
Though reflection techniques are surface techniques, they are able to probe the in-depth
variations in refractive index with high sensitivity thanks to the interference between the
reflections respectively occuring at the surface and at the interface of the box. This is
the main reason why optical reflection techniques are usually very attractive for the non-
destructive determination of e.g. layer thicknesses [54]. Besides, equation (2.17) proves
to explain with great accuracy the perturbed reflectances experimentally observed on
CVD box-like doping profiles (Chapter 6.2). It will therefore be frequently used for the
assessment of our model.

Notice finally that, if Xj=0, formula (2.17) nicely reduces to formula (2.11).
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2.3. Double Box-like Perturbation of the Complex Refractive Index

2.3 Double Box-like Perturbation of the Complex
Refractive Index

We consider here the problem of a perturbation of the refractive index which has three
abrupt transitions, one at the top surface, one at a depth Xj1 and a last one at a depth
Xj2. This situation is shown in Figure 2.5. The perturbation of the refractive index has
a value (∆nl1 + i∆kl1) in the top box, a value (∆nl2 + i∆kl2) in the second box and a
value (∆nsub + i∆ksub) below the second box. The unperturbed refractive index of the
sample is uniform and equal to (n0 + ik0).

As can be expected, the perturbation of the reflection coefficient is here due to the
coherent sum of the three reflections occurring at the surface and at the two interfaces.
In other words, generalizing equation (2.12), the reflection coefficient can be written

r̃ = r̃l1 + r̃l2t̃
↑
l1t̃
↓
l1 exp(4iπn0Xj1/λprobe) + r̃subt̃

↑
l1t̃
↓
l1t̃
↑
l2t̃
↓
l2 exp(4iπn0Xj2/λprobe). (2.18)

In analogy with equation (2.9) for r̃l1 and equation (2.14) for r̃l2 and r̃sub, the reflection
coefficients on each interface are respectively

r̃l1 = r̃0

{
1−

2
[
(1− n2

0 + k2
0)∆nl1 − 2n0k0∆kl1

]
(1− n2

0 + k2
0)2 + 4n2

0k
2
0

− i
2
[
(1− n2

0 + k2
0)∆kl1 + 2n0k0∆nl1

]
(1− n2

0 + k2
0)2 + 4n2

0k
2
0

}
(2.19)

r̃l2 =
(∆nl1 −∆nl2) + i(∆kl1 −∆kl2)

2(n0 + ik0)
(2.20)

r̃sub =
(∆nl2 −∆nsub) + i(∆kl2 −∆ksub)

2(n0 + ik0)
. (2.21)

Similarly to equation (2.15), we have

r̃l2t̃
↑
l1t̃
↓
l1 =2r̃0

{
(1− n2

0 + k2
0)(∆nl1 −∆nl2)− 2k0n0(∆kl1 −∆kl2)

(1− n2
0 + k2

0)2 + 4n2
0k

2
0

+ i
(1− n2

0 + k2
0)(∆kl1 −∆kl2) + 2k0n0(∆nl1 −∆nl2)

(1− n2
0 + k2

0)2 + 4n2
0k

2
0

}
(2.22)

r̃subt̃
↑
l1t̃
↓
l1t
↑
l2t̃
↓
l2 =2r̃0

{
(1− n2

0 + k2
0)(∆nl2 −∆nsub)− 2k0n0(∆kl2 −∆ksub)

(1− n2
0 + k2

0)2 + 4n2
0k

2
0

+ i
(1− n2

0 + k2
0)(∆kl2 −∆ksub) + 2k0n0(∆nl2 −∆nsub)

(1− n2
0 + k2

0)2 + 4n2
0k

2
0

}
. (2.23)

Plugging equations (2.19), (2.22) and (2.23) into equation (2.18) and neglecting all
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depth

ñair = 1

t̃
↓
l1 = 2

1+ñl1

� 1
αprobe

ñsub = (n0 + ik0) + (∆nsub + i∆ksub)

Xj1 �
1

αprobe

r̃sub = ñl2−ñsub
ñl2+ñsub

Xj2 �
1

αprobe

ñl2 = (n0 + ik0) + (∆nl2 + i∆kl2)

r̃l2 = ñl1−ñl2
ñl1+ñl2

t̃
↓
l2 = 2ñl1

ñl1+ñl2

ñl1 = (n0 + ik0) + (∆nl1 + i∆kl1)

t̃
↑
l2 = 2ñl2

ñl2+ñl1

r̃l1 = 1−ñl1
1+ñl1

t̃
↑
l1 = 2ñl1

1+ñl1

Figure 2.5: A double box-like perturbation of the refractive index profile shows three abrupt
variations, respectively at the surface, at a depth Xj1 and at a depth Xj2.

second-order terms in refractive index variations, we have

R =|r̃l1|2

+ 2<(r̃?0 r̃l2t̃
↑
l1t̃
↓
l1 exp(4iπn0Xj1/λprobe))

+ 2<(r̃?0 r̃subt̃
↑
l1t̃
↓
l1t̃
↑
l2t̃
↓
l2 exp(4iπn0Xj2/λprobe))

=R0

{
1− 4

(1− n2
0 + k2

0)2 + 4n2
0k

2
0

×
[
(1− n2

0 + k2
0)∆nl1 − 2n0k0∆kl1

−
(

(1− n2
0 + k2

0)(∆nl1 −∆nl2)− 2k0n0(∆kl1 −∆kl2)

)
cos(4πn0Xj1/λprobe)

+

(
(1− n2

0 + k2
0)(∆kl1 −∆kl2) + 2k0n0(∆nl1 −∆nl2)

)
sin(4πn0Xj1/λprobe)

−
(

(1− n2
0 + k2

0)(∆nl2 −∆nsub)− 2k0n0(∆kl2 −∆ksub)

)
cos(4πn0Xj2/λprobe)

+

(
(1− n2

0 + k2
0)(∆kl2 −∆ksub) + 2k0n0(∆nl2 −∆nsub)

)
sin(4πn0Xj2/λprobe)

]}
.

(2.24)
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Assuming again that k0 � n0, the perturbation of the reflectance is

∆R|double-box =
4R0

(n2
0 − 1)

[
∆nl1

− cos(4πn0Xj1/λprobe)(∆nl1 −∆nl2)− cos(4πn0Xj2/λprobe)(∆nl2 −∆nsub)

+ sin(4πn0Xj1/λprobe)(∆kl1 −∆kl2) + sin(4πn0Xj2/λprobe)(∆kl2 −∆ksub)

]
.

(2.25)

2.4 Arbitrary Perturbation of the Complex Re-
fractive Index

Building the theory as we have, it is now fairly easy to derive a general formula for a
staircase perturbation of the complex refractive index with N abrupt transitions such as
presented in Figure 2.6.

Generalizing equations (2.12) and (2.18) for the case of an N-transition staircase
gives

r̃ =r̃l1 + r̃l2t̃
↑
l1t̃
↓
l1 exp(4iπn0Xj1/λprobe) + r̃l3t̃

↑
l1t̃
↓
l1t̃
↑
l2t̃
↓
l2 exp(4iπn0Xj2/λprobe)

+ ...

+ r̃l(N−1)t̃
↑
l1t̃
↓
l1t̃
↑
l2t̃
↓
l2...t̃

↑
l(N−2)t̃

↓
l(N−2) exp(4iπn0Xj(N−2)/λprobe)

+ r̃lN t̃
↑
l1t̃
↓
l1t̃
↑
l2t̃
↓
l2...t̃

↑
l(N−1)t̃

↓
l(N−1) exp(4iπn0Xj(N−1)/λprobe). (2.26)

The expression for the surface reflection r̃l1 is given by equation (2.19). As for the other
reflections r̃lη (η = 2, 3, ..., N), a generalization of equation (2.20) gives

r̃lη =
(∆nl(η−1) −∆nlη) + i(∆kl(η−1) −∆klη)

2(n0 + ik0)
. (2.27)

Generalizing equation (2.22), we therefore have

r̃lη t̃
↑
l1t̃
↓
l1...t̃

↑
l(η−1)t̃

↓
l(η−1) =2r̃0

{
(1− n2

0 + k2
0)(∆nl(η−1) −∆nlη)− 2k0n0(∆kl(η−1) −∆klη)

(1− n2
0 + k2

0)2 + 4n2
0k

2
0

+ i
(1− n2

0 + k2
0)(∆kl(η−1) −∆klη) + 2k0n0(∆nl(η−1) −∆nlη)

(1− n2
0 + k2

0)2 + 4n2
0k

2
0

}
.

(2.28)

which gives the reflectance when plugged into the following generalization of equation
(2.24)

R =|r̃l1|2

+ 2<(r̃?0

N∑
η=2

r̃lηt
↑
l1t̃
↓
l1...t

↑
l(η−1)t̃

↓
l(η−1) exp(4iπn0Xj(η−1)/λprobe)). (2.29)
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...

depth

ñair = 1
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Figure 2.6: A staircase perturbation of the refractive index profile with N abrupt transitions.

If the thickness of the layers becomes infinitesimal, i.e. the perturbation of the refractive
index varies continuously with depth, equation (2.27) becomes

r̃lη =
d(∆n+ i∆k)

2(n0 + ik0)

=
1

2(n0 + ik0)

∂(∆n+ i∆k)

∂z
dz, (2.30)

and the sum appearing in equation (2.29) must be turned into an integral to give

R =|r̃l1|2 + 2<(r̃?0
2r̃0

(1− n0 − ik0)(1 + n0 + ik0)

∫ +∞

0+

∂(∆n+ i∆k)

∂z
exp(4iπn0z/λprobe)dz)

=R0

{
1− 4

(1− n2
0 + k2

0)2 + 4n2
0k

2
0

×
[
(1− n2

0 + k2
0)∆n(z = 0)− 2n0k0∆k(z = 0)

+ (1 + n2
0 + k2

0)

(∫ +∞

0+

∂∆n(z)

∂z
cos(4πn0z/λprobe)− ∂∆k(z)

∂z
sin(4πn0z/λprobe)

)
+ 2k0n0

(∫ +∞

0+

∂∆k(z)

∂z
cos(4πn0z/λprobe) +

∂∆n(z)

∂z
sin(4πn0z/λprobe)

)]}
.

(2.31)
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For Si in the red and NIR range, equation (2.31) becomes

∆R|Profile =
4R0

(n2
0 − 1)

[
∆n(z = 0)

+

∫ +∞

0+

(
∂∆n(z)

∂z
cos(4πn0z/λprobe)− ∂∆k(z)

∂z
sin(4πn0z/λprobe)

)
dz

]
.

(2.32)

It can be easily checked that in the case of a box-like perturbation of the refractive
index, formula (2.32) reduces to (2.17).

2.5 Second-Order Effects

As mentioned in the Introduction, the reflection formulas derived in this Chapter assume
the absence of any oxide layer at the interface between air and the silicon sample.
Similarly, the derived formulas only consider laterally homogeneous perturbations of the
refractive index. These two assumptions are respectively looked at in Sections 2.5.1 and
2.5.2 below.

2.5.1 Impact of the Presence of a Native Oxide

An oxide always exists at the interface between air and silicon. Hence, its impact should
be evaluated. For this purpose, we propose to consider the case of a box-like perturbation
of the refractive index, as studied in Section 2.2. On top of the structure of Figure 2.4,
we add an oxide layer of thickness toxide and of refractive index1 noxide = 1.45 [59], such
as represented in Figure 2.7.

This effect should be studied as a function of toxide but, since the native oxides present
on our samples have measured thicknesses between 0 and 2 nm, we take the worst-case
scenario, i.e toxide = 2 nm. We further assume that the refractive index perturbation
does not propagate into the oxide. Figure 2.8 shows that, for a real refractive index
perturbation with ∆nsub = −10−4 (typical value encountered in the present work) and
λprobe = 670 nm, the normalized variation |(∆ROxide

Box − ∆RBox)/∆RBox(Xj = 0)| in
reflectance perturbation is no more than 1.2% whether ∆nl = 0 or −0.5× 10−4.

For completeness, note that Figure 2.7 does not show the behavior of the relative
error (∆ROxide

Box −∆RBox)/∆RBox. This error indeed diverges at Xj ≈ λprobe/(8n0) ≈ 22
nm, due to the vanishing amplitude of ∆RBox. As Figure 2.7 shows, the absolute error
remains small even at Xj ≈ 22 nm.

In summary, this effect can be neglected. It is, however, important to keep in mind
that the variation grows with increasing oxide thickness.

1Given the large refractive index contrast both at the air-oxide interface and at the oxide-
silicon interface, multireflection formula[54] must be considered in the oxide layer (large reflection
coefficients at both interfaces)
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depth

0

� 1
αprobe
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Figure 2.7: Oxide layer of thickness toxide on top of a box-like perturbation of the refractive index
profile.
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Figure 2.8: Normalized variation |(∆ROxide
Box −∆RBox)/∆RBox(Xj = 0)| in reflectance perturbation

due to the presence of a 2-nm thick oxide layer as a function of the junction depth of the box-like
perturbation of the refractive index. The considered real values of the refractive index perturbation
are indicated. The presence of the 2-nm thick native only has a negligible impact on the reflectance
perturbation.
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2.5.2 Impact of a Lateral Variation in Refractive Index Per-
turbation

Thus far in this Chapter, only laterally homogeneous perturbations of the refractive
index have been considered. If ∆ñ(x, y, z) also varies with x and y, this effect will
obviously be mirrored on the local reflectance perturbation ∆R(x, y). Typically, in this
work, reflectance perturbations radially decay as damped waves (see Chapter 6), i.e.

∆R(r) = ∆R(r = 0) exp(−r/LRd ) cos(2πr/ΛR), (2.33)

where r =
√
x2 + y2 is defined as the radial distance to the maximum of the perturba-

tion, LRd is the decay length and ΛR is the wavelength of the reflectance perturbation.
Figure 2.9(a) shows three examples of (normalized) reflectance perturbations behaving
like damped waves with decay length LRd = 2 µm and respective wavelengths ΛR = 100
µm, ΛR = 10 µm and ΛR = 1 µm. As shown in Chapter 6, this is a relevant range for
our experiments.

The probe laser irradiance distribution Πprobe(r) being

Πprobe(r) = P0
probe exp(− r2

R2
probe

), (2.34)

where P0
probe is the peak irradiance of the probe laser and Rprobe is its radius, the mea-

sured reflectance perturbation ∆Rintegrated will be a convolution of the local reflectance
perturbation ∆R(r) with the probe laser irradiance distribution, i.e.

∆Rintegrated =
2

R2
laser

∫ ∞
0

rdr∆R(r) exp(− r2

R2
laser

)

=
2

R2
laser

∫ ∞
0

rdr∆R(r = 0) exp(−r/LRd ) cos(2πr/ΛR) exp(− r2

R2
laser

),

(2.35)

Note that we willingly restrict the present study to the case of corresponding positions
of the maximum of the reflectance perturbation and of the probe irradiance.

Figure 2.9(b) shows the ratio of ∆Rintegrated, i.e. the reflectance perturbation as
measured by the probe laser, divided by the local reflectance perturbation at r = 0, i.e.
∆R(r = 0). Obviously, when the decay length and wavelength are both long, ∆Rintegrated

is very close to ∆R(r = 0). This is the situation encountered in a vast majority (> 95%)
of our measurements, as highlighted by the dotted box in Figure 2.9(b). On the contrary,
if the decay length and/or the wavelength become commensurate with Rprobe, strong
deviations are observed, which can even lead to ∆Rintegrated and ∆R(r = 0) being of
opposite sign (ΛR = 1 µm). In these cases, the lateral integration cannot be ignored.

In this study, we try to work with analytical expressions as much as possible. The
lateral integration of equation (2.35) will therefore be omitted in our model. If required,
however, our calculations can take it into account. Only minor impact of this effect has
been observed for the specific case of the structures measured in this work. This justifies
the omission in the rest of this dissertation.
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This work
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Figure 2.9: (a) Examples of normalized reflectance perturbations behaving like damped waves

[equation (2.33)] with decay length LRd = 2 µm and ΛR = 100 µm (dashed line), ΛR = 10 µm

(interrupted line) and ΛR = 1 µm (triple-interrupted line). The thick black line is the normalized
irradiance distribution [equation (2.34) with Rprobe = 0.5 µm]. (b) Variation in the ratio of the
integrated reflectance perturbation [equation (2.35)] divided by the signal at r = 0 as a function of
the decay length of the reflectance perturbation. The dotted box shows the typical situations found
in this work, where the impact of the lateral integration is minor.

2.6 Summary

In this Chapter, we have investigated the mathematical relationship between a refractive
index perturbation and the subsequent perturbation of the sample reflectance, as can
be measured by a probe laser in the red and NIR range. We have shown that, due to
interference effects, the relationships vary greatly according to the depth-dependence of
the refractive index perturbation. Of particular importance in this work, we have derived
analytical expressions in the cases of a homogeneous refractive index perturbation

∆R|homogeneous =
4R0

n2
0 − 1

∆nsub, (2.36)

in the case of a box-like refractive index perturbation

∆R|box =
4R0

n2
0 − 1

[
∆nl

− cos(4πn0Xj/λprobe)(∆nl −∆nsub) + sin(4πn0Xj/λprobe)(∆kl −∆ksub)
]
,

(2.37)
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and in the case of an arbitrary profile of refractive index perturbation

∆R|Profile =
4R0

(n2
0 − 1)

[
∆n(z = 0)

+

∫ +∞

0+

(
∂∆n(z)

∂z
cos(4πn0z/λprobe)− ∂∆k(z)

∂z
sin(4πn0z/λprobe)

)
dz

]
,

(2.38)

all the symbols being as defined in this Chapter.
Further, we have shown that these expressions are valid even in the presence of a thin

native oxide and in the case of laterally varying refractive index perturbations provided
the lateral variations are not too abrupt.
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Chapter 3

Theory of Perturbation of
the Refractive Index

In this Chapter, we consider that some perturbation of the free electron distribution
N(x, y, z, t), of the free hole distribution P (x, y, z, t) and of the temperature distribution
T (x, y, z, t) is present within a silicon sample due to doping and/or optical injection. We
investigate how these distributions modify the complex refractive index ñ(x, y, z, t) of
the sample.

Without any loss of generality, the perturbed electron, hole and temperature distri-
butions respectively read

N(x, y, z, t) =Ndoping(x, y, z) + ∆N(x, y, z, t)

=Ndoping(x, y, z) + ∆N0(x, y, z) + 2|∆N1(x, y, z)| cos(ωt− θN1(x, y, z))︸ ︷︷ ︸
fundamental

)

+

+∞∑
j=2

2|∆Nj(x, y, z)| cos(jωt− θNj(x, y, z))︸ ︷︷ ︸
jth harmonic

(3.1)

P (x, y, z, t) =Pdoping(x, y, z) + ∆P (x, y, z, t)

=Pdoping(x, y, z) + ∆P0(x, y, z) + 2|∆P1(x, y, z)| cos(ωt− θP1(x, y, z))︸ ︷︷ ︸
fundamental

)

+

+∞∑
j=2

2|∆Pj(x, y, z)| cos(jωt− θPj(x, y, z))︸ ︷︷ ︸
jth harmonic

(3.2)
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T (x, y, z, t) =T0 + ∆T0(x, y, z) + 2|∆T1(x, y, z)| cos(ωt− θT1(x, y, z))︸ ︷︷ ︸
fundamental

)

+

+∞∑
j=2

2|∆Tj(x, y, z)| cos(jωt− θTj(x, y, z))︸ ︷︷ ︸
jth harmonic

, (3.3)

where Ndoping (resp. Pdoping) and ∆N (resp. ∆P ) are respectively the electron (resp.
hole) concentrations due to the homogeneous doping of the sample and due to optical
injection. T0 is the environment temperature during the experiment, i.e. room tem-
perature (300 K). ∆N0(x, y, z), ∆P0(x, y, z) and ∆T0(x, y, z) are the time-independent
components of the perturbations respectively of the free electron distribution, of the free
hole distribution and of the temperature distribution. |∆N1(x, y, z)| [resp. θN1(x, y, z)],
|∆P1(x, y, z)| [resp. θP1(x, y, z)] and |∆T1(x, y, z)| [resp. θT1(x, y, z)] are the half-
amplitudes1 (resp. phases) of the fundamental mode of the perturbations respectively of
the free electron distribution, of the free hole distribution and of the temperature distri-
bution. ∆Nj(x, y, z) [resp. θNj(x, y, z)], ∆Pj(x, y, z) [resp. θPj(x, y, z)] and ∆Tj(x, y, z)
[resp. θTj(x, y, z)] are the half-amplitudes (resp. phases) of the jth harmonic of the
perturbations respectively of the free electron distribution, of the free hole distribution
and of the temperature distribution.

As a consequence of these perturbations, the complex refractive index ñ(x, y, z, t)
reads

ñ(x, y, z, t) =ñ0 + ∆ñ0(x, y, z) + ∆ñ1(x, y, z) cos(ωt− φ1(x, y, z))︸ ︷︷ ︸
fundamental

)

+

+∞∑
j=2

∆ñj(x, y, z) cos(jωt− φj(x, y, z))︸ ︷︷ ︸
jth harmonic

, (3.4)

as already introduced in Chapter 2.
In this Chapter, we identify the various physical phenomena accounting for varia-

tions in refractive index so as to link mathematically the different components of the
perturbation of the refractive index appearing in equation (3.4) to the components of the
perturbations of N , P and T appearing in equations (3.1),(3.2) and (3.3). It is impor-
tant to note that, similarly to Chapter 2, we here limit ourselves to small perturbations
of the refractive index. As a consequence, no frequency mixing occurs and a general
theory of perturbation can be developed independently from the time dependence of the
perturbation. In the rest of this Chapter, we therefore drop the j subscript and look at
the variation ∆ñ in refractive index due to arbitrary perturbations ∆N , ∆P and ∆T .
In particular, we show, in Section 3.1, that free carriers, electric field and temperature
can impact the refractive index ñ of Si. In Section 3.2, we study the electrooptical ef-
fects, i.e. the effects of carriers and electric field on ñ. In Section 3.3, we investigate the
thermooptical effects, i.e. the impact of temperature on ñ.

1∆Nj(x, y, z), ∆Pj(x, y, z) and ∆Tj(x, y, z) (j = 1, 2, ...) are defined as the jth Fourier co-
efficients of the perturbations of respectively the electron, hole and temperature distributions
throughout this thesis. Though the use of half-amplitudes might look odd in formulas (3.1),(3.2)
and (3.3), it proves necessary so as to comply with the definitions used in the rest of this thesis.
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3.1 Refractive Index of Electrically Conductive
Materials

Following Maxwell’s wave equation[18], the complex refractive index of an electrically
conductive material at the optical angular frequency ωprobe of the probe laser reads

ñ = n+ ik =
√
ε̃ =

√√√√√ε̃lattice(ωprobe) +
iσ(ωprobe)

ωprobeε0︸ ︷︷ ︸
ε̃σ

, (3.5)

where n and k are respectively the real and imaginary parts of the complex refractive
index, also called respectively the (real) refractive index and the extinction coefficient. ε̃
is the total dielectric constant, ε̃lattice is the dielectric constant of the intrinsic semicon-
ductor (no free carriers available for conduction), σ is the frequency-dependent electrical
conductivity and ε0 is the dielectric constant of vacuum. Equation (3.5) clearly highlights
that there exist two contributions to the refractive index, (i) ε̃lattice and (ii) ε̃σ. The first
contribution, ε̃lattice, accounts for all band-to-band (or inter-band) effects. ε̃lattice varies
explicitly with temperature[62], electric field[106], and implicitly with free carrier con-
centration [via carrier-induced bandgap narrowing[95] (BGN) and band-filling[21] (BF)].
The second contribution, ε̃σ, contains the electrical conductivity (i.e. the free-carrier)
information, and is linked to all intra-band effects. It varies explicitly with the free
carrier concentration and implicitly with temperature (via the carrier mobility).

The previous considerations show that the perturbations of the refractive index can
be of three kinds. First, a perturbation of the carrier (i.e. electron and/or hole) concen-
tration would impact the refractive index via both ε̃lattice and ε̃σ. Second, a perturbation
of the temperature distribution would also modify the refractive index via ε̃lattice and
ε̃σ. Finally, the presence of an electric field would modify the refractive index via ε̃lattice.
In other words and in all generality, a perturbation of the refractive index reads

∆ñ =
∂n

∂N
∆N +

∂n

∂P
∆P︸ ︷︷ ︸

Drude+BGN+BF

+
∂n

∂ ~E
.∆ ~E︸ ︷︷ ︸

Pockels+Kerr︸ ︷︷ ︸
electrorefraction

+i

 ∂k

∂N
∆N +

∂k

∂P
∆P︸ ︷︷ ︸

Drude+BGN+BF

+
∂k

∂ ~E
.∆ ~E︸ ︷︷ ︸

Franz-Keldysh


︸ ︷︷ ︸

electroabsorption︸ ︷︷ ︸
electrooptical

+
∂n

∂T
∆T︸ ︷︷ ︸

thermorefraction

+i
∂k

∂T
∆T︸ ︷︷ ︸

thermoabsorption︸ ︷︷ ︸
thermooptical

. (3.6)

In the following Sections, we review the different effects and discuss their relative
magnitudes for Si at a 670 nm wavelength (1.85 eV), i.e. for the probe laser of TP.
Note, for the sake of completeness, that a very complete review of the published data
concerning this problem can be found in Ref. [86] and, with even more details, in Ref.
[112]. Unfortunately, numerically speaking, both authors limit the study to wavelengths
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relevant to fiber-optic communication (λ = 1.3 µm and 1.55 µm). These results can
therefore not directly be used in our investigations. A conclusion which can be derived
from these investigations, however, is that although all published models and experi-
mental data agree qualitatively, very large variations in the derived numerical values of
the derivatives of equation (3.6) are found (up to a factor 10!). In this Chapter, we
therefore limit our study to the simplest models. Chapter 6 is anyhow dedicated to the
comparison of the (complete) developed model with experimental data.

3.2 Electrooptical Effects

The electrooptical effects account for the changes in complex refractive index due to
either the presence of free carriers or of an electric field. Three free-carrier electrooptical
phenomena are to be reported, namely (i) the Drude effect (Section 3.2.1), (ii) the carrier-
induced bandgap narrowing (BGN) effect (Section 3.2.2) and (iii) the band-filling (BF)
effect (Section 3.2.3). In addition, three electric-field effects are to be taken into account,
namely the (i) Kerr, (ii) Pockels and (iii) Franz-Keldysh effects (Section 3.2.4).

3.2.1 Drude Effect

The Drude effect accounts for both electrorefraction (i.e. change in n) and electroabsorp-
tion (i.e. change in k) due to a variation in electrical conductivity[18], i.e. a variation
in ε̃σ. We show here that, at high optical frequencies like in red and NIR, the electrore-
fractive Drude effect is linear (∆n proportional to N) and the electroabsorptive Drude
effect is negligible.

The frequency-dependent Drude electrical conductivity due to charge carriers of
charge q and mobility µ and in concentration Nq is[53]

σ =
qµNq

1− iωprobe/ωscatt
, (3.7)

where ωscatt = q/(mµ) is the scattering frequency of the carriers and m their mass.
In silicon, this scattering frequency is much smaller[53] (∼10 THz) than the optical
frequencies ωprobe corresponding to red and NIR wavelengths (∼1 PHz). In other words,
the high-frequency electrical conductivity is purely imaginary (no resistive losses). Using
formula (3.5) and assuming a real ε̃lattice (Ref. [125]), the complex refractive index then
reads, using first-order Taylor expansion,

ñ =

√
ε̃lattice +

i

ωprobeε0

qµNq
1− iωprobe

µm
q

≈
√
ε̃lattice −

q2

ω2
probeε0m

Nq ≈ n0(1− q2

2ω2
probeε0n

2
0m

Nq).

(3.8)
The first derivatives of the real and imaginary refractive indices can therefore be written
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respectively

∂n

∂N
|Drude = − q2

2ω2
probeε0n0︸ ︷︷ ︸

=β

1

me
= −2.036× 10−22 cm3 (3.9a)

∂n

∂P
|Drude = − q2

2ω2
probeε0n0︸ ︷︷ ︸

=β

1

mh
= −1.371× 10−22 cm3 (3.9b)

∂k

∂N
|Drude ≈

∂k

∂P
|Drude & 0, (3.9c)

where β is the so-called Drude coefficient and me and mh are respectively the electron
and hole effective masses. The numerical values are given for the probe laser of TP (670
nm). Interestingly, the expression of β shows its independence from mobility and, hence,
from temperature. The variations in ε̃σ with temperature are therefore negligible in the
considered wavelength range.

For completeness, notice that equations (3.9) are strictly only valid in visible and
NIR wavelengths. Deeper in the infra-red, the extinction coefficient of Si strongly in-
creases with free carrier concentration. This is often referred to as free carrier absorption
(FCA)[53]. Notice also that, besides being very small in visible and NIR wavelengths,
∂k/∂N |Drude and ∂k/∂P |Drude are also always positive. In other words, the Drude con-
tributions to the real and imaginary refractive indices have opposite signs and different
orders of magnitude.

3.2.2 Carrier-Induced Bandgap Narrowing (BGN) Effect

The presence of free carriers in a silicon sample modifies the band structure of the lattice
[Figure 3.1(a)]. The free carriers renormalize the sample bandgap Eg (Ref [95]), which,
in turn, modifies the complex refractive index via ε̃lattice.

Physically, the change in band-to-band absorption coefficient αBTB stems from the
increase in available states for electron-hole pair generation for a fixed wavelength. Above
the indirect absorption edge Eg, the band-to-band absorption coefficient is such that[53]

αBTB ∝ (~ωprobe − Eg)2, (3.10)

where ~ = h/(2π), h being Planck constant. A narrowed bandgap induces therefore an
increased absorption coefficient [see Figure 3.1(b)], i.e. an increased extinction coeffi-
cient. Given the Kramers-Kronig (KK) relationships[68] between n and k, it is easy to
understand that BGN also impacts n.

Though this contribution has been measured and studied in the literature [96, 61,
106], no model exists to quantify it, even approximately. To explain mathematically the
BGN effect e.g. due to the presence of free electrons, the following equation should be
used

∂ñ

∂N
|BGN =

∂Eg
∂N

(
∂n

∂Eg
+ i

∂k

∂Eg
). (3.11)

Two terms therefore need to be quantified. Attempts to quantify the first term, ∂Eg/∂N ,
can be found in the literature [95]. The second term, (∂n/∂Eg + i∂k/∂Eg), has, to the

39



3. THEORY OF PERTURBATION OF THE REFRACTIVE INDEX

Without BGN
With BGN

BGN

(b)(a)Energy

Wavevector

E0
g

Energy (eV)

log(αBTB)

Ev (⇑ by BGN)

Eg

Ep
f (⇓ by BF)

Ec (⇓ by BGN)

En
f (⇑ by BF)

Eoptical
g

Figure 3.1: (a) Schematic of the band structure of Si. The impact of BGN and BF effects are
indicated between brackets. Ec is the lowest energy level of the conduction band and Ev the highest
energy level of the valence band, the bandgap is Eg = Ec − Ev . Enf and Epf are respectively the

electron and hole quasi-Fermi levels, the optical bandgap is Eoptical
g ≈ Enf − Epf . It is implicitly

assumed in this figure that the semiconductor is highly degenerated (Enf and Epf are located in the

bands). (b) Impact of BGN on the variation in αBTB with photon energy. E0
g is the bandgap energy

before BGN.

best of our knowledge, not been fully modeled. Since a simplistic theoretical approach
for modeling this term proves to overestimate the impact of BGN on n and k[14], we
believe the complexity of this issue falls out of the scope of our investigations.

As an alternative, we propose an approximate quantification technique based on
the comparison of experimental spectra measured respectively on doped and undoped
silicon. This study further needs the following three assumptions. First, though doping
not only impacts Eg via the added free carriers (plasma- or carrier-induced BGN) but
also through the presence of dopant impurities (doping-induced BGN), we neglect the
latter. Second, we assume a linear BGN electrooptical effect, i.e. the n and k variations
due to BGN are proportional to the free carrier concentration. Finally, we assume
that the effect of BGN on the optical functions is independent from whether the BGN
is induced by electrons or holes. None of these three assumptions is actually valid but
they provide the framework for an approximate quantification of the BGN electrooptical
effect. We believe that the obtained order of magnitude of the effect is acceptable.

We focus our study on the experimental data of Ref. [125] and Ref. [8], where broad
spectra of n and k with a high density of data points are provided for undoped and
highly doped (Ndoping ≈ 3× 1020 cm−3) silicon. This is ideal for KK transform needed
to study the electrorefractive BGN effect (see below). We compare in Figure 3.2(a), (b),
(c) and (d) the experimental spectra of respectively the real part of ε̃, i.e. ε1 = <(ε̃), the
imaginary part of ε̃, i.e. ε2 = =(ε̃), n and k measured on lowly doped silicon and highly
doped silicon. The observed difference between the spectra at low and high doping is
due to the difference in free carrier concentrations, i.e. both to the Drude and BGN
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Figure 3.2: (a) Experimental ε1 spectra of respectively lowly doped (full line) and highly doped
(dashed line) silicon. (b) Experimental ε2 spectra of respectively lowly doped (full line) and highly
doped (dashed line) silicon. (c) Experimental n spectra of respectively lowly doped (full line) and
highly doped (dashed line) silicon. (d) Experimental k spectra of respectively lowly doped (full line)
and highly doped (dashed line) silicon. (e) Spectra of the differences |∆k| (full line) and |∆n| (dashed
line) measured respectively on highly doped and lowly doped silicon. The dotted line represents the
spectrum of the BGN-induced variation ∆nBGN in n as obtained from KK transform. The interrupted
line shows the theoretical electrorefractive Drude effect [equation (3.9a)]. The vertical dotted line
indicates the energy of the TP probe laser (1.85 eV).

Figure 3.2(e) shows the spectra of the differences in optical functions at high and

2The BF effect studied below will prove to be negligible
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low doping. Three quantities are to be discussed , i.e. the carrier-induced increase in
extinction coefficient |∆k|, the total carrier-induced reduction in refractive index |∆nTot|
and the BGN-induced increase in refractive index |∆nBGN|. First, it can be seen that,
though small, the variation ∆k is not negligible. As mentioned earlier, the Drude effect
expects a negligible variation in k (at least an order of magnitude smaller than the
observed variation). In other words, the observed |∆k| is a BGN effect. In the particular
case of the TP probe laser, we have ∆k = 0.00897. Second, the total variation ∆nTot

in refractive index, resulting from a combination of the Drude and BGN effects, can
also be observed in Figure 3.2(e). Interestingly, these variations are in good agreement
with the Drude effect of equation (3.9a) in the energy below approximately 3 eV. This
indicates a dominant Drude effect. Finally, Figure 3.2(e) also shows the increase in n due
to BGN. Though less direct, the Drude and BGN contributions to the total variation in
refractive index can indeed easily be separated. The ε2 spectra being free of any Drude
contribution (in the range of interest, i.e. the red and NIR range), they can be KK
transformed using the following formula

εKK
1 (E) = KK(ε2) = 1 +

2

π
P
∫ +∞

0

E′ε2(E′)

E′2 − E2
dE′, (3.12)

where P is the principal value of the integral and E is the photon energy[68]. The
obtained εKK

1 spectra are then equally free of any Drude contribution. The difference in
the resulting n spectra (i.e. <(

√
εKK
1 + ε2)) gives therefore the BGN-induced variation

∆nBGN in real refractive index. It can be seen that, around the energy of the TP probe
laser, though larger than ∆k, ∆nBGN is slightly less than one order of magnitude smaller
than the total variation in n. In the particular case of the TP probe laser, we obtain
∆nTot = −0.0654 and ∆nBGN = 0.0146.

Combining these results with the three assumptions mentioned above, we derive

∂n

∂N
|BGN =

∂n

∂P
|BGN = 5× 10−23 cm3 (3.13a)

∂k

∂N
|BGN =

∂k

∂P
|BGN = 3× 10−23 cm3, (3.13b)

for the probe laser of TP.

Hence, following this approach, the electrorefractive BGN effect is smaller than the
electrorefractive Drude effect [equations (3.9a) and (3.9b)]. It further has opposite sign,
reducing the total impact of the carrier upon the real refractive index. We will see in
Chapter 6, however, that a reduced impact of the free carriers is to be rejected. Based
on our experimental data, we will indeed conclude that the electrorefractive effect is
underestimated. For this reason, we neglect this contribution in the rest of this thesis.

The electroabsorptive BGN effect has no Drude counterpart and should therefore
be included in our theory. However, it is about one order of magnitude smaller than
the Drude electrorefractive effect and can consequently be considered as a second-order
effect. Though we do not include this effect in our main theory, we still look for traces
of this effect in Appendix A.6. The final conclusions of these investigations are that it
is never observed on ultra-shallow junctions.
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3.2.3 Burstein Shift or Band-Filling (BF) Effect

Similar to the BGN effect, when free carriers are present in a silicon sample, the optical
bandgap also suffers from modifications due to BF [Figure 3.1(a)]. Free electrons indeed
fill the energy states at the bottom of the conduction band, making them no longer
available for absorption by a valence electron. Free holes empty the energy states at the
top of the valence band, leading to similar reduction in absorption coefficient. In sum-
mary, free carriers widen the optical bandgap, which in turn diminishes the absorption
coefficient.

However, we do not expect any Burstein shift in our experiments. This effect is
indeed only effective when a carrier density is reached such that the carrier distributions
are degenerate. It is usually assumed that this occurs when the electron (resp. hole)
quasi-Fermi level lies 4kbT above (resp. below) the bottom of the conduction band
(resp. the top of the valence band), kb being Boltzmann’s constant and T the lattice
temperature. In Si at 300K, this corresponds respectively to an electron concentration
of 1.7 × 1020 cm−3 and a hole concentration of 6.4 × 1019 cm−3. These concentrations
are hardly ever reached in our experiments. Besides, even in cases of higher carrier
densities, only enhanced absorption is observed [96, 61, 106, 58], i.e. BGN-induced
variations in refractive index seem to dominate in silicon. This is confirmed by the
experimental spectra shown in Figure 3.2. This effect is therefore neglected in this
work. It is, however, important to keep this effect in mind in the case of small effective
mass semiconductors (such as InSb), where this effect can be considerable[21].

3.2.4 Pockels, Kerr and Franz-Keldysh Effects

The Pockels and Kerr effects are respectively first- and second-order electrorefractive
effects due to the presence of an electric field[106, 53]. The Franz-Keldysh effect ac-
counts for electroabsorption due to the presence of an electric field[106, 123] (enhanced
band-to-band absorption under high electric field due to band bending). These effects
impact ε̃lattice. A very thorough investigation of these phenomena has been conducted by
Aspnes[9]. These effects can be taken advantage of in order to quantify the electric field
at the junction between two semiconductors[118] or at the surface of a semiconductor
sample[127].

In the case of TP, these three effects can be neglected for two reasons. First, they
are significant only at wavelengths very close to the (direct or indirect) bandgap of the
studied semiconductor[106, 101]. Second, for reflection to be sensitive to an electric field,
the in-depth extension of the electric field needs to be of the order of the wavelength.
The Debye length, giving the screening length of an electric field by free carriers in
density Nq is [107]

LDebye =
√

(εlatticeε0kbT )/(q2Nq), (3.14)

where kb is Boltzmann constant. In a TP experiment, the involved carrier concentrations
are at least ≈ 1018 cm−3, the extension of any electric field is therefore only a couple of
nanometers. In summary, due to the high carrier concentrations present in the sample,
an electric field ~E(x, y, z, t) generates a very local peak of refractive index perturbation,
which induces negligible perturbation of the reflectance. The Pockels, Kerr and Franz-
Keldysh effects are therefore not considered in the rest of this thesis.
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3. THEORY OF PERTURBATION OF THE REFRACTIVE INDEX

3.3 Thermooptical Effects

In all generality, a variation in sample temperature modifies the complex refractive index
via both ε̃lattice and ε̃σ. However, the variations in ε̃σ have been demonstrated to be
negligible in the considered wavelength range (Section 3.2.1). The temperature therefore
only impacts the complex refractive index through ε̃lattice. These variations stem mostly
from the thermally induced BGN and partly from thermal expansion[55].

To model the total thermooptical effects, we use a fitting of experimental data[62].
This fitting shows that the thermoabsorption is negligible with respect to thermorefrac-
tion and that thermorefractive effect is linear, i.e.

∂ñ

∂T
= δ = 3.71× 10−4K−1, (3.15)

where the value is given for the probe laser of TP.

Very importantly for the rest of this work, we would like to underline the fact that
the thermorefractive and electrorefractive effects have opposite signs [equations (3.9) vs
(3.15)], i.e. an increased carrier concentration reduces the real refractive index while an
increased temperature raises the real refractive index. This competing behavior proves
to be dominated by the electrorefractive effect in most cases studied in this work. Using
equation (3.9) and (3.15), it is easy to demonstrate that the thermorefractive effect
indeed only becomes dominant when ∆T (K) & 10−18∆N(cm−3) if we assume equal
free electron and hole concentrations (∆N). We will see in Chapter 6 that the latter
situation is never observed on the DC reflectance (free carriers due to active doping
always dominate). We will, however, see that the thermorefractive effect dominates
the AC reflectance in the case of highly doped substrates (active doping & 5 × 1019

cm−3). This will lead to a very interesting behavior of the AC reflectance when the
electrorefractive and thermorefractive effects are commensurate (active doping ≈ 1019

cm−3). Similarly, the AC reflectance on highly damaged samples, e.g. implantation
profiles before annealing, is also dominated by the thermorefractive effect[81, 80, 93,
103, 16, 23, 48, 49, 115]. This last case is, however, not the focus of this work.

3.4 Summary

In summary, for TP, the electrooptical and thermooptical effects in silicon can be sum-
marized by adding formulas (3.9) and (3.15), i.e.

∆ñ = ∆n =
∂n

∂∆N
∆N +

∂n

∂∆P
∆P +

∂n

∂T
∆T = −β 1

me
∆N − β 1

mh
∆P + δ∆T . (3.16)

As highlighted by equation (3.16), only real variations in refractive index are expected.
Furthermore, the variations due to an increase in free carrier concentration or tempera-
ture have opposite signs.

Formula (3.16) is in agreement with the commonly used optical model for PMOR[38,
120]. It has, however, to be kept in mind that formula (3.16) assumes negligible impact
of BGN on the complex refractive index. This is discussed in more detail in Appendix
A.6 where we look for traces of the BGN effect in our experimental data.
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Chapter 4

Theory of Carrier and Heat
Transport in Homogeneously
Doped Silicon

In this Chapter, we assume that a supra-bandgap modulated pump laser and a supra-
bandgap constant probe laser shine on a homogeneously doped silicon sample with re-
spective irradiances Πpump(x, y, t) and Πprobe(x, y) such that

Πpump(x, y, t) = Ppump(t) exp(−x
2 + y2

R2
pump

)

= P0
pump exp(−x

2 + y2

R2
pump

)[
1

2
+

1

2
cos(ωt)]

= P0
pump exp(−x

2 + y2

R2
pump

)[
1

2
+

1

4
exp(iωt) +

1

4
exp(−iωt)] (4.1)

Πprobe(x, y) = P0
probe exp(−x

2 + y2

R2
probe

), (4.2)

where Ppump(t) is the time-dependent pump irradiance at position (x, y) = (0, 0), P0
pump

(resp. P0
probe) is the peak value of the pump (resp. probe) irradiance, Rpump (resp.

Rprobe) is the pump (resp. probe) radius and ω is the angular modulation frequency of
the pump laser irradiance.

As a result, a free electron distributionN(x, y, z, t), a free hole distribution P (x, y, z, t)
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and a temperature distribution T (x, y, z, t) are generated in the sample such that

N(x, y, z, t) =Ndoping + ∆N(x, y, z, t)

=Ndoping + ∆N0(x, y, z)︸ ︷︷ ︸
dc

+ [∆N1(x, y, z) exp(iωt) + ∆N?
1 (x, y, z) exp(−iωt)]︸ ︷︷ ︸

fundamental

+

+∞∑
j=2

[
∆Nj(x, y, z) exp(ijωt) + ∆N?

j (x, y, z) exp(−ijωt)
]︸ ︷︷ ︸

jth harmonic

(4.3)

P (x, y, z, t) =Pdoping + ∆P (x, y, z, t)

=Pdoping + ∆P0(x, y, z)︸ ︷︷ ︸
dc

+ [∆P1(x, y, z) exp(iωt) + ∆P ?1 (x, y, z) exp(−iωt)]︸ ︷︷ ︸
fundamental

+

+∞∑
j=2

[
∆Pj(x, y, z) exp(ijωt) + ∆P ?j (x, y, z) exp(−ijωt)

]︸ ︷︷ ︸
jth harmonic

(4.4)

T (x, y, z, t) =T0 + ∆T0(x, y, z)︸ ︷︷ ︸
dc

+ [∆T1(x, y, z) exp(iωt) + ∆T ?1 (x, y, z) exp(−iωt)]︸ ︷︷ ︸
fundamental

+

+∞∑
j=2

[
∆Tj(x, y, z) exp(ijωt) + ∆T ?j (x, y, z) exp(−ijωt)

]︸ ︷︷ ︸
jth harmonic

, (4.5)

where Ndoping (resp. Pdoping) and ∆N(x, y, z, t) (resp. ∆P (x, y, z, t)) are respectively
the electron (resp. hole) concentrations due to the homogeneous doping of the sample
and due to optical injection. T0 is the environment temperature during the experi-
ment, i.e. room temperature (300 K). ∆N0(x, y, z), ∆P0(x, y, z) and ∆T0(x, y, z) are
the time-independent components of the laser-induced perturbations respectively of the
free electron distribution, of the free hole distribution and of the temperature distri-
bution. ∆N1(x, y, z), ∆P1(x, y, z) and ∆T1(x, y, z) are the fundamental modes of the
laser-induced perturbations respectively of the free electron distribution, of the free
hole distribution and of the temperature distribution. ∆Nj(x, y, z), ∆Pj(x, y, z) and
∆Tj(x, y, z) are the jth Fourier coefficients of the laser-induced perturbations respec-
tively of the free electron distribution, of the free hole distribution and of the tempera-
ture distribution. ∆N?

j , ∆P ?j and ∆T ?j (j = 1, 2, ...) are the complex conjugates of jth

Fourier coefficients of respectively the electron, hole and temperature distributions.

At this point, we believe it is a good opportunity to make the following remark
concerning the use of complex notations in this thesis. Both the optical model and the
transport model involve a modulation and, hence, benefit from the convenient use of
a complex notation. First, due to the modulation of the electromagnetic field at the
optical frequency of the probe laser, the optical model uses a complex refractive index
[equation 3.5]. Second, the transport model includes the modulation of the pump irra-
diance [equation (4.1)]. The pump-generated excess carriers and temperature therefore
also are written as complex numbers [equations (4.3), (4.4) and (4.5)]. Obviously, these
two complex notations should not be confused or intermixed. Luckily, the ambiguity
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can be eliminated. Indeed, the final equations of the optical model [formulas (2.11),
(2.17), (2.25), (2.31) and (3.16)] are purely real. As of this Chapter, the only complex
notation is therefore related to the time variations in the excess carrier concentration
and temperature at the modulation frequency of the pump power. This explains why
the free electron, free hole and temperature distributions are written as real numbers
in Chapter 3 and as complex numbers in the present Chapter. The two notations are
obviously equivalent1.

In this Chapter, we would like to calculate the various components of the free elec-
tron, free hole and temperature distributions [equations (4.3), (4.4) and (4.5)] generated
by the pump and probe irradiances [equations (4.1) and (4.2)] irradiances. In particular,
in Section 4.1, we introduce the thermodynamic model of carrier and heat transport.
In Section 4.1.1, we show that it is possible to simplify the carrier transport equations
into one single equation, namely the generalized ambipolar diffusion equation for the
carrier transport. Similarly, in Section 4.1.2, we simplify the heat transport problem. In
Section 4.1.3, we then study the equations which need to be solved to derive the various
harmonics of the electron, hole and temperature distributions. Unlike in the previous
Chapters, the here considered perturbations of the electron and hole concentrations can
be large compared to their equilibrium values. We show that this implies frequency
mixing, i.e. coupled equations. An in-depth discussion of the time-dependent transport
equations is therefore needed. Section 4.2 is then dedicated to the study and discussion
of the solutions of the derived carrier and heat transport equations.

Note that, though this Chapter focuses on homogeneously doped Si, the derived
results and understanding are of the highest importance for the next Chapter, where the
carrier and heat transport theory is studied in non-homogeneously doped Si. Chapter 5
will indeed show that, when a doped layer is present at the surface of a silicon sample, the
excess carrier and temperature distributions can easily be derived from the distributions
found in a homogeneously doped sample, as studied in the present Chapter.

4.1 Thermodynamic Model

The thermodynamic model is an extension of the drift-diffusion model including the
thermoelectric effects, i.e. the interactions between temperature and carriers. These
effects have hardly ever been discussed in the framework of PMOR. Wagner[122] incor-
porated these effects a posteriori in his model to show that they should be negligible.
Opsal[82] also studied the effect of thermodiffusion of carriers (similar to a Seebeck ef-
fect) but only considered constant thermodiffusion coefficients. We, however, take these
thermoelectric effects into account a priori and then show consistently when they are
negligible. We also include the bandgap narrowing quasi-drift.

In this work, we make use of the model introduced by Kells (Section 2.3 of Ref.
[63]). More particularly, we use the simplified model derived in Section 2.3.6 of the same
reference [63], where it is assumed that electrons and holes are in thermal equilibrium
with the lattice (electron temperature Tn, hole temperature Tp and lattice temperature

1The required equivalence justifies the use of the half-amplitudes in equations (3.1), (3.2)
and (3.3)
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T are equal). This assumption is acceptable for silicon if the investigated time scale is
not shorter than a few picoseconds, i.e. the thermalization time of hot carriers[108].

In the thermodynamic model, the carrier transport equations, i.e. Poisson’s equation
and the electron and hole continuity equations, are written in their usual form as

−~∇ε0εlattice.~∇ψ =q(P −N +N+
d −N

−
a ) (4.6a)

∂N

∂t
=

1

q
~∇. ~Jn +G− Rec (4.6b)

∂P

∂t
=− 1

q
~∇. ~Jp +G− Rec, (4.6c)

where ψ is the electrostatic potential linked to the total electric field ~E by the following
relationship

~E = −~∇ψ. (4.7)

N+
d and N−a are respectively the ionized donor and acceptor concentrations. G is the

total carrier generation term, Rec is the carrier recombination rate. ~Jn and ~Jp are respec-
tively the electron and hole current densities. In our model, these currents respectively
read

~Jn =−qµnN ~∇ψ︸ ︷︷ ︸
~Jdrift
n

+ qDn~∇N︸ ︷︷ ︸
~Jdiffusion
n

+ kbµnN ~∇T︸ ︷︷ ︸
~JSeebeck
n

−µnN ~∇χ︸ ︷︷ ︸
~JBGN
n

(4.8a)

~Jp =−qµpP ~∇ψ︸ ︷︷ ︸
~Jdrift
p

− qDp~∇P︸ ︷︷ ︸
~Jdiffusion
p

− kbµpP ~∇T︸ ︷︷ ︸
~JSeebeck
p

−µpP ~∇(χ+ Eg)︸ ︷︷ ︸
~JBGN
p

, (4.8b)

where µn and µp are the electron and hole mobilities respectively, Dn and Dp are respec-
tively the electron and hole diffusivities and χ is the electron affinity of the considered
semiconductor.

Both the electron and hole currents proposed in formulas (4.8) contain four compo-
nents. First, the usual drift contribution ~Jdrift

i (i = n or p) accounts for the movements
of charge under an applied electric field (not considered here) and internal electric fields.
Two examples of such internal fields are of importance in this work. The Dember elec-
tric field generated by moving distributions of charges with opposite signs is studied
in Section 4.1.1. The built-in electric field of a diode is discussed in Chapter 5. The
second current contribution is the diffusion component ~Jdiffusion

i (i = n or p), which
accounts for the displacement of charges towards regions of low concentration. Third,
the thermodynamic model adds a current term ~JSeebeck

i (i = n or p) proportional to
the temperature gradient to embody the Seebeck effect. Finally, we have also included
the BGN quasi-drift currents[98, 74] ~JBGN

i to account for the drift of electrons under
gradients of affinity and the drift of holes under gradients of both affinity and bandgap.
It has indeed been shown that the BGN quasi-drift currents are needed to model PMOR
correctly[41]. We show in Section 4.1.1 that this BGN-induced drift acts as a counter-
diffusive term.
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In the thermodynamic model, the heat transport equation reads

ρcp
∂T

∂t
=kth∇2T + (hνpump − Eg)G︸ ︷︷ ︸

Gdirect
th

+
[
Enf − Epf + qT (Pp − Pn)

]
Rec︸ ︷︷ ︸

Grecombination
th

+
| ~Jn|2

qµnN
+
| ~Jp|2

qµpP︸ ︷︷ ︸
GJoule
th

−T
(
~Jn.

∂Pn
∂N

~∇N + ~Jp.
∂Pp
∂P

~∇P
)

︸ ︷︷ ︸
GPeltier
th

−T
(
~Jn.

∂Pn
∂T

~∇T + ~Jp.
∂Pp
∂T

~∇T
)

︸ ︷︷ ︸
GThomson
th

,

(4.9)

where ρ is the density of Si, cp its heat capacitance, kth is its thermal conductivity.
Enf and Epf are respectively the electron and hole quasi-Fermi levels. Pn and Pp are
respectively the electron and hole thermoelectric powers (see Section 4.1.2).

The heat equation shows five heat generation terms. First, Gdirect
th is due to the fast

thermalization of hot carriers. Second, Grecombination
th is the heat released by carrier re-

combinations. Third, the Joule heating GJoule
th occurs whenever a current flows through

any electrically resistive material. Finally the fourth and fifth contributions represent
respectively the Peltier heating GPeltier

th , arising whenever an electrical current crosses a
gradient of thermoelectric power, and the Thomson heating GThomson

th , which takes place
whenever an electrical current flows through a temperature gradient.

In the rest of this Section, we look at both the carrier and heat transport equations
above and simplify them in the specific case of TP. This leads to the generalized ambipolar
diffusion equation (Section 4.1.1) and a simplified heat equation (Section 4.1.2). In
order to derive separate equations for the different Fourier coefficients of the carrier and
temperature distributions of equations (4.3), (4.4) and (4.5), we proceed with an in-depth
discussion of the time dependence of the coefficients appearing in the final equations in
Section 4.1.3. This will lead to our final steady-periodic model equations, i.e. a system of
four coupled nonlinear equations solving for ∆N0(x, y, z) [= ∆P0(x, y, z)], ∆N1(x, y, z)
[= ∆P1(x, y, z)], ∆T0(x, y, z) and ∆T1(x, y, z).

4.1.1 Generalized Ambipolar Diffusion Equation

Rather than directly solving the heavy problem of the carrier transport equations (4.6)
combined with the current equations (4.8), we would like to simplify it to a single
equation, namely the generalized ambipolar diffusion equation. To attain this objective,
the following four steps are needed.

The first simplification is the charge balance approximation (electrical neutrality).
This assumes that the laser-induced electron and hole distributions are equal everywhere
and at all times [i.e. ∆N(x, y, z, t) = ∆P (x, y, z, t)]. This obviously assumes no trapping
but, most of all, it also supposes that electrons and holes diffuse and drift at the same
speed, in spite of their different mobilities and, hence, diffusivities[111]. This approx-
imation is realistic due to the presence of the internal Dember electric field which is
generated by separated electron and hole distributions[76]. As Poisson’s equation (4.6a)
shows, in a homogeneously doped silicon sample, any disparity (∆P −∆N) creates an
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internal field such that
~∇. ~E =

q

ε0εlattice
(∆P −∆N). (4.10)

This field tends to slow electrons down and accelerate holes so as to keep their density
equal everywhere.

Since the internal field is created by the difference (∆P − ∆N) itself, the electron
and hole densities cannot be exactly the same, i.e. the charge balance is only an ap-
proximation. It is, however, a good approximation if the disparity (∆P −∆N) needed
to create the field is small compared to the actual excess carrier densities ∆N and ∆P .
McKelvey showed that, in the isothermal case, the charge balance is a good approxima-
tion if the Debye length is much smaller than the carrier diffusion length (p. 331-332 of
Ref. [76]), which is always the case in Si (nm vs µm). In the non-isothermal case, one
needs to make sure that the internal field is also strong enough to counteract the natural
tendency of electrons and holes to separate via their Seebeck currents. We follow the
same reasoning as McKelvey did in the isothermal case. Assuming charge balance in the
current equations (4.17) presented below, we can write the total current density

~JTOT = ~Jn + ~Jp = q(µnN + µpP ) ~E + q(DTOT
n −DTOT

p )~∇(∆N) + kb(µnN − µpP )~∇T .
(4.11)

The internal field must be large enough so as to ensure that the total current density is
zero (no applied field), i.e.

~E = −
(DTOT

n −DTOT
p )

(µnN + µpP )
~∇(∆N)− kb(µnN − µpP )

q(µnN + µpP )
~∇T . (4.12)

Plugging this electric field into equation (4.10) leads to

−
(DTOT

n −DTOT
p )

(µnN + µpP )
∇2(∆N)− kb(µnN − µpP )

q(µnN + µpP )
∇2T =

q

ε0εlattice
(∆P −∆N). (4.13)

For the sake of simplicity, the coefficients of the two gradients in the left hand-side of
equation (4.13) have been considered uniform. The relative difference between the excess
electron and hole concentrations can therefore be written∣∣∣∣∆P −∆N

∆N

∣∣∣∣ =

∣∣∣∣∣ ε0εlattice(DTOT
n −DTOT

p )

q(µnN + µpP )

∇2(∆N)

∆N
+
ε0εlatticekb(µnN − µpP )

q2(µnN + µpP )

∇2T

∆N

∣∣∣∣∣ .
(4.14)

The first term of the right hand-side of equation (4.14) corresponds to the term discussed
by McKelvey and has been checked to always be small in Si. The second term is also
small if, additionally,

ε0εlatticekb
q2

|∇2T |
∆N

� 1, (4.15)

Assuming an excess temperature decaying exponentially with a characteristic length Lthd
(see Section 4.2), the above expression becomes

L2
Debye

(Lthd )2

|N − P |
∆N

∆T

T
� 1. (4.16)
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Owing to the thermal diffusion length being significantly longer than the Debye length
in TP (µm vs nm), the condition of equation (4.16) is always verified (< 10−4 even in
the worst case of highly doped substrates). In other words, the concentration disparity
(∆P −∆N) needed to create the internal field is much smaller than the concentrations
∆P and ∆N themselves, which ensures that charge balance is a good approximation
even in the non-isothermal situation studied in this work.

Second, we assume that the BGN currents are only due to the generated free carriers.
This is obviously valid in a homogeneously doped semiconductor sample. In this case,
following Ref. [117] and Ref. [126], ~∇χ = ∂χ/∂(∆N)~∇(∆N) and ~∇(χ + Eg) = ∂(χ +
Eg)/∂(∆N)~∇(∆N), and the current equations (4.8) can be rewritten

~Jn = −qµnN ~∇ψ + qDTOT
n

~∇N + kbµnN ~∇T (4.17a)

~Jp = −qµpP ~∇ψ − qDTOT
p

~∇P − kbµpP ~∇T , (4.17b)

with the total diffusivities

DTOT
n = Dn−

Nµn
q

∂χ

∂(∆N)︸ ︷︷ ︸
DBGNn

(4.18a)

DTOT
p = Dp +

Pµp
q

∂(χ+ Eg)

∂(∆N)
= Dp−

Pµp
q

∣∣∣∣∂(χ+ Eg)

∂(∆N)

∣∣∣∣︸ ︷︷ ︸
DBGNp

. (4.18b)

The two derivatives in equations (4.18) can be expressed using e.g. Schenk’s BGN
model[94]. BGN quasi-electric fields act therefore as counter-diffusive terms. The in-
volved additional terms DBGN

n and DBGN
p are indeed always negative, hence reducing

the total carrier diffusivities.

Third, we add together equations (4.6b) and (4.6c) respectively multiplied by the
hole conductivity qµpP and electron conductivity qµnN , using the definition equations
(4.3), (4.4) and the current equations (4.17). This gives the crucial generalized ambipolar
diffusion equation

∂∆N

∂t
= µa~∇(∆N).~∇ψ +Da∇2(∆N) +G− Rec

+
kb
q

µnµp(N + P )

µnN + µpP
~∇(∆N).~∇T +

kb
q

2µnµpNP

µnN + µpP
∇2T , (4.19)

where

µa =
µnµp(N − P )

µnN + µpP
(4.20a)

Da =
µpPD

TOT
n + µnND

TOT
p

µnN + µpP
, (4.20b)

are respectively the ambipolar mobility and ambipolar diffusivity. It has been assumed
that ~∇(Di~∇∆N) = Di∇2(∆N) (i = n or p) since the variations in carrier diffusivities
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are much smoother than the variations in carrier concentrations (see e.g. Figure 4.15 of
Ref. [36]). Equation (4.19) contains all the carrier transport information needed for the
understanding of a PMOR measurement, not only for silicon but also for other materials
where electrothermal ambipolar motion of electrons and holes is allowed.

The fourth and final simplification consists in neglecting three of the terms in formula
(4.19).

First, we neglect the first (drift) term of the right-hand side of equation (4.19).
McKelvey shows that the drift effect related to the internal field is considerably smaller
than diffusive effects in the isothermal case. In the non-isothermal case, we must check
that similar conclusions can be reached about the internal field given by equation (4.12).
We must have∣∣∣∣∣µa~∇(∆N).

[
(DTOT

n −DTOT
p )

(µnN + µpP )
~∇(∆N) +

kb(µnN − µpP )

q(µnN + µpP )
~∇T

]∣∣∣∣∣� ∣∣Da∇2(∆N)
∣∣ .

(4.21)

This is verified if we have simultaneously

|∆N | �
∣∣∣∣ (µnN + µpP )

(µn − µp)
(N + P )

(P −N)

∣∣∣∣ , (4.22)

and

|∆T | � T
Lthd

Lpld

∣∣∣∣ (µnN + µpP )

(µnN − µpP )

(N + P )

(P −N)

∣∣∣∣ . (4.23)

The derivation of equations (4.22) and (4.23) assumes Boltzmann statistics and expo-
nentially decaying carrier and temperature distributions with respective decay lengths
Lpld and Lthd (see e.g. Section 4.2). As checked by McKelvey (p. 330 of Ref. [76]), the
first condition is always verified in Si. The second condition is valid, owing to the small
magnitude of the temperature perturbations (less than one percent of T ). We show in
Section 4.2 that this is indeed always the case for a silicon substrate in the irradiance
range of TP. For other highly absorptive materials like Ge, however, this term may be
expected to be significant.

Second, we neglect the last two (Seebeck) terms of the right-hand side of equation
(4.19), respectively proportional to the gradient ~∇T and laplacian ∇2T of the excess
temperature. Let us assume that electrons and holes have equal mobility µ and equal
diffusivity D = kbTµ/q. In this case, we have for the ~∇T term

kb
q

µnµp(N + P )

µnN + µpP
~∇(∆N).~∇T =

kb
q
µ~∇(∆N).~∇T ≈ D~∇(∆N).

~∇T
T

. (4.24)

Once again, the small magnitude (< 1%) of the considered temperature perturbations
renders this term negligible compared to the diffusive term.

Finally, for the ∇2T term, similar reasoning could be used so as to show that it is
usually negligible. However, this conclusion can be reached in a more elegant way. Using
the time-independent heat equation (see e.g. Section 4.1.2), one can show that

∇2T = − (hνpump − Eg)
kth

G− Eg
kth

Rec. (4.25)

52



4.1. Thermodynamic Model

Assuming equal mobility and diffusivity for both types of carriers, we can therefore
deduce that

kb
q

2µnµpNP

µnN + µpP
∇2T ≈ − 2

1/P + 1/N

D(hνpump − Eg)
kthT︸ ︷︷ ︸

≈10−21 cm3

G− DEg
kthT︸ ︷︷ ︸

≈10−21 cm3

Rec

 . (4.26)

In other words, this term reduces the carrier generation and enhances the carrier re-
combinations. In the case of silicon, however, it is smaller than 10% of the carrier
recombination and generation rates if the total electron or hole concentration is lower
than roughly 1020 cm−3. It is therefore neglected in this work. This term in ∇2T should,
however, be taken into account at very high doping or injection of in the case of a poor
thermal conductor. These results are in agreement with the conclusions of Ref.[122],
which confirms that the Seebeck effect is experimentally never observed and therefore
negligible compared to the diffusive term and the recombination/generation rates.

4.1.2 Heat Equation

As already mentioned, our main assumption concerning the energy transport is the
equality of the carrier and lattice temperatures. As a consequence, the problem is
summed up by a heat equation with five generation terms [equation (4.9)].

The first heat generation term is the direct heating (hot-carrier thermalization). This
contribution occurs before any carrier transport and reads

Gdirect
th = (hνpump − Eg)G, (4.27)

where empty bands are assumed. This term is not included in Kells’s model since Kells
considers that the carriers are constantly in thermal equilibrium with the lattice. This
is obviously not possible in the case of optical generation since the carriers are initially
generated with (hνpump − Eg) energy in excess to the bandgap. This excess energy is
directly (after a few picoseconds[108]) released to the lattice, explaining the presence of
this extra term. This term is usually not included in commercial numerical simulation
software packages, which makes their use impossible when studying PMOR. This is the
main reason for which a dedicated numerical simulation code has been developed[37]
(FSEM). Note that, in theory, the direct heating also includes a contribution due to
free-carrier absorption. This effect is, however, considerably smaller than the hot-carrier
thermalization effect and is therefore neglected[36].

Further, the second generation term is the recombination heat

Grecombination
th =

[
Enf − Epf + qT (Pp − Pn)

]
Rec, (4.28)

where the electron and hole thermoelectric powers assuming Boltzmann statistics are
respectively[63] Pn = −kb/q [5/2− ln(N/Nc)] and Pp = kb/q [5/2− ln(P/Nv)] with Nc
and Nv the effective densities of state of respectively the conduction and valence bands.
Injecting these formulas into (4.28) gives

Grecombination
th = (Eg + 5kbT )Rec. (4.29)
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Using Boltzmann statistics in the definition of the thermoelectric powers has implicitly
modified the impact of band-filling by the excess carriers. As mentioned for the direct
heating, we consider empty bands when it comes to heat generation. As the 5kbT term
of formula (4.29) is related to band-filling, it has to be ignored. Further, we observe
below that this term needs to be neglected for the sake of energy conservation. This is
consistent with the usual modeling[38, 122].

The next three generation terms are usually not taken into account and are all
proportional to a power of the currents. It is easy to show that they all are negligible at
room temperature. Using the one-dimensional linear model which will be developed in
Section 4.2.1, assuming low-frequency diffusive currents (i.e. Jn = −Jp = −q

√
Da/τ∆N

where τ is the carrier recombination lifetime) and equal hole and electron mobilities, one
finds that

|GJoule
th | =

∣∣∣∣∣ | ~Jn|2qµnN
+
| ~Jp|2

qµpP

∣∣∣∣∣ ≤ kbT
(

∆N

N
+

∆P

P

)
Rec ≤ (2kbT )Rec (4.30a)

|GPeltier
th | =

∣∣∣∣−T ( ~Jn. ∂Pn∂N
~∇N + ~Jp.

∂Pp
∂P

~∇P
)∣∣∣∣ ≤ kbT (∆N

N
+

∆P

P

)
Rec ≤ (2kbT )Rec

(4.30b)

|GThomson
th | =

∣∣∣∣−T ( ~Jn. ∂Pn∂T
~∇T + ~Jp.

∂Pp
∂T

~∇T
)∣∣∣∣ ≤

[
kb∆T

∣∣∣∣∣ln
(
NP

NcNv

)√
Da

2Dth
ωτ

∣∣∣∣∣
]

Rec,

(4.30c)

where ω is the pump angular modulation frequency. At room temperature, these three
heat generation terms account therefore for only a few percent of the recombination heat
and can therefore be neglected.

Note that the total energy of the system is conserved. The sum of the direct heat-
ing and recombination contributions integrated over the sample volume is equal to the
incoming optical (non-reflected) energy. Kells shows that conservation of energy is also
ensured in a more general case[63].

4.1.3 Steady-Periodic Model Equations

In summary, based on the considerations of Sections 4.1.1 and 4.1.2, the simplified
coupled system of equations to be solved is the following

∂∆N

∂t
=Da∇2(∆N) +Gpump +Gprobe − Rec (4.31a)

ρcp
∂T

∂t
=kth∇2T

+ (hνpump − Eg)Gpump + (hνprobe − Eg)Gprobe + EgRec, (4.31b)

where Gpump and Gprobe are the carrier generation rates respectively due to the pump
and the probe lasers.

Since we are dealing with modulated distributions of the carrier concentration and the
temperature [equations (4.3) to (4.5)], it is convenient to write directly the equations for
the different harmonics of these distributions. Plugging equations (4.3) into equations
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(4.31a) and relying on the orthogonality of the exponential functions, we obtain the
following steady(-periodic) equations to be solved for the different Fourier coefficients of
the carrier concentration and temperature

jiω∆Nj =[Da∇2(∆N)]j +Gpump
j +Gprobe

j − Recj (4.32a)

jiω∆Tj =[Dth∇2(∆T )]j

+ 1/(ρcp)
{

[(hνpump − Eg)Gpump]j + [(hνprobe − Eg)Gprobe]j + [EgRec]j
}

(4.32b)

for j = 0, 1, 2, 3, ...,

where Dth = kth/(ρcp) is the sample thermal diffusivity. In the ambipolar diffusion
equations (4.32a), we have assumed the following Fourier expansions respectively of the
carrier generation rate Glaser(t) (laser=probe or pump), of the carrier diffusion rate
[Da∇2(∆N)](t) and of the carrier recombination rate Rec(t)

Glaser(t) = Glaser
0

+

+∞∑
j=1

[Glaser
j exp(ijωt) + (Glaser

j )∗ exp(−ijωt)] (4.33a)

[Da∇2(∆N)](t) = [Da∇2(∆N)]0

+

+∞∑
j=1

{
[Da∇2(∆N)]j exp(ijωt) + [Da∇2(∆N)]∗j exp(−ijωt)

}
(4.33b)

Rec(t) = Rec0

+

+∞∑
j=1

[Recj exp(ijωt) + Rec∗j exp(−ijωt)]. (4.33c)

Similarly, in the heat equations (4.32b), we have assumed the following Fourier expan-
sions respectively of the direct heating [(hνlaser − Eg)Glaser](t) (laser=probe or pump),
of the recombination heat [EgRec](t) and of the heat diffusion rate [Dth∇2(∆T )](t)

[(hνlaser − Eg)Glaser](t) = [(hνlaser − Eg)Glaser]0

+

+∞∑
j=1

{
[(hνlaser − Eg)Glaser]j exp(ijωt) + [(hνlaser − Eg)Glaser]∗j exp(−ijωt)

}
(4.34a)

[EgRec](t) = [EgRec]0

+

+∞∑
j=1

{
[EgRec]j exp(ijωt) + [EgRec]∗j exp(−ijωt)

}
(4.34b)

[Dth∇2(∆T )](t) = [Dth∇2(∆T )]0

+

+∞∑
j=1

{
[Dth∇2(∆T )]j exp(ijωt) + [Dth∇2(∆T )]∗j exp(−ijωt)

}
. (4.34c)
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Equations (4.32) together with equations (4.33) and (4.34) are the model equations
for the calculations of the Fourier coefficients of the carrier concentration and tempera-
ture. As such, we have an infinite system of coupled nonlinear equations to be solved.
However, as we show below, this system can be greatly simplified in the specific case of
TP on silicon.

The key to simplifying the problem lies in the evaluation of the efficiency of the
nonlinearity of our model equations (4.32) to couple and to generate harmonics. The
efficiencies of all the nonlinear effects should therefore be examined. We start with
the nonlinear carrier generation rate in Section 4.1.3.1 and proceed with the nonlinear
carrier diffusion rate in Section 4.1.3.2. The nonlinear carrier recombination rate is
then investigated in Section 4.1.3.3. Though the heat equations (4.32b) are expected to
be linear, owing to the small magnitudes of the temperature perturbations, we briefly
discuss the heat generation rate in Section 4.1.3.4 and the heat diffusion rate in Section
4.1.3.5.

As it turns out, we shall show that the harmonic-generation efficiency of these non-
linear effects is negligible in our study. Only four equations among (4.32) will therefore
remain (∆N0, ∆N1, ∆T0 and ∆T1). These equations will, however, be coupled by all
the nonlinear effects and predominantly by the nonlinear diffusion and recombination
rates.

To prove these statements, we propose to take a case study. In theory, both the
cases of low and high carrier injections should be discussed. However, in case of low
injection, all coefficients of the system become independent from the excess carrier con-
centration. The system retrieving its linearity, the low-injection case is trivial and does
not need any further discussion. We therefore focus on the case of high carrier injec-
tion. More particularly, we consider the typical example of a lowly doped p-type silicon
sample (Pdoping = 1015 cm−3) illuminated by a supra-bandgap laser with the following
modulated irradiance

Plaser(t) =
P0

laser

2
+
P0

laser

4
exp(iωt) +

P0
laser

4
exp(−iωt). (4.35)

We suppose that only the constant and fundamental modes of the excess carrier distri-
bution are excited, i.e.

∆N(x, y, z, t) =∆Nref(x, y, z)[1 + cos(ωt)]

=∆Nref(x, y, z)[1 + 0.5 exp(iωt) + 0.5 exp(−iωt)], (4.36)

with ∆Nref(0, 0, 0) = 1018 cm−3. The considered variation with time in carrier con-
centration is depicted in Figure 4.1 both in the time domain [Figure 4.1(a)] and in the
frequency domain2 [Figure 4.1(b)].

Note, finally, that this study is focused on the behavior at position (x, y, z) = (0, 0, 0).
The spatial dependence is therefore not explicitly written in the rest of this study.

2Since we only deal with real distributions in this work, the negative frequencies are never
discussed or represented. They can of course be deduced by symmetry with respect to j = 0
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Figure 4.1: (a) Time-domain representation of the considered example carrier concentration (black
curve) and of the various harmonics composing it (colored curves). (b) Frequency-domain repre-
sentation of the considered example carrier concentration. The Fourier coefficients corresponding to
negative frequencies can be deduced by symmetry with respect to j = 0.

4.1.3.1 Nonlinear Carrier Generation Rate

The optical carrier generation rate3 G of a supra-bandgap laser follows Beer’s law[69],
i.e.

G(x, y, z, t) = αlaser
BTB(1−R0)Plaser(t) exp(−x

2 + y2

R2
laser

) exp(−αlaser
BTBz)/(hνlaser), (4.37)

where αlaser
BTB is the band-to-band absorption coefficient of silicon at the optical frequency

νlaser of the laser. Plaser(t) is the laser irradiance, Rlaser is the radius of the gaussian
laser beam. Rigorously, R0 should actually be replaced by R in equation (4.37), i.e. the
perturbed reflectance (Chapter 2), but the small amplitude of the considered reflectance
perturbations can here be neglected.

The band-to-band absorption coefficient αlaser
BTB is the most complex parameter of

equation (4.37). It has already been discussed in Section 3.2.2 where we show that it
not only varies with the laser wavelength but also with the sample bandgap and therefore
carrier concentration. In other words, owing to the presence of αlaser

BTB in equation (4.37),
the optical carrier generation rate is nonlinear. To model this effect, we make use of

3The only carrier generation rate considered in our investigations is the optical generation
rate. We neglect the thermal generation of carriers in spite of the heating occuring under the
laser beams. This can be justified by the low excess temperatures considered in this study (see
Section 4.2 and Ref. [71]).
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Schenk’s BGN model[94] and Smith’s band-to-band absorption model[104]. The reason
for using Smith’s band-to-band absorption model is that, contrary to most models, the
bandgap energy appears directly in this model. It is therefore possible to account for
the variations in absorption coefficient with carrier-induced BGN. Note, however, that
the combination of these models tends to underestimate the band-to-band absorption
coefficient compared to experimental values[125, 8]. This is illustrated in Figure 4.2,
where it is observed that the values of the bandgap needed to fit the experimental αBTB

with Smith’s model are always smaller than expected from Schenk’s model. We will
come back to this in Chapter 6.
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Figure 4.2: Variation in band-to-band absorption coefficient of Si with photon energy for undoped

and highly doped Si (3× 1020 cm−3). The black triangles and the crossed circles show experimental
absorption coefficients measured respectively on undoped and highly doped Si[125, 8]. The red and
blue curves are theoretical lines given by Smith’s band-to-band absorption model respectively for
Eg = 1.0 eV and Eg = 0.75 eV. The values of the bandgap Efit

g used to fit the experimental data

with Smith’s model are lower than Schenk’s bandgap values ESchenk
g . The combination of Smith’s and

Schenk’s models therefore underestimates αBTB.

Based on Schenk’s and Smith’s models, we would like to evaluate the coupling and
harmonic-generation efficiencies of the nonlinear carrier generation rate. In order to do
so, we first need to look at the time dependence of the bandgap and of the subsequent
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band-to-band absorption coefficient, i.e.

Eg(t) =Eg0

+

+∞∑
j=1

[Egj exp(ijωt) + (Egj)
∗ exp(−ijωt)] (4.38a)

αlaser
BTB(t) =αlaser

BTB0

+

+∞∑
j=1

[αlaser
BTBj exp(ijωt) + (αlaser

BTBj )
∗ exp(−ijωt)]. (4.38b)

To quantify each Fourier coefficient of equations (4.38a) and (4.38b), we plug the excess
carrier concentration of equation (4.36) into Schenk’s BGN model and Smith’s absorption
model. We obtain the Fourier series of Eg and αlaser

BTB shown in Figures 4.3(a) and 4.3(b)
respectively. More specifically, these Figures show the values of the various Fourier
components normalized by their constant mode. From these Figures, it appears that
the constant mode of both the bandgap and the absorption coefficient is two to three
orders of magnitude larger than all the other Fourier components, i.e. Eg and αlaser

BTB

hardly vary with time at all.
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Figure 4.3: (a) Normalized Fourier coefficients of the bangap when a harmonic carrier concentration

such as given by equation (4.36) perturbs the bandgap of a sample with 1015 cm−3 p-type doping. The
normalization of the coefficients with the constant mode Eg0 clearly highlights the dominance of the
latter. These results were obtained using Schenk’s BGN model[94]. (b) Subsequent normalized Fourier
coefficients of the band-to-band absorption coefficient αBTB. The normalization of the coefficients with
the constant mode αBTB0

also shows that the latter dominates. These results were obtained using
Smith’s band-to band absorption model[104].

It is therefore a very good approximation to consider only the constant modes of the
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bandgap and absorption coefficient, which leads to the following Fourier expansion of
the carrier generation rate

G0 =(1−R0)/(hνlaser)
[
αlaser

BTB0
P0

laser/2 + <
(
αlaser

BTB1
P0

laser/2
)]

≈(1−R0)/(hνlaser)(α
laser
BTB0

P0
laser/2) (4.39a)

G1 =(1−R0)/(hνlaser)(α
laser
BTB0

P0
laser/4 + αlaser

BTB1
P0

laser/2 + αlaser
BTB2

P0
laser/4)

≈(1−R0)/(hνlaser)(α
laser
BTB0

P0
laser/4) (4.39b)

Gj =(1−R0)/(hνlaser)(α
laser
BTBj−1

P0
laser/4 + αlaser

BTBjP
0
laser/2 + αlaser

BTBj+1
P0

laser/4)

≈0 for j = 2, 3, .... (4.39c)

These Fourier coefficients, normalized by their constant mode G0, are shown in Fig-
ure 4.4, where it is obvious that the Fourier expansion can be limited to its constant
and fundamental modes. In conclusion, the nonlinear carrier generation rate does not
generate any harmonic.
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Figure 4.4: Normalized Fourier coefficients of the optical carrier generation when a laser with
irradiance such as given by equation (4.35) shines on a sample with a harmonic carrier concentration
such as given by equation (4.36). In spite of its nonlinearity, the optical carrier generation rate only
presents a constant mode and a fundamental mode.

Besides, the nonlinear carrier generation rate induces very limited coupling since only
the knowledge of αlaser

BTB0
is necessary for the calculation of all components of the carrier

generation rate. It, however, has to be kept in mind that this calculation requires the
knowledge of all Fourier components of the carrier distribution. Though limited, this
coupling still needs to be taken into account.
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4.1.3.2 Nonlinear Carrier Diffusion Rate

The carrier diffusion rate Da∇2∆N presents a nonlinear behavior due to the dependence
of the ambipolar diffusivity Da on carrier concentration. The expression of the ambipolar
diffusivity can be derived from equations (4.20b) and (4.18) complemented with the
Einstein relationships linking carrier mobilities and diffusivities, i.e.

Dn =
kbT

q

F1/2(
Enf −Ec
kbT

)

F−1/2(
En
f
−Ec
kbT

)
µn (4.40a)

Dp =
kbT

q

F1/2(
Ev−Epf
kbT

)

F−1/2(
Ev−Epf
kbT

)
µp. (4.40b)

where Ec and Ev are respectively the conduction band and the valence band edges, F1/2

and F−1/2 are the Fermi integrals as defined in Ref.[98, 74]. To acount for the depen-
dence of the electron and hole mobilities upon the carrier concentration, we make use
of Klaassen’s model[64]. This model accurately accounts for the variations in mobility
both with doping and carrier injection and is therefore well suited for this study.

In summary, the dependence of the ambipolar diffusivity upon carrier concentration
is quite complex since the carrier concentration is involved at different levels of the
modeling of this transport parameter. It can be checked in Figure 4.5 that for lowly
doped p- or n-type silicon substrates, our model of the ambipolar diffusivity nicely
follows the experimental behavior presented in Ref. [67]. Note, however, that the BGN-
dependence of the ambipolar diffusivity, embodied by DBGN

n and DBGN
p , has not been

accounted for in the theoretical curves shown in Figure 4.5. We will come back to this
remark in Chapter 6.
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Figure 4.5: Variation in ambipolar diffusivity with carrier injection in lowly doped n- and p-type
Si. The theoretical lines are in excellent agreement with the experimental symbols of Ref. [67]. The

theoretical lines assume DBGNn = DBGNp = 0.
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Based on this model, we would like to investigate the coupling and harmonic-generation
efficiency of the nonlinear carrier diffusion rate. Let us first write the Fourier expansion
of the time-dependent electron mobility, hole mobility and ambipolar diffusivity, i.e.

µn(t) =µn0

+

+∞∑
j=1

[µnj exp(ijωt) + (µnj)
∗ exp(−ijωt)] (4.41a)

µp(t) =µp0

+

+∞∑
j=1

[µpj exp(ijωt) + (µpj)
∗ exp(−ijωt)] (4.41b)

Da(t) =Da0

+

+∞∑
j=1

[Daj exp(ijωt) + (Daj)
∗ exp(−ijωt)]. (4.41c)

The Fourier coefficients of these three expansions, normalized by their respective con-
stant modes, are shown in Figure 4.6 for the specific case of our example carrier con-
centration given in equation (4.36). It is clearly observed that, for all three transport
parameters, though the constant mode dominates, the harmonics are not negligible.
Most importantly, the fundamental mode of Da is only about five times smaller than its
constant mode.

Taking these results into account, the Fourier coefficients of the diffusion rate of
equation (4.33b) can be written in the case of our example carrier concentration

[Da∇2(∆N)]0 = Da0∇2(∆N0) + 2<[D∗a1∇2(∆N1)] (4.42a)

[Da∇2(∆N)]1 = Da0∇2(∆N1) +Da1∇2(∆N0) +Da2∇2(∆N∗1 ) (4.42b)

[Da∇2(∆N)]j = Da(j−1)∇2(∆N1) +Daj∇2(∆N0) +Da(j+1)∇2(∆N∗1 ) for j = 2, 3, ....
(4.42c)

The first term of each equation (4.42) dominates but the other terms cannot be neglected.
This very important result shows that the nonlinear carrier diffusion rate acts as an
efficient frequency mixer (equation coupling). As can be observed in Figure 4.7 showing
its normalized Fourier coefficients, however, the nonlinear carrier diffusion rate does not
generate harmonics.

4.1.3.3 Nonlinear Carrier Recombination Rate

In a semiconductor with an indirect bandgap like silicon, carriers can recombine via two
independent phenomena. First, carriers can recombine via a Shockley-Read-Hall (SRH)
mechanism[98], i.e. via a defect level located in the bandgap. Second, an electron-hole
pair can recombine via Auger recombination, i.e. by scattering on a third free carrier.
Notice that radiative recombinations, a third recombination mechanism, also exists but
is very unlikely at room temperature [119] and is therefore not discussed here. In other
words, the total recombination rate reads

Rec = RecSRH + RecAuger, (4.43)
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Figure 4.6: (a) Normalized Fourier coefficients of the electron mobility µn when a harmonic carrier

concentration such as given by equation (4.36) perturbs a sample with 1015 cm−3 p-type doping. (b)
Normalized Fourier coefficients of the hole mobility µp in the same conditions. (c) Normalized Fourier
coefficients of the subsequent ambipolar diffusivity Da. The normalization of the coefficients with the
constant mode Da0 highlights that, though Da0 dominates, the other Fourier coefficients of Da are
non negligible.

where RecSRH is the SRH recombination rate and RecAuger is the Auger recombination
rate.

The SRH recombination mechanism involves a free electron and a free hole. It is
therefore easy to understand that the SRH recombination rate RecSRH is proportional to
the product of their concentrations. The SRH recombination can be shown to be[98, 36]

RecSRH =
PN − n2

i γnγp
τp(N + niγn) + τn(P + niγp)

(4.44)

where ni is the effective carrier density of silicon[63], γn (resp. γp) is the Fermi-Dirac
factor for electrons (resp. for holes)

γn =
F1/2

{[
Enf − Ec

]
/(kbT )

}
exp

{[
Enf − Ec

]
/(kbT )

} (4.45a)

γp =
F1/2

{[
Ev − Epf

]
/(kbT )

}
exp

{[
Ev − Epf

]
/(kbT )

} , (4.45b)
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Figure 4.7: Normalized Fourier coefficients of the carrier diffusion rate when a harmonic carrier

concentration such as given by equation (4.36) perturbs a sample with 1015 cm−3 p-type doping. In
spite of its nonlinearity and the numerous harmonics of Da, the carrier diffusion rate only presents
significant constant and fundamental modes.

τn (resp. τp) is the concentration-dependent SRH lifetime of electrons (resp. holes), i.e.

τn =
τ0
n

1 + (N−a +N+
d )/NSRH

(4.46a)

τp =
τ0
p

1 + (N−a +N+
d )/NSRH

, (4.46b)

where τ0
n (resp. τ0

p ) are the low-concentration SRH lifetime of electrons (resp. holes)
and NSRH is the so-called SRH doping concentration[98].

The Fourier expansion of the SRH recombination rate is readily derived assuming
our example carrier concentration of equation (4.36)

RecSRH
0 ≈ ∆Nref

(τn + τp)
(4.47a)

RecSRH
1 ≈ ∆Nref

2(τn + τp)
(4.47b)

RecSRH
j ≈ 0 for j = 2, 3, .. (4.47c)

after neglecting Pdoping, niγn and niγ before the excess carrier concentration4. In other
words, the SRH recombination rate at high injection is linear and, therefore, generates

4See Appendix A.7 for a more general Fourier expansion of the SRH recombination rate
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no harmonics and no coupling. The Fourier expansion of the SRH recombinations is
shown of Figure 4.8.
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Figure 4.8: Normalized Fourier coefficients of the SRH recombination rate when a harmonic carrier

concentration such as given by equation (4.36) perturbs a sample with 1015 cm−3 p-type doping.
The SRH recombination rate proves to be linear at high injection, thus generating no harmonics and
inducing negligible coupling between the model equations.

The Auger recombination is a phenomenon which involves three charge carriers. It
is therefore easy to understand that the Auger recombination rate involves third powers
of the carrier concentrations. The Auger recombination rate indeed reads[98, 36]

RecAuger = CnN(PN − n2
i γnγp) + CpP (PN − n2

i γnγp), (4.48)

where Cn and Cp are two constants[98].

Equation (4.48) shows that Auger recombinations are a strongly nonlinear phe-
nomenon. It can therefore be expected that the Auger recombination rate generates
harmonics. Similar to SRH recombinations, we can directly write the analytical expres-
sion of all the Fourier coefficients of the Auger recombination rate. In the case of our
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example carrier concentration of equation (4.36), these Fourier coefficients read5.

RecAuger
0 =

5

2
(Cn + Cp)∆N

3
ref (4.49a)

RecAuger
1 =

15

8
(Cn + Cp)∆N

3
ref (4.49b)

RecAuger
2 =

3

4
(Cn + Cp)∆N

3
ref (4.49c)

RecAuger
3 =

1

8
(Cn + Cp)∆N

3
ref (4.49d)

RecAuger
j = 0 for j = 4, 5, .... (4.49e)

The normalized Fourier coefficients are shown in Figure 4.9. As could have been expected
from the third-order polynomial form of equation (4.48), Auger recombinations generate
second and third harmonics.
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Figure 4.9: Normalized Fourier coefficients of the Auger recombination rate when a harmonic carrier

concentration such as given by equation (4.36) perturbs a sample with 1015 cm−3 p-type doping. The
nonlinearity of the Auger recombination rate at high injection generates second and third harmonics
and coupling between the model equations.

In summary, while SRH recombinations turn out to be linear at high injection,
Auger recombinations are strongly nonlinear, hence inducing coupling and the creation
of harmonics. Though this statement is correct in the most general case, we here need
to remind one specificity of TP. The radii Rlaser of the probe and pump lasers of TP are

5See Appendix A.7 for a more general Fourier decomposition of the Auger recombination
rate

66



4.1. Thermodynamic Model

very small (0.5 µm), which strongly favors diffusion over recombinations6. Consequently,
the carrier transport is diffusion-limited up to very high doping concentrations in Si. In
other words, though harmonics are indeed generated by Auger recombinations, their
magnitude and the coupling they involve are negligible. This is in agreement with
Figure A.13 of Appendix A.7.1.

4.1.3.4 Heat Generation Rate

The discussion of the heat generation rate is fairly simple. Though it is a linear ef-
fect, both the expressions of the direct heating and recombination heat still involve the
bandgap and could therefore generate harmonics. Further, Auger recombinations also
appear in the recombination heat. However, we have shown in Section 4.1.3.1 that only
the constant mode Eg0 needs to be considered and that Auger generates negligible har-
monics in a diffusion-limited situation. In other words, the Fourier coefficients of the
direct heating and recombination heat can be written

[(hνlaser − Eg)Glaser]0 ≈(1−R0)(hνlaser − Eg0)/(hνlaser)(α
laser
BTB0

P0
laser/2) (4.50a)

[EgRec]0 ≈Eg0Rec0 (4.50b)

[(hνlaser − Eg)Glaser]1 ≈(1−R0)(hνlaser − Eg0)/(hνlaser)(α
laser
BTB0

P0
laser/4) (4.50c)

[EgRec]1 ≈Eg0Rec1 (4.50d)

[(hνlaser − Eg)Glaser]j ≈0 (4.50e)

[EgRec]j ≈0 for j = 2, 3, .... (4.50f)

In conclusion, the heat generation rate does not induce extra harmonics.

4.1.3.5 Heat Diffusion Rate

In Si, the heat conduction occurs via phonons and not carriers. In other words, the
heat conductivity kth is independent from the carrier concentration [20]. Further, the
low magnitude of the considered temperature perturbations allows us to neglect the
variations in kth with temperature. As a consequence, the heat conductivity and, hence,
the heat diffusivity Dth = kth/(ρcp) are constant. In other words, the heat diffusion
rate is linear and does not need any further discussion.

4.1.4 Summary

Our case study has shown that our model equations (4.32) can be strongly simplified.
Yet, the conditions of this case study have been chosen very close to the situations en-
countered during a TP experiment. The typical excess carrier concentration reached
during a TP experiment are indeed of the order of ∆Nref. All the conclusions of our
case study are therefore valid for TP. For the carrier equations, this has two critical

6As a rule of thumb, the relative importance of the diffusion effect over the Auger recom-
bination can be derived from the ratio Da∆N/[R2

laser(Cn + Cp)∆N3]. It can be checked that
for the Auger recombinations to be commensurate with the diffusion effect, the excess carrier
concentration has to be approximately 1020 cm−3. This is two orders of magnitude higher than
all the excess carrier concentration involved in TP.
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implications. First, coupling between the carrier equations, albeit limited, exists mostly
due to the nonlinear diffusion rate and the nonlinear Auger recombinations. Second,
only the constant and fundamental modes of the carrier distribution need to be consid-
ered. Other harmonics are excited by the Auger recombinations but their magnitudes
are negligible since Auger is not a dominant phenomenon. For the heat equation, the
simplifications go even further. First, only the constant and fundamental modes are
excited. Second, no coupling exists between the heat equations for the constant and
fundamental modes.

Note that the addition of a second harmonic to our case-study excess carrier distri-
bution (4.36) would have led to the same conclusions. This can be proven by contradic-
tion. The nonlinear generation rate indeed excites only the constant and fundamental
modes of the excess carrier distribution, independently from the assumed excess carrier
distribution. As a result, the consideration of a second harmonic commensurate with
the constant and fundamental modes would lead to the absurd situation of the exis-
tence of this large second harmonic without any physical phenomenon accounting for
its generation (the second harmonic generated by Auger recombinations is small in a
diffusion-limited regime).

In other words, the general equations to be solved for the carrier and heat transport
are the following

0 = Da0∇2(∆N0) + 2<[D∗a1∇2(∆N1)] +Gpump
0 +Gprobe

0 − Rec0 (4.51a)

iω∆N1 = Da0∇2(∆N1) +Da1∇2(∆N0) +Da2∇2(∆N∗1 ) +Gpump
1 − Rec1 (4.51b)

0 = Dth∇2(∆T0) + 1/(ρcp)[(hνpump − Eg0)Gpump
0 + (hνprobe − Eg0)Gprobe

0 + Eg0Rec0]
(4.51c)

iω∆T1 = Dth∇2(∆T1) + 1/(ρcp)[(hνpump − Eg0)Gpump
1 + Eg0Rec1], (4.51d)

with the carrier generation rates given by the following Beer’s law

Gprobe
0 (x, y, z) =αprobe

BTB0
(1−Rprobe

0 )P0
probe exp(−x

2 + y2

R2
probe

) exp(−αprobe
BTB0

z)/(hνprobe)

(4.52a)

Gpump
0 (x, y, z) =αpump

BTB0
(1−Rpump

0 )
P0

pump

2
exp(−x

2 + y2

R2
pump

) exp(−αpump
BTB0

z)/(hνpump)

(4.52b)

Gpump
1 (x, y, z) =αpump

BTB0
(1−Rpump

0 )
P0

pump

4
exp(−x

2 + y2

R2
pump

) exp(−αpump
BTB0

z)/(hνpump).

(4.52c)

As already mentioned, in this thesis, we make use of Smith’s band-to-band absorption
model[104] and Schenk’s BGN model[94] to calculate αprobe

BTB0
and αpump

BTB0
. The expressions

of Rec0 and Rec1, calculated from equations (4.44) and (4.48), can be found in Appendix
A.7. As for Da0, Da1 and Da2, they are calculated from equation (4.20b) using equations
(4.18) and (4.40) and Klaassen’s mobility model[64].

We propose to use a final assumption so as to further simplify the model equations.
In TP, the constant probe laser also shines on the sample, leading to a constant mode of
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the excess carrier distribution ∆N0 somewhat larger than the fundamental mode |∆N1|.
As a result, the terms 2<[D∗a1∇2(∆N1)] and Da2∇2(∆N∗1 ) can be neglected in first
order. Based on this simplification, it is interesting to note that the equation (4.51a)
can be written

∇2(∆N0) = − 1

Da0

[
Gpump

0 +Gprobe
0 − Rec0

]
. (4.53)

In conclusion, the system (4.51) can now be written

0 = Da0∇2(∆N0) +Gpump
0 +Gprobe

0 − Rec0 (4.54a)

iω∆N1 = Da0∇2(∆N1)− Da1

Da0

[
Gpump

0 +Gprobe
0 − Rec0

]
+Gpump

1 − Rec1 (4.54b)

0 = Dth∇2(∆T0) + 1/(ρcp)[(hνpump − Eg0)Gpump
0 + (hνprobe − Eg0)Gprobe

0 + Eg0Rec0]
(4.54c)

iω∆T1 = Dth∇2(∆T1) + 1/(ρcp)[(hνpump − Eg0)Gpump
1 + Eg0Rec1], (4.54d)

where mainly the recombination terms Rec0 and Rec1 as well as Da1 still couple the
carrier equations through their dependence upon the constant and fundamental modes of
the excess carrier distribution. Notice that, since Da1 is negative in most cases (Figure

4.6(c)), the term
[
−Da1/Da0(Gpump

0 +Gprobe
0 − Rec0)

]
acts as a positive generation

term, which will increase the fundamental mode of the excess carriers. This term is
usually forgotten in most transport models for PMOR. For example, this term explains
the difference between the steady-periodic and time-dependent calculations in [11]. It
also explains the underestimation of the excess carriers in steady-periodic calculations
observed in pages 165-166 of Ref. [36]. As we shall prove, it accounts for about 10% of
the fundamental mode of the excess carriers at high injection.

Equations (4.54) are our final model equations. In the next Sections, we look at the
solutions of these equations for TP.

4.2 Solutions

In this Section, we look at the solutions of equations (4.54). In order to build up our un-
derstanding of the behavior of these solutions, we propose to begin with simplified prob-
lems. In Section 4.2.1, we start by solving the one-dimensional linear problem when only
the pump laser is shining. In spite of its quantitative incongruity, this one-dimensional
solution offers qualitative understanding of the general behavior of the excess carriers
and temperature with useful analytical expressions. Second, in Section 4.2.2, the linear
problem is looked at on a three-dimensional sample. Since this problem can be solved
analytically, we first discuss the analytical solution. We then compare the results of
this analytical solution with numerical simulations run with FSEM[37] (Finite-element
solver for SEMiconductors), a numerical transport simulator. The numerical results
yielded by FSEM and the analytical solution will prove to be in excellent agreement.
This gives us the sufficient confidence to, eventually, rely on FSEM to solve numerically
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the complete nonlinear three-dimensional problem of equations (4.54), the solutions of
which are discussed in Section 4.2.3.

All the solutions below are discussed specifically for the TP630XP tool, i.e.:

� a 790 nm (1.57 eV) pump laser with 13.5 mW power modulated at a frequency
ω = 1 MHz and focused onto a radius Rpump = 0.5 µm on the sample

� when relevant (i.e. for the nonlinear problem), a 670 nm (1.85 eV) probe laser
with 2.5 mW power focused onto a radius Rprobe = 0.5 µm on the sample.

4.2.1 One-Dimensional Linear Solution

To understand the physics underlying equations (4.54), let us start by solving the linear
problem of a pump laser shining at x = 0 on a one-dimensional semi-infinite silicon
sample in the lateral direction. By linear problem, we mean that the recombination rate
is assumed to vary linearly with the excess carrier concentration, i.e. Recj = ∆Nj/τ
(j = 0, 1) where τ is the carrier recombination lifetime. The linearity also implies that
the ambipolar diffusivity is assumed independent from excess carrier concentration. In
particular, we take Da = 8 cm2s−1, which is a typical value for a carrier injection of
1018 cm−3 in a lowly doped Si sample (Figure 4.5). Finally, as an implicit result of
the linearity, all coupling between the constant and fundamental modes of the carrier
concentration vanishes.

Since the problem only has one lateral dimension, we need to consider that all carriers
are generated at the surface, i.e. we need to integrate equations (4.52b) and (4.52c)
over depth and consider these generation rates as boundary conditions. Further, we
assume a pump laser with zero lateral extension (Rpump = 0). All the photon flux is
therefore concentrated at x = 0. Following equations (4.52b) and (4.52c), this gives
respectively for the constant and fundamental modes of the surface carrier generation
rate Gpump

0 = (1 − Rpump
0 )P0

pump/(2hνpump) and Gpump
1 = Gpump

0 /2. In summary, we
need to solve the following four equations

∂2∆N0

∂x2
− 1

L2
pl

∆N0 = 0 (4.55a)

∂2∆N1

∂x2
− σ2

pl∆N1 = 0 (4.55b)

∂2∆T0

∂x2
+
Eg
kth

∆N0

τ
= 0 (4.55c)

∂2∆T1

∂x2
− σ2

th∆T1 +
Eg
kth

∆N1

τ
= 0, (4.55d)

where σpl =
√

1 + iωτ/Lpl and σth = (1+ i)/Lth are respectively the wave vectors of the
excess carrier and temperature distributions, with Lpl =

√
Daτ and Lth =

√
2Dth/ω

their respective low-frequency diffusion lengths.

The following Neumann boundary conditions need to be considered at x = 0 (under
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the pump beam)

−Da
∂∆N0

∂x

∣∣∣
x=0

=Gpump
0 (4.56a)

−Da
∂∆N1

∂x

∣∣∣
x=0

=
Gpump

0

2
(4.56b)

−kth
∂∆T0

∂x

∣∣∣
x=0

=Gpump
0 (hνpump − Eg) (4.56c)

−kth
∂∆T1

∂x

∣∣∣
x=0

=
Gpump

0

2
(hνpump − Eg). (4.56d)

As mentioned above, since we have surface absorption, the four non-homogeneous Neu-
mann boundary conditions contain the information about the pump carrier generation
and the direct heat generation.

Notice that the one-dimensional steady heat equation (4.55c) together with the
boundary condition (4.56c) is an ill-posed problem. One-dimensional Laplace equa-
tions such as equation (4.55c) only accept linear solutions, i.e. solutions of the type
∆T0 = Ax + B, where A and B are two constants. Yet, this type of solution is incom-
patible with our generation terms. For the same reason, the one-dimensional steady am-
bipolar diffusion equation (4.55a) is also problematic when the carrier lifetime becomes
increasingly long. In other words, this one-dimensional case study is not appropriate for
the steady equations. It is, however, very instructive when it comes to the solutions to
Helmholtz equations such as equations (4.55b) and (4.55d). We will therefore here only
study the case of the fundamental modes of the excess carrier and temperature distri-
butions. From the behavior of these distributions, however, we will derive the expected
(and confirmed in the next Sections) behavior of the constant modes7.

Solving equations (4.55b) and (4.55d) with the boundary conditions (4.56b) and
(4.56d), the fundamental modes of the excess carrier and temperature distributions read

∆N1(x) =
Gpump

0

2Daσpl
exp(−σplx) (4.57a)

∆T1(x) =
Gpump

0

2kth

[ (hνpump − Eg)
σth

exp(−σthx)

+
Eg

L2
pl(σ

2
th − σ2

pl)

(
exp(−σplx)

σpl
− exp(−σthx)

σth

)]
. (4.57b)

All the qualitative physics concerning the fundamental modes of the excess carrier
and temperature distributions, i.e. the plasma and thermal waves, is contained in for-
mulas (4.57). It is clearly seen that both behave as damped waves or diffusion wave fields

7Physically, the difference between the equations for the constant and fundamental modes can
be understood from the mean of their respective generation terms. The mean of the harmonic
generation term is zero, which signifies that the equations for the fundamental modes of the
carriers and temperature do not need a sink term. Similarly, when the recombination lifetime is
short enough, the recombination term serves as sink term for equation (4.55a), which explains
why the problem is well posed in the short lifetime regime. As for equation (4.55c), it has no
sink term; the problem is therefore always ill-posed.

71



4. THEORY OF CARRIER AND HEAT TRANSPORT IN
HOMOGENEOUSLY DOPED SILICON

(thoroughly described and studied in Ref. [69]), i.e. their lateral behavior shows an ex-
ponential decay superimposed with a harmonic behavior. As a consequence, throughout
this thesis, we use the following description for the lateral behavior of ∆N1 and ∆T1

∆N1(x) = |∆N1(x = 0)| exp(−iφpl1(x = 0)) exp(−x/Lpld1) exp(−2iπx/Λpl1 ) (4.58a)

∆T1(x) = |∆T1(x = 0)| exp(−iφth1(x = 0)) exp(−x/Lthd1) exp(−2iπx/Λth1 ), (4.58b)

where |∆N1(x = 0)| [resp. |∆T1(x = 0)|], φpl1(x = 0) [resp. φth1(x = 0)], Lpld1 (resp.

Lthd1) and Λpl1 (resp. Λth1 ) are respectively the four characteristics of the plasma (resp.
thermal) wave, i.e. its amplitude and phase under the pump beam, its lateral decay
length and its wavelength.

Figures 4.10(a), (b), (c) and (d) respectively show the behavior as a function of the
inverse carrier recombination lifetime (1/τ) of the amplitudes, decay lengths, phases and
wavelengths of the one-dimensional plasma and thermal waves of equations (4.57).The
sample is undoped Si, so that Eg is 1.12 eV, ρ=2.3 10−3 kg.cm−3, cp=700 J.kg−1K−1 and
kth=1.3 W.cm−1K−1. Two different regimes can be identified. First, in the short-lifetime
regime, or recombination-limited regime (corresponding to highly doped or highly in-
jected Si), only the thermal wave shows a wave-like behavior. The plasma wave is a
decaying exponential (zero phase and infinite wavelength). Second, in the long-lifetime
regime, or diffusion-limited regime, the plasma and thermal waves have very similar
wave-like behaviors. The asymptotical behaviors of the presented parameters at short
and long lifetimes are also given in Figure 4.10.

Notice already that the orders of magnitude appearing in Figure 4.10 are linked to
the one-dimensional character of this example and to the infinitely small pump radius8.
As shown in the next examples, the amplitude of both the plasma and the thermal waves
is strongly reduced in a three-dimensional geometry with a laterally distributed pump
irradiance (about two to three orders of magnitude less). This can partly be attributed
to the extra two degrees of freedom for diffusion. As for the phase, it is closely related
to the type of absorption[22] (surface-restricted or not). It therefore also changes when
changing dimensionality. Finally, the diffusion lengths and wavelengths are also reduced
in a three-dimensional problem. However, the variations are less than one order of
magnitude.

8These solutions are actually Green functions, see next Section
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Figure 4.10: Variation with recombination lifetime in the one-dimensional plasma wave ∆N1 (full
lines) and thermal wave ∆T1 (dashed lines), solutions of equations (4.55) in the case of a TP pump
laser. (a) The amplitude and (c) phase under the beam (x = 0) as well as (b) the lateral decay length
and (d) lateral wavelength are derived from the analytical solutions expressed in formulas (4.57).
Interesting asymptotic behaviors are also shown. The vertical line corresponds to ωτ = 1, i.e. the
limit between the diffusion-limited regime (left, long lifetime) and the recombination-limited regime
(right, short lifetime).

The lateral behavior of the plasma and thermal waves of equations (4.58) is of the
utmost importance in this work since it explains the final behavior of the ∆Rac offset
curves in Chapter 6. For a better visualization of this lateral behavior, we therefore
represent respectively in Figure 4.11(a) and (b) the normalized amplitude and the phase
of the one-dimensional plasma and thermal waves in the case of a long recombination
lifetime (τ = 10−4 s). The separate representation of the lateral behavior of the am-
plitude and phase of these damped waves in Figure 4.11(a) and (b), which we call the
complex representation, is very convenient since it splits the damped wave into its damp-
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Figure 4.11: Complex and real representations of lateral behavior of the normalized plasma and

thermal waves for τ = 10−3 s. Complex representation: variation with the lateral position x in (a)
the normalized amplitude and (b) the phase of the plasma (full lines) and thermal (dashed lines)
waves. This representation separates the damping and wave-like behavior of each wave. (c) Real
representation: variation with the lateral position x in the (doubled) real values of the plasma (full
line) and thermal (dashed line) waves. The damping and wave-like behaviors are simultaneously shown
and therefore difficult to discriminate.

ing behavior (amplitude, decay length) and its wave-like behavior (phase, wavelength).
As highlighted in Figure 4.11(a) and (b), the slopes of respectively the amplitude and
phase behavior give a direct access to respectively the decay length and the wavelength
of the damped waves. For this reason, this representation is widely used in this work.

For completeness, Figure 4.11(c) shows the more common real representation of the
normalized plasma and thermal waves, i.e. the lateral behavior of 2<[∆N1(x)/|∆N1(x = 0)|]
and 2<[∆T1(x)/|∆T1(x = 0)|]. It can clearly be observed that the characteristics of both
damped waves become difficult to identify. As a consequence, this representation is not
used in this work.

As a final remark, note that, though only the fundamental modes of the excess carrier
and temperature distributions have been calculated in this Section, it can be intuitively
expected (and confirmed in the next Sections) that the constant modes ∆N0 and ∆T0

present a similar behavior, except that they have zero phase and infinite wavelength (i.e.
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they are real). They are therefore written

∆N0(x) = ∆N0(x = 0) exp(−x/Lpld0) (4.59a)

∆T0(x) = ∆T0(x = 0) exp(−x/Lthd0), (4.59b)

where ∆N0(x = 0) [resp. ∆T0(x = 0)] and Lpld0 (resp. Lthd0) are respectively the amplitude
and lateral decay length of the constant carrier (resp. temperature) distribution. Note
that the constant modes do not show a wave-like behavior. We will therefore, without
any ambiguity, often refer to the fundamental modes of the carrier and temperature
distributions as respectively the plasma and thermal waves. Equations (4.58) and (4.59)
are critical for the general understanding of the carrier and temperature distributions
and, as we shall see, of the AC reflectance9.

9It is obvious that these definitions do not hold in all conditions. For instance, the thermal
wave of equation (4.57b), even in the one-dimensional case, is the superposition of two damped
waves and therefore can only be rigorously written as equation (4.58b) when one of the two
is dominant. Similarly, when the pump irradiance distribution is not considered to be strictly
punctual, the exponential decay is perturbed (the curvature becomes positive under the pump
beam). However, these definitions still prove to be very convenient for the overall understanding
of the lateral behavior of plasma and thermal waves as well as of the AC reflectance.
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4.2.2 Three-Dimensional Linear Solution

Since the one-dimensional linear problem results in ill-posed steady equations and mis-
quantified fundamental modes, it is necessary to investigate the problem of a pump laser
shining on a three-dimensional sample. In other words, we want to solve the following
equations

∇2(∆N0)− 1

L2
d

∆N0 = − 1

Da
Gpump

0 (4.60a)

∇2(∆N1)− σ2
pl∆N1 = − 1

Da
Gpump

1 (4.60b)

∇2(∆T0) = − 1

kth
[(hνpump − Eg)Gpump

0 + Eg
∆N0

τ
] (4.60c)

∇2(∆T1)− σ2
th∆T1 = − 1

kth
[(hνpump − Eg)Gpump

1 + Eg
∆N1

τ
], (4.60d)

where Gpump
0 and Gpump

1 follow respectively equations (4.52b) and (4.52c). Note that
the problem summarized in equations (4.60) and (4.61) has cylindrical symmetry around
the pump beam [situated at (x, y) = (0, 0)]. Equations (4.60) are to be considered with
the following homogeneous Neumann boundary conditions at the top surface z = 0

−Da
∂∆N0

∂z

∣∣∣
z=0

=0 (4.61a)

−Da
∂∆N1

∂z

∣∣∣
z=0

=0 (4.61b)

−kth
∂∆T0

∂z

∣∣∣
z=0

=0 (4.61c)

−kth
∂∆T1

∂z

∣∣∣
z=0

=0, (4.61d)

and at r = 0 (imposed by cylindrical coordinates)

−Da
∂∆N0

∂r

∣∣∣
r=0

=0 (4.62a)

−Da
∂∆N1

∂r

∣∣∣
r=0

=0 (4.62b)

−kth
∂∆T0

∂r

∣∣∣
r=0

=0 (4.62c)

−kth
∂∆T1

∂r

∣∣∣
r=0

=0, (4.62d)

where r =
√
x2 + y2.

This problem can be solved analytically. The analytical solution is derived in Sec-
tion 4.2.2.1 assuming a semi-infinite sample. The problem is also solved numerically in
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Section 4.2.2.2 using the following extra boundary condition

−Da
∂∆N0

∂z

∣∣∣
z=Lz

=0 (4.63a)

−Da
∂∆N1

∂z

∣∣∣
z=Lz

=0 (4.63b)

∆T0

∣∣∣
z=Lz

=0 (4.63c)

∆T1

∣∣∣
z=Lz

=0, (4.63d)

where Lz is the total thickness of the sample.
We will see that the two, analytical and numerical, approaches are in excellent agree-

ment (< 1% error).

4.2.2.1 An Analytical Approach

The problem summarized in equations (4.60), (4.61) and (4.62) can be solved by com-
bining the Green function[34] and Hankel transform[19] theories. The derivation of
these analytical solutions is a three-step procedure. First, we seek the Green functions
gN0(r, r′, z, z′), gN1(r, r′, z, z′), gT0(r, r′, z, z′) and gT1(r, r′, z, z′) of equations (4.60a),
(4.60b), (4.60c) and (4.60d) respectively, i.e their solutions for a Dirac peak generation
term δ(r − r′, z − z′) located at position (r′, z′). In other words, we have to solve the
following problem

[
∂2

∂z2
+

1

r

∂

∂r
(r
∂

∂r
)− 1

L2
d

]gN0(r, r′, z, z′) =− 1

Da
δ(r − r′, z − z′) (4.64a)

[
∂2

∂z2
+

1

r

∂

∂r
(r
∂

∂r
)− σ2

pl]g
N1(r, r′, z, z′) =− 1

Da
δ(r − r′, z − z′) (4.64b)

[
∂2

∂z2
+

1

r

∂

∂r
(r
∂

∂r
)]gT0(r, r′, z, z′) =− 1

Dth
δ(r − r′, z − z′) (4.64c)

[
∂2

∂z2
+

1

r

∂

∂r
(r
∂

∂r
)− σ2

th]gT1(r, r′, z, z′) =− 1

Dth
δ(r − r′, z − z′). (4.64d)

Second, we write the Hankel transforms of equations (4.64) and their boundary
conditions. This yields

[
∂2

∂z2
− (ξ2 +

1

L2
pl

)]GN0(ξ, r′, z, z′) =− J0(ξr′)

2πDa
δN (z − z′) (4.65a)

[
∂2

∂z2
− (ξ2 + σ2

pl)︸ ︷︷ ︸
=S2

pl
(ξ)

]GN1(ξ, r′, z, z′) =− J0(ξr′)

2πDa
δN (z − z′) (4.65b)

[
∂2

∂z2
− ξ2]GT0(ξ, r′, z, z′) =− J0(ξr′)

2πDth
δT (z − z′) (4.65c)

[
∂2

∂z2
− (ξ2 + σ2

th)︸ ︷︷ ︸
=S2

th
(ξ)

]GT1(ξ, r′, z, z′) =− J0(ξr′)

2πDth
δT (z − z′), (4.65d)

77



4. THEORY OF CARRIER AND HEAT TRANSPORT IN
HOMOGENEOUSLY DOPED SILICON

where J0(ξr′) is the Bessel function of first kind of order zero[5] and GNj (ξ, r′, z, z′) and
GTj (ξ, r′, z, z′) are the Hankel transforms of respectively gNj (r, r′, z, z′) and gTj (r, r′, z, z′)
(j = 0, 1), i.e.

GNj (ξ, r′, z, z′) =

∫ +∞

0

gNj (r, r′, z, z′)J0(ξr)rdr (4.66a)

GTj (ξ, r′, z, z′) =

∫ +∞

0

gTj (r, r′, z, z′)J0(ξr)rdr. (4.66b)

The reason for moving to the Hankel domain is obvious from the shape of equations
(4.65), where we can see that the partial-derivative equations have been turned into
differential equations, i.e. the radial derivatives now appear as the algebraic term ξ2.
These are direct applications of the properties of Hankel transforms[19]. These equations
are now ordinary second-order differential equations similar to their one-dimensional
counterparts, equations (4.55). However, one important difference is that equations
(4.65) are all Helmholtz equations, even at zero frequency (presence of the ξ2 in the
coefficient before the Green function). Since no Laplace equations are found here, the
three-dimensional ∆N0 and ∆T0 do exist. Physically, this can be understood from the
fact that, in three dimensions, the extra dimensions can be used as sink term (this is
what mathematically represents the ξ2 term). In particular, since ∆N0 and ∆T0 can
readily be obtained from the solutions of the fundamental mode by setting a vanishing
frequency and the correct laser irradiance, we focus on the latter modes for the following
calculations.

Written in the Hankel domain, the boundary conditions (4.61) read

−Da
∂GN1(ξ, r′, z, z′)

∂z
|z=0 =0 (4.67a)

−kth
∂GN1(ξ, r′, z, z′)

∂z
|z=0 =0. (4.67b)

Extra boundary conditions are also needed at the position z = z′ of the source term,
which are provided by the following properties of the Green Function[69]

GN1(ξ, r′, z, z′)|z=(z′)+ − G
N1(ξ, r′, z, z′)|z=(z′)− = 0 (4.68a)

∂GN1(ξ, r′, z, z′)

∂z
|z=(z′)+ −

∂GN1(ξ, r′, z, z′)

∂z
|z=(z′)− = −J0(ξr′)

2πDa
(4.68b)

GT1(ξ, r′, z, z′)|z=(z′)+ − G
T1(ξ, r′, z, z′)|z=(z′)− = 0 (4.68c)

∂GT1(ξ, r′, z, z′)

∂z
|z=(z′)+ −

∂GT1(ξ, r′, z, z′)

∂z
|z=(z′)− = −J0(ξr′)

2πDth
, (4.68d)

where the (z′)+ (resp. (z′)−) is a value of z infinitely close to z′ but larger (resp. lower).
The discontinuity of the first derivative of the Green function can be demonstrated by
integration of equations (4.65) (pages 23-24 of Ref.[69]).

The solutions to equations (4.65b) and (4.65d) with the conditions (4.67) and (4.68)
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are

GN1(ξ, r′, z, z′) =
J0(ξr′)

4πDaSpl(ξ)
{

exp[−Spl(ξ)|z − z′|] + exp[−Spl(ξ)(z + z′)]
}

(4.69a)

GT1(ξ, r′, z, z′) =
J0(ξr′)

4πDthSth(ξ)

{
exp[−Sth(ξ)|z − z′|] + exp[−Sth(ξ)(z + z′)]

}
. (4.69b)

Third, though algebraically tedious, the Hankel transform N1(ξ, z) of the excess
carrier distribution can now readily be obtained from its Green function [equations
(4.69)], following Green’s theorem [34], i.e. one needs to convolute the Green function
with its generation term, i.e.

N1(ξ, z) =2π

∫ +∞

0

r′dr′
∫ +∞

0

dz′GN1(ξ, r′, z, z′)Gpump
1 (r′, z′)

=
αpump
BTB (1−Rpump

0 )P0
pumpR2

pump

4Dahνpump

exp(−ξ2R2
pump/4)

(αpump
BTB )2 − S2

pl(ξ){
αpump
BTB

Spl(ξ)
exp[−Spl(ξ)z]− exp(−αpump

BTB z)

}
, (4.70)

Similarly, we have for the Hankel transform T1(ξ, z) of the temperature distribution

T1(ξ, z) =
2π

ρcp

∫ +∞

0

r′dr′
∫ +∞

0

dz′GT1(ξ, r′, z, z′)

[(hνpump − Eg)Gpump
1 (r′, z′) + Eg

∆N1(r′, z′)

τ
]

=
αpump
BTB (1−Rpump

0 )P0
pumpR2

pump

4kthhνpump
exp(−ξ2R2

pump/4){
(hνpump − Eg)

[(αpump
BTB )2 − S2

th(ξ)]

{
αpump
BTB

Sth(ξ)
exp[−Sth(ξ)z]− exp(−αpump

BTB z)

}

+

{
Eg

τDa[(αpump
BTB )2 − S2

pl(ξ)]{
1

S2
th(ξ)− (αpump

BTB )2

{
αpump
BTB

Sth(ξ)
exp[−Sth(ξ)z]− exp(−αpump

BTB z)

}
+

α

Spl(ξ)
1

S2
pl(ξ)− S2

th(ξ)

{
Spl(ξ)
Sth(ξ)

exp[−Sth(ξ)z]− exp(−Spl(ξ)z)
}}}

,

(4.71)

From these analytical Hankel transforms, it is then easy to derive the excess carrier
and temperature distributions by inverse Hankel tranform, i.e.

∆N1(r, z) =

∫ +∞

0

N1(ξ, z)J0(ξr)ξdξ (4.72a)

∆T1(r, z) =

∫ +∞

0

T1(ξ, z)J0(ξr)ξdξ. (4.72b)
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These integrals being not trivial, the derived analytical solution is mostly convenient
if one needs the values of the excess carrier and temperature distributions at a few
positions only. Further, owing to the complexity of these expressions, it is difficult to
use them as such for further understanding of the behavior of these distributions. We
therefore characterize the lateral behavior of ∆N0, ∆N1, ∆T0 and ∆T1 as we have for
the one-dimensional case, i.e. using equations (4.58) and (4.59).

As can be seen in Figure 4.12, the qualitative behavior of ∆N1 and ∆T1 resembles
much the one-dimensional case shown in Figure 4.10. The discussion of the latter figure
is therefore still relevant. Particularly, it can be seen that the transition between the
diffusion-limited and the recombination-limited regimes also occurs around 1/τ = 107 s,
i.e. when ωτ ≈ 1. Nevertheless, Figure 4.12 also presents some new interesting features.
First, as already hinted at previously, the orders of magnitude are very different in the
one-dimensional and three-dimensional cases. Second, solutions for the constant modes
exist in a three-dimensional geometry. It can be seen that, as expected, the constant
modes of both the carrier and temperature distributions show a general behavior very
similar to the fundamental modes. However, three differences can be noticed. First, ∆N0

and ∆T0 always have zero phase and infinite wavelength (i.e. they are real). Second,
their amplitude is always somewhat more than twice that of the fundamental mode. This
is due both to the difference in excitation powers of the two modes (factor 2) and to
transient effects. At low modulation frequency (static mode), the ratio of their amplitude
would be exactly equal to 2. Finally, the decay lengths of the constant modes are longer
than those of the fundamental modes. Finally, note that the appearance of a bump in
the thermal decay length Lthd1 and Λth1 in the 10−7 − 10−10 s range is a consequence of
the recombination heat. Figures 4.10(b) and (d) indeed show the behavior of 1/<(σth)
and 2π/=(σth), which only include the contribution of direct heating.

4.2.2.2 A Numerical Approach

As can be seen from the above section, solving analytically even the linear three-
dimensional problem is far from being trivial. Yet, we have seen in this Chapter that
numerous nonlinear effects should be taken into account. Though these effects could
partially be accounted for with limited error by plugging equations (4.70), (4.71) and
(4.72) into a nonlinear Newton loop[57], we still believe that a fully numerical approach
is more appropriate.

Numerous arguments are in favor of a numerical approach. We mention here only
the two most critical. First, the number of involved assumptions can be greatly reduced.
The above analytical solution supposes homogeneous ambipolar diffusivity, bandgap and
recombination lifetime. This proves to work with limited error for TP[14] but it serves
against the versatility of the approach. It would therefore be interesting to have a
resolution technique which can account for the space variations in these parameters.
Second, the analytical solutions require the numerical calculation of two integrals for
each position (r, z). This is quite convenient for the calculation of ∆N(r, z) at one single
position but turns out to be too time-consuming if the values at multiple positions
are sought. As a consequence, it is clear that the availability of a more general, e.g.
numerical, technique would be helpful.

To solve carrier and heat transport problems in complex conditions, one generally
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Figure 4.12: Variation with recombination lifetime (a) in the three-dimensional ∆N0 (full line)
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(4.72)] in the case of the TP pump laser. The vertical line corresponds to ωτ = 1.
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resorts to commercially available numerical simulators such as Medici [109] or Sentaurus
Device [110]. However, these transport simulators have been designed for the resolu-
tion of carrier and heat transport in typical conditions of modern nanoelectronics and
therefore present unacceptable drawbacks. First, they solve the original transport equa-
tions (4.6) and (4.8), i.e. not their highly simplified versions summarized by equations
(4.54). This involves unacceptably time-consuming calculations. In particular, only
time-dependent calculations are then possible (no simplified steady-periodic equations
such as we derived in Section 4.1.3). Second, direct heating is not implemented in these
commercial software packages. Since this is the dominant heating phenomenon at long
recombination lifetimes, it can hardly ever be neglected.

Part of our investigations have therefore been dedicated to the development of a
package to solve this problem by the finite-element method[37]. This project, called
a Finite Element Solver for Semiconductors (FSEM) has initially been launched by
F. Dortu during his PhD[36]. In the framework of the present work, several months
have been spent further developing the code (nonlinear steady drift-diffusion equations,
nonlinear steady-periodic ambipolar equation,...) and deepening the understanding of
the underlying physics. We have also used FSEM intensively10. The basic equations
and implementation of FSEM being already described in great detail elsewhere[36], we
here only focus on the powerful results FSEM can help obtain.

The three-dimensional linear problem of equations (4.60) and (4.61) has been solved
analytically and the solutions are already shown in Figure 4.12. The comparison of these
results with those yielded by FSEM therefore enables one to estimate the error made in
our numerical calculations. It is further of great help when it comes to determining the
optimal simulation settings for accurate but fast simulations (sample size, refinement
of the mesh,...). We define the relative difference between the analytical and numerical
solution as follows

δ%V =

∣∣∣∣Vanalytical − Vnumerical

Vanalytical

∣∣∣∣ , (4.73)

where V is an arbitrary calculated parameter, the value of which is Vanalytical in the
analytical solution and Vnumerical in the numerical solution. Note that, since both the
numerical and analytical solutions suffer from numerical errors, it is not possible to
determine from which solution the error originates.

We present in Figure 4.13 the results obtained in the case of a sample with dimensions
600 µm both in the vertical and radial directions. First, it can be checked that the
numerical and analytical solutions are in excellent quantitative agreement since the
difference in all shown parameters is less than one percent (in most cases). Notice that
the calculation of the various decay lengths and wavelengths (Figures 4.13(b), (d) and
(f)) involve extra calculations and therefore some error propagation. This is the reason
why the difference between the numerical and analytical values is slightly higher than
for the values at position (r, z) = (0, 0) [Figures 4.13(a), (c) and (e)]. Further, the
relative difference in plasma wavelength is also large at short lifetimes since the plasma
wavelength itself diverges.

10I take the advantage of this Section to stress once again my deep gratitude towards Fabian
Dortu, the initial developer of FSEM. His help and all the energy he put into FSEM have been
the key to a lot of the successful results presented in this thesis.
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Figure 4.13: Relative difference between the analytical and numerical solutions (a) of the three-
dimensional ∆N0 (full line) and ∆T0 (dashed line) at position (r, z) = (0, 0), (b) of their respective
lateral decay lengths, (c) of the three-dimensional |∆N1| (full line) and |∆T1| (dashed line) at position
(r, z) = (0, 0), (d) of their respective lateral decay lengths, (e) of their respective phases and (f) of
their respective lateral wavelengths in the case of the TP pump laser.

Based on this excellent agreement, we believe FSEM is an ideal basis to build further
understanding upon. We therefore use it in the next Section to solve the full three-
dimensional nonlinear problem, i.e. our initial problem.
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4.2.3 Three-Dimensional Nonlinear Solution

Moving back to the original nonlinear problem of a modulated pump laser and a constant
probe laser shining11 on a three-dimensional homogeneous silicon sample is now quite a
simple step. We know the expected behavior of ∆N0, ∆N1, ∆T0 and ∆T1 [equations
(4.58) and (4.59)]. We have also shown that we have a reliable tool to solve the problem
numerically (FSEM).

The transport equations to be solved here are summarized in equations (4.54) with
the boundary conditions of equations (4.61), (4.62) and (4.63). The nonlinearity of the
equations is accounted for via external models which have been introduced and discussed
in Section 4.1.3.

The calculated variations in ∆Nj (j = 0, 1) as a function of p-type doping con-
centration in the case of coincident probe and pump beams are shown in Figure 4.14.
Four levels of refinement of the model are presented. First, the black curves represent
the behavior of the carrier distributions when no BGN is assumed. Second, the blue
curves show the impact of the consideration of a BGN-dependent absorption coefficient.
Third, the green curves illustrate the behavior of ∆Nj (j = 0, 1) when BGN impacts
both the absorption coefficient and the ambipolar diffusivity (via the counter-diffusive
BGN effect). Finally, the red curves show the complete solution accounting also for
the coupling due to the nonlinear diffusion rate. It can clearly be seen that BGN has
a major impact on all plotted parameters, especially via its impact on the absorption
coefficient12. As expected, the coupling due to the nonlinear diffusion rate only impacts
the value of |∆N1| at low doping, where it accounts for about 10% of its total amplitude.
Though the obtained excess carrier distribution is qualitatively very similar to its linear
counterpart, it is still obvious that, from a quantitative viewpoint, it is significantly
influenced by all the nonlinear effects.

Independently from the level of refinement, three distinct regimes can be observed.
First, for low doping concentrations, a diffusion-limited regime can be observed. This is
very interesting since it means that TP is only weakly sensitive to recombinations in a
lowly doped Si substrate. It is therefore independent from the doping concentration in
this region. Second, for intermediate doping concentrations (> 1017 cm−3), the recombi-
nations start to impact the carrier distributions. The unexpected bumpy behavior, not
observed in the linear solutions, can be explained by a fine balance between the increase
in recombinations with doping and the simultaneous decrease in ambipolar diffusivity.
Finally, at high doping, a recombination-limited regime is reached.

Figure 4.15 shows the subsequent variations in ∆Tj (j = 0, 1) with doping. It can be
seen that the temperature distributions are much less sensitive to the level of modeling
refinement. The blue, green and red curves are superimposed, emphasizing that only
the BGN-induced variations in absorption coefficient impact ∆Tj (j = 0, 1). Contrary
to the excess carriers, the recombinations start to impact the temperature distribution
for a relatively high doping concentration (> 5× 1018 cm−3).

11The probe laser has not been considered in the previous Sections since only linear systems
have been discussed.

12Yet, as shown earlier, the model used to account for this effect typically underestimates
αBTB (Figure 4.2)
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Figure 4.14: Variation with p-type doping concentration (a) in the three-dimensional nonlinear
∆N0 at position (r, z) = (0, 0), (b) in its lateral decay length, (c) in the three-dimensional nonlinear
|∆N1| at position (r, z) = (0, 0), (d) in its lateral decay length, (e) in its phase and (f) in its lateral
wavelength as obtained from the numerical resolution of equations (4.54). Four levels of refinement
of the model are shown. The black lines represent the solutions when BGN is neglected and only the
constant mode of the ambipolar diffusivity is considered (Da1 = 0). The blue and green lines are
obtained by adding the impact of BGN respectively upon the αBTB of both lasers. The green lines
are obtained by considering the impact of BGN upon Da. Finally, the red lines show the solutions to
the full equations, where the coupling due to Da1 is also considered.
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Figure 4.15: Variation with p-type doping concentration (a) in the three-dimensional nonlinear
∆T0 at position (r, z) = (0, 0), (b) in its lateral decay length; (c) in the three-dimensional nonlinear
|∆T1| at position (r, z) = (0, 0), (d) in its lateral decay length, (e) in its phase and (f) in its lateral
wavelength as obtained from the numerical resolution of equations (4.54). Four levels of refinement
of the model are shown. The black lines represent the solutions when BGN is neglected and only the
constant mode of the ambipolar diffusivity is considered (Da1 = 0). The blue and green lines are
obtained by adding the impact of BGN respectively upon the αBTB of both lasers. The green lines
are obtained by considering the impact of BGN upon Da. Finally, the red lines show the solutions to
the full equations, where the coupling due to Da1 is also considered.
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4.3. Summary

Before concluding this Section, we would like to discuss the dependence of the excess
carrier distribution upon doping type. As it turns out, the temperature distribution
indeed shows no sensitivity to doping type.

The variations in ∆Nj (j = 0, 1) with p-type (full lines) and n-type doping (inter-
rupted lines) for our highest level of model refinement are shown in Figure 4.16. Most
important of all for the rest of this work, there is no sensitivity to doping type at low
doping concentration (diffusion-limited regime).

When doping increases, however, the constant mode starts to distinguish between
n- and p-type. Interestingly, for medium doping concentration, n-type doped Si shows
a higher injection than p-type, while it is the opposite at high doping concentration.
The difference at high doping concentration (recombination-limited regime) is readily
explained by the larger Auger coefficient for n-type than p-type Si (Cn ≈ 3Cp). The
difference in behavior at moderate doping concentration is, however, more complex.
Indeed, in the diffusion-limited regime found at low and moderate doping concentrations,
it may seem surprising to observe that the excess carrier distributions on an n-type
substrate have simultaneously higher amplitude and longer decay length. This effect
is a direct consequence of the variation in ambipolar diffusivity shown in Figure 4.5.
These variations are indeed very different whether the sample is p- or n-type. First,
the different excess carrier concentrations are easily explained by the different average
ambipolar diffusivity. On average over the sample, the ambipolar diffusivity is indeed
much larger on a p-type silicon sample, hence reducing the injection under the beam.
Second, the different decay lengths are a direct consequence of the very fast variations in
ambipolar diffusivity in the regions of medium injection in p-type silicon. These effects
are therefore direct consequences of the strong nonlinearity of the ambipolar diffusivity
in p-type silicon.

4.3 Summary

In this Chapter, based on the thermodynamic model, we have derived simplified equa-
tions to explain quantitatively the behavior of the excess carriers and heat generated
by the pump and probe lasers during a TP experiment on homogeneously doped sili-
con. We have shown that the resolution of a nonlinear system of four coupled equations
[equations (4.54)] is sufficient to determine the time- and spatial-variations in the excess
carrier and temperature distributions. These four equations solve for the constant and
fundamental modes of respectively the excess carrier and temperature distributions.

We have solved these equations and shown that the excess carriers and temperature
behave typically as dampes waves, i.e. they are fully characterized by their amplitude,
phase, decay length and wavelength [equations (4.58) and (4.59)]. Taking all nonlinear
phenomena into account, the variations in these four parameters with the doping concen-
tration of the silicon sample are shown in Figure 4.14 for the excess carrier distribution
and in Figure 4.15 for the temperature distribution. The values obtained at low doping
are of the highest importance for the rest of this work.
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Figure 4.16: Variation with p-type (full lines) and n-type (dashed lines) doping concentrations in(a)
in the three-dimensional nonlinear ∆N0 at position (r, z) = (0, 0), (b) in its lateral decay length; (c)
in the three-dimensional nonlinear |∆N1| at position (r, z) = (0, 0), (d) in its lateral decay length, (e)
in its phase and (f) in its lateral wavelength as obtained from the numerical resolution of equations
(4.54). Only the highest level of modeling refinement is shown, considering the impact of BGN upon
the αBTB of both lasers and upon Da as well as the coupling due to Da1.
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Chapter 5

Extension of the Transport
Theory to Ultra-Shallow
Doped Silicon Layers

In this Chapter, we assume that a supra-bandgap modulated pump laser and a supra-
bandgap constant probe laser shine on a non-homogeneously doped silicon sample with
respective irradiances Πpump(x, y, t) and Πprobe(x, y) such that

Πpump(x, y, t) = Ppump(t) exp(−x
2 + y2

R2
pump

)

= P0
pump exp(−x

2 + y2

R2
pump

)[
1

2
+

1

2
cos(ωt)]

= P0
pump exp(−x

2 + y2

R2
pump

)[
1

2
+

1

4
exp(iωt) +

1

4
exp(−iωt)] (5.1)

Πprobe(x, y) = P0
probe exp(−x

2 + y2

R2
probe

), (5.2)

where Ppump(t) is the time-dependent pump irradiance at position (x, y) = (0, 0), P0
pump

(resp. P0
probe) is the peak value of the pump (resp. probe) irradiance, Rpump (resp.

Rprobe) is the pump (resp. probe) radius and ω is the modulation frequency of the
pump laser irradiance.

As a result, a free electron distributionN(x, y, z, t), a free hole distribution P (x, y, z, t)
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and a temperature distribution T (x, y, z, t) are generated in the sample such that

N(x, y, z, t) =Ndoping(z) + ∆N0(x, y, z) + [∆N1(x, y, z) exp(iωt) + ∆N?
1 (x, y, z) exp(−iωt)]︸ ︷︷ ︸

fundamental

+

+∞∑
j=2

[
∆Nj(x, y, z) exp(ijωt) + ∆N?

j (x, y, z) exp(−ijωt)
]︸ ︷︷ ︸

jth harmonic

(5.3)

P (x, y, z, t) =Pdoping(z) + ∆P0(x, y, z) + [∆P1(x, y, z) exp(iωt) + ∆P ?1 (x, y, z) exp(−iωt)]︸ ︷︷ ︸
fundamental

+

+∞∑
j=2

[
∆Pj(x, y, z) exp(ijωt) + ∆P ?j (x, y, z) exp(−ijωt)

]︸ ︷︷ ︸
jth harmonic

(5.4)

T (x, y, z, t) =T0 + ∆T0(x, y, z) + [∆T1(x, y, z) exp(iωt) + ∆T ?1 (x, y, z) exp(−iωt)]︸ ︷︷ ︸
fundamental

+

+∞∑
j=2

[
∆Tj(x, y, z) exp(ijωt) + ∆T ?j (x, y, z) exp(−ijωt)

]︸ ︷︷ ︸
jth harmonic

, (5.5)

where Ndoping(z) and Pdoping(z) are respectively the electron and hole concentrations
due to the doping profile of the sample. Contrary to the previous Chapter, these two
carrier concentrations are here assumed to vary with depth. All the other quantities are
as defined in Chapter 4.

This Chapter extends the transport theory of carriers and heat discussed in Chapter
4 to the case of actively doped silicon surfaces. Throughout this Chapter, we focus on
the case of shallow doped layers on lowly doped silicon substrates, such as depicted in
Figure 5.1. In order to predict the behavior of the free carriers and heat generated in
such a sample, one should in theory solve equations (4.6), with the consideration of the
built-in electric field due to the uncompensated ionized dopant atoms in the space-charge
region. The built-in electric field of active (i.e. annealed) doping profiles indeed modifies
strongly the behavior of carriers in the region of the junction and in shallower regions.
This obviously invalidates the ambipolar diffusion equation.

However, rather than solving directly equations (4.6), we propose to derive a sim-
plified solution. Numerous advantages of this simplified solution can be given. First,
obviously, the simplified solution makes the calculations much easier. This will prove
very helpful, particularly for the inverse problem presented in Chapter 7. Second, this
simplified solution also offers more understanding than a fully numerical solution. Third,
the computation of a numerical solution to the considered problem would be very time
consuming (time-dependent coupled nonlinear equations). Last but not least, it also has
to be pointed out that the numerical implementation of such a problem is very complex,
as confirmed in the course of our investigations. Indeed, in spite of our attempts both
on the full time-dependent and steady-periodic (Fourier domain) routes, we have not
been able to force the system to converge. First, the time-dependent problem, where
the time derivatives of equations (4.6) are discretized and the resolution is stepped over
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z (depth)

SubstrateDoped layer

Xj

∆T [from formulas (4.54)]

∆Nsub [from formulas (4.54)]

∆Nl(z) [from formula (5.8)]

∆N(z)

Pdoping(z) or Ndoping(z)

∆T(z)

Figure 5.1: Schematic of a typical active doping profile on a lowly doped substrate and the pump-
generated excess carrier and excess temperature profiles (The relative position of the excess carrier
and excess temperature profiles is arbitrary).

time, has proven to converge only for prohibitively small time steps, of the order of the
dielectric relaxation time of silicon (1 ps), in agreement with [78]. The introduction of
an artificial time-dependent term in Poisson’s equation (4.6a), as suggested in Ref. [78],
has been unfruitful. Second, in the steady-periodic system, where a separate equation
is solved for each Fourier coefficient of the excess electron, hole and electrostatic poten-
tial, a problem also originates from the Poisson equation. The constant doping term
(N+

d −N
−
a ) acts as a stabilizer for the steady equation. Such stability is, however, not

present for the other Fourier coefficients, leading to a fast diverging system.
We here propose a third, simpler, approach. We show, in Section 5.1, that two

assumptions suffice to strongly simplify the solutions to the carrier and heat transport
problem on a sample with an ultra-shallow active doping profile (junction depth Xj <
100 nm), such as needed in modern CMOS transistors. In Section 5.2, we discuss
quantitatively the validity of these assumptions on doping profiles with a box-like shape.
The discussion is based on the comparison of the solutions obtained with steady drift-
diffusion simulations (run with FSEM). In Section 5.3, we then derive the steady-periodic
solutions under the same assumptions.

5.1 Simplified Transport Theory

As highlighted in the Introduction, we are seeking a simplified solution for the transport
of carriers and heat in a sample presenting a doping profile such as shown in Figure
5.1. For this purpose, we make two essential assumptions. First, we suppose that the
electron and hole quasi-Fermi levels are flat through the space-charge region. Second,
the carrier and temperature distributions in the bulk of the sample (substrate region
of Figure 5.1) are assumed independent from the doping profile. In this Section, we
investigate qualitatively the validity of these assumptions and show how they simplify
the problem.
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First, we would like to study the flat quasi-Fermi levels approximation (FQL) and
its implications.

Quasi-Fermi levels typically remain flat in highly conductive regions, whether the free
carriers come from doping or optical injection. In order for the currents to flow [| ~Ji| =
|σi~∇Eif | (Ref. [74]) where i=n or p], there is then indeed no need to strongly bend the
quasi-Fermi levels. In other words, a semiconducting region with a high concentration
of both electrons and holes usually shows flat quasi-Fermi levels.

The FQL approximation helps greatly when it comes to determining the excess carrier
concentration in the doped layer. Indeed, the electrostatics, i.e. Poisson’s equation (4.6a)
or the p-n product[73], offers a direct link between the substrate and layer injection. We
here use the p-n product which offers a simple solution. The p-n product reads, at each
depth z of the sample1,

P (z)N(z) = γp(z)γn(z)n2
i exp(−Eg(z)

kbT
) exp(

Enf (z)− Epf (z)

kbT
), (5.6)

where γp and γn are the Fermi-Dirac factors respectively for holes and electrons defined
in equations (4.45b) and (4.45a). Using formula (5.6) both in the doped layer and in
the substrate results in a simple expression for the excess carrier concentration in the
layer. For this purpose, we assume here a p-type layer2 with doping Pdoping(z). First,
in the doped layer, the majority hole concentration is P (z) = Pdoping(z) + ∆Nl(z) and
the minority electron concentration is N(z) ≈ ∆Nl(z). Second, in the highly injected
substrate, independently from the doping type, N(z) ≈ P (z) ≈ ∆Nsub. The depth-
dependent excess carrier concentration can be obtained using the ratio of formula (5.6)
taken respectively in the layer and in the substrate, i.e.

[Pdoping + ∆Nl(z)] ∆Nl(z)

∆N2
sub

=
γlp(z)γ

l
n(z)

γsubp γsubn

exp

(
−
Elg(z)− Esubg

kbT

)
, (5.7)

where γln (resp. γlp) and γsubn (resp. γsubp ) are the electron (resp. hole) Fermi factor as
defined above respectively in the layer and in the substrate, Elg and Esubg are respectively
the bandgap energies in the layer and in the substrate. The only physically acceptable
solution ∆Nl(z) of equation (5.7) is

∆Nl(z) = 0.5

[
−Pdoping(z) +

√
P 2

doping(z) + 4
γlp(z)γln(z)

γsubp γsubn

exp

(
−
Elg(z)− Esubg

kbT

)
∆N2

sub

]
.

(5.8)

From formula (5.8), one can show that ∆Nl(z) decreases with increasing Pdoping(z) in
most cases. This explains the monotonically increasing excess carrier profile shown in
Figure 5.1.

1The dependence upon time is kept implicit so as to simplify the expressions.
2The case of an n-type layer can easily be derived by replacing Pdoping by Ndoping in the

final expressions
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Three implicit approximations have been made in the derivation of formula (5.8).
First, the Debye length has been assumed much smaller than the characteristic lengths
of the profile (junction depth and decay length). The used p-n product indeed supposes
a vanishing Debye length, which is valid given the considered high doping concentra-
tions and high injection. Second, the excess electron and hole concentrations have been
assumed equal everywhere, in spite of the strong electric field at the junction. This
is also related to the very short Debye length. The electric field is only present in a
nanometer-wide region around the junction. In that region, the electrons and holes are
in slightly different concentrations but this difference is invisible to long wavelengths
such as that of the TP probe laser. Finally, we have also assumed that the substrate
excess carrier concentration is flat (see Figure 5.1) at the scale of Xj . This is related
to the penetration depth of the pump and the plasma wave diffusion length being much
longer than Xj (µm vs nm).

In summary, the FQL approximation allows for a very attractive simplified deriva-
tion of the excess carrier concentration in the doped layer. As shown in formula (5.8),
however, the substrate injection needs to be known.

The purpose of our second assumption, i.e. the independence of the substrate excess
carrier concentration and temperature from the doped layer, is to give an easy access
to the substrate injection. These two distributions are indeed assumed to be simply the
solutions of the coupled ambipolar carrier diffusion and heat diffusion problem which
has been solved in the previous Chapter (e.g. Figures 4.14 and 4.15).

Actually, the presence of an actively doped layer at the surface of a silicon sample
can modify the excess carrier and temperature in the bulk of the sample (i.e. below
the doped layer) through three different phenomena. First, as a consequence of the
presence of a doped layer, the generation rates of equations (4.52) increase both due to
the slight reduction in the sample reflectance and to the rise in absorption coefficient
(consequence of the combined Drude and BGN-induced electroabsorption effects as dis-
cussed in Section 3.2). However, as can be seen e.g. in Figure 6.4(a), the reflectance
variations are very small (< 1%). The impact on the carrier and heat generation rates
is therefore neglected. Similarly, the thicknesses of the considered ultra-shallow doped
layer (< 50− 60 nm) being much smaller than the penetration depth of the probe and
pump lasers (> 5− 15 µm), the increased absorption coefficient has hardly any impact
on the final excess carrier and temperature distributions. Most of the absorption phe-
nomenon indeed occurs in the bulk of the sample. Second, the presence of a doped layer
at the surface, i.e. a zone of short recombination lifetime, acts as an enhanced surface
recombination velocity. This effect tends to reduce the excess carrier concentration and
increase the temperature. As we will see in Section 5.2.2, this effect is, however, never
observed. This is also due to the deep penetration of the lasers compared to the thick-
ness of the considered doped layers. Finally, the presence of a doped layer changes the
electrostatic behavior of the substrate region close to the junction, leading to a possible
small depletion of the sub-junction region. This last effect is dominant and actually the
only one to ever be observed. We will show in Section 5.2.2 that the impact of this ef-
fect is limited on the carrier distributions and negligible on the temperature distribution.

Based on these two assumptions, the transport of optically generated free carriers
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and heat in USJs can be understood in the following way. First, concerning the heat, it is
generated in the lowly doped substrate, where it diffuses according to equations (4.54c)
and (4.54d). Further, given that doping has a negligible impact on the thermal prop-
erties of Si at room temperature[60], the final excess temperature is layer-independent.
Second, similarly, the excess carriers are generated in the substrate where they diffuse
ambipolarly and recombine according to equations (4.54a) and (4.54b). The final excess
carrier distribution in the substrate is therefore layer-independent. The excess carrier
concentration in the layer can be estimated by solving the one-dimensional in-depth
Poisson’s equation or, more simply, the p-n product assuming flat quasi-Fermi levels. In
other words, the charging of the layer with excess carriers is taken care of solely by the
electrostatics.

5.2 Validity of the Assumptions

Being convinced of the usefulness of our two simplifying assumptions, we would like to
check quantitatively their validity. In order to do so, we propose to compare the simpli-
fied solutions with full drift-diffusion simulations, run with FSEM. More particularly, we
base our discussion on 15-nm deep box-like profiles with varying doping concentrations.
In Section 5.2.1, we look at the layer injection as a function of doping concentration in
the layer and compare it with equation (5.8). We look at the impact of the presence of
the doped layer on the substrate injection in Section 5.2.2.

Note that, as already mentioned in the Introduction of the present Chapter, FSEM
can only solve steady drift-diffusion equations (no waves). We therefore only consider
this case. However, for the sake of consistency with the rest of this thesis, we would still
like to separate the study into constant and fundamental modes of the excess carrier and
temperature distributions. We use the superscript DC to stress that the distributions
have been obtained using steady calculations. In other words, ∆NDC

0 and ∆TDC
0 have to

be understood respectively as the excess carrier and temperature distributions obtained
when the TP probe laser and the TP pump laser shine on the sample with respective
constant irradiances P0

probe and P0
pump/2 . Similarly, ∆NDC

1 and ∆TDC
1 are the half-

amplitudes of differential carrier concentration and temperature generated if the pump
has an extra P0

pump/2 constant irradiance.

Further, in order to clearly identify the different behavior of the carriers in the doped
layer and in the substrate, we use the respective subscripts l and sub to refer to each
region. This notation is actually of relevance in the rest of the thesis.

5.2.1 Flat Quasi-Fermi Level Approximation

In the case of a box-like profile, the excess carrier concentration ∆Nl in the doped layer
is independent from depth and, following equation (5.8), it is linked to the excess carrier
concentration ∆Nsub via

∆Nl = 0.5

[
−Pdoping +

√
P 2

doping + 4
γlpγln

γsubp γsubn

exp

(
−
Elg − Esubg

kbT

)
∆N2

sub

]
. (5.9)
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Figure 5.2: Variation with n- and p-type layer doping (a) in ∆NDC
l0 at position (r, z) = (0, 0), (b)

in its lateral decay length, (c) in ∆NDC
l1 at position (r, z) = (0, 0), (d) in its lateral decay length,

as obtained by full three-dimensional steady drift-diffusion calculations (full and thick interrupted
lines) and assuming flat quasi-Fermi levels (thin interrupted lines). Time-independence is assumed,
as mentioned by the DC superscripts. The flat Fermi level approximation is in very good agreement
with full calculations up to very high layer doping concentrations.

This equation is valid at all lateral positions and can therefore also be used to determine
the decay length.

The comparison of the excess carrier concentrations and decay lengths obtained
respectively with FSEM simulations and the FQL approximation is shown in Figure
5.2. The substrate injection ∆Nsub, needed in equation (5.9), has been obtained from
the resolution of the steady ambipolar diffusion equation on a lowly doped substrate.
The results are independent from the doping type of the substrate (not shown). It is
clear from this figure that FQL is a very good approximation up to quite high doping
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concentrations (> 2 × 1020 cm−3). The values of the carrier concentrations and their
decay lengths given by the FQL approximation indeed only depart from the numerical
solution for doping concentrations higher than 2− 3× 1020 cm−3. Note that the excess
carrier concentration in the layer then being approximately 1015 cm−3, it is negligible.
We therefore use FQL on the whole doping range, without any loss of accuracy in the
model.

Two observations in Figures 5.2(a) and (c) should be discussed. First, the different
injection according to the doping type of the layer should be explained. It can be
observed that, especially at high doping concentration, an n-type layer is more injected
than a p-type layer with the same doping concentration. This difference is due to the
combined effect of BGN and Fermi-Dirac statistics. Second, the discrepancy between the
numerical solution and FQL at ultra-high layer doping concentrations should be looked
at in more detail. As mentioned in the Introduction of this Chapter, FQL is only valid
in highly conductive regions. At high doping concentration, though the majority carrier
conductivity is high, the minority carrier conductivity is low, leading to the possible
bending of the quasi-Fermi level of the minority carriers. Note that, since an n-type
doped layer is always more injected, FQL remains valid up to somewhat higher doping
concentrations in such layers. It can be checked in Figure 5.2 that FQL becomes invalid
at the same excess carrier concentration for p- and n-type layers (≈ 1015 cm−3).

Similarly, the decay lengths also show an interesting trend in Figure 5.2(b) and (d).
As long as FQL is valid, the decay length follows a monotonic and slow decrease. This can
be understood as a result of the lateral electric field felt by the excess carriers in the layer.
It can indeed be shown that, independently from the doping type of the layer, the electric
field always tends to push back the excess carriers towards the illuminated region, i.e.
it goes against diffusion. Further, at the high doping concentrations invalidating FQL,
the decay lengths drop very fast. This can be explained by the fact that electrostatics
loses its influence on the layer injection. The excess carrier concentration in the layer
therefore enters a recombination-limited regime (ultra-high doping), where the decay
lengths are given by the pump radius.

5.2.2 Impact of Doped Layers on Substrate Injection

In order to check quantitatively the variations in the excess carrier concentration and
temperature in the substrate when a 15-nm thick doped layer is present at the surface,
we propose to look at their behavior at a 50 nm depth from the surface, i.e. 35 nm
deeper than the metallurgical junction. Figure 5.3 shows the variations with layer doping
concentration in the excess carrier concentrations ∆NDC

sub0 and ∆NDC
sub1 but also in the

excess temperature ∆TDC
0 and ∆TDC

1 , as obtained from three-dimensional steady drift-
diffusion FSEM calculations.

It can be observed that, as expected, the doped layer has no impact whatsoever on
the excess temperature. The excess carrier distribution, however, does vary in the high
doping range. This effect is negligible on the fundamental mode ∆NDC

sub1 but not on the
constant mode ∆NDC

sub0, especially in the case of highly doped p-type layers (up to 20% at
a layer doping concentration of 2×1020 cm−3). Note, however, that, as can be observed
by the lower impact on ∆NDC

sub1 than ∆NDC
sub0, this effect depends to a great extent on

the injection. Higher laser powers would advantageously reduce this effect significantly.
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Figure 5.3: Variation with n- (interrupted lines) and p-type (full lines) layer doping (a) in ∆NDC
sub0

and ∆TDC
0 (dotted line) at position (r, z) = (0, 50) nm, (b) in their lateral decay lengths, (c) in

∆NDC
sub1 and ∆TDC

1 (dotted line) at position (r, z) = (0, 50) nm, (d) in their lateral decay lengths, as
obtained by full three-dimensional steady drift-diffusion calculations. Time-independence is assumed,
as mentioned by the DC superscripts. The excess temperature does not depend upon the doped layer.
The substrate injection is independent from the doped layer up to moderate doping concentrations.

Unfortunately, this effect cannot be accounted for by our model in its current status.
We will come back to the impact of this approximation in Section 6.3.

The origin of this effect, as already hinted at, cannot be recombinations. Auger
recombinations, i.e. the dominant recombination effect in highly doped layers, are in-
deed more numerous in n-type silicon than in p-type silicon[98] (Cn ≈ 3Cp). Besides,
as confirmed by Figure 5.2, n-type layers are more injected than p-type layers, which
should further increase the recombinations in n-type layers. The slight depletion of
the substrate actually originates from the lateral junction photopotential due to the
non-uniform illumination of the built-in electric field. This photopotential perturbs the
behavior of the carriers in the substrate. The associated lateral electric field points into
the outward radial direction for a p-type layer and inward radial direction for an n-type
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layer. The Dember field in the substrate, however, always points into the outward ra-
dial direction. The Dember field can therefore slightly counteract the lateral junction
photopotential for an n-type but not a p-type layer3.

For the sake of completeness, let us add that the values shown in Figure 5.3 are
independent from the doping type of the substrate (not shown).

5.3 Steady-Periodic Model Equations

So far the discussion has been limited to steady calculations due to the limitations of
FSEM, our numerical solver. However, the simplified theory can easily be extended to
the steady-periodic calculations needed in this work. In this Section, we assume that
the substrate injection is, independently from the layer doping, as calculated in Chapter
4 for a substrate doped homogeneously with a 1015 cm−3 concentration. Based on this
substrate injection, we investigate how the constant mode ∆Nl0 and fundamental mode
∆Nl1 of the excess carrier distribution4 in a box-like doped layer vary as a function
of the active doping concentration, if we assume flat quasi-Fermi levels through the
space-charge region.

More specifically, we consider a substrate injection ∆Nsub = ∆Nsub0+2<[∆Nsub1 exp(iωt)]
where ∆Nsub0 and ∆Nsub1 behave as found in the low doping region of Figure 4.14
(complete model, i.e. red curves). As a consequence of the independence from substrate
doping concentration of the latter two quantities in the doping range below 5 × 1017

cm−3, the obtained ∆Nl0 and ∆Nl1 are equally independent from doping in that range.
The results are obviously also independent from the doping type of the substrate (Figure
4.16). We then make use of equation (5.9) to determine the layer injection.

The time-dependence of the considered substrate injection does actually not make the
situation more complex than the steady case studied thus far. Indeed, all the quantities
present in equation (5.9) can accommodate the (slow) variations in substrate injection
without any lag. They take at most 1 picosecond to follow the variations (dielectric
relaxation and relaxation time of the Fermi-Dirac quasi-equilibrium distributions)[108].
In conclusion, it can be expected that the variations in excess carrier concentration in
the layer are simultaneous with the excess carrier concentration in the substrate. This
further assumes that the layer thickness is small compared to the plasma wavelength
Λpl1 , which is obviously the case in this work (nm vs hundreds of µm, see Figure 4.14).

Figure 5.4 shows the calculated variations in ∆Nl0 and ∆Nl1 as a function of p- and
n-type doping concentrations in the layer. The behavior of the steady distributions of
Figure 5.2 is clearly recognized and their discussion therefore still applies here. Further,
the phase and wavelength shown respectively in Figures 5.4(e) and (f) prove to be
independent from the layer doping concentration and type. They are actually the same

3Canceling the Dember field by setting equal electron and hole mobilities results in equally
lowered substrate injection for n- and p-type layers.

4Note that, as we have in Chapter 4, we should also investigate the generation of further
harmonics. However, only the constant and fundamental modes of the layer excess carrier con-
centration contribute to the measured signals (see Chapter 6). The other harmonics are therefore
neglected. The reason for the in-depth discussion of the harmonic generation in Chapter 4 is
that the existence of further harmonics in the substrate carrier distribution would have modified
the layer excess carrier concentration via equation (5.9)
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as obtained assuming flat quasi-Fermi levels and the substrate carrier concentrations found in the low
doping region of Figure 4.14.
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as in the substrate, as supposed above. In other words, the fundamental mode of the
excess carrier distribution behaves as a single wave, just as it does in a homogeneously
doped substrate. The only peculiarity of the wave when a doped layer is present is
that its amplitude and lateral decay length strongly and abruptly decrease in the highly
doped regions. The subscript l and sub for the phase and wavelength of the plasma wave
are therefore dropped in the rest of this thesis, since a single value suffices.

The results shown in Figure 5.4 combined with the results of Figures 4.14 and 4.15
summarize with great simplicity our model of the carrier and heat transport in non-
homogeneously doped silicon.

Before concluding, we believe it is important to derive the following approximate
expression for ∆Nl1 at high p-type5 doping concentrations (> 1019 cm−3), asssuming
Boltzmann statistics and a time-independent bandgap. Under these approximations,
based on equation (5.9), it can be shown that

∆Nl1 ≈
2∆Nsub0∆Nsub1

Pdoping
exp

(
−
Elg − Esubg

kbT

)
. (5.10)

This expression is of critical importance for the general understanding of the behavior
of ∆Nl1. It shows in very simple mathematical terms e.g. that the fundamental mode
of the excess carrier distribution in the layer drops with the active doping concentration
in this layer. We will come back to this observation in Section 6.2 of the next Chapter.
Furthermore, it also demonstrates the dependence of ∆Nl1 upon ∆Nsub0. In other
words, though time-independent, ∆Nsub0 is also involved in the fundamental mode of
the excess carrier distribution via ∆Nl1. This comment will have its importance for the
understanding of the modeling error discussed in Section 6.3 of the next Chapter.

5.4 Summary

In this Chapter, we have extended the transport theory developed in the previous Chap-
ter to samples presenting a shallow doped layer at their surface.

First, we have shown that the temperature distribution is independent from the
doped layer. Second, we have shown that the fundamental mode of the excess carrier
distribution below the doped layer (substrate region) is also independent from the layer.
The constant mode, however, has shown non-negligible variations at high layer doping
concentrations. The impact of this approximation is looked at in Section 6.3. Further-
more, we have demonstrated that, if the quasi-Fermi levels of the electrons and holes
remain flat in the structure, the excess carrier distribution in the doped layer is readily
derived from the excess carrier distribution in the substrate via equation (5.8). Most
importantly, Figure 5.4 shows the behavior of ∆Nl0 and ∆Nl1 as a function of the n-type
and p-type doping concentrations in the layer assuming low doping in the substrate and
the excess carrier concentration derived in Chapter 4 (Figure 4.14).

5This equation is easily extended to n-type doped layers by replacing Pdoping by Ndoping
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Chapter 6

Assessment of the Model

In the previous Chapters, we have developed a model to explain quantitatively how the
reflectance of a silicon sample can be modified by doping and/or laser-injected carriers
and heat. Going backwards from Chapter 5 to Chapter 2, we have sequentially calcu-
lated the excess carrier and temperature distributions generated by the TP pump and
probe lasers in Chapters 4 and 5 respectively for homogeneously and non-homogeneously
doped silicon. The perturbation of the refractive index induced by these distributions as
well as doping have been derived in Chapter 3. Finally, we have calculated the relation-
ship between the perturbation of the refractive index profile and the perturbation of the
sample reflectance in Chapter 2. Though this theoretical investigation has offered much
insight, the quality of this model still needs to be assessed. In this Chapter, we therefore
evaluate the accuracy of the model developed in the previous chapters on two types of
samples. In Section 6.1, we sum up and test the model for homogeneously doped silicon
samples as a function of doping concentration. In Section 6.2, we then study the case
of shallow doped layers. For the sake of simplicity, we only investigate profiles with a
simple and perfectly defined shape, i.e. box-like doping profiles, as can be obtained from
Chemical Vapor Deposition1 (CVD). For these samples, we also summarize the model
and check its validity as a function of the thickness and doping of the layer. Note that
only lowly doped substrates are considered (i.e. no well, no halo). Finally, in Section
6.3, we identify the errors made by our model and their most likely sources.

In this work, we measure the so-called DC reflectance Rdc and the so-called mod-
ulated - or AC - reflectance ∆Rac. More particularly, we measure their offset curves,
i.e. we measure these two signals as a function of the spacing between the probe and
the pump beams, denoted r in the present Chapter. The DC reflectance is the total
time-independent reflectance, i.e.

Rdc(r) = R0 + ∆R0(r), (6.1)

1I would like to thank Duy Nguyen and Laurent Souriau for the layers they have fabricated
for this study.
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6. ASSESSMENT OF THE MODEL

where ∆R0 includes all time-independent contributions to the reflectance perturbation,
i.e. doping, steady excess carrier and steady temperature effects. As for ∆Rac, it is the
normalized fundamental mode of the reflectance perturbation2, i.e.

∆Rac(r) = Γ0 exp(−iθ0)∆R1(r), (6.2)

where ∆R1 includes the time-dependent contributions to the reflectance perturbation,
i.e. the fundamental mode of the excess carrier and temperature distributions. Γ0 and
θ0 are respectively the normalization coefficient and phase of the fundamental mode of
the reflectance perturbation. These two factors originate from the lock-in amplifier and
are unfortunately unknown.

As we will show, the understanding of the behavior of Rdc is quite straightforward.
On the contrary, ∆Rac offset curves are complex (i) to measure with a sufficient repeata-
bility, (ii) to understand and (iii) to model. The three remarks below are therefore of
critical importance for the understanding of this Chapter.

(i) As studied in Ref[84, 36], ∆Rac varies with illumination time when measured
on crystalline Si. As a consequence, the measurement of ∆Rac suffers from a very
poor repeatability if no attention is paid to this issue. A procedure ensuring the high
measurement repeatability of ∆Rac has therefore been developed and systematically used
in the framework of our investigations. As detailed in Appendix A.1, in this procedure,
each offset curve is composed of 25 data points, each obtained after shining the pump
and probe beams for 25 s on the sample. Each offset curve is measured initially with
aligned beams (0 separation) and by separating the beams of 0.167 µm every 25 s. This
allows us to compromise between measurement repeatability [σ∆Rac = 7 × 10−4 (a.u.),
Appendix A.2] and measurement time (≈ 10 min/curve3). Further, all our CVD boxlike
profiles have been grown on device-quality wafers. This ensures a sufficient wafer-to-
wafer repeatability of the signals. This complete procedure is of critical importance
since the good agreement which our theory will show with experimental ∆Rac in this
Chapter would not be possible without it.

(ii) As can already be expected from equation (6.2), ∆Rac is the superposition of
multiple damped waves and therefore has a complex behavior. To facilitate the com-
parison between experimental and theoretical data, it is convenient to also write it as a
damped wave, i.e.

∆Rac(r) = |∆Rac(r)| exp [−iφac(r)]

= |∆Rac(r = 0)| exp [−iφac(r = 0)] exp(−r/Lac
d ) exp(−2iπr/Λac), (6.3)

where |∆Rac(r = 0)| and φac(r = 0) are respectively the measured amplitude and phase
of the AC reflectance under the pump beam, while Lac

d and Λac are respectively the
signal decay length and wavelength. By definition, Lac

d is the lateral distance needed

2Note that, contrary to equation (2.2), ∆R1 is here defined in its complex number notation.
We are aware of this slight inconsistency. It is, however, more convenient to write ∆R1 and,
consequently, ∆Rac, in complex notation so that the link between the behavior of the signal
and its components is more readily observed.

3I want to thank Derrick Shaughnessy again for writing a measurement routine for the TP
tool thanks to which an uncountable number of hours have been saved.
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for the amplitude |∆Rac| to drop by a factor exp(1), i.e. it is linked to the slope of the
offset curve of the signal amplitude. We calculate it from the following equation

Lac
d =

−|∆Rac|
∂|∆Rac|
∂r

∣∣∣
r=0

, (6.4)

which can be deduced from equation (6.3). As for the signal wavelength Λac, it is the
lateral distance needed for the phase φac to turn 360◦, i.e. it is linked to the slope of the
offset curve of the signal phase. We calculate it by extrapolation of the offset curves, i.e.

Λac =
360

φac(r = 4 µm)− φac(r = 0)
× 4 (µm). (6.5)

The term ’lengths’ used for Lac
d and Λac is somewhat abusive since negative values

of both the signal decay length and the signal wavelength are allowed. This a priori
unphysical possibility is just a consequence of their mathematical definitions. Obviously,
the respective decay lengths and wavelengths of each damped wave contributing to the
signal are all positive, i.e. their respective amplitudes decrease and their respective
phases increase. A backward diffusion wave going against the diffusion force is indeed
not physical[72]. But the AC reflectance is a combination of these damped waves.
Subsequently, its amplitude |∆Rac| can, in some specific occasions, rise with laser beam
separation4, i.e. the signal decay length can be negative[13]. Similarly, the phase φac

can sometimes decrease with laser beam separation, i.e. the signal wavelength can
be negative. We show below that, albeit unexpected, these situations are observed
experimentally and can be explained with the introduced model.

Note finally that, rigorously, ∆Rac is the sum of multiple damped waves. Equation
(6.3) is therefore only an approximation. This approximation quantitatively represents
the measured behavior of ∆Rac offset curves in most cases. As we will see, however,
it fails to do so in some complex cases (moderately doped CVD layers). In spite of
this limitation, these equations help significantly to understand the complex behavior of
∆Rac offset curves, which justifies their use in this work.

(iii) As a direct consequence of the separated pump and probe beams during the
measurement of an offset curve, their positions of maximum irradiance no longer coin-
cide, which slightly modifies the distributions of the generated excess carriers and excess
temperature. We, however, neglect these variations. In other words, our calculations
consider that the probe and pump lasers always shine on the same spot, generating the
carriers and temperature exactly as discussed in Chapter 4 and Chapter 5. A third,
fictitious, laser of wavelength λprobe is assumed to measure the offset curve without gen-
erating any excess carrier or heat. Considering the separation between the probe and
pump lasers in the numerical calculation of the excess carriers and heat would break the
central symmetry of the problem and therefore require a full three-dimensional treat-
ment. Unfortunately, FSEM does not have that capability. This approximation is very
good, owing to the constancy and relatively low magnitude of the probe laser irradiance.
Note also that the radius of this fictitious laser is assumed sufficiently small to measure

4Note that this can obviously only be true for a limited region of the offset curve, i.e. the
amplitude does not diverge. What is observed in these cases is that the rise in amplitude is only
sustained in the first few micrometers and is followed by the expected decaying amplitude.
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6. ASSESSMENT OF THE MODEL

the local (and not integrated) variations in reflectance (see Section 2.5.2). It can be
checked that considering the finite dimension of the probe radius would yield slightly
better results (mostly for Lac

d and Λac) but would not change the final conclusions of
this Chapter.

6.1 Homogeneous doping

Before looking at experimental data measured on homogeneously doped silicon sub-
strates, let us summarize the model for such samples. Two perturbation effects are to
be taken into account. First, when the homogeneous doping concentration is increased,
the refractive index is reduced, as studied in Chapter 3. In turn, Chapter 2 has shown
that this reduces the sample reflectance. Second, when the pump and probe lasers shine
on the homogeneously doped sample, excess carrier and excess temperature distribu-
tions such as those derived in Chapter 4 are generated (see, in particular, Figures 4.14
and 4.15). These distributions also perturb the refractive index of the sample, thus
modifying the sample reflectance. Since the excess carrier and temperature distribu-
tions have characteristic lengths longer than the probe wavelength, the perturbation of
the reflectance is only due to the surface perturbation of the refractive index. In other
words, using equations (2.11) and (3.16), Rdc can be written

Rdc(r) = R0

{
1 +

4

n2
0 − 1

[
−β
(

1

mh
Pdoping + (

1

me
+

1

mh
)∆N0(r)

)
+ δ∆T0(r)

]}
,

(6.6)

for a homogeneous p-type doping concentration Pdoping. The laser-induced variations in
DC reflectance due to the time-independent excess carrier and temperature distributions
are never observed [see e.g. Figure 6.1(a)], due to the low magnitudes of the steady excess
carriers and temperature [(1/me + 1/mh)β∆N0 � 1 and δ∆T0 � 1]. We can therefore
use the following simplified expressions

Rdc = R0

[
1− 4β

mh(n2
0 − 1)

Pdoping

]
for p-type doping (6.7a)

Rdc = R0

[
1− 4β

me(n2
0 − 1)

Ndoping

]
for n-type doping. (6.7b)

Similarly, using the same equations (2.11) and (3.16), the AC reflectance can be written

∆Rac(r) =
4R0

n2
0 − 1

Γ0 exp(−iθ0)

[
−β(

1

me
+

1

mh
)∆N1(r) + δ∆T1(r)

]
=

4R0

n2
0 − 1

Γ0 exp(−iθ0)

×
[
−β(

1

me
+

1

mh
)|∆N1(r = 0)| exp(−iφpl1 (r = 0)) exp(−r/Lpld1) exp(−2iπr/Λpl1 )︸ ︷︷ ︸

plasma component

+ δ|∆T1(r = 0)| exp(−iφth1 (r = 0)) exp(−r/Lthd1) exp(−2iπr/Λth1 )︸ ︷︷ ︸
thermal component

]
. (6.8)
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6.1. Homogeneous doping

Note that, though |∆N1| and |∆T1| have the same order of magnitude as ∆N0, their
modulation allows for the use of a lock-in amplifier. As a result, contrary to ∆N0, their
impact on the sample reflectance can be measured with a high reproducibility.

Equations (6.7) and (6.8) together with the excess carrier and temperature distri-
butions respectively shown in Figures 4.14 and 4.15 (complete model, i.e. red curves)
constitute our model for homogeneously doped silicon. In summary, the variations in
Rdc are only due to doping. As for ∆Rac, it consists of two components respectively
related to the fundamental modes of the surface excess carriers and temperature gen-
erated in the silicon substrate. We call these two components respectively the plasma
and thermal components. Both components vary with doping as studied in Chapter
4. Very importantly for the understanding of the behavior of the total signal, these
two components have opposite signs and different phases, i.e. they show a total phase
difference close to 180◦ but not precisely equal to 180◦.

6.1.1 Comparison of the Model with Experimental Data

Let us start by presenting the experimental offset curves and discuss qualitatively their
behavior when the doping concentration varies in Section 6.1.1.1 below. The model is
then compared quantitatively to the measurements in Section 6.1.1.2.

6.1.1.1 Qualitative Comparison

Figure 6.1(a), (b) and (c) show experimental offset curves of respectively Rdc, |∆Rac|
and φac for five different p-type doping concentrations.

Starting with Figure 6.1(a), it is striking that Rdc does not vary with beam sepa-
ration. This shows that ∆N0 and ∆T0 do not impact Rdc significantly, which justifies
our simplified model equations (6.7). Further, the experimentally observed behavior
of Rdc for increasing doping concentration follows the monotonic decrease expected by
equation (6.7a). We, however, note one outlier (see higher Rdc for Pdoping = 4.62× 1018

cm−3). The existence of this outlier is not a problem in itself but it underlines how
careful one should be when trying to understand or use a signal like Rdc. This signal
indeed shows very small variations (< 1%) when doping changes and, as a consequence,
it can be strongly impacted by any other effect. Unfortunately, all our homogeneously
doped samples are old and have not been monitored over the years5. The reasons for
the unexpectedly high Rdc on this particular outlier are therefore not clear. We have
actually noted quite a few outliers in our database of homogeneously doped substrates.
The study of the DC reflectance on homogeneously doped substrates therefore stops
here.

The offset curves of |∆Rac| shown in Figure 6.1(b) show the clear fingerprint of the
plasma component of equation (6.8). Indeed, the non-monotonic behavior of |∆Rac(r =
0)| for coincident beams when doping increases is in excellent agreement with the behav-
ior of |∆N1| in Figure 4.14(c). Interestingly, these experimental data provide evidence

5Attempts have been made to obtain better characterized fresh homogeneously doped sub-
strates. However, NIST spreading resistance calibration standards[2] are no longer available and
manufacturers seem to only sell batches of wafers and no single wafers. The samples of critical
importance in this study (ultra-shallow junctions), however, have been fabricated during the
study itself and properly monitored (surface oxide, substrate quality,...)
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Figure 6.1: Experimental offset curves, i.e. variation with laser beam separation, of (a) the DC
reflectance Rdc, (b) the amplitude and (c) phase of the AC reflectance ∆Rac for five homogeneously

p-doped substrates with doping concentrations ranging from 1015 to 3×1019 cm−3. The arrows show
the trend observed when increasing doping.
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6.1. Homogeneous doping

for the theoretically predicted bump of Figure 4.14(c) in the 1018 − 1019 cm−3 doping
range. Similarly, the experimental signal decay length is observed to decrease monoton-
ically with doping, in good agreement with the behavior of Lpld1 in Figure 4.14(d).

The discussion of Figure 6.1(c) is slightly more complex since the impact of the
thermal component of equation (6.8) is here more apparent. The phase measured for
coincident beams φac(r = 0) decreases monotonically, such as expected from Figure
4.14(e). However, the measured phase variation is much larger than that calculated for
the plasma component alone (> 30◦ vs 7◦). Actually, what is observed is the progressive
transition from a plasma-dominated behavior at low doping concentration to a thermally
dominated behavior at high doping concentration. Similarly, the signal wavelength in-
creases with doping for low and medium doping (≤ 4.62× 1018 cm−3) as expected from
a purely plasma signal [Figure 4.14(f)]. However, at high doping it reaches negative val-
ues, which could not be explained without the consideration of the thermal component.
The wavelength would then indeed always be positive. The negative signal wavelength
at high doping is actually a consequence of the faster lateral decay in the plasma com-
ponent than in thermal component. The plasma component manages to hold a positive
phase under the pump beam but not away from it, which results in a negative signal
wavelength.

Note that no outlier remains in the experimental data of ∆Rac. In other words,
whatever caused the unexpected behavior of Rdc for the sample at Pdoping = 4.62×1018

cm−3 does not seem to impact ∆Rac. This is confirmed by the quantitative study below.

6.1.1.2 Quantitative Comparison

For a more convincing picture of the ability of the model to quantitatively predict the
experimentally measured ∆Rac on homogeneously doped silicon, we compare in Figure
6.2 the experimental and theoretical variations with doping concentration in the four
parameters of the damped wave of equation (6.3). ∆Rac has been measured on 18 p-
type doped samples and 2 n-type doped samples. For the sake of clarity, the theoretical
curves are only shown for p-type doping since n-type doping would yield similar results
(see Figure 4.16). To facilitate the understanding, the theoretical curves for pure plasma
and pure thermal signals are also shown.

The overall behavior of the signal on homogeneously doped substrates can be divided
into three regimes.

First, at low doping (< 1019 cm−3), the pure plasma signal amplitude is approxi-
mately three times greater than the pure thermal signal amplitude. ∆Rac is therefore
plasma-dominated. The total signal amplitude shown in Figure 6.2(a) is, however, al-
ways lower than the pure plasma signal amplitude due to the opposite sign of the non
negligible thermal component. Interestingly, the signal amplitude shows a bump in the
1018 − 1019 cm−3 doping range due to the non-monotonic behavior of the fundamental
mode of the excess carrier distribution [Figure 4.14(c)]. The signal phase in Figure 6.2(c)
follows very closely the phase of the pure plasma signal. Finally, the behavior of the
signal decay length and wavelength in Figure 6.2(b) and (d) is more complex since they
both depend not only on the ratios of the amplitudes of both signal components but also
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6. ASSESSMENT OF THE MODEL

on the ratios of their decay lengths and wavelengths. As can be observed, the signal de-
cay length follows the plasma decay length while always being longer. This is due to the
slightly shorter decay length of the dominated thermal component. Due to the opposite
signs of both signal components, the lateral decay in the dominated thermal component
partially compensates the lateral decrease in the dominant plasma component, which
results in a signal decay length longer than the plasma decay length. Similarly, the signal
wavelength in Figure 6.2(d) is always longer than the plasma wavelength (slower lateral
change in phase) due to the shorter wavelength of the dominated thermal component.

Second, at high doping (> 1020 cm−3), the signal is thermally dominated. The signal
phase follows the phase of the pure thermal signal while the amplitude is slightly lower
than the pure thermal signal owing to the presence of the plasma component of opposite
sign. The signal decay length is longer than the thermal decay length due to the short
decay length of the plasma component. The signal wavelength is equal to the thermal
wavelength since the plasma wavelength is infinite.

Finally, at intermediate doping concentrations, a transition region is observed where
commensurate plasma and thermal components of opposite signs are in tight competi-
tion. This is by far the region where the signal behavior is most complex to understand
and, therefore, to model. First, the signal amplitude decreases as long as it remains
plasma-dominated (doping < 5× 1019 cm−3) and then rises once the pure thermal sig-
nal becomes dominant. The minimum value of the amplitude is not a zero since the two
signal components are out of phase. Second, the signal phase undergoes a very abrupt
transition approximately equal to (180◦ + φpl1 − φth1 ). Finally, the signal decay length
and wavelength show a very complicated behavior owing to their very subtle dependence
on the ratios of the signal component amplitudes and decay lengths. In this transition
region, both the signal decay length and wavelength can reach negative values and in-
finite values (asymptotes). In all generality, a negative signal decay length is obtained
when simultaneously two signal components of opposite signs are commensurate and the
lateral decay in the dominated component is much faster than the decay in the domi-
nant component. More specifically, in the case of homogeneously doped substrates we
are looking at, this situation only occurs for a narrow doping range around 1020 cm−3

where the slightly dominant thermal component decays much more slowly than the dom-
inated plasma component. Conversely, a negative signal wavelength is obtained when
simultaneously two components of opposite signs are commensurate and the dominant
signal component decays faster than the dominated component. This is observed for a
relatively wide doping range around 1019 cm−3 where the dominant plasma component
decays faster than the dominated thermal component. An infinite signal decay length
(resp. wavelength) occurs when the lateral decay (resp. lateral phase shift) in the domi-
nant and dominated components perfectly compensate each other. The position of these
asymptotes is even more complex since it further depends upon the phase difference and
wavelength ratio of the two components.

Let us now look at the experimental data also presented in Figure 6.2. Their agree-
ment with the theoretical curves is excellent in all three regions, i.e. even in the very
complex transition region. Notice, for example, the correctly predicted positions of the
asymptotes of both characteristic lengths in Figure 6.2(b) and (d). Further, the bump
on the signal amplitude predicted by our theory is observed experimentally, but it has
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Figure 6.2: Variation with doping concentration in (a) the amplitude at r = 0, (b) the signal
decay length, (c) the phase at r = 0 and (d) the signal wavelength of the AC reflectance ∆Rac on
homogeneously doped substrates. The theoretically predicted signal values for the total signal on
p-type doped substrates (full lines) are in good agreement with the experimental data on both n- and
p-type substrates. The theoretical pure plasma signal (dashed lines) and pure thermal signal (dotted
lines) are also indicated for completeness. The size of the experimental symbols is not representative
of the error bar which is too small to be shown on the plotted scale (Appendix A.2).
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a lower magnitude.

Though the agreement is good, it remains unsatisfactory in the low doping range,
which is of the highest interest to this study. At low doping concentrations, both the
experimental decay length and wavelength are closer to the pure plasma signal values
than the total signal. This seems to indicate that our model slightly underestimates
the ratio of the plasma component to the thermal component. We come back to this
important observation in Sections 6.2 and 6.3.

For the sake of completeness, note that an estimation of the normalization factor
Γ0 and phase θ0 is needed to compare theory to experiments like in Figure 6.2. In this
Figure, we take Γ0 = 4130 and θ0 = −57◦ so as to align the low doping values of the
amplitude and phase. Lac

d and Λac are, however, independent from these factors.

6.2 Box-like Doping Profile

Let us now summarize the various contributions to the measured signals in the case
of a box-like doping profile. Just like for homogeneous doping, two effects are to be
reported. First, the equilibrium carriers due to the box-like doping profile modify the
steady refractive index profile (Chapter 3) and hence Rdc (Chapter 2). Second, as
a consequence of the pump and probe lasers shining on the sample, an excess carrier
distribution and an excess temperature distribution are generated. As shown in Chapter
5, these two distributions can easily be derived from the distributions generated in a
homogeneously doped substrate, as found below the doped layer. In comparison with
the homogeneous doping case of the previous Section, the specificity of the present
Section is that the equilibrium and excess carriers show an abrupt in-depth change in
concentration at the junction depth, inducing a similar abrupt change in refractive index.

In other words, using equations (2.17) and (3.16), Rdc can be written

Rdc = R0

{
1− 4β

n2
0 − 1

1

mh
Pdoping [1− cos(4πn0Xj/λprobe)]

}
for p-type doped layers

(6.9a)

Rdc = R0

{
1− 4β

n2
0 − 1

1

me
Ndoping [1− cos(4πn0Xj/λprobe)]

}
for n-type doped layers.

(6.9b)

Equations (6.9) neglect the impact of the steady excess carrier and temperature distri-
butions on Rdc [see e.g. Figure 6.3(a)]. They also assume low doping in the substrate.
Finally, notice that, in agreement with formula (3.16) and the general conclusion of
Chapter 3, we have neglected any possible variation in the optical constants due to
BGN. As a consequence, the sin(4πn0Xj/λprobe) contribution to the signal vanishes.
For further discussion of this approximation, we refer to Appendix A.6.

The AC reflectance, also assuming negligible impact of BGN on the optical constants,
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can be written

∆Rac(r) =
4R0

n2
0 − 1

Γ0 exp(−iθ0)

×
{
−β(

1

me
+

1

mh
)∆Nl1(r)[1− cos(4πn0Xj/λprobe)]︸ ︷︷ ︸
layer plasma component

−β(
1

me
+

1

mh
)∆Nsub1(r) cos(4πn0Xj/λprobe)︸ ︷︷ ︸

substrate plasma component

+ δ∆T1(r)︸ ︷︷ ︸
thermal component

}

=
4R0

n2
0 − 1

Γ0 exp(−iθ0)

×
{
−β(

1

me
+

1

mh
)|∆Nl1(r = 0)| [1− cos(4πn0Xj/λprobe)] exp[−iφpl1 (r = 0)− r/Lpll1 − 2iπr/Λpl1 ]︸ ︷︷ ︸

layer plasma component

−β(
1

me
+

1

mh
)|∆Nsub1(r = 0)| cos(4πn0Xj/λprobe) exp[−iφpl1 (r = 0)− r/Lpld1 − 2iπr/Λpl1 ]︸ ︷︷ ︸

substrate plasma component

+ δ|∆T1(r = 0)| exp[−iφth1 (r = 0)− r/Lthd1 − 2iπr/Λth1 ]︸ ︷︷ ︸
thermal component

}
. (6.10)

Equations (6.9) and (6.10) are our model equations to explain the behavior of Rdc

and ∆Rac on box-like doping profiles. The addition of the excess carrier and tempera-
ture distributions obtained in Figure 4.14 and 4.15 (only low doping region) as well as
Figure 5.4 complete our model. In summary, the DC reflectance Rdc shows sensitivity
to both layer doping and junction depth. In particular, Rdc increases linearly with the
doping concentration. As for the AC reflectance ∆Rac, it is a three-component signal.
The first component is the layer plasma component, related to the excess carrier concen-
tration in the doped layer. This component always has the phase and wavelength of the
plasma component on a homogeneous sample. The second component is the substrate
plasma component, linked to the excess carrier concentration in the substrate. It has
the wavelength of the plasma component on a homogeneous sample. However, due to
the interference between the surface and interface modulated reflections, the sign of this
component changes at a junction depth Xj = λprobe/(8n0) (≈ 22 nm). Its phase can
therefore either be the same as on a homogeneous sample (Xj < 22 nm) or 180◦ out of
phase (Xj > 22 nm). This remark is of the utmost importance for the general under-
standing of the signal behavior. The third and final component is the thermal component
which is the same as the thermal component on a homogeneous silicon substrate. Note
that, like Rdc, ∆Rac is sensitive to layer doping and junction depth. However, only the
layer plasma component of ∆Rac is sensitive to doping. The sensitivity to doping conse-
quently decreases with increasing doping [Figure 5.4 or equation (5.10)]. This explains
why no correlation between ∆Rac and dose or sheet resistance can be found. This is very
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different from the behavior of Rdc, which has shown very high correlation with sheet
resistance [92]. This important difference between the behaviors of the two measured
signals should be kept in mind for Chapter 7.

6.2.1 Comparison of the Model with Experimental Data

Similar to the case of homogeneously doped substrates, we separate the discussion into
the qualitative behavior of experimental offset curves in Section 6.2.1.1 and the quanti-
tative comparison with our model in Section 6.2.1.2.

6.2.1.1 Qualitative Comparison

Experimental offset curves measured on CVD box-like profiles are shown in Figure 6.3
for two different p-type doping concentrations in the layer (CVD12 matrix, see Appendix
A.3). First, looking at the DC reflectance [Figure 6.3(a)], we clearly see that, at least
qualitatively, it follows formulas (6.9) quite nicely. In particular, as assumed above, the
curves are flat, which confirms that the time-independent excess carriers and tempera-
ture are not observed. It can also be seen that Rdc decreases when the depth of the box
varies from 0 to approximately 44 nm (=λprobe/(4n0)). For deeper layers, Rdc increases
with depth in agreement with the cosine behavior of formulas (6.9). As expected also,
the amplitude of the variations in Rdc increases when the doping increases.

Figure 6.3(b) shows the offset curves of |∆Rac|. When the beams are aligned, a
non-monotonic behavior is observed when Xj varies, indicating the dominance of the
plasma component over the thermal component. We will see in the next paragraphs
that this behavior is a rectified cosine (| cos |), as suggested by formula (6.10). Further,
the amplitude of the cosine seems to increase when the layer doping increases. The
behavior of the signal decay length, however, is difficult to determine based on this
figure. Nonetheless, one clear observation is that the signal decay length is very close
to that measured on a lowly doped substrate for very shallow Xj . The other, less clear,
variations are discussed in the next Section.

Figure 6.3(c) shows the offset curves of φac. The phase for coincident beams also
shows a non monotonic behavior. It is remarkable that, except for a couple of layers, the
measured phase is either about 120◦ for depths below 30 nm or about -40◦ for deeper
layers. This behavior is due to the sign change of the substrate plasma component at
22 nm. It can also be observed that, for low doping, the phase transition occurs for
deeper layers. This transition can be explained from the competing behavior of the sub-
strate and layer plasma components, the latter being larger at low doping (Figure 5.4).
Similarly, we see that the signal wavelength varies with depth but the behavior seems
to be complex, just like that of the decay length. It can, however, be observed that
the signal wavelength is approximately 120 µm when the phase is not in the transition
region. This is about the wavelength of the plasma wave on a lowly doped substrate
(see e.g. Figure 4.14), which clearly indicates a plasma dominated behavior. In the
transition region, negative wavelengths are observed. This is a consequence of the fast
decay in layer plasma component which manages to hold the phase positive under the
pump beam but not away from it.
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Figure 6.3: Offset curves, i.e. variation with laser beam separation, of (a) the DC reflectance Rdc,
(b) the amplitude and (c) phase of the AC reflectance ∆Rac measured on p-type layers with various
junction depths ranging from 0 to 60 nm and active doping concentrations of 1.3×1019 and 6.4×1019

cm−3 (values based on sheet resistance measurements with an assumed bulk mobility). All layers were
grown on lowly doped device-quality substrates, the behavior of which is shown by the thick black
line. The arrows show the trend observed when increasing junction depth.
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6.2.1.2 Quantitative Comparison

Based on the previous observations, it seems that there is a good qualitative agreement
between formulas (6.9) and (6.10) and Figure 6.3. However, just like for homogeneously
doped substrates, we would like to compare quantitatively the results of the developed
model with the experimental data. For this purpose, we focus on the experimental data
measured on the layers of the CVD12 matrix as above (layer doping Pdoping = 1.3×1019

cm−3 and 6.4 × 1019 cm−3), complemented with one set of the CVD13 matrix (layer
doping Pdoping = 3.3× 1019 cm−3). The comparison between our theoretical predictions
and the experimental data measured on these layers is shown in Figure 6.4.

The quantitative discussion of the variations in Rdc is fairly simple. We show in Fig-
ure 6.4(a) that this signal varies cosinusoidally with Xj . In particular, based on three
different doping concentrations in the 1− 6× 1019 cm−3 range, we show that the model
gives very good agreement with experimental data. Notice, however, that the doping
concentration used to fit the experimental Rdc is 75% higher than the value based on
sheet resistance measurements, independently from the doping concentration. This dis-
crepancy is looked at in Section 6.3.1.

The quantitative discussion of ∆Rac is more complex. The main complication lies in
the very high sensitivity of ∆Rac to the accuracy of the calculated substrate injection.
On a box-like doping profile, ∆Rac indeed depends on the excess carrier concentration
in the substrate through two of its components, i.e. the substrate plasma component
and layer plasma component. In other words, an error on the calculated excess carrier
concentration in the substrate would propagate and lead to unacceptable results. It is
therefore of critical importance that the excess carrier distribution in the substrate be
correctly calculated. Yet, Section 6.1 shows that the agreement between the model and
the measurements on homogeneously doped silicon, though good, is not 100% quantita-
tive. In particular, a possible small underestimation of the plasma component has been
noted. For this reason, we propose a new calibration procedure providing an improved
calculation of ∆Nsub0, ∆Nsub1 and ∆T1. Rather than using the distributions derived di-
rectly from our calculations, we propose to combine the insight offered by the developed
theory and the experimental data measured on a lowly doped substrate. The proposed
calibration procedure is as follows:

� we measure the experimental offset curve on a lowly doped substrate, such as the
one the CVD layers have been grown on (e.g. before growth of the layer)

� we fit equation (6.8) and the three-dimensional linear ambipolar and heat diffusion
equations [equations (4.60b) and (4.60d)] to the measured curves with the uniform
ambipolar diffusivity and the uniform carrier lifetime as fitting parameters. The
fitting algorithm actually also involves the normalization factor Γ0 and phase θ0.

Importantly, this fitting procedure gives a unique solution. The slopes of the
measured curves indeed give access to the ambipolar diffusivity and the carrier
lifetime (see e.g. the asymptotic behavior of Lpld1 and Λpl1 in Figure 4.10). Further,
Γ0 and θ0 are fixed by the values of the signals themselves.

� ∆Nsub1 and ∆T1 are direct outputs of the fitting procedure. Note that the ob-
tained distributions are very close to the distributions calculated in Chapter 4.
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Typically, on a lowly doped substrate, a 2 × 10−7 s carrier lifetime is obtained,
in good agreement with Auger recombinations at the expected injection. The
obtained ambipolar diffusivity, however, is about 4 cm2s−1, i.e. about two times
smaller than the theoretical values (see e.g. Figure 4.5). As a consequence, the
obtained |∆Nsub1| is about 30% higher than calculated, while the temperature is
roughly unchanged. The decay lengths, wavelengths and phases of both compo-
nents remain approximately unchanged (≤ 5% difference). This discrepancy is
looked at in Section 6.3.2.1.

� ∆Nsub0 is calculated based on the steady linear ambipolar diffusion equation [sim-
ilar to equation (4.60a) with the consideration of the probe laser], assuming the
uniform ambipolar diffusivity and carrier lifetime derived in this procedure. The
obtained ∆Nsub0 on a lowly doped substrate is roughly 30% higher than the cal-
culated one due to the lower ambipolar diffusivity. The decay length, wavelength
and phase are approximately the same as their calculated counterparts (≤ 5%
difference).

Notice that, besides providing a simple and direct access to ∆Nsub0, ∆Nsub1 and
∆T1, this calibration procedure shows some other great advantages. First, values for the
normalization factor Γ0 and phase θ0 are derived consistently. These values would have
had to be assumed otherwise (see e.g. Section 6.1 for homogeneous substrates). Second,
the procedure can be generalized to other substrates, e.g. with preamorphization. This
proves very useful in Section 7.2. Finally, given that Da is measured rather than cal-
culated, the modeling error is also reduced (Section 6.3.2.1). The calibration procedure
is, however, still perfectible. First, it assumes a fixed value for the absorption coeffi-
cients and irradiances of both lasers. Any actual variation in any of these coefficients
during the measurements (e.g. plasma-induced BGN, long-term instability of the laser
irradiances,...) would therefore mistakenly be attributed to variations in Γ0. Second, it
assumes uniform values of Da and τ . We will see in Section 7.2 that this assumption is
quite detrimental in the case of preamorphized substrates. We, however, still believe this
new calibration procedure is a great improvement over the previously used procedure,
which would attribute all the possible variations to changes in the measured profiles.

The results based on our model equation (6.10) and on the proposed calibration
procedure are shown in Figure 6.4(b) to (e) for three doping concentrations in the 1 −
6 × 1019 cm−3 range. The values of the normalization factor and phase obtained by
fitting of the substrate offset curves are Γ0 = 2857 (a.u.) and θ0 = −61◦. We separate
the discussion of the signal behavior into three. First, we focus on highly doped layers
(red curves). We then proceed to the case of moderately doped layers (black curves)
and finish with the lowly doped layers (blue curves).

Let us first discuss the case of a high doping concentration in the layer (red curves).
The signal amplitude shown in Figure 6.4(b) follows a rectified cosine (| cos |) behavior,
which indicates a dominant substrate plasma component. The amplitude reaches a
minimum at Xtransition

j ≈ 22 nm as a result of the sign change of the substrate plasma
component. More precisely, Xtransition

j corresponds to the depth where the substrate
plasma component and layer plasma component are equal but of opposite signs (if the
thermal component is neglected) and is therefore deeper than 22 nm (25 nm in this
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Figure 6.4: Variation with junction depth in (a) the DC reflectance Rdc, (b) the amplitude at
r = 0, (c) the signal decay length, (d) the phase at r = 0 and (e) the signal wavelength of the AC

reflectance ∆Rac measured on p-type doped layers with doping concentrations 1.3× 1019 cm−3 (blue

circles), 3.3 × 1019 cm−3 (black asterisks) and 6.4 × 1019 cm−3 (red triangles). These active doping
concentration values are based on sheet resistance measurements and an assumed bulk mobility. The
theoretically predicted signal values for the total signal on p-type doped substrates (colored lines) are
in good agreement with the experimental data though the active doping concentrations shown do not
match the experimental values. The active doping concentrations for the theoretical values of Rdc

and ∆Rac also are different. The size of the experimental symbols is not representative of the error
bar which is too small to be shown on the plotted scale (Appendix A.2).
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highly doped case). An approximate expression of Xtransition
j can be found by solving

cos(4πn0X
transition
j /λprobe) =

−|∆Nl1/∆Nsub1|
1− |∆Nl1/∆Nsub1|

. (6.11)

Note already that the signal behavior around Xtransition
j is very complex since all three

signal components are roughly equal. Moving on to the signal phase, shown in Figure
6.4(d), it is first very close to φpl1 for Xj < Xtransition

j and then undergoes an abrupt
transition at Xtransition

j due to the sign change of the substrate plasma component. The
total phase variation is almost equal to 180◦, but is slightly smaller due to the different
phase of the thermal component. As can be expected, the discussion of the signal decay
length and wavelength shown respectively in Figure 6.4(c) and (d) is very complex owing
to the presence of three signal components. We therefore keep the discussion simple and
focus on the possibility for negative values. Starting with the signal decay length, the
conditions for a negative signal decay length are found in a narrow Xj range deeper
than Xtransition

j . In this region, indeed, the substrate and layer plasma components are
commensurate and of opposite signs and, simultaneously, the dominated layer plasma
component decays faster than the dominating substrate plasma component. This ex-
plains the negative signal decay length when Xj ≥ Xtransition

j . A similar argument holds
for the negative signal wavelength. For junction depths included approximately between
22 nm and Xtransition

j , the substrate and layer plasma components are commensurate
and, simultaneously, the dominant layer plasma component decays faster than the dom-
inated substrate plasma component. As a result, the signal wavelength is negative in
this narrow Xj range.

Second, for layers with an intermediate active doping concentration (black curves),
the behavior is similar. The observed differences with respect to the red curves (higher
doping) are due to the larger ∆Nl and, hence, the higher amplitude of the layer plasma
component. First, the transition region moves towards deeper Xj , i.e. Xtransition

j ≈ 32
nm. Second, the Xj ranges where a negative signal decay length or wavelength can be
found widen dramatically.

Finally, the lowly doped layers (blue curves) show quite a different behavior. The
reason for this difference is that |∆Nl1/∆Nsub1| > 0.5. In this case, equation (6.11)
predicts that no transition should occur since the layer plasma component is larger than
the substrate plasma component independently from Xj . This is indeed what is ob-
served. As a consequence, the phase and decay length remain approximately equal to
respectively φpl1 and Lpld1 independently from Xj . Note, however, that the dominance of
the layer plasma component independently from Xj allows a negative signal wavelength
on a very broad Xj range.

This overall theoretical behavior is in very good agreement with the experimental
data. In particular, Figures 6.4(b) and (d) show the excellent agreement between the
measured and theoretical values of the amplitude |∆Rac(r = 0)| and phase |φac(r = 0)|
for coincident beams. The agreement between calculated and experimental signal decay
lengths Lac

d and wavelengths Λac respectively in Figure 6.4(c) and (e) is also satisfactory.
Note that most of the observed discrepancies between experimental and theoretical Lac

d

and Λac are just a consequence of the definition of these characteristic lengths. It has to
be reminded that, though ∆Rac has been defined as a damped wave in equation (6.3),

117



6. ASSESSMENT OF THE MODEL

it is actually the superposition of three of them [equation (6.10)]. It can therefore be
expected that, in order to have well-defined signal decay lengths and wavelengths, one or,
at most, two signal components must be dominant. This is the case on homogeneously
doped substrates, where a very good agreement has indeed been found between the
theoretical and experimental values of these characteristic lengths. Very importantly,
Figure 7.5(c) and the related discussion in Section 7.1.2 of the next Chapter confirm
that our model accounts for the lateral behavior of ∆Rac with great accuracy.

As a consequence of the observed good agreement, the model equation (6.10) can
therefore be believed to quantitatively model the variations in ∆Rac. However, it can be
noticed that the active doping concentrations needed to obtain the theoretical curves of
Figure 6.4 are different from the ones derived by sheet resistance measurements. They
are also different from those needed for Rdc. More particularly, the sensitivity of ∆Rac

to doping seems to be overestimated by the model. In Section 6.3.2.2 below, we deter-
mine the possible explanations for the disagreement.

As a final remark, note that Appendix A.5 studies qualitatively the behavior of
∆Rac on n-type layers and shows that they behave similarly to p-type layers. They
do not directly appear in this Chapter because, unfortunately, these layers were grown
in the early phase of this project. As a consequence, it is impossible to study them
quantitatively. We indeed have no measurement on the homogeneous substrate before
growth of the CVD layer and can therefore not apply our calibration procedure. Further,
these n-layers have been grown on substrates of low quality (monitor wafers). This proves
to strongly reduce the repeatability of the technique as already mentioned and as shown
in Appendix A.2.

6.3 Discussion of the Modeling Error

As confirmed in the previous Sections of the present Chapter, our model equations give
very satisfactory agreement with experimental data. It cannot be claimed, however,
that the model is perfectly quantitative. Some discrepancies between experiments and
theory have indeed been observed both on the DC and AC reflectances. We would like
to investigate the most likely causes for the disagreements. Note that, in spite of the
important conclusions drawn in this Section, the model will remain as discussed thus far.
This Section therefore must be considered as an open discussion. It also contains some
of our recommendations for future work and for possible improvements of the model.

We separate this study into two items. First, we look at the discrepancies observed
on Rdc in Section 6.3.1. Section 6.3.2 then focuses on the error on ∆Rac.

6.3.1 Modeling Error on Rdc

Figure 6.4 shows that our model equations (6.9) correctly predict the behavior of Rdc on
box-like profiles. Nonetheless, we have noticed that our model only fits the experimental
behavior of Rdc if we use doping concentrations 75% higher than expected from accurate
(zero-penetration) sheet resistance measurements. Two causes are likely to explain this
discrepancy.
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First, the difference could be attributed to a possibly underestimated electrorefrac-
tive effect in our model. As already mentioned in Chapter 3, this underestimation is
likely since large variations in the quantification of the electrorefractive effect have been
published[112] (up to a factor 10 variation).

Second, the observed difference can equally come from an error on the active doping
concentration derived from the sheet resistance measurements. As already mentioned
in Section 1.2.1.3, sheet resistance measurements give access to the conductivity in the
layer, not its active doping concentration. In other words, a value of the majority carrier
mobility is needed to access the active doping concentration. We have made use of the
bulk mobility values given by Ref. [64]. It is, however, well-known that mobility in
a doped layer is degraded (up to 30%) by the presence of inactive dopants [30]. The
derived active doping concentration, which we have here called ”experimental”, should
therefore only be taken as a lower limit of the active doping concentration.

The discrepancy observed on Rdc is likely to be due to both error sources. It is
unfortunately not possible to determine which, if any, is dominant. To solve this problem,
we recommend to run mobility measurements on the full matrix of p-type CVD layers,
e.g. with a Hall-based technique [97, 88]. Knowing the actual values of the majority
carrier mobility in the layer, the correct active doping concentrations will be found. As
a consequence, an experimental value for ∂n/∂P will be derived. We also recommend to
run the same experiment on n-type layers so as to determine an experimental value for
∂n/∂N . This is obviously needed for the quantitative understanding of Rdc on n-type
layers. As we show below, it is also needed so as to improve the modeling of ∆Rac on
both p- and n-type layers.

6.3.2 Modeling Error on ∆Rac

Figures 6.2 and 6.4 show that our model equations (6.8) and (6.10) correctly predict
the behavior of ∆Rac respectively on homogeneously doped substrates and on box-like
profiles. However, the quantitative comparison between experiments and the results of
our model highlights two main issues. First, measurements on lowly doped substrates
underline the underestimation of the ratio of the plasma component to the thermal com-
ponent. We study the possible sources for such an error in Section 6.3.2.1. Second, the
modeling of the dependence of ∆Rac upon doping needs to be improved. In particu-
lar, we have noticed an overestimated sensitivity to doping. The origin of this effect is
discussed in Section 6.3.2.2.

6.3.2.1 Underestimated Plasma-to-Thermal Component Ratio

The experimental data on lowly doped substrates show that the ratio of the plasma
component to the thermal component is slightly underestimated by the model (see sig-
nal decay length and wavelength in Figure 6.2). Three possible error sources can be
considered.

The first error source is the possible underestimation of the electrorefractive effect.
This effect has also been mentioned as a likely source of error in the modeling of Rdc.
The fact that this effect is observable on both Rdc and ∆Rac cannot be a coincidence
and is considered as a confirmation of the underestimated electrorefractive effect. As a
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consequence, the problem should, at least partially, be solved when experimental values
for ∂n/∂P and ∂n/∂N are measured, as we suggest in Section 6.3.1 above.

The second possible source of error lies in the underestimated excess carrier concen-
tration. Two arguments are in favor of the underestimation. First, we have mentioned
in Section 4.1.3.1 that our model underestimates the band-to-band absorption coeffi-
cient αBTB. We have also shown how much this parameter can affect the excess carrier
concentration (Figure 4.14). Second, we have seen that, in order to fit the slopes of
the offset curves measured on homogeneously doped substrates, a reduced ambipolar
diffusivity is needed (Section 6.2.1), leading to a 30 % increase in excess carrier concen-
tration. Physically speaking, this reduction in ambipolar diffusivity is in contradiction
with the excellent agreement between the theoretical and experimental Da values shown
in Figure 4.5. One way of having theory and experiments to agree is to speculate that the
BGN counter-diffusive terms DBGN

n and DBGN
p start to impact the ambipolar diffusivity

significantly at excess carrier concentrations of the order of 1018 cm−3, i.e. for larger
injections than the experimental data of Figure 4.5. In that case, at high injection, their
negative contribution DBGN

a to the ambipolar diffusivity

DBGN
a =

µpD
BGN
n + µnD

BGN
p

µn + µp

= − µnµp
µn + µp

∆N
1

q

∣∣∣∣ ∂Eg∂∆N

∣∣∣∣ . (6.12)

would lead to a reduced ambipolar diffusivity. This, in turn, would increase the excess
carrier concentration and, therefore, generate a positive feedback loop. In any case,
both the underestimated αBTB and overestimated Da point towards the importance of
an accurate quantification of the plasma-induced BGN in our study. Note that plasma-
induced BGN can be accounted for by the model we use [94] but it has not been checked
experimentally (only doping-induced BGN). We therefore believe this problem would be
partially solved with a better quantified plasma-induced BGN model.

Interestingly, the underestimated carrier injection can also serve as a justification
for an assumption which we have made in this thesis. We have assumed a zero surface
recombination velocity (SRV) at all boundaries. The initial reason is that this effect
cannot be modeled quantitatively[41]. We now can see that this assumption is acceptable
since adding a nonzero SRV at any boundary would have led to a further reduction in
carrier injection. We believe the negligible values of the SRV in this work can be partially
explained by the high modulation frequency of TP. A diffusion-limited behavior indeed
shows little sensitivity to recombinations (see e.g. Section 4.2.1). Another explanation
lies in our measurement procedure (Appendix A.1.1) where the signals are recorded only
about 25 s after starting shining the pump and probe lasers on the sample surface. This
indeed tends to charge the oxide and therefore to reduce the SRV[36].

As for the third source of error, i.e. the possible underestimation of the excess
temperature of thermorefractive effect, we do not have any evidence for it. We therefore
suggest this effect should be looked at when the above-mentioned two problems are
solved.
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6.3.2.2 Overestimation of the Sensitivity of ∆Rac to Layer Doping

The active doping concentrations needed to fit the experimental behavior of ∆Rac on
box-like profiles in Figure 6.4 do not match the active doping concentrations derived from
sheet resistance measurements. In particular, it has been observed that the sensitivity
of ∆Rac to doping seems to be overestimated. This sensitivity can be calculated from
the following derivative∣∣∣∣ ∂∆Rac

∂Pdoping

∣∣∣∣ =

∣∣∣∣∂∆Rac

∂∆Nl1

∣∣∣∣ ∣∣∣∣ ∂∆Nl1
∂Pdoping

∣∣∣∣
=

4R0

n2
0 − 1

Γ0β(
1

me
+

1

mh
) |1− cos(4πn0Xj/λprobe)|

∣∣∣∣ ∂∆Nl1
∂Pdoping

∣∣∣∣ . (6.13)

The previous considerations of the modeling error in this Section have implied that the
Drude β factor and the electrorefractive effect it embodies are actually underestimated.
The error would therefore originate from an overestimated |∂∆Nl1/∂Pdoping|. In cases
of low injection (high doping) in the doped layers, we have, using equation (5.10)∣∣∣∣ ∂∆Nl1

∂Pdoping

∣∣∣∣ =

∣∣∣∣∣ ∂

∂Pdoping

[
2∆Nsub0∆Nsub1

Pdoping
exp

(
−
Elg − Esubg

kbT

)]∣∣∣∣∣
=

2∆Nsub0|∆Nsub1|
Pdoping
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−
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kbT

)∣∣∣∣∣ 1

kbT

∂Elg
∂Pdoping

+
1

Pdoping

∣∣∣∣∣. (6.14)

Apparent from equation (6.14) is that an overestimated sensitivity to doping is likely to
come from overestimated values of ∆Nsub0, i.e. of the steady carrier injection level below
the doped layer. We believe this is a direct consequence of our supposed independence
of the substrate injection from the doped layer. As can be seen in Figure 5.3, though
the fundamental mode of the excess carrier distribution in the substrate is expected
to vary little with the doped layer, its constant mode decays quite strongly for highly
doped layers (≈ 20% for a layer doping concentration of 2 × 1020 cm−3). To enhance
the accuracy of the model, it is therefore critical that this effect be taken into account.
Two solutions can be considered. First, on the theoretical side, one should go back
to the full time-dependent (or steady periodic) drift-diffusion simulations. As already
mentioned, however, both the implementation and resolution of this problem are complex
and time-consuming tasks. An alternative, experimental, solution is to increase the
pump irradiance and, thus, reduce the impact of the depletion effect observed in Figure
5.3. We obviously recommend the latter experimental solution. It is very interesting to
note that, as can be seen in this Section, ∆Nsub0 is overestimated while, as shown in
the previous Section, ∆Nsub1 is underestimated.

Further, plasma- and doping-induced BGN effects also appear in equation (6.14) via
respectively Esubg and Elg. They can therefore also be identified as a source of error.
Their presence as argument of an exponential shows once again that very high accuracy
is needed for the BGN model.

Note, finally, that the presence of inactive dopants in the doped layers could also
explain partly the observed overestimated substrate injection [12]. However, the high
activation of our CVD layers (≥ 50%) lets us think that this effect is marginal.

121



6. ASSESSMENT OF THE MODEL

6.4 Summary

In this Chapter, we have derived model equations to explain the experimental behavior
of the DC reflectance Rdc and AC reflectance ∆Rac. These equations read respectively
for a homogeneously doped substrate

RSubstrate
dc =R0

[
1− 4β

mh(n2
0 − 1)

Pdoping

]
for p-type doping (6.15a)

RSubstrate
dc =R0

[
1− 4β

me(n2
0 − 1)

Ndoping

]
for n-type doping (6.15b)

∆RSubstrate
ac (r) =

4R0

n2
0 − 1

Γ0 exp(−iθ0)

[
−β(

1

me
+

1

mh
)∆N1(r) + δ∆T1(r)

]
, (6.15c)

and for a box-like profile

RBox
dc =R0

{
1− 4β

n2
0 − 1

1

mh
Pdoping [1− cos(4πn0Xj/λprobe)]

}
for p-type doped layers

(6.16a)

RBox
dc =R0

{
1− 4β

n2
0 − 1

1

me
Ndoping [1− cos(4πn0Xj/λprobe)]

}
for n-type doped layers

(6.16b)

∆RBox
ac (r) =

4R0

n2
0 − 1

Γ0 exp(−iθ0)

×
{
− β(

1

me
+

1

mh
)∆Nl1(r)[1− cos(4πn0Xj/λprobe)]

− β(
1

me
+

1

mh
)∆Nsub1(r) cos(4πn0Xj/λprobe)

+ δ∆T1(r)
}

. (6.16c)

These equations, together with Figures 4.14 (red curves), 4.15 (red curves) and 5.4
constitute our model. The model has been tested on homogeneously doped substrates
and p-type CVD layers. Though the model is in good agreement with experimental
data, the doping dependence of both Rdc and ∆Rac still requires some improvement.
Some suggestions and directions have been given to refine the model.

To conclude, let us write our model equations for an active doping profile with an
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arbitrary shape

RProfile
dc =R0

{
1− 4β

n2
0 − 1

1

mh

[
Pdoping(z = 0) +

∫ +∞

0+

∂Pdoping(z)

∂z
cos(4πn0z/λprobe)dz

]}
for p-type active doping profiles (6.17a)

RProfile
dc =R0

{
1− 4β

n2
0 − 1

1

mh

[
Ndoping(z = 0) +

∫ +∞

0+

∂Ndoping(z)

∂z
cos(4πn0z/λprobe)dz

]}
for n-type active doping profiles (6.17b)

∆RProfile
ac (r) =

4R0

n2
0 − 1

Γ0 exp(−iθ0)

×
{
− β(

1

me
+

1

mh
)

[
∆Nl1(r, z = 0) +

∫ +∞

0+

∂∆Nl1(r, z)

∂z
cos(4πn0z/λprobe)dz

]
+ δ∆T1(r)

}
. (6.17c)

which, together with equation (5.8), Figures 4.14 and 4.15, constitute our model to
explain the behavior of the DC and AC reflectances on active doping profiles of arbitrary
shape.
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Chapter 7

Application of the Model to
Carrier Profiling

In the previous Chapters, we have developed, tested and commented a physical model
to explain the general behavior of the DC reflectance Rdc and AC reflectance ∆Rac,
as measured with TP on homogeneously and non-homogeneously doped silicon. In this
Chapter, the insights of the previous Chapters are put together in order to solve the
inverse problem. In other words, in this Chapter, we show how to deduce information
about unknown active doping profiles based on TP measurements. We start, in Section
7.1, by showing that it is possible to determine the junction depth of a box-like doping
profile based on ∆Rac. This signal has indeed shown a strong sensitivity to junction
depth [equation (6.10)]. Using ∆Rac is a very promising approach for the non-destructive
determination of the junction depth of an unknown doping profile. It is of particular
interest to mention that, though modeling is involved in the development of the Xj
determination technique, the derivation of the Xj value itself is based on processing
of experimental data only. This is of course a great advantage since we have shown
that the layer-doping dependence of ∆Rac is yet to be better quantified. Further, since
the ultimate objective of this work lies in the reconstruction of complete active doping
profiles, we develop, in Section 7.2, a model-based method for full profile characterization
by combining the use of ∆Rac offset curves and Rdc. We will see that this technique
shows a promising agreement with other carrier and dopant profiling techniques, with
the great benefit of being non-destructive, local and fast. We will also underline the
current limitations of the technique.

Interestingly, in the course of this Chapter, we will find some additional confirmation
of the ability of our model equations to explain the qualitative and quantitative behavior
of Rdc and ∆Rac.
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7. APPLICATION OF THE MODEL TO CARRIER PROFILING

7.1 Model-Free Determination of Junction Depths

As clearly highlighted in formula (6.10), ∆Rac is very sensitive to Xj . However, though
this signal varies also with the doping concentration in the layer, the sensitivity to the
latter drops at the high doping concentrations needed to make efficient USJs (> 1020

cm−3). In other words, ∆Rac is certainly a very promising signal to help determine Xj
but, on its own, is quite unlikely to be useful for full profile reconstruction. It also has
to be recalled that the variations in ∆Rac with layer doping are not accounted for with
sufficient accuracy by our model (Chapter 6). In this Section, we therefore focus on the
use of ∆Rac for the extraction of Xj .

In order to isolate Xj in the expression of ∆Rac, we somehow have to cancel the other
dependencies of ∆Rac and thus the layer plasma and thermal components. In order to
reach that goal, we first propose to use offset curves in Section 7.1.1. We show that it is,
in theory, possible to derive an absolute value of the junction depth of a box-like doping
profile. Second, in Section 7.1.2, we develop an alternative technique for the relative
determination of Xj . Advantageously, these two techniques do not involve any modeling
in the Xj determination, at the expense of one or two calibration measurements.

7.1.1 Absolute Determination of Junction Depths

The main requirement for the determination of Xj from ∆Rac measurement is to elim-
inate the layer plasma component as well as the thermal component. The solution
investigated in this Section is the separation of the laser beams, i.e. offset curves. Based
on the decay lengths observed in Figures 4.14(d), 4.15(d) (red curves) and 5.4, it is
obvious that the three signal components of equation (6.10) do not decay laterally at
the same pace. In particular, our calculations show that the substrate plasma compo-
nent has the largest decay length (≈ 2.7 µm). In other words, for sufficiently separated
beams, the substrate plasma component is the only remaining signal component, i.e.

lim
r→∞

∆RBox
ac (r) = − 4R0

n2
0 − 1

Γ0 exp(−iθ0)β(
1

me
+

1

mh
)∆Nsub1(r) cos(4πn0Xj/λprobe),

(7.1)

where Xj is now the only parameter linked to the doping profile. Similarly on a homo-
geneously doped substrate, we also have

lim
r→∞

∆RSubstrate
ac (r) = − 4R0

n2
0 − 1

Γ0 exp(−iθ0)β(
1

me
+

1

mh
)∆Nsub1(r). (7.2)

Since the fundamental mode of the excess carrier distribution in the substrate is inde-
pendent from the doped layer1, we have, when taking the ratio of formulas (7.1) and
(7.2),

lim
r→∞

∆RBox
ac (r)

∆RSubstrate
ac (r)

= cos(4πn0Xj/λprobe). (7.3)

1We believe it is important to remind that ∆Nsub0 is expected to vary with the layer doping,
∆Nsub1 is not (Figure 5.3).
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7.1. Model-Free Determination of Junction Depths

The meaning of equation (7.3) is that the ratio of the signals measured respectively on
the studied sample and on a lowly doped substrate such as the one underlying the doped
layer should give an easy access to the junction depth of the sample if the pump and
probe beams are sufficiently spaced apart. In other words, the junction depth of a doped
layer can be determined by

Xj =
λprobe

4πn0
arccos

[
lim
r→∞

∆RBox
ac (r)

∆RSubstrate
ac (r)

]
if Xj ≤

λprobe

4n0
≈ 44 nm (7.4a)

Xj =
λprobe

2n0
− λprobe

4πn0
arccos

[
lim
r→∞

∆RBox
ac (r)

∆RSubstrate
ac (r)

]
if
λprobe

4n0
≈ 44 nm < Xj ≤

λprobe

2n0
≈ 88 nm, (7.4b)

if we limit our study to sub-88 nm layers. These are our equations for the absolute
determination of junction depths. Notice that, equations (7.4) show that the derived
Xj is unique only if one focuses on sub-44 nm junction depths. For real junction depths
of USJs, this is obviously not a problem (Xj < 20 nm). In our investigations, however,
both formulas (7.4a) and (7.4b) are needed (CVD12 and CVD13 have Xj ≤ 60 nm).

Before testing this technique on real measurements, we would like to point out that
the right-hand side of equation (7.3) is a real constant. As a consequence, concerning
the left-hand side, it is expected that:

� its amplitude should vary in the first one or two micrometer separation, corre-
sponding to the faster decay in thermal and layer plasma components. For larger
separations, its amplitude should saturate and become independent from the beam
separation,

� its saturation value at large beam separation should correlate with cos(4πn0Xj/λprobe),
i.e. its amplitude should be included between 0 and 1,

� its phase can have any value in the first one or two micrometers but should be
equal to 0◦ or +/− 180◦ for larger separations.

Any other behavior would be in conflict with equation (7.3). Interestingly, this provides
a verification procedure for the safe use of the developed Xj determination technique.

Let us apply this technique to the CVD12 matrix, the offset curves of which are shown
in Figure 6.3. Based on these experimental curves, we calculate the ratio ∆RBox

ac /∆RSubstrate
ac ,

the amplitude and phase of which are shown in Figures 7.1(a) and (b) respectively.
Let us first look at the behavior of the amplitude of the ratio shown in Figure 7.1(a).

It can be observed that, as expected from equation (7.3), the curves corresponding to
shallow junctions (≤ 35 nm) flatten after one or two micrometer separation. Further,
the saturation value of all curves lies between 0 and 1. However, for deeper junctions,
the expected saturation is not observed, invalidating equation (7.3). Note that the
saturation behavior of all curves can be explained by a decaying layer plasma component
(see discussion of the accuracy in Section 7.1.1.2). In conclusion, from the behavior of
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Figure 7.1: Offset curves, i.e. variation with laser beam separation, of (a) the amplitude and (b) the

phase of the ratio of the AC reflectance ∆RBox
ac measured on p-type layers divided by the AC reflectance

∆RSubstrate
ac measured on a lowly doped substrate [left-hand side of equation (7.3)], as measured on

the CVD12 matrix. The junction depths range from 0 to 60 nm and the doping concentrations are
1.3 × 1019 cm−3 (dashed lines) and 6.4 × 1019 cm−3 (full lines). These active doping concentration
values are based on sheet resistance measurements and an assumed bulk mobility. All layers were
grown on lowly doped device-quality substrates, the behavior of which is shown by the thick black
line. The arrows show the trend observed when increasing junction depth.

the amplitude of the ratio, it seems that the technique could only be applied successfully
to sub-35 nm junction depths.

The behavior of the phase of the ratio shown in Figure 7.1(b) confirms the obser-
vations made on the amplitude. The phase of the ratio is indeed ≈ 0 for ultra-shallow
layers, independently from the doping concentration in the layer. However, for deeper
layers, we observe that the phase goes down to -180◦ but never reaches that value.
This behavior is also a consequence of the presence of a non negligible layer plasma
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7.1. Model-Free Determination of Junction Depths

component.

In other words, the verification procedure is only validated in a few cases, which
tends to indicate that the technique may lead to erroneous junction depth values. To
confirm this statement, we compare the TP absolute junction depths, as derived from this
technique, to the values measured with SIMS on the CVD12 and CVD13 matrices. We,
in particular, use the value of the ratio at 4 µm separation to obtain the results shown
in Figure 7.2. The correlation is acceptable for the ultra-shallow samples (Xj < 20 nm),
i.e. for the layers which complied with the verification procedure. For deeper layers,
however, the correlation is quite poor. In the next Sections, we further discuss the
correlation observed in Figure 7.2 and determine whether the lack of correlation is due
to a low precision (Section 7.1.1.1) or a low accuracy (Section 7.1.1.2).

Let us make two final remarks about the results shown in Figure 7.2. First, as already
pointed out by equation (7.4), the technique cannot distinguish between a junction depth
Xj and [λprobe/(2n0) − Xj]. In Figure 7.2, we have therefore used the known SIMS
junction depth to decide which formula to apply (see the two different zones separated
by the vertical dotted line). Second, in order to derive a value of the junction depth, we
have assigned a positive sign to the amplitude of the ratio when the phase of the ratio
is included between 0◦ and −90◦ and a negative sign when it is included between −90◦

and −180◦. Only then can a value of the TP absolute junction depth be derived from
formulas (7.4). Note that this questionable definition of the sign is only needed because
the experimental data do not comply with the safety check. Equation (7.3) indeed
predicts that the ratio ∆RBox

ac /∆RSubstrate
ac should be real so that the sign definition

should be automatic.

7.1.1.1 Precision

Based on the signal repeatability σ∆Rac = 7×10−4 (a.u.) calculated in Appendix A.2, let
us determine the precision σXj of the technique. This requires the following derivation

σXj =

∣∣∣∣∣∣ ∂Xj

∂
∆RBox

ac

∆RSubstrate
ac

∣∣∣∣∣∣σ(
∆RBox

ac
∆RSubstrate

ac
)

=
λprobe

4πn0 |sin(4πn0Xj/λprobe)|

×

[ ∣∣∣∣ ∂

∂∆RBox
ac

∆RBox
ac

∆RSubstrate
ac

∣∣∣∣σ∆Rac +

∣∣∣∣ ∂

∂∆RSubstrate
ac

∆RBox
ac

∆RSubstrate
ac

∣∣∣∣σ∆Rac

]

=
λprobe

4πn0 |sin(4πn0Xj/λprobe)| (1 + | cos(4πn0Xj/λprobe)|) σ∆Rac

|∆RSubstrate
ac | , (7.5)

where σ(∆RBox
ac /∆RSubstrate

ac ) is the cumulated precision of the subscripted ratio. The
resulting precision of the determined junction depth is shown in Figure 7.3 as a function
of junction depth. Sub-nanometer junction depth precision is observed for almost all
junction depths, except around 0 and 44 nm, i.e. around the extrema of equation (7.3).
In other words, it can be concluded that the poor correlation with SIMS is not due to
random errors.
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Figure 7.2: Correlation between the TP absolute junction depths derived from equation (7.4) and
the SIMS junction depths for the CVD12 and CVD13 matrices, i.e. five sets of B-doped CVD box-like
profiles with active doping concentrations ranging between 1.2 × 1019 cm−3 and 6.4 × 1019 cm−3

(active doping concentration values based on sheet resistance measurements and an assumed bulk
mobility). The correlation is acceptable for ultra-shallow junctions but poor for deeper layers. The
thick black line corresponds to 100 % correlation. The vertical dotted line indicates the separation
for the application of equation (7.4a) (left) or (7.4b) (right).

It is important to note that, as a consequence of the presence of the substrate signal
in equation (7.5), the precision drops with beam separation as can be observed from the
comparison of the curves respectively obtained with coincident beams and with a 4 µm
beam separation. Nevertheless, the precision remains very satisfactory even with a 4
µm beam separation.

7.1.1.2 Accuracy

Since the random error proves to be low, it can be expected that the poor correlation of
Figure 7.2 is explained by systematic errors, i.e. a low accuracy. As a verification of this
statement, the residual [∆RBox

ac (r)/∆RSubstrate
ac (r)−cos(4πn0Xj/λprobe)] of formula (7.3)

is shown for all the layers of matrices CVD12 and CVD13 in Figure 7.4, where it can
be observed that the residual follows a cosinusoidal behavior. Further, the amplitude
of the observed cosine decreases with increasing doping in the layer. The corresponding
phase, however, proves to be close to zero. Note that the noise observed on the phase
for sub-10 nm layers is due to the low magnitude of the residual (phase is indefinite if
residual is zero) and should not be understood as a large error.

From these observations, it is actually fairly simple to prove that the systematic
error is due to the presence of a non negligible layer plasma component. Indeed, taking
the ratio of equations (6.10) and (6.8) and considering the layer plasma and thermal
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Figure 7.3: Variation as a function of the junction depth in the precision σXj of the TP absolute

junction depths derived from equation (7.4) when using aligned beams (black curve) and a 4 µm beam
separation (blue curve). For aligned beams, a sub-nm precision is achieved for all depths included
between 1 and 43 nm and between 45 and 87 nm. The precision drops with larger beam separation.

components as second-order effects, we obtain

∆RBox
ac (r)

∆RSubstrate
ac (r)

− cos(4πn0Xj/λprobe)

≈
∆Nl1(r)− δ

β(1/me+1/mh)
∆T1(r)

∆Nsub1(r)
[1− cos(4πn0Xj/λprobe)], (7.6)

where we immediately recognize the cosine behavior followed by the amplitude of the
residual shown in Figures 7.4(a) and (b). Note, furthermore, that the layer plasma and
thermal components can be discriminated from the behavior of the phase of the residual
in Figures 7.4(c) and (d), which indicate a dominant layer plasma component (phase
≈0). The phase of the residual would be around 180◦ if the thermal component were
dominant.

In summary, the low correlation with SIMS is due to a limited accuracy induced
by the non negligible presence of the layer plasma component even at a 4 µm beam
separation. Note that the comparison of Figures 7.4(a) and (b) confirms that the decay
length of the layer plasma and thermal components is shorter than that of the substrate
plasma component. However, according to the observed decay in ∆RBox

ac /∆RSubstrate
ac ,

approximate calculations show that a laser beam separation of 20-30 µm would be needed
for ∆Nl1/∆Nsub1 to be less than 10%. At these separations, however, the substrate
injection is so low that the technique precision would be unacceptably reduced, even
if higher pump irradiances were used. We, therefore, believe that, unless a method is
found to reduce the decay length of the layer plasma component, this absolute junction
depth determination technique is bound to remain inaccurate.

Note that the technique could have been promising when applied on highly acti-
vated implanted layers (lower amplitude and shorter decay length of the layer plasma
component) but unfortunately it cannot be extended to annealed implanted layers due
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Figure 7.4: Variation as a function of the SIMS junction depth in the (top) amplitude and (bottom)

phase of the residual [∆RBox
ac (r)/∆RSubstrate

ac (r) − cos(4πn0Xj/λprobe)] of equation (7.3) in case of
(left) coincident beams and (right) a 4 µm beam separation. The behavior of the residual is due to a
non-negligible layer plasma component, even at a 4 µm beam separation. This leads to a large system-
atic error. The black interrupted line indicates the behavior of the function [1− cos(4πn0Xj/λprobe)]

to the impossible isolation of the substrate plasma component (integral convolution) in
equation (6.17c).

As a final remark, note also that a similar technique can easily be developed to
measure relative junction depths, as we do in the next Section. The difference with the
theory presented here is that the reference measurement [denominator of equation (7.3)]
is measured on another doped layer of known junction depth[13]. We, however, do not
discuss this other technique since the conclusions reached would be very similar to the
ones of the present Section. In particular, low accuracy is achieved with the current
experimental setup of the TP tool.
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To conclude, offset curves can, in principle, be used to determine the junction depth
of box-like profiles with a sub-nm precision almost independently from the junction
depth. The accuracy of the technique, as applied with the TP630XP tool, however, is
poor. An improvement should result from a larger beam separation, at the expense of
a reduced precision. The combination of a high precision and a high accuracy would
require a more efficient way to reduce the layer plasma component.

7.1.2 Relative Determination of Junction Depths

Based on the conclusions of the previous Section, it appears that one needs to find
another approach to get rid of the thermal and layer plasma components. In this Section,
we propose an alternative technique which, though less flexible, proves to be in excellent
agreement with SIMS. Further, all measured layers are compliant with the verification
procedure which this technique also offers. This, very interestingly, allows us to check
some of the assumptions we have made so far.

In order to cancel the thermal component, rather than dividing ∆RBox
ac by ∆RSubstrate

ac

like in Section 7.1.1 above, we here propose to subtract them. Given the layer-independence
of the fundamental modes of the excess carrier and temperature distributions in the sub-
strate, this gives

∆RBox
ac (r)−∆RSubstrate

ac (r) =
4R0

n2
0 − 1

Γ0 exp(−iθ0)β(
1

me
+

1

mh
)

×[∆Nsub1(r)−∆Nl1(r)][1− cos(4πn0Xj/λprobe)], (7.7)

where, importantly, the prefactors of the substrate and layer excess carrier concentrations
are now the same. An extra measurement ∆RRef

ac (r) on another doped layer, with the
same active doping and with a known junction depth XRef

j , suffices to cancel the layer
plasma component. In particular, we apply equation (7.7) respectively on the unknown
layer and on the reference layer and calculate their ratio, which yields

∆RBox
ac (r)−∆RSubstrate

ac (r)

∆RRef
ac (r)−∆RSubstrate

ac (r)
=

1− cos(4πn0Xj/λprobe)

1− cos(4πn0XRef
j /λprobe)

, (7.8)

where the only remaining unknown is the junction depth Xj . Limiting the study to
sub-88 nm junction depths, we have

Xj =
λprobe

4πn0
arccos

[
1−

(
1− cos(4πn0X

Ref
j /λprobe)

) ∆RBox
ac (r)−∆RSubstrate

ac (r)

∆RRef
ac (r)−∆RSubstrate

ac (r)

]
if Xj ≤

λprobe

4n0
≈ 44 nm (7.9a)

Xj =
λprobe

2n0
− λprobe

4πn0
arccos

[
1−

(
1− cos(4πn0X

Ref
j /λprobe)

) ∆RBox
ac (r)−∆RSubstrate

ac (r)

∆RRef
ac (r)−∆RSubstrate

ac (r)

]
if
λprobe

4n0
≈ 44 nm < Xj ≤

λprobe

2n0
≈ 88 nm. (7.9b)

We call the values obtained using equations (7.9) the TP relative junction depths.

A verification procedure can be derived from equations (7.7) and (7.8). In particular,
the following experimental behavior is expected:
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� the amplitude of the ratio calculated from the left-hand side of equation (7.8)
should be independent from the laser beam separation,

� the phase of the difference calculated from the left-hand side of equation (7.7)
should be independent from the layer since only plasma components contribute
to this expression. As a consequence, the phase of the ratio calculated from the
left-hand side of equation (7.8) should be equal to zero, independently from the
laser beam separation.

Notice that, contrary to the technique developed in the previous Section, the absolute
value of the ratio can have any value, according to the reference junction depth XRef

j .

Let us apply this technique to the layers of the CVD12 matrix, the offset curves of
which are shown in Figure 6.3. A different reference sample is needed for each doping
concentration. The CVD12 matrix is composed of two sets of layers with two different
doping concentrations. For each, we choose the samples with a SIMS junction depth close
to 44 nm and justify our choice in Sections 7.1.2.1 and 7.1.2.2 below. The application
of equations (7.7) and (7.8) gives the behavior shown in Figure 7.5.

Let us first discuss the behavior of the amplitude of the differences and ratios, respec-
tively shown in Figures 7.5(a) and (c). First, as expected, the amplitude of the ratio is
independent from laser beam separation on almost all measured samples. Second, since
XRef
j ≈ 44 nm, i.e. the reference junction depths are very close to λprobe/(4n0), it is easy

to recognize the non-monotonic cosine behavior. In this specific case, the amplitude of
the ratio should indeed be included between 0 and 1.

Concerning the phase of the differences and ratios, shown respectively in Figures
7.5(b) and (d), their behavior is also in excellent agreement with our verification pro-
cedure. First, the phase of the difference is the same for almost all layers. Besides, the
plasma wavelength is easily recognized in the lateral behavior [Λpl1 ≈ 100 µm, Figure
4.14(f)]. Note that, owing to the normalization phase θ0, the phase for coincident beams
is about −60◦, which is different from the 7◦ phase of the plasma wave calculated in
Figure 4.14(e) (θ0 ≈ −60◦ + 7◦ ≈ −53◦). Second, the phase of the ratio is equal to zero
independently from laser beam separation on almost all the layers. The noise and error
observed on shallow layers is simply due to the fact that the phase of a complex number
with an absolute value close to zero is indefinite.

The perfect agreement between these experimental observations and our theoretical
expectations shows that the technique is very likely to work. This is confirmed by
Figure 7.6 showing the excellent correlation between the TP relative junction depths,
as obtained from equations (7.9) using the data for coincident beams, and the SIMS
junction depths of all the layers of the CVD12 and CVD13 matrices. The quality of
the observed correlation is further discussed in Section 7.1.2.1 and 7.1.2.2 where we
respectively look at the precision and accuracy of the technique

As an important final remark, we would like to point out that the agreement be-
tween all these experimental observations and our theory gives us the opportunity to
confirm some of the assumptions underlying our theory. First, the behavior observed
in Figure 7.5(b) shows that the fundamental mode of the excess carrier concentrations
∆Nsub1 and ∆Nl1 respectively in the substrate and in the doped layer have the same
phase and wavelength. Further, it also shows that the fundamental mode ∆T1 of the
temperature distribution is fully independent from the doped layer. Second, the flat
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Figure 7.5: Offset curves, i.e. variation with laser beam separation, of (left) the amplitude and
(right) the phase of (top) the left-hand side of equation (7.7) and (bottom) the left-hand side of
equation (7.8), as measured on the CVD12 matrix. The samples with a SIMS junction depth close
to 44 nm have been used (thick orange lines). The junction depths range from 0 to 60 nm and the

doping concentrations are 1.3 × 1019 cm−3 (dashed lines) and 6.4 × 1019 cm−3 (full lines). These
active doping concentration values are based on sheet resistance measurements and an assumed bulk
mobility. All layers were grown on lowly doped device-quality substrates, the behavior of which is
shown by the thick black line. The arrows show the trend observed when increasing junction depth.
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Figure 7.6: Correlation between the TP relative junction depths derived from equations (7.9) and
the SIMS junction depths for the CVD12 and CVD13 matrices, i.e. five sets of B-doped CVD box-like
profiles with active doping concentrations ranging between 1.2 × 1019 cm−3 and 6.4 × 1019 cm−3

(active doping concentration values based on sheet resistance measurements and an assumed bulk

mobility). For each doping concentration, the reference sample has XRef
j ≈ 44 nm, as highlighted by

the dotted box. The correlation is very good though a small deviation remains, especially noticeable
on sub-20 nm junctions. The thick black line corresponds to 100 % correlation. The vertical dotted
line indicates the separate regions where respectively equation (7.9a) (left) and equation (7.9b) (right)
are used.

offset curves in Figure 7.5(c) show that the position of the probe beam during an offset
curve measurement has a negligible impact on the value of ∆Rac. It also confirms the
infinite abruptness of the interface (see Section 7.2.1 for dependence of offset curves
upon abruptness). Third, the independence from the doped layer of the fundamental
mode ∆Nsub1 of the excess carrier in the substrate is a necessary condition for the be-
havior observed in Figures 7.5(b) and (c). Finally, as discussed in Section 7.1.2.2 below,
the excellent correlation observed in Figure 7.6 is also a confirmation of the negligible
magnitude of the electroabsorptive BGN effect.

7.1.2.1 Precision

Based on the signal repeatability σ∆Rac = 7× 10−4 (a.u.) determined in Appendix A.2,
we would like to calculate the precision σXj of the technique. This, in particular, allows
us to determine whether random error can explain the small deviations observed in the
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Figure 7.7: Variation as a function of the junction depth in the precision σXj of the TP relative

junction depth determination technique for three different values of XRef
j and two different values of

the injection ratio ∆Nl1/∆Nsub1. Aligned beams are assumed. For the case studied here (XRef
j ≈ 44

nm and ∆Nl1/∆Nsub1 ≈ 0.5), a sub-nm precision is achieved for all depths included between 5 and
39 nm and between 49 and 84 nm.

correlation plot of Figure 7.6. The precision can be calculated as follows

σXj =

∣∣∣∣∣∣ ∂Xj

∂
∆RBox

ac −∆RSubstrate
ac

∆RRef
ac −∆RSubstrate

ac

∣∣∣∣∣∣σ(
∆RBox

ac −∆RSubstrate
ac

∆RRef
ac −∆RSubstrate

ac
)

=
λprobe

4πn0

1

|sin(4πn0Xj/λprobe)| |1−∆Nl1/∆Nsub1|
σ∆Rac

|∆RSubstrate
ac |

×

[
1 +
| cos(4πn0X

Ref
j /λprobe)− cos(4πn0Xj/λprobe)|

[1− cos(4πn0XRef
j /λprobe)]|1−∆Nl1/∆Nsub1|

+
1− cos(4πn0Xj/λprobe)

1− cos(4πn0XRef
j /λprobe)

]
,

(7.10)

where σ[(∆RBox
ac −∆RSubstrate

ac )/(∆RRef
ac −∆RSubstrate

ac )] is the precision of the ratio in subscript.
The resulting technique precision is shown as a function of junction depth in Figure
7.7 for three different values of the reference junction depth XRef

j (15, 30 and 44 nm)
and two different values of the injection ratio ∆Nl1/∆Nsub1 (0 and 0.5 corresponding
respectively to ultra high doping and moderate doping). In the case studied here, i.e.
XRef
j ≈ 44 nm and ∆Nl1/∆Nsub1 ≈ 0.5, the precision is sub-nanometric for junction

depths included between 5 and 39 nm as well as between 49 and 84 nm.
Figure 7.7 also underlines the importance of a well chosen reference layer. The ideal

XRef
j is close to 44 nm, which justifies the choice we have made in this study. A change

in this value can be very detrimental to the technique precision.

In conclusion, though some precision has been lost compared to the technique studied
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in Section 7.1.1, the small deviations observed in the correlation of Figure 7.6 cannot be
explained by random errors.

7.1.2.2 Accuracy

To verify whether systematic errors on the derived TP relative junction depths are the
cause for the small deviations observed in Figure 7.6, we need to identify the different
possible sources of error. First, modeling errors could induce the deviation. Second, the
propagation of a possible error in the characterization of the reference sample could also
explain the deviation.

First, let us start the discussion by showing that no modeling error is expected to
affect the developed technique. The TP relative junction depths have been derived using
equations (7.9), which only involve the dependence of the reflectance perturbation on the
junction depth. This dependence has been initially derived in Chapter 2 and is based
on three assumptions. First, the presence of a native oxide at the interface between
silicon and air has been neglected. Section 2.5.1 indeed shows that the impact of the
presence of a native oxide is negligible. Second, Section 2.5.2 shows that any abrupt
lateral variation in reflectance perturbation could modify the integrated perturbed re-
flectance as measured by a laser with finite radius. However, as a direct consequence of
the division in equation (7.8), the impact of the integration vanishes in this equation.
Finally, the BGN electrooptical effect has been neglected. Yet, its consideration would
induce a small shift in the TP relative junction depth. However, Section 3.2.2 has shown
that this effect is not expected to be significant. Besides, as shown in Appendix A.6,
it would systematically shift the TP relative junction depth towards deeper values. In
summary, we do not believe that the observed deviation is due to a modeling error.

Second, it can be expected that the accuracy depends strongly on the reference
sample. In this Section, we investigate how sensitive the technique is to any error on the
values of the junction depth or the active doping concentration of the reference sample.
Interesting recommendations for the reference sample can be derived from these results.

Let us first discuss the sensitivity of the technique to an error on the junction depth
XRef
j of the reference sample. Let us suppose an error εXref

j
is made on this value. As

a result of the error propagation, the error εdepth
Xj

made on the value of the TP relative

junction depth is

εdepth
Xj

=

∣∣∣∣∣ ∂Xj∂Xref
j

∣∣∣∣∣ εXref
j

=
| sin(4πn0X

ref
j /λprobe)|

1− cos(4πn0Xref
j /λprobe)

1− cos(4πn0Xj/λprobe)

| sin(4πn0Xj/λprobe)| εXref
j

. (7.11)

The resulting error is plotted as a function of junction depth in Figure 7.8 for three
different values of XRef

j (15, 30 and 44 nm). It can be observed that, if XRef
j = 44 nm,

the error made on the value of XRef
j has no impact whatsoever on the accuracy of the

determine TP relative junction depth. An error made on the value of XRef
j can, however,

be very problematic if another XRef
j is chosen. In other words, besides the high precision
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reference sample. An error on the value of the junction depth of a 44 nm deep reference sample has
no impact on the accuracy of the technique, except around 44 nm. The error, however, propagates
significantly if another reference junction depth is used.

a 44-nm XRef
j offers, it also ensures a high accuracy. This is the second justification for

choosing our reference samples in this depth range.
Let us now investigate the sensitivity of the technique to an error on the active

doping concentration of the reference sample. Though the flat offset curves of Figure
7.5(c) tend to show that this sensitivity is low, we believe it is worhtwhile quantifying
it. In particular, we want to calculate the error εdoping

Xj
due to an error εPRef

doping
on the

active doping concentration PRef
doping of the reference sample, i.e.

εdoping
Xj

=

∣∣∣∣∣ ∂Xj
∂P ref

doping

∣∣∣∣∣ εPRef
doping
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∣∣∣∣ ∂Xj
∂∆N ref

l1

∣∣∣∣
∣∣∣∣∣ ∂∆N ref

l1

∂P ref
doping

∣∣∣∣∣ εPRef
doping

=
λprobe

4πn0

1− cos(4πn0Xj/λprobe)

| sin(4πn0Xj/λprobe)|
1

|1− 2∆NRef
sub0/(P

Ref
doping)|

2∆NRef
sub0

PRef
doping

εPRef
doping

PRef
doping

,

(7.12)

where ∆NRef
sub0, ∆NRef

sub1 and ∆NRef
l1 are respectively the constant and fundamental modes

of the excess carrier distributions in the substrate of the reference sample and the fun-
damental mode of the excess carrier distribution of the excess carrier distribution in
the reference layer. For the sake of simplicity of the final expression of equation (7.12),
we have used equation (5.10) and neglected the BGN effect. The presence of the ratio
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∆NRef
sub0/(P

Ref
doping) in equation (7.12) explains the very low sensitivity of the technique

to the active doping concentration of the reference sample (not shown). In other words,
though the reference sample should be taken with a doping concentration as close as
possible to that of the unknown sample, equation (7.12) shows that deviations, even
large, do not impact the accuracy significantly.

As a final remark, note that the propagation of the error on the junction depth and
doping concentration of the reference sample have here been discussed separately. The
total error due to an erroneous characterization of the reference sample can easily be

calculated from
√

(εdepth
Xj

)2 + (εdoping
Xj

)2.

In summary, we have shown that the technique for the determination of the TP
relative junction depth has both high precision and high accuracy. In particular, the
small disagreement with SIMS of Figure 7.6 cannot be explained either by a random
error or by a systematic error of the developed technique. Note that an alternative
explanation lies in the systematic error made in the derivation of the SIMS junction
depths (Section 1.2.1.1). First, the presence of an oxide at the surface of the samples
leads SIMS to underestimating the junction depth, which could partially explain the
deviation (systematic error). This would also explain why the observed discrepancy
decreases with depth since this systematic error is expected to drop with increasing
depth. Second, SIMS always underestimates the slope of profiles, which makes the
definition of the SIMS junction depth difficult in the case of a box-like profile. In
this work, the SIMS junction depths of CVD box-like profiles have been defined as the
depths at which the SIMS profiles reach a doping concentration equal to 90% of the peak
doping concentration. We believe that, in spite of the systematic use of this definition,
it is bound to induce some error as well.

7.1.2.3 Application

Given the good correlation with SIMS, the high precision and accuracy of the technique,
we believe this technique shows great promise for the non-destructive measurement of
relative junction depths e.g. over a whole wafer. As an illustration, we qualitatively
compare in Figure 7.9 a junction-depth map, as obtained with the introduced tech-
nique, with the sheet-resistance map measured with RsL on the same wafer (CVD12
2.2). We use the central point of the wafer as our needed reference measurement and
deduce the variation in junction depth over the wafer. Figures 7.9(a) and (b) show
respectively the obtained 49-point map of the junction depth and the 973-point maps
of the sheet resistance. The shallow regions measured by TP correspond very clearly to
the highly resistive regions measured by RsL, which indicates a good agreement between
both techniques. Note that all 49 points of the junction depth map comply with the
verification procedure.

Though promising, this type of application where the sought Xj is very close to
XRef
j has to be considered with care. First, as shown in Figure 7.7, sub-nanometer

precision can be expected in most cases but junction depths close to 44 nm should be
avoided. Further, as noted in Figure 7.8, the accuracy of the external measurement of
the reference junction depth is critical. Typically, the error on the derived Xj remains
equal to the original error on XRef

j provided the variations are not too large. To keep
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Figure 7.9: Comparison of (a) the junction depth measured by TP and (b) the sheet resistance

measured by RsL on a medium doped (1.3×1019 cm−3 in the center), shallow (15 nm in the center)
CVD layer (CVD12 2.2). The color scale of each map is given on the right-hand side. The most
resistive regions also present shallow TP depths, indicating a good agreement between TP and RsL.
The TP junction depth map contains 49 measurement points (indicated by the crosses), while the
sheet resistance map contains 973 measurement points (not shown). To facilitate the comparison,
the two maps have been interpolated on the same grid. The junction depth map is obtained with
coincident pump and probe beams and using the central point for the reference measurement.

both a high precision and a high accuracy, the use of the technique is recommended on
highly doped layers (> 1019 cm−3) and junction depths included between 10 and 35 nm.

As a final remark, note that the technique has been tested without success on an-
nealed implanted layers. The reason for the failure lies in the impossible isolation of the
substrate plasma component in the model equation (6.17c), which is a critical require-
ment for the developed technique.

In summary, we have developed a technique able to determine the junction depth
of a box-like profile with a sub-nanometer precision and accuracy. This method has a
high applicability potential in the uniformity test of the junction over full wafers. In
this specific case, layers with depth in the neighborhood of 44 nm should be avoided.

7.2 Model-Based Profile Characterization Tech-
nique

The discussion in this Chapter has thus far been limited to the determination of junc-
tion depths. The ultimate objective of this work, however, is to evaluate whether, based
on TP measurements, a method for the reconstruction of complete profiles can be de-
veloped. In other words, we are seeking a measurement technique offering information
not only about the depth of profiles but also about their active doping concentration.
Unfortunately, as it has been demonstrated, the sensitivity of ∆Rac to doping tends to
strongly decrease in heavily doped layers. As a consequence, ∆Rac, by itself, is not a
promising candidate for full profile reconstruction, especially considering the high ac-
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tive doping concentrations in modern USJs (> 1020 cm−3). Though this signal gives
information about the depth and, as we show below, about the abruptness of active
doping profiles, the doping information needs to be provided by another signal. On the
other hand, Rdc has been theoretically and experimentally demonstrated to have a lin-
ear sensitivity to active doping concentration (Chapter 6). It therefore seems reasonable
that the combination of ∆Rac and Rdc should constitute a very promising approach for
full profile reconstruction. Section 7.2.1 below gives more insight into this statement,
based on a theoretical study of the profile information which can be retrieved from both
signals. Section 7.2.2 then details how we have practically implemented these ideas into
a technique. Finally, typical results are critically evaluated in Section 7.2.3. Note that
this Section is exploratory and therefore only reaches partial conclusions. We believe,
however, that it gives a very bright outlook on the possible use of TP for carrier profiling.

7.2.1 Fundamental Principle of the Technique

Based on the theoretical understanding developed in this work, we want to show that the
combined use of ∆Rac and Rdc allows for the simultaneous measurement of the depth,
abruptness and active doping concentration of a profile.

Let us start by investigating the dependencies of the AC reflectance. On a profile of
arbitrary shape, ∆Rac follows equation (6.17c), which can be rewritten as

∆RProfile
ac (r) =

4R0

n2
0 − 1

Γ0 exp(−iθ0)

×
{
−β(

1

me
+

1

mh
)∆Nl1(r, z = 0) + δ∆T1(r)︸ ︷︷ ︸

surface

− β(
1

me
+

1

mh
)

∫ +∞

0+

∂∆Nl1(r, z)

∂z
cos(4πn0z/λprobe)dz︸ ︷︷ ︸

interface

}
. (7.13)

In analogy with the case of box-like profiles, ∆Rac can be understood as the coherent sum
of two reflections. The first reflection occurs at the surface and is due to both the surface
excess carriers ∆Nl1(z = 0) and the excess temperature ∆T1. The second reflection is
the interface reflection which, in this general case, is due to the multiple reflections
occurring at each depth of the excess carrier profile [integral of equation (7.13)]. Figure
7.10 illustrates this analogy. More particularly, Figure 7.10(a) shows two active doping
profiles with different slopes and Figure 7.10(b) the subsequent excess carrier profiles for
two different excess carrier concentrations in the substrate (1017 cm−3 and 1018 cm−3).
The behavior of the integrand of equation (7.13) is shown in Figure 7.10(c) for all four
situations. On the one hand, in the case of a box-like profile, the integrand of equation
(7.13) reduces to a peak at the junction2, i.e. the interface reflection is composed of
one single large reflection. Furthermore, the position of this peak is independent from

2Note that the absolute height of the peak shown in Figure 7.10 is irrelevant since it depends
on the discretization of the depth scale. For completeness, the results shown in Figure assume
a 0.01 nm step size.
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Figure 7.10: (a) Comparison of a profile of infinite slope, i.e. a box-like profile (black) with a profile
of finite slope (blue). (b) Subsequent excess carrier profiles when the substrate carrier concentration

is of 1017 cm−3 (interruped lines) and 1018 cm−3 (full lines). The colors correspond to the active
doping profiles of (a). (c) Behavior of the integrand of equation (7.13) for the four excess carrier
profiles of (b).

the substrate injection. On the other hand, when the slope of the profile is finite, the
multiple reflections at the interface broaden the peak. The position of the maximum of
this peak, i.e. the maximum interface reflection, can be understood as the depth ∆Rac

is sensitive to.

As can already be observed in Figure 7.10(c), in the case of a profile with a finite
slope, the maximum interface reflection moves according to the substrate injection. This
can be proven mathematically as follows. Neglecting the cosine envelope of the integrand,
the position zmax of the maximum interface reflection can be defined as the position at
which the excess carrier profile is the steepest, i.e. an approximate value of zmax can be
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found by solving the following implicit equation

∂2∆Nl1(z)

∂z2

∣∣
z=zmax

= 0

⇔
∂2[Pdoping(zmax)/∆Nsub]

∂z2{
∂[Pdoping(zmax)/∆Nsub]

∂z

}2

=
1√

4 + P 2
doping(zmax)/∆N2

sub

1 +
1√

1 + 4∆N2
sub/P

2
doping(zmax)

 , (7.14)

where we have made use of equation (5.8) assuming Bolzmann statistics and neglecting
BGN. Though equation (7.14) may seem complex, it simply signifies that the depth of
the maximum interface reflection depends solely on the function Pdoping(z)/∆Nsub and
its derivatives. For a better understanding of the meaning of this equation, let us take
the example of an active doping profile decaying with an exponential tail, as defined e.g.
in equation (7.16) below. In this particular case, using equation (7.14), the maximum
interface reflection occurs at a depth zmax such that

Pdoping(z = zmax)

∆Nsub
=

√
2(−1 +

√
5) ≈ 1.57, (7.15)

i.e. the maximum interface reflection comes from the depth where the doping concen-
tration is 1.57×∆Nsub. From this result, it is correct to extrapolate that the maximum
interface reflection always originates from a depth where the doping is commensurate
with the substrate injection, independently from the profile itself. Note that the par-
ticular value obtained in equation (7.15), however, cannot be generalized to all profiles
since the profile derivatives are involved into equation (7.14).

In conclusion, our theory shows that ∆Rac is sensitive to the depth at which the ac-
tive doping profile reaches a concentration of the order of the substrate injection. This
has two important implications. First, it means that, in our TP measurements, ∆Rac

is only sensitive to the moderately doped region of the profile. Second, if the injection
level can somehow be changed, the position of the maximum interface peak is shifted
accordingly, i.e. part of the profile is scanned. This explains the sensitivity of offset
curves to the abruptness of the profiles, as a direct consequence of the lower carrier
injection when moving away from the pump beam.

Concerning the DC reflectance Rdc, contrary to ∆Rac, equation (6.17a) shows that
it is mostly sensitive to the highly doped region of the profile. It is therefore fairly
easy to understand that Rdc fixes the peak doping concentration based on the depth
and abruptness determined by ∆Rac in the moderately doped region of the profile.
This is illustrated in Figure 7.11, which summarizes the principle of the technique. It is
important to mention that, since ∆Rac is blind to the region of the profile situated above
a 1019 cm−3 doping concentration, the peak concentration determined by Rdc depends
on the assumed shape of the profile in that particular region. This causes a uniqueness
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Figure 7.11: Principle of the profile reconstruction technique. The depth and abruptness at mod-
erate doping are fixed by the measured ∆Rac offset curves. The peak doping concentration is fixed
by Rdc for a certain, assumed, profile shape.

problem, which already underlines the importance of the quality of the assumed profile
shape. This issue is further discussed in Section 7.2.3.3

7.2.2 Implementation of the Technique

Based on the theoretical considerations of the previous Section, we have developed a
technique which, practically speaking, follows this four-step procedure:

� a substrate measurement is run, i.e. a measurement on a sample presenting no
doped layer but having undergone the same process flow as the sample under
investigation. For instance, in the case of an annealed implanted layer, the sub-
strate measurement is run on a region of the sample which has received no dopant
implant but has been preamorphized (if relevant) and annealed exactly like the
doped sample under investigation. This measurement yields ∆RSubstrate

ac offset
curves and RSubstrate

dc ,

� our model for the AC reflectance on homogeneous samples is fitted to the experi-
mental ∆RSubstrate

ac offset curves like in Section 6.2.1. This determines the excess
carrier distribution in the substrate, i.e. ∆Nsub0(r) and ∆Nsub1(r), and the excess
temperature ∆T1(r),

� a profile measurement is run on the sample to be characterized. This yields
∆RProfile

ac offset curves and RProfile
dc ,

� our model for the AC and DC reflectances on non-homogeneous samples is fit-
ted to the experimental ∆RProfile

ac offset curves, using the previously determined
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∆Nsub0(r), ∆Nsub1(r) and ∆T1(r), and to the experimental ∆Rdc = RProfile
dc −

RSubstrate
dc .

It is important to mention that, as explained in Section 7.2.1, our measurements
offer limited information. Consequently, some constraint on the profile shape
has to be imposed (maximum three fitting parameters). In the case of annealed
implanted layers, box-like profiles with an exponential tail are a good guess (see
e.g. Figure 1.4), i.e.

Pdoping(z) = N0 if z ≤ Xcst

= N0 × 10−(z−Xcst)/A if z > Xcst, (7.16)

where N0 is the peak active doping concentration of the profile, Xcst is the depth
at which the profile starts to decay and A is its abruptness (nanometer/decade).
The fitting algorithm determines N0, Xcst and A.

Note that the fitting is based on a Levenberg-Marquardt algorithm [57] (minimization
of the least-square error).

An important remark concerning the substrate measurement must be made. The
technique relies on the substrate measurement for the determination of the substrate
plasma and thermal components. As a consequence, the substrate measurement must
be carefully monitored. Generalizing equation (7.7) to arbitrary profiles, a verification
procedure can be used to make sure that the substrate measurement meets the require-
ments, i.e. ∆Nsub0(r), ∆Nsub1(r) and ∆T1(r) are the same in the substrate and profile
measurements. In our verification procedure, the substrate measurement ∆RSubstrate

ac (r)
is subtracted from the profile measurement ∆RProfile

ac (r) measured on the unknown doped
profile. Since the result of this subtraction should eliminate the thermal component, the
phase and wavelength of the plasma wave should be recognized. This is illustrated in
Figure 7.12 for samples IIB-D07. The plasma phase and wavelength can be identified
in Figure 7.12(d) for all layers except the lowest annealing temperature, underlying the
thermally dominated behavior of the latter. The technique can safely be used on the
other samples since they comply with theory. Interestingly, this also shows that the im-
pact of the boron-implantation-induced damage on the plasma and thermal components
is negligible (after anneal).

7.2.3 Discussion of the Results

As can be seen by the multiple fitting algorithms involved in the technique procedure
described above, an essential difference with respect to the techniques developed in the
previous Sections of this Chapter is that we here rely fully on our model. We have
demonstrated that the dependence of ∆Rac and Rdc upon Xj is accounted for with a
high accuracy. Unfortunately, we have also seen that the modeled variations in both
signals with doping concentration require further improvement. More particularly, it
has appeared from our study that the separate fitting of Rdc and ∆Rac data on the
CVD12 and CVD13 matrices leads to different active doping concentrations (Figure
6.4). As a consequence of this disagreement, it can be expected that the combined
fitting of ∆Rac and Rdc data does not converge. However, at sufficiently high doping,
the disagreement between both signal modeling should be reduced as a consequence of
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Figure 7.12: Offset curves, i.e. variation with laser beam separation, of (a) the amplitude and

(b) the phase of the AC reflectance ∆RProfile
ac , (c) the amplitude and (d) the phase of the difference[

∆RProfile
ac (r)−∆RSubstrate

ac (r)
]
, as measured on samples IIB-D07, i.e. five layers implanted on the

same substrate with B (0.5 keV, 1015 cm−2) after a Ge preamorphization implant (5 keV, 5 × 1014

cm−2) and laser-annealed three times at 1150◦C (blue), 1200◦C (light blue), 1225◦C (green), 1250◦C
(brown) and 1300◦C (red). The arrows show the trend observed when increasing the annealing tem-
perature. The behavior of the phase and wavelength of the plasma wave are recognized in (d) for the
four highest annealing temperatures, which ensures that the technique can safely be used on these
samples.

the vanishing sensitivity of ∆Rac to doping. In other words, given the current status of
our model, the technique can only be tested on highly doped layers (> 1020 cm−3). It is
important to note that this is not a limitation due to the fundamental principle of the
technique itself, but to the inaccuracies of our current model.

Taking the last comment into account, the present analysis only looks at B-implanted
layers laser annealed with a high temperature. In particular, this Section concentrates
on the results obtained for samples IIB-D05T5, IIB-D07T5 and IIB-D13T5. These three
samples have received the same B implant (energy = 0.5 keV, dose =1015 cm−2) and an-
neal (laser annealed three times at 1300 ◦C) but different Ge preamorphization implants
(PAI), i.e. respectively (5 keV, 1014 cm−2), (5 keV, 5 × 1014 cm−2) and (20 keV, 1014

cm−2). The discussion of these three samples is sufficient to reach our final conclusions,
which prove to be valid for all the other samples of matrix IIB.
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The fitted curves for IIB-D05T5, IIB-D07T5 and IIB-D13T5 are shown in Figure
7.13(a) and (b) for the substrate measurement and (c) and (d) for the profile measure-
ment. It is clearly observed that the theoretical curves nicely fit the experimental data.
The so-called TP profiles obtained from the fitted data are shown in Figure 7.13(e)
together with the SIMS profiles measured on the three samples. The SSRM profile mea-
sured on sample IIB-D07T5 has also been added (assumed mobility is 100 cm2V−1s−1).
The TP profiles have been obtained in less than 30 minutes (20-minute measurement
and <10-minute fitting). On average, the quantitative agreement between the TP and
active SIMS (and SSRM) profiles is acceptable since the average deviation on the derived
depths at a doping of 1019 cm−3 is of 3 nm. The average deviation on the peak active
doping concentration is of 5× 1018 cm−3.

However, we note the following important discrepancies. First, the TP profiles are
deeper than the SIMS profiles. Second, TP and SIMS are in contradiction when it
comes to the relative depths of the three profiles. SIMS measures IIB-D05T5 shallower
than IIB-D07T5, itself shallower than IIB-D13T5. TP measures exactly the opposite
behavior. Note already that this disagreement is quite unexpected since the decrease
in |∆RProfile

ac | from sample IIB-D05T5 down to IIB-D07T13 [Figure 7.13(c)] tends to
indicate a behavior in agreement with SIMS. We investigate below whether these dis-
crepancies are due to a precision problem inherent to the technique (Section 7.2.3.1) or
to an accuracy problem due to the modeling error (Section 7.2.3.2). Finally, in Section
7.2.3.3, the uniqueness of the TP profiles is discussed.

For completeness, as shown in Figure 7.13, only the amplitude of ∆RProfile
ac is fitted.

The phase has indeed been ignored in our fitting algorithm. This is an acceptable
approximation for shallow layers where the phase mostly indicates the importance of
the thermal component. In this study, the determination of the thermal component
is taken care of by fitting the substrate measurement, where the phase is of extreme
importance and therefore taken into account (Figure 7.13(b)). It can be checked that
the experimental phase and the theoretical phase after fitting of the profile measurement
are in acceptable agreement.

7.2.3.1 Precision

In order to assess the precision of the developed technique and determine whether the
discrepancies observed in Figure 7.13(e) are due to random errors, we use the following
iterative Monte-Carlo approach. First, at each iteration, we simulate noisy data by
adding random noise on top of our experimentally measured data. The noise on the
measured ∆RProfile

ac and RProfile
dc is assumed to follow a normal distribution, the standard

deviation of which is given by the signal repeatability, i.e. respectively σ∆Rac = 7×10−4

(a.u.) and σRdc = 5 × 10−6 (Appendix A.2). To take all possible random errors into
account, noise is also added on the substrate measurement data, i.e. ∆RSubstrate

ac and
RSubstrate

dc . Second, the simulated noisy curves are plugged into our fitting procedure
described in Section 7.2.2. The fitting values of the three profile parameters N0, Xcst

and A are recorded along the iterations.

Limiting our study to 50 iterations, we obtain the measurement probability distri-
butions shown in Figure 7.14. The respective precisions σN0 , σXcst and σA of the three
profile parameters N0, Xcst and A are defined as the standard deviations of their respec-
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Figure 7.13: Fitting curves of the experimental (a) |∆RSubstrate
ac |, (b) φSubstrate

ac , (c) |∆RProfile
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and (d) ∆Rdc = RProfile
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dc measured on samples IIB-D05T5 (green), IIB-D07T5 (blue) and
IIB-D13T5 (red). (e) comparison of the TP profiles (interrupted lines) with the SIMS profiles (full
lines) measured on these samples. The SSRM profile of sample IIB-D07T5 is also shown (dotted line).
The active SIMS doping concentrations of IIB-D05T5, IIB-D07T5 and IIB-D13T5 are respectively
1.71× 1020 cm−3, 1.80× 1020 cm−3 and 1.80× 1020 cm−3 (not shown).
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Figure 7.14: Measurement probability distributions, as obtained from Monte-Carlo simulations, of
the three profile parameters i.e. (a) the peak active doping concentration N0, (b) the depth Xcst at
which the profile starts to decay and (c) its abruptness A. The narrow peaks show that the developed
technique determines all three fitting parameters with very high precision.

tive distributions. It can be observed that all three parameters are determined with very
high precision. It can also be noted that the peaks of Xcst in Figure 7.14(b) are clearly
separated. As a conclusion, random errors cannot explain the discrepancy between the
TP and SIMS profiles observed in Figure 7.13(e).

7.2.3.2 Accuracy

Since the technique proves to determine the profile characteristics with a high precision,
it can be expected that the discrepancies between the TP and SIMS profiles are due to
systematic errors and, in particular, to the inadequate accuracy of our model to account
for the active doping dependence of the signals.

To prove this statement, we show in Figure 7.15(a) the comparison of peak active
doping concentration N0 obtained from our measurement technique with the peak active
doping concentration Npeak

SIMS obtained from SIMS and sheet resistance measurements

(bulk mobility assumed). Figure 7.15(b) shows the comparison of the depths X@1019

TP

and X@1019

SIMS at which respectively the TP and SIMS profiles reach a concentration of 1019

cm−3. Finally, Figure 7.15(c) compares the abruptnesses A and A@1019

SIMS of respectively
the TP and SIMS profiles (value taken around a 1019 cm−3 concentration). To underline
the sensitivity of the obtained results to the modeling error, we compare the results as
obtained with our current model with three modified models, each of which tests the
impact of the modeling errors which have been underlined in Section 6.3. In particular,
Model II shows the impact of a 30% greater electrorefractive effect, to counteract the
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Figure 7.15: TP vs SIMS profile characteristics and their sensitivity to modeling errors. (a) Com-
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SIMS at
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SIMS at a 1019 cm−3 concentration. For each fig-
ure, Model II assumes a 30% greater electrorefractive effect, Model III assumes a doubled modulated
irradiance of the pump laser and Model IV assumes ∆Nsub0 = 2|∆Nsub1|.

observed underestimation of this effect (Sections 6.3.1 and 6.3.2.1). Model III assumes
a doubled modulated irradiance of the pump laser to account for the underestimated
excess carrier concentration in the substrate (Section 6.3.2.1). Finally, model IV reduces
the layer injection, to counteract the overestimated sensitivity to the active doping
concentration in the layer (Section 6.3.2.2). In particular, the latter model assumes that
the constant mode of the excess carrier concentration in the substrate ∆Nsub0 is equal
to 2|∆Nsub1| (lower limit for ∆Nsub0). The values used for each of these models are
obviously discussable. We believe, however, that they give a good feeling of the impact
of the different modeling errors.

Let us first discuss Figure 7.15(b) comparing the depths of the TP and SIMS profiles
at a 1019 cm−3 concentration. As already observed in Figure 7.13(e), the TP profiles
are always deeper than the SIMS profiles. Further, the depths of the SIMS and TP
profiles are in anti-correlation, i.e. TP measures a deeper profile where SIMS measures it
shallower. It can be seen in Figure 7.15(b) that, though the depths of the TP profiles vary
according to the used model, none of the modified models explains the anti-correlation.
The error must therefore be found elsewhere. We believe a likely additional modeling
error lies in the substrate measurement fitting. As already mentioned, the evolution
of |∆RProfile

ac | in Figure 7.13(c) seems to indicate an evolution of the junction depth in
agreement with the SIMS profiles. However, the trend observed in these data is also
partly due to the decrease in the substrate plasma component, as can be observed in
Figure 7.13(a) and as expected when increasing the Ge PAI dose or energy (increased
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damage). In other words, our model has to discriminate between both effects (reduction
in substrate plasma component and deeper profile), which it does not seem to achieve
accurately. This might indicate that the variations in ∆Nsub1 and ∆T1 with the energy
and dose of the Ge implant are not properly accounted for. Most likely, the assumed
homogeneous ambipolar diffusivity and recombination lifetime have to be blamed.

Moving on to Figure 7.15(c), it can be seen that the abruptness of the TP profiles
is in good agreement with SIMS. Furthermore, it shows only limited sensitivity to the
used model. The obtained values are therefore quite robust.

Finally, the comparison of the peak active doping concentrations in Figure 7.15(a)
shows that N0 is very sensitive to the modeling error. This can easily be explained by
the fact that N0 is fixed by Rdc after the depth and abruptness have been determined by
∆Rac. Furthermore, the values of N0 are quite difficult to compare with the Npeak

SIMS values
since the latter assumes crystalline mobility. Finally, the uniqueness of the N0 value is
discussable as studied in Section 7.2.3.3 below. To summarize all these comments, the
discussion of the impact of modeling error on N0 is complex and should be considered
when the depth accuracy problem is solved.

In conclusion, given the high sensitivity of the depth and active doping concentration
of the TP profiles to the modeling error shown in Figure 7.15, the discrepancies between
the TP and SIMS profiles are believed to be due to modeling errors. It seems that,
besides the modeling errors highlighted in Section 6.3, some of the error would also
originate from the fitting of the substrate measurement (impact of Ge implant).

7.2.3.3 Uniqueness

The involvement of a fitting algorithm in the proposed measurement technique raises
the question of the uniqueness of the obtained profile. It should, therefore, primarily
be checked that the fitting procedure always converges towards the same values of the
three profile parameters N0, Xcst and A. Given the discussion of Section 7.2.1, however,
it appears obvious that the obtained values of the profile parameters are indeed unique.
This can, furthermore, be checked by changing the initial guess values of the three pa-
rameters in the fitting algorithm. The variations on the final output values are typically
of the order of their respective precisions σN0 , σXcst and σA.

Furthermore, it should also be evaluated how dependent the fitting profiles are on
the assumption of their shape. To test this dependence, we propose to compare the TP
profiles obtained for samples IIB-D05T5, IIB-D07T5 and IIB-D13T5 when respectively
assuming an exponentially decaying profile [equation (7.16)] or a profile following the
behavior of a complementary error function[5]. Figure 7.16 compares the obtained TP
profiles for all three samples. While the obtained depths and abruptnesses in the mod-
erately doped regions are independent from the assumed shape, the peak active doping
concentrations are significantly impacted by the profile shape.

This behavior can be explained from the theoretical considerations of Section 7.2.1.
The depth and abruptness are fixed by the ∆Rac offset curves. Each point of the offset
curve being sensitive to a different region of the profile, the moderately doped region of
the profile is therefore defined uniquely (< 1019 cm−3). The value of Rdc is sensitive
not only to the peak doping concentration of the profile but to the whole highly doped
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Figure 7.16: Comparison of the TP profiles as obtained from the fitting of the experimental
data measured on (a) IIB-D05T5, (b) IIB-D07T5 and (c) IIB-D13T5 assuming a profile decaying
exponentially (full lines) or a profile following a complementary error function (interrupted lines).
While the depth and abruptness are unique, the peak active doping concentration depends upon the
profile shape.

region (> 1019 cm−3). In other words, the determination of the highly doped regions
relies on one single value of Rdc which leads to the uncertainty shown in Figure 7.16.

Note that, in order to eliminate the ambiguity, the measurement of ∆Rac with higher
substrate injection should be considered.

In summary, we have developed a fast non-destructive profile characterization tech-
nique based on the combined measurement of ∆Rac offset curves and Rdc. The technique
has a high precision and is in acceptable agreement with SIMS and SSRM. It, however,
suffers significantly from the modeling errors highlighted in Section 6.3 as well as extra
modeling error induced by the fitting of the substrate measurement (impact of Ge im-
plant). Further, the depth and abruptness of the profiles obtained using this technique
are unique but the obtained peak active doping concentration depends on the assumed
profile shape. A higher pump irradiance should solve this uniqueness problem.

7.3 Summary

In this Chapter, we have developed three fast non-destructive techniques to derive infor-
mation about active doping profiles from TP measurements. Two of these techniques are
based on the use of ∆Rac and focus on the determination of junction depths of box-like
active doping profiles. The third technique combines the use of ∆Rac and Rdc for the
complete characterization of active doping profiles.
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7. APPLICATION OF THE MODEL TO CARRIER PROFILING

The first junction depth determination method, developed in Section 7.1.1, is based
on the measurement of ∆Rac offset curves. Equation (7.3) demonstrates that, owing to
the fast lateral decay in the layer plasma and thermal components, the junction depth
of box-like profiles should indeed be directly accessible in ∆Rac when the pump and
probe beams are sufficiently spaced apart. Practically speaking, however, experimental
data have shown that the layer plasma component does not decay fast enough (Figure
7.4). As a result, it is very unlikely that high precision and accuracy can be reached
simultaneously with this technique.

The second junction depth determination technique, developed in Section 7.1.2, is
based on the efficient combination of the ∆Rac measured respectively on a homoge-
neously doped substrate and on a reference doped layer. Equation (7.8) shows that
these two extra measurements are sufficient to cancel the layer plasma and thermal com-
ponents and therefore lead to the junction depth. The technique has been succesfully
applied and, thanks to a sub-nanometer precision and accuracy almost independently
from junction depth, its agreement with SIMS is excellent (Figure 7.6). We believe this
technique has a very high applicability potential for the test of depth uniformity over
full wafers. Layers in the range of Xj ≈ 44 nm should however be avoided (Figures 7.7
and 7.8).

Finally, the complete profile characterization technique, developed in Section 7.2,
is based on the combination of the ∆Rac offset curves and Rdc. We have proven that
this combination allows for the simultaneous measurement of the peak active doping
concentration, depth and abruptness of active doping profiles. The technique has been
proven to be highly precise but to suffer significantly from the insufficient accuracy of
our model highlighted in Section 6.3 as well as the inaccurate modeling of the impact
of Ge-implantation-induced damage. The uniqueness of the obtained profiles requires
either an a priori knowledge of the profile shape or a higher pump irradiance.
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Chapter 8

Conclusions and
Recommendations

In this work, we have (i) developed, (ii) tested and (iii) made use of a physical model ac-
counting for the behavior of high-frequency Photomodulated Optical Reflectance (PMOR)
on homogeneously and non-homogeneously doped silicon. Sections 8.1, 8.2 and 8.3 be-
low summarize the most important results of each of these tasks. In Section 8.4, we give
an outlook on future work.

8.1 Development of the Model

The model has been constructed from Chapter 2 to Chapter 5.
To understand PMOR, the first question to be answered concerns the physical origin

of a change in reflectance. Chapter 2 has shown that a modification in the reflectance of a
sample is the consequence of the perturbation of its complex refractive index. Very useful
analytical relationships between the perturbation of the reflectance and the perturbation
of the complex refractive index have been derived. Importantly, these expressions show
that the perturbation of the reflectance depends on the depth-profile of the complex
refractive index perturbation.

Chapter 3 has explained the physical phenomena underlying a perturbation of the
complex refractive index. Though numerous phenomena can induce such a perturbation,
Chapter 3 has proven that only free-carrier and thermal effects have to be taken into
account. In other words, it is a change in free carrier concentration and/or temperature
which generates the refractive index perturbation and, hence, the reflectance perturba-
tion which we observe and measure. It has also been shown that only real perturbations
of the refractive index are to be expected in the framework of our investigations. A
very simple final expression linking the perturbation of the real refractive index and the
excess carrier concentration and temperature has been derived.

Chapter 4 has studied quantitatively how the pump and probe lasers induce the pres-
ence of excess carriers and temperature in a homogeneously doped silicon sample. This
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8. CONCLUSIONS AND RECOMMENDATIONS

has required deriving and solving carrier and heat transport equations. This Chapter
has initially started with the complete thermodynamic model, i.e. a coupled system of
four nonlinear time-dependent equations involving all the possible transport and gen-
eration mechanisms of both free carriers and heat. These four equations solve for the
time-dependent electric-field, electron, hole and temperature distributions. An in-depth
two-step analysis has allowed to strongly simplify these equations in the specific con-
text of our investigations, i.e. TP in silicon. First, we have shown that the transport
problem can be simplified into two equations solving respectively for the excess carrier
distribution, i.e. the equal excess electron and hole distributions, and for the excess
temperature distribution. Second, switching to the Fourier domain, we have derived the
steady-periodic form of our transport equations, i.e. the equations solving separately
for each Fourier coefficient of the excess carrier and temperature distributions. The
final coupled system of four steady-periodic nonlinear equations solve for the constant
and fundamental modes of the excess carrier and temperature distributions. These final
transport equations have been solved, demonstrating that the constant and fundamen-
tal modes of each distribution behave respectively as decaying exponentials and damped
waves. The characteristics of these decaying exponentials, i.e. their amplitudes and
decay lengths, and of these damped waves, i.e their amplitudes, decay lengths, phases
and wavelengths, have been calculated as a function of the doping concentration of the
silicon sample.

To conclude our model, Chapter 5 has extended the carrier and heat transport theory
to non-homogeneously doped silicon and, more particularly, to the case of ultra-shallow
highly doped layers on top of lowly doped silicon substrates. Two approximations, as
demonstrated, suffice to strongly simplify this problem. First, we have assumed that the
quasi-Fermi levels of the electrons and holes are flat through the space-charge region.
Based on this assumption, we have derived an algebraic expression linking the excess
carrier profile in a doped layer to the active doping profile in this layer and the excess
carrier concentration present in the substrate region, i.e. below the doped layer. We have
shown that this approximation is valid up to very high active doping concentrations in the
layer and, as a consequence, that it can be used independently from this concentration.
Second, the excess carrier and temperature distributions in the substrate have been
assumed not to be impacted in any way by the presence of the doped layer, i.e. they
have been assumed to follow exactly the theory developed in Chapter 4. We have shown
that this is a very good approximation for the temperature distribution and for the
fundamental mode of the excess carrier distribution. The constant mode of the excess
carrier distribution, however, has proven to be influenced by the presence of the doped
layer, more particularly in the case of highly doped p-type layers.

8.2 Evaluation of the Model

The construction of a model always requires testing against experimental data. For this
purpose, Chapter 6 has evaluated the ability of the developed model to explain the exper-
imental data measured respectively on homogeneously doped and non-homogeneously
doped silicon with the TP630XP tool.

Final model equations summing up our model for Rdc and ∆Rac have been derived
respectively for homogeneously doped silicon and box-like active doping profiles. The
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model equations for Rdc show its linear variation with the active doping concentration,
whether or not it be uniform, and its cosinusoidal dependence upon junction depth (when
relevant). The model equations for ∆Rac are more complex. On homogeneously doped
silicon, ∆Rac consists of two components, i.e. the plasma and thermal components,
respectively linked to the fundamental modes of the excess carrier and temperature dis-
tributions at the sample surface. Both components vary with the doping concentration
of the substrate but have opposite signs. On box-like active doping profiles, ∆Rac is
composed of three components, i.e. the substrate plasma, layer plasma and thermal
components, respectively linked to the fundamental mode of the excess carrier distri-
bution in the substrate, the fundamental mode of the excess carrier distribution in the
layer and the fundamental mode of the temperature distribution. While the substrate
plasma component only varies with the junction depth of the profile, the layer plasma
component changes with both the junction depth and the active doping concentration
of the doped layer. More particularly, the dependence of the latter component upon
doping concentration drops at high doping concentration. The thermal component is
independent from the doped layer.

The quality of our model equations has been evaluated against TP measurements
run on homogeneously doped silicon and Chemical-Vapor-Deposited (CVD) box-like
profiles. Though our model has shown its ability to account with very high accuracy for
the variations in signals with junction depth, some discrepancies have been observed on
their dependence upon active doping concentration in doped layers. These discrepancies
are recapitulated in Section 8.4 below.

8.3 Application of the Model

Based on the developed and tested model, Chapter 7 has finally evaluated the capa-
bilities of PMOR for fast and non-destructive carrier-depth profiling in silicon. Two
techniques have been developed for the determination of the junction depth of box-like
active doping profiles based on the measurement of ∆Rac. The first technique relies on
the measurement of the ∆Rac offset curves, wherein ∆Rac is measured as a function
of the probe and pump beam separation, respectively on the unknown box-like doping
profile and on a homogeneously doped substrate as found below the doped layer. We
have shown that separating the pump and probe beams should, in theory, eliminate
the layer plasma and thermal components and therefore leave the junction depth as
sole dependence. In practice, however, due to a residual layer plasma component, this
technique is very unlikely to be applicable in practice.

The second technique relies on the combination of the AC reflectances measured on
the unknown box-like profile, on a homogeneously doped substrate as found below the
doped layer and on a second doped layer with a known junction depth and approxi-
mately the same doping concentration as the unknown layer. This second technique has
proven to be in excellent correlation with SIMS thanks to simultaneous sub-nanometer
precision and accuracy. The high accuracy of this technique is based on the fact that the
dependence of ∆Rac upon doping has been canceled. This technique has a high applica-
bility potential for the fast and non-destructive determination of the relative variation
in junction depth over full wafers. Note that, very interestingly, this application can be
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performed with the TP630XP tool in its current implementation.
Last and most important of all, a model-based technique relying on the simultaneous

fitting of ∆Rac offset curves and Rdc has been developed for the complete characteri-
zation of active doping profiles. We have shown that ∆Rac offset curves are not only
sensitive to the depth of profiles but also their abruptness. Thanks to the high sensitiv-
ity of Rdc to the peak active doping concentration, as demonstrated, the combined use
of ∆Rac offset curves and Rdc allows for the complete reconstruction of profiles. The
technique has been tested on low-energy high-dose annealed B-implanted layers with
different Ge PAI conditions. The observed average deviation vs SIMS on the depths of
the profiles at a concentration of 1019 cm−3 is of 3 nm. The average deviation on the
peak active doping concentration is of 5 × 1018 cm−3 (bulk mobility assumed for the
active SIMS concentration). This final development takes PMOR very close to the ideal
technique sought in the Introduction of this work. More particularly, this technique ful-
fills all the requirements mentioned in Section 1.1, except for its accuracy, which needs
further improvement due to the remaining modeling errors. As a consequence, we pro-
pose to recapitulate our recommendations for an improved accuracy of the technique in
Section 8.4 below.

8.4 Future Work

We believe future fundamental work is needed on three aspects of our model. First,
the electrorefractive effect should be better quantified. Second, the quantitative under-
standing of the behavior of ∆Rac on homogeneously doped substrate should be improved.
Finally, the quantification of the excess carrier concentration in doped layers should be
enhanced.

Starting with the electrorefractive effect, both ∆Rac and Rdc data have shown that
this effect is underestimated by our model. To solve this issue, Hall measurements
should be run on the CVD12 and CVD13 matrices so as to determine the actual active
doping concentrations in these layers. Combining these values to the Rdc measured on
these layers would offer a direct measurement of the accurate value of ∂n/∂P . The
generation and measurement of an equivalent matrix of n-type layers would lead to the
determination of an accurate value of ∂n/∂N .

The work needed for the better understanding of the behavior of ∆Rac on homo-
geneously doped substrate is not as straightforward and consists of two different tasks.
First, our calculations appear to underestimate the excess carrier concentration in lowly
doped substrates most likely due to an underestimated band-to-band absorption coeffi-
cient and overestimated ambipolar diffusivity. Extra work is therefore needed to model
the variations with injection in these two parameters. Note that bandgap narrowing is
involved in the modeling of both parameters, which highlights the importance of the
latter effect. Second, as noted in Section 7.2.3, more fundamental work is also needed
on annealed preamorphized substrates. The impacts of the preamorphization and of the
annealing should be investigated separately and better understood. Some preliminary
results are given in Appendix A.4.

Finally, an improved modeling of the excess carrier concentration in doped layers
would, first, require more accurate quantification of the bandgap narrowing effect. Sec-
ond, the inclusion of the impact of the doped layer on the excess carrier distribution in
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the substrate would also be required. Let us recall that a simple solution to this last
issue lies in an increase in pump irradiance (Chapter 5).

As a final word, let us discuss some of the tool modifications which could lead to an
enhanced technique. First and foremost, the technique would benefit in multiple ways
from an increased pump irradiance. First, as noted above, a higher pump irradiance
would render the substrate excess carrier distribution fully independent from the doped
layer and therefore reduce significantly the modeling errors. Based on the comparison
of Figures 5.3(a) and (c), it appears that an increase in pump irradiance by a factor
' 2 should be sufficient. Second, a higher pump irradiance would lead ∆Rac to being
sensitive to the more highly doped regions of the profile. As a consequence, it would solve
the uniqueness problem highlighted in Section 7.2.3.3. Based on Figure 7.16, it appears
that the regions up to 2 − 3 × 1019 cm−3 are still uniquely defined by the technique.
In other words, following a linear reasoning, an increase in pump irradiance by a factor
' 5 should allow for unique determination of the profile in regions doped up to ' 1020

cm−3. This would strongly reduce the uncertainty on the peak doping concentration
fixed by the DC reflectance.

Second, we believe that there is little chance that a larger beam separation would
help derive more information about the profiles. Based on Figure 7.16, it seems that the
doping range which the current ∆Rac offset curves are sensitive to goes down to quite
low doping concentrations (< 1018 cm−3). The more lowly doped regions are not of very
high interest. Besides, larger beam separations would lead to very low signal levels, i.e.
low precision.

Third, a change in the modulation frequency of the pump irradiance might lead to
some improvement of the technique. However, advantages as well as drawbacks of lower
and higher modulation frequencies can be found. Going to lower modulation frequencies
would advantageously lead to a higher carrier injection but would simultaneously in-
crease the sensitivity to recombinations. A higher modulation frequency would shorten
the thermal decay length and therefore enhance the sensitivity of the signals to the
plasma components at large beam separation. However, it would also reduce the excess
carrier injection. In other words, it is difficult to evaluate which direction should be
taken.

Fourth, similar conclusions can be reached concerning the pump and probe laser
wavelengths. We here only mention the drawbacks. Concerning the pump laser wave-
length, on the one hand, its increase would disadvantageously lead to a reduced ab-
sorption coefficient, i.e. lower carrier injection. On the other hand, a shorter pump
wavelength would increase the direct heating and therefore the thermal component. As
for the probe laser, reducing its wavelength would lead to a reduced Drude electrorefrac-
tive effect and therefore lower plasma components. A longer probe wavelength would
lead to reduced sensitivity to junction depth.

In conclusion, we believe that an increase in the pump irradiance as well as the
consideration of the mentioned fundamental issues would lead PMOR to fulfilling all the
requirements for the non-destructive carrier-profiling tool sought in our Introduction.
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Appendix A

Appendix

A.1 Measurement Procedure

This Appendix introduces the procedure which we have developed for the measurements
presented in this work. In particular, in the framework of our investigations, we have
introduced two improvements to be discussed. First, Section A.1.1 demonstrates that
a measurement should be run for a long enough period of time so as to have a high
repeatability. Second, Section A.1.2 shows that, in order to ensure the commensurability
of the signals from one wafer to another, the quality of the substrate should be very
carefully monitored. As a consequence of these two observations, every data point shown
in this work corresponds to the signal values after the pump and probe have shone on
the measurement spot for 25 s. Further, all the used CVD layers have been grown on
device-quality wafers.

A.1.1 Surface Charging

As already pointed out and discussed in Ref. [84, 36], the AC reflectance ∆Rac varies
with illumination time, leading to very poor signal repeatability. The deeply documented
and argumented conclusions of Ref. [36] demonstrate that this effect is due to a variation
in the SRV with illumination time, as a result of charge injection into the surface oxide.
In particular, at the moderate pump irradiance of the TP pump laser, the AC reflectance
is expected to increase with time, as a result of the reduction in SRV and, therefore, of
an increase in the plasma component.

These theoretical investigations are in agreement with the experimental charging
curves observed in Figures A.1(a) and (b), i.e. the variations in the amplitude and
phase of the AC reflectance observed when measuring these signals as a function of
time on the same spot of a sample. These Figures have been obtained by measuring
∆Rac seven consecutive times for 100s with aligned beams (zero separation) on a lowly-
doped n-type device-quality substrate. The pump and probe beams are shut for a few
seconds in between each round of 100 s (limitation of our measurement routine), which
explains the sharp drop in amplitude and phase every 100 s. Two observations are of
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Figure A.1: Charging curves : variation with time in (a) the amplitude and (b) the phase of the
AC reflectance measured on a device-quality lowly doped n-type wafer. A steep increase in amplitude
and phase is initially observed before both start to saturate. The sharp drop in amplitude and phase
observed every 100s are due to the pump and probe lasers being shut every 100 s. The first data point
of each offset curve measured in this work has been recorded after 25 s and the 25th and last one after
625 s as highlighted by the vertical dotted lines.

the utmost importance in Figures A.1. First, the variation in signals in the first seconds
of the measurement is very steep, leading to a very poor signal repeatability if one
measures in that region. Second, the variations tend to saturate after a certain time.
This corresponds to the saturation of the SRV discussed in Ref. [36]. However, even
after 700s, the signal is not fully saturated.

The measurement procedure we have developed is based on these two observations.
The first observation pushes us to shine the pump and probe lasers for a certain while
on the sample before actually recording the AC reflectance, in order to maintain a
high repeatability. The second observation determines after how long we should record
∆Rac. Ideally, one should measure at saturation, i.e. after more than 700 s. However,
the measurement time then becomes prohibitive. One therefore has to compromise
between acceptable measurement time and repeatability. For the measurements shown
in this work, all data points have been obtained after shining the pump and probe
beams for 25 s on the measurement spot. This might not seem sufficient, considering
the charging curves of Figure A.1. However, we always measure offset curves in this
work. In particular, each offset curve we have measured contain 25 data points measured
with the probe constantly shining on the same spot and the pump laser shining on a
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Figure A.2: Comparison of offset curves of (a) the amplitude and (b) the phase of ∆Rac as measured
on a device-quality lowly doped n-type substrate when the beams are initially aligned (0 → 4) or
initially at their maximum separation (4 → 0). (c) Amplitude of the difference between each offset
curve. The difference is of the order of the signal repeatability.

nearby spot (maximum 4 µm away). The last data point is therefore recorded after
approximately 625 s, i.e. almost at saturation. Though the first data points of our
offset curves obviously still bear to some extent the trace of the charging effect, this
measurement procedure allows us to measure repeatable offset curves in a reasonably
short period (≈ 10 minutes).

To confirm this statement, we compare in Figures A.2(a) and (b) two amplitude and
phase offset curves obtained on the same substrate following our procedure. One of the
curves has been measured starting with the beams aligned initially and increasing their
separation of 0.167 µm every 25 s (0→ 4). The second offset curve has been measured
on the same spot starting with an initial beam separation of 4 µm and decreasing their
separation of 0.167 µm every 25 s (4 → 0). The curves are very similar. This is
corroborated by Figure A.2(c) where the amplitude of the difference of both offset curves
proves to be of the order of the signal repeatability (See Section A.2 below). As a final
remark, note that, as highlighted by Figure A.2(c), the signals at large beam separations
are more impacted by the charging effect. As a consequence, all our offset curves are
measured from 0 to 4 µm.

In summary, our measurement procedure is as follows:
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� each measured data point is acquired after shining the pump and probe beams for
25 s on the measured spot,

� each offset curve contains 25 points, spaced apart of a distance of 0.167 µm,

� each offset curve is measured with, initially, aligned beams and increasing beam
separation (0→ 4).

Note that, as an additional benefit, the measurement procedure also reduces the sensi-
tivity of our measurements to SRV. The impact of SRV has actually not been observed
in our measurements.

A.1.2 Quality of the Substrates

The consideration of surface charging allows us to measure with a high repeatability on a
specific spot of a specific wafer. However, this work also requires that the measurements
should be reproducible from one wafer to another. Ideally, the substrates below each
CVD layer we have used to develop our model should be the same, so as to make sure
that the substrate plasma and thermal components are equal for all the CVD layers of
our database. This ensures that the signal variations we observe on the different CVD
layers are due to a thickness or a layer active doping difference, and not to a substrate
difference.

As a consequence, monitor-quality wafers should be avoided. On n-type monitor
wafers, we have noted variations in ∆Rac larger than 10% from one substrate to the
other (see e.g. Figure 5 of Ref. [13]). This is of course unacceptable when one wants
to build a quantitative theory. On the contrary, Figure A.3(a) shows that the relative
wafer-to-wafer variations in the ∆Rac offset curves measured on the device-quality n-
type substrates of the CVD12 matrix before growth of the CVD layers are below ≈
2%. Similarly, the relative wafer-to-wafer variations in Rdc are below 0.01%. In other
words, the signal variations observed on the CVD12 matrix after growth of the layers
are confirmed to be due to the doped layers themselves.

This is the second improvement of our measurement procedure. We recommend
that only device-quality wafers should be used. Besides, we recommend a measurement
should be run on the substrate before growth or implantation of the doped layer so as to
ensure that the substrate behaves as expected. This greatly simplifies the understanding
of the signals after growth/implantation.

Note that the physical origin of the large wafer-to-wafer variations in signals observed
on monitor-quality substrates is still under investigation.
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Figure A.3: Relative wafer-to-wafer variation observed on the offset curves of (a) ∆Rac and (b)
Rdc measured before growth of the CVD layers on the device-quality substrates of the CVD12 matrix.
The relative variation in ∆Rac and Rdc being respectively lower than 2% and 0.01%, the variations
in signal observed after growth of the layers (Figure 6.3) are due to the doped layers themselves and
not to the underlying substrates.
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A.2 Measurement Repeatability

The main benefit of our measurement procedure (Appendix A.1) is to enhance the signal
repeatability. In order to evaluate the actual values of the signal repeatabilities, we have
measured ∆Rac and Rdc 5000 times on the same spot of a device-quality lowly doped
n-type substrate (with aligned beams). In order to account for the impact of charging
in our measurement procedure, the surface has been charged 300 s before starting to
record the signal values.

The measurement probability distributions of respectively the amplitude of the AC
reflectance, the phase of the AC reflectance and the DC reflectance are shown in Figure
A.4(a), (b) and (c). All three distributions are sharply peaked. Notice that the distribu-
tions of the amplitude and phase of the AC reflectance are not perfectly symmetric as a
result of charging, still present after 300 s. The standard deviation of each distribution
gives the measurement repeatability. Most importantly, we have σ∆Rac = 7×10−4 (a.u.)
and σRdc = 5× 10−6. These excellent repeatability values are used in this work for the
determination of the precision of the developed techniques (Chapter 7).

Note that, though the obtained σ∆Rac contain some contribution of the charging
effect, it is quite robust. For example, σ∆Rac = 7.9 × 10−4 (a.u.) is obtained when,
simultaneously, the initial charging period is limited to 100 s and the total number of
measurements (and hence total time) is reduced to 1000. As a consequence, σ∆Rac =
7×10−4 (a.u.) is believed to represent accurately the repeatability of |∆Rac| when using
our measurement procedure.
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Figure A.4: Measurement repeatability : measurement probability distributions of (a)|∆Rac|, (b)
φac and Rdc as obtained when measuring 5000 times on the same spot a device-quality lowly doped
n-type substrate (aligned beams). A 300 s charging period has been used.
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A.3 Experimental Database

A.3.1 Homogeneously Doped Silicon

Our matrix of p- and n-type homogeneously doped substrates is described in Table A.1.

Label Doping type Resisitivity (ohm.cm) Act. doping conc. (cm−3)

SUB1 p-type 1.56×10−2 4.62×1018

SUB2 p-type 1.14×10−2 7.10×1018

SUB3 p-type 1.28×10−2 5.44×1018

SUB4 p-type 1.08×10−2 7.71×1018

SUB5 p-type 8.04×10−3 1.13×1019

SUB7 p-type 2.49 5.54×1015

SUB8 p-type 2.17 6.39×1015

SUB9 p-type 9.08×10−1 1.62×1016

SUB103 p-type 1.03 1.41×1016

SUBP10 p-type 10 1.34×1015

SUBP5060 p-type 50-60 ≈ 2.2× 1014

SUBP01 p-type 1.0×10−1 2.77×1017

SUBP001 p-type 1.0×10−2 8.49×1018

SUBP478 p-type 4.78 2.83×1015

SUBP234 p-type 23.4 5.7×1014

SUBP004 p-type 4.2×10−2 8.41×1017

SUBP510m p-type 9.33×10−3 8.85×1018

SUBP15m p-type 3.89×10−3 2.79×1019

SUB6 n-type 1.76×10−3 3.92×1019

SUBN092 n-type 0.9-2 ≈4× 1015

Table A.1: Description of our matrix of homogeneously doped substrates

A.3.2 Box-like Chemical-Vapor-Deposition Layers: CVD12
and CVD13 matrices

All the CVD layers used in this work were grown with an ASM epsilon 2000 tool on 200
mm device-quality substrates. Both the CVD12 (Table A.2) and CVD13 (Table A.3)
matrices are B-doped.
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CVD12 matrix

Label X@90%
j (nm) 1 Rs (ohm/sq) 2 Layer Act. doping conc. (cm−3) 3

1.1 7.2 3700 6.4× 1019

1.2 16.8 1176 6.4× 1019

1.3 28.0 696 6.4× 1019

1.4 38.2 490 6.4× 1019

1.5 47.7 380 6.4× 1019

1.6 59.8 311 6.4× 1019

2.1 4.6 N/A 1.3× 1019

2.2 15.2 8850 1.3× 1019

2.3 25.1 3960 1.3× 1019

2.4 35.1 2478 1.3× 1019

2.5 46.9 1810 1.3× 1019

2.6 56.8 1420 1.3× 1019

Table A.2: Description of the CVD12 matrix

CVD13 matrix

Label X@90%
j (nm) 1 Rs (ohm/sq) 2 Layer Act. doping conc.(cm−3) 3

1.1 3.9 4 8477 4.5× 1019

1.2 15.6 1845 4.5× 1019

1.3 25.7 5 1020 4.5× 1019

1.4 34.9 693 4.5× 1019

1.5 47.5 5 526 4.5× 1019

1.6 59.2 434 4.5× 1019

2.1 5.7 4 27436 3.3× 1019

2.2 15.9 3328 3.3× 1019

2.3 25.4 5 1678 3.3× 1019

2.4 34.5 1114 3.3× 1019

2.5 45.0 5 816 3.3× 1019

2.6 55.2 661 3.3× 1019

1The SIMS junction depth of CVD box-like profiles is defined as the depth at which the
SIMS profile reaches 90% of its maximum concentration

2The values of the sheet resistance have been measured with RsL.
3The values of the active doping concentration have been obtained from the slope of the

1/Rs(X
@90%
j ) curve (Appendix A.3.2.2).

4Value linearly extrapolated from the three actually measured X@90%
j of the set

5Value linearly interpolated from the three actually measured X@90%
j of the set
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3.1 4.4 4 32202 1.2× 1019

3.2 14.4 5504 1.2× 1019

3.3 24.3 5 3157 1.2× 1019

3.4 34.0 2250 1.2× 1019

3.5 44.2 5 1740 1.2× 1019

3.6 54.2 1405 1.2× 1019

Table A.3: Description of the CVD13 matrix

A.3.2.1 CVD12 and CVD13 matrices: SIMS profiles

The SIMS profiles of the complete CVD12 and CVD13 matrices are shown in Figures
A.5 and A.6. Only the 11B concentrations are shown, which corresponds to 80.1% of the
total B concentration (19.9% 10B to be added). The SIMS profiles have been measured
in the center of each wafer. While the SIMS profiles of all the layers of the CVD12 matrix
have been measured, only half of the CVD13 layers have been measured (layers with
labels x.2, x.4, x.6 with x=1,2,3). The junction depths of x.1, x.3 and x.5 (x=1,2,3) have
been linearly interpolated based on the junction depths of x.2, x.4 and x.6 (x=1,2,3).
This linear increase in junction depth from x.1 to x.6 is expected since the deposition
time has also been increased linearly during their growth.
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Figure A.5: SIMS profiles of the 11B content (abundance=80.1%) in the layers of the CVD12
matrix.
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Figure A.6: SIMS profiles of the 11B content (abundance=80.1%) in 9 of the 18 layers of the
CVD13 matrix.

A.3.2.2 CVD12 and CVD13 matrices: active doping concentrations

Figure A.7 illustrates the method we have used to determine the active doping con-
centrations of our CVD layers, following Ref. [27]. The inverse of the sheet resistance
(measured here with RsL) is plotted vs the SIMS junction depth (at 90% of the peak
concentration) for each of the five sets of different active doping concentrations. The
slopes of the obtained curves give the conductivity of the layer in ohm−1nm−1. Using
Klaassen’s mbility model[64], i.e. assuming that the mobility of the majority carriers in
the layer is the same as in a bulk silicon sample of the same active doping concentration,
a value of the active doping concentration can be derived. This value is actually a lower
limit as mentioned in Section 1.2.1.3.

Note that each interpolation curve crosses the x-axis (i.e. 1/Rs = 0) at a positive
value. Whether this feature is due to the presence of an inactive layer[27] or a depletion
effect[111] is still under discussion. Note that the crossing value typically increases for
decreasing active doping concentration[27]. This is not strictly speaking the case in
Figure A.7, which shows that some uncertainty remains on the derived active doping
concentration (especially for CVD13 where only three data points are available for each
curve), besides the assumption of bulk mobility. This small uncertainty is believed not
to have any impact on the conclusions of this work.
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CVD12 1.x : 1/Rs = 5.64 × 10−5Xj − 1.19 × 10−4
⇒ Pdoping = 6.4 × 1019 cm−3

CVD13 2.x : 1/Rs = 3.08 × 10−5Xj − 1.81 × 10−4
⇒ Pdoping = 3.3 × 1019 cm−3

CVD12 2.x : 1/Rs = 1.41 × 10−5Xj − 1.00 × 10−4
⇒ Pdoping = 1.3 × 1019 cm−3

CVD13 1.x : 1/Rs = 4.42 × 10−5Xj − 3.33 × 10−4
⇒ Pdoping = 4.5 × 1019 cm−3

CVD13 3.x : 1/Rs = 1.33 × 10−5Xj − 9.64 × 10−6
⇒ Pdoping = 1.2 × 1019 cm−3

Figure A.7: Derivation of the active doping concentration of CVD layers. The slope of the inverse
of the sheet resistance vs the SIMS junction depth gives the conductivity of the layer, which can be
translated into active doping concentration, assuming bulk mobility of the majority carriers.

A.3.3 Implantation Profiles

The IIB matrix described in Table A.4 is a B-implanted matrix with Ge PAI under
different conditions and laser annealed three times under five different annealing tem-
peratures ranging from 1150◦C and 1300◦C. All layers were implanted in 300 mm wafers
with an Applied Materials Quantum X low-energy implanter. The laser annealing was
run with an Astra Vantage DSA system from Applied Materials using a diode bar laser
operating at 808 nm. The dwell time was 0.5 ms and the chuck temperature 450 ◦C.

An extra lithographic step allowed us to keep a region of the wafer free of the B
implant and hence measure the substrate measurement, as defined in Section A.1.
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A.3.3.1 SIMS profiles of the IIB matrix

Figure A.8 shows the SIMS profiles of 8 layers of the IIB matrix. For completeness, the
active SIMS concentrations, derived from sheet resistance measurements (FPP) are also
indicated by the horizontal lines. For each figure, it can clearly be observed that the
sample with a higher annealing temperature, IIB-DxT5 (x=03,05,07,13) is deeper and
more highly actively doped than IIB-DxT3. Annealing indeed induces both activation
and diffusion. The comparison of the depth of the moderately doped regions (≈ 1018

cm−3) in Figure A.8(a) vs Figures A.8(b), (c) and (d) clearly highlights the impact of
the Ge preamorphization (reduction in the channeling tail).
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Figure A.8: SIMS profiles of samples (a) IIB-D03T3 (black) and IIB-D03T5 (blue), (b) IIB-D05T3
(black) and IIB-D05T5 (blue), (c) IIB-D07T3 (black) and IIB-D07T5 (blue), (d) IIB-D13T3 (black)
and IIB-D013T5 (blue). The active SIMS concentrations derived from sheet resistance are indicated
by the horizontal lines.
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A.4 Impact of Annealing and Preamorphization

As noted in Section 7.2.3 and in the conclusions of this work, some effort is still needed
so as to quantitatively understand the behavior of ∆Rac on preamorphized and annealed
substrates. In this Appendix, we show some preliminary data.

Let us start by investigating the impact of a preamorphizing implant after anneal.
This issue has been studied in detail in Ref. [91]. In summary, the behavior of the
AC reflectance on annealed preamorphized samples can be understood by means of
a generalization of its behavior on as-implanted samples, where ∆Rac correlates with
the defect density generated during the implantation process[115]. The situation of
annealed preamorphized substrates is obviously more complex since, during the anneal,
the defects tend to gather in the end-of-range plane. A preliminary analysis has proven
that ∆Rac still correlates, at least qualitatively, with the defect density in the end-of-
range plane[91]. This is in agreement with the exemplary ∆Rac offset curves shown
in Figure A.9(a) and (b). These Figures show the substrate measurements (as defined
in Section 7.2.2, i.e. no doped layer) measured on four samples with different Ge PAI
conditions and laser-annealed three times at 1300◦C: IIB-D03T5 (no PAI), IIB-D05T5
(5 keV, 1014 cm−2), IIB-D07T5 (5 keV, 5 × 1014 cm−2) and IIB-D13T5 (20 keV, 1014

cm−2). It is observed that when the PAI energy or dose increases, the amplitude and
phase of ∆Rac drop, as a consequence of the reduction in the plasma component and
simultaneous increase in the thermal component.

Opposite variations are observed when the annealing temperature is increased and/or
the number of laser scans is increased. This is illustrated in Figure A.9(c) and (d) where
the substrate measurements of sample IIB-D13 for different annealing temperatures
are shown. It can be seen that a rising annealing temperature leads to a monotonically
increasing phase and an amplitude which first decreases before rising again. This behav-
ior can be understood as the result of the competition between the plasma component,
which increases with rising annealing temperature, and the thermal component which
decreases with increasing annealing temperature. In other words, when increasing the
annealing temperature, the signal undergoes a transition from a thermally dominated
behavior to a plasma-dominated behavior.

Though these effects are understood qualitatively, they can currently not be modeled
quantitatively. This is the reason why we have had to resort to using a linear model
with homogeneous recombination lifetime and ambipolar diffusivity in Section 7.2.3. We
believe this is what has led to some misquantification of the depth of the profiles.

Very interestingly, the impact of annealing on the substrate measurement is also
observed on non-preamorphized device-quality substrates. This unexpected behavior
is illustrated in Figure A.10, where we compare the impact of a spike anneal (1.5′′,
1035◦C) and a laser anneal (3 scans, 1300◦C) on n-type and p-type device-quality sub-
strates without any PAI or active implant. It is first surprising to notice that the offset
curves measured before any anneal on the n-type and p-type substrates are significantly
different. Knowing that device-quality wafers have stringent specificications on the ac-
tive doping concentration (< 1015 cm−3 for both n- and p-type), this is in disagreement
with the experimental data shown in Figure 6.2 and our model which both expect the
same behavior on lowly doped p- and n-type substrates. This difference could be at-
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Figure A.9: Offset curves of (a) the amplitude and (b) phase of ∆Rac as measured on laser-annealed
(3 scans, 1300◦C) substrates preamorphized with the different conditions indicated on the right hand-
side. The amplitude and phase are observed to drop with PAI energy and dose, as a result of the
decrease in plasma component and increase in thermal component. The arrows indicate the trend
when increasing the Ge dose or energy. Offset curves of (c) the amplitude and (d) phase of the ∆Rac

measured on a preamorphized substrate (20 keV, 1014 cm−2) for different laser-annealing tempera-
tures. The phase increases monotonically with annealing temperature while the amplitude passes by a
minimum. This is the result of the competition between the plasma component, which increases with
rising annealing temperature, and the thermal component which decreases with increasing annealing
temperature. The arrows indicate the trend when increasing the annealing temperature.

tributed to a different behavior of the surface charging. As noted in Ref [13], this
difference has also been observed on monitor-quality substrates, where it strongly de-
creases when the surface is charged for a longer period. Longer charging measurements
on these device-quality substrates should be run to better understand this effect.

As interestingly, after annealing, whether spike or laser, the offset curves on n- and
p-type substrates coincide. In other words, while the p- and n-type substrates can be dis-
criminated before annealing, they are equivalent after annealing. Different effects could
explain this behavior. First, if the difference observed before annealing indeed proves to
be a surface difference, it can then be supposed that the annealing somehow modifies
the oxide. Second, it could also be speculated that this behavior is due to the partial
activation of the O atoms in these substrates, which act as thermal donors and therefore
would make the substrates equivalent after annealing (total oxygen concentration ≈ 1017

cm−3).
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Figure A.10: Offset curves of (a) the amplitude and (b) the phase of ∆Rac as measured on n- (black)
and p-type (blue) device-quality substrates without preamorphization. While ∆Rac depends on the
doping type when the device-quality substrates have not been annealed (full lines), this dependence
disappears after spike-annealing (dashed lines) or laser-annealing (interrupted lines) these substrates.
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A.5 N-type Layers

The CVD10 matrix is a matrix of As-doped CVD layers (n-type). Unfortunately, all
these layers have been grown on monitor-quality p-type substrates. They were indeed
grown in the early phase of this work when the measurement procedure described in
Appendix A.1 and, most particularly, the importance of the quality of the substrates
had not been clarified. As a consequence, these layers cannot be discussed quantitatively.
In this Appendix, we want to show that n-type layers behave qualitatively like p-type
layers, as expected by our model.

We focus the discussion on the values of ∆Rac measured with aligned beams, i.e. we
concentrate on the variations in amplitude and phase with active doping concentration
and junction depth. This is indeed sufficient to show that n-type layers have a behavior
similar to p-type layers. Figures A.11(a) and (b) show respectively the variation with
junction depth in the amplitude and phase of ∆Rac, as measured on the CVD10 matrix.
It can be observed in Figure A.11(a) that |∆Rac| follows, at least qualitatively, the same
behavior as on p-type layers (Figure 6.4(b)). In particular, the same rectified cosine
behavior is observed. The amplitude of the cosine also increases with increasing doping.
The behavior of the phase observed in Figure A.11(b) also clearly reminds the behavior
of p-type layers (Figure 6.4(d)). In particular, the same phase transition is noted when
Xj ≈ 22 nm. This is due to the sign change of the substrate plasma component. In
summary, Figures A.11 clearly indicate that n-type layers behave like p-type layers, as
expected by the model we have developed.

For completeness, note that, since all the theory in this work has also been developed
in parallel (but not tested) for n-type layers, all the results shown in this work can
be extended to n-type layers. To confirm this statement, we have tested the profile
reconstruction technique of Section 7.2 to As- and P- implanted layers. The obtained
profiles for spike-annealed (1.5′′, 1035◦) P and As implants (1 keV, 1015 cm−2) give
acceptable qualitative agreement with the expectations (not shown). The technique has
also been tested on laser-annnealed P and As implants (same conditions). However,
these implant and anneal conditions result in sub-10 nm deep layers. As a consequence,
the observed variations in ∆Rac are of the order of the precision of the technique (low
sensitivity).
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Figure A.11: Variations with junction depth in (a) the amplitude and (b) the phase of ∆Rac as
measured on the CVD layers of the CVD10 matrix. The qualitative behavior of ∆Rac observed on
p-type layers in Figures 6.4(b) and (d) is clearly recognized.
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A.6 Impact of the BGN Electroabsorptive Effect
on the Signal Equations

The conclusions of Chapter 3 are that the BGN electroabsorptive effect can be neglected.
As a direct consequence, the sinus contributions to equations (2.17) and (2.32) have been
dropped when writing our final signal equations (6.9), (6.10) and (6.16). Focusing on the
behavior of ∆Rac on box-like profiles, we show here that no BGN electroabsorptive effect
is observed in our experimental data, in agreement with our conclusions in Chapter 3.

To prove this statement, let us write the complete equation for ∆Rac on a box-like
profile including the perturbation of the extinction coefficient due to BGN. In this case,
we have

∆Rac(r) =
4R0

n2
0 − 1

Γ0 exp(−iθ0)

×
{
−β(

1

me
+

1

mh
)∆Nsub1[cos(4πn0Xj/λprobe) + κ sin(4πn0Xj/λprobe)]︸ ︷︷ ︸

substrate plasma component

−β(
1

me
+

1

mh
)∆Nl1[1− cos(4πn0Xj/λprobe)− κ sin(4πn0Xj/λprobe)]︸ ︷︷ ︸

layer plasma component

+ δ∆T1︸ ︷︷ ︸
thermal component

}
, (A.1a)

where κ = (∂k/∂N + ∂k/∂P )/[β(1/me + 1/mh)] is always positive. The impact of the
BGN electroabsorptive effect is therefore a modification in the dependence of the signals
upon junction depth. More particularly, the cos(4πn0Xj/λprobe) dependence is replaced
by the modified function [cos(4πn0Xj/λprobe) + κ sin(4πn0Xj/λprobe)]. To illustrate
this modified Xj-dependence, Figure A.12 shows the signal behavior as a function of
junction depth for different values of the coefficient κ. This Figure assumes negligible
layer plasma and thermal components. The conclusions would be the same if these two
components were included.

As highlighted by the vertical and horizontal dotted lines in Figure A.12, a same
value of ∆Rac corresponds to slightly deeper Xj when κ increases. In other words, the
consideration of a small BGN electroabsorptive effect would lead our model to deriving
slightly deeper values of Xj . Section 7.1.2, however, shows that, with κ = 0, a very good
agreement with SIMS has been obtained. Further, it shows that the derived junction
depths might actually be slightly overestimated vs the SIMS junction depths. A shift
towards deeper junction depths is therefore to be excluded.

In summary, our experimental data are in agreement with the conclusions drawn
in Chapter 3, i.e. the BGN electroabsorptive effect is so small vs the Drude electrore-
fractive effect that it is not observed experimentally. In particular, based on Figure
A.12, it appears that κ = 0.1 leads approximately to a 1-2 nm shift in the junction-
depth dependence. It can therefore be expected that κ < 0.1, i.e. (∂k/∂N + ∂k/∂P ) <
0.1× β(1/me + 1/mh).
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A.7 Fourier Coefficients of the Auger and SRH
Recombination Rates

The transport equations (4.54) involve the constant and fundamental modes of the Auger
and SRH recombination rates. We here show how to derive their analytical expressions.
In order to be general, the electron and hole distributions [equations (4.3) and (4.4)] and
the recombination rates [equation (4.33c)] are expanded up to their third harmonic. This
gives us the opportunity to show by numerical simulations that, as explained in Section
4.1.3.3, the generation of second and third harmonics due to the nonlinear (mostly
Auger) recombination rate is negligible in TP. In order to simplify the expressions, we
also write Ncst = Ndoping + ∆N0 and Pcst = Pdoping + ∆N0.

Let us start with Auger recombinations. Equation (4.48) shows that Auger recombi-
nations are a strongly nonlinear phenomenon which involves third powers of the carrier
concentrations. Plugging equations (4.3) and (4.4) into equation (4.48), the constant
Auger recombination rate is

RecAuger
0 =RecAuger

cst

+ 2 [Cn (2Ncst + Pcst) + Cp (Ncst + 2Pcst)] (∆N1∆N∗1 + ∆N2∆N∗2 + ∆N3∆N∗3 )

+ 6(Cn + Cp)<(∆N2∆N∗1 ∆N∗1 + 2∆N2∆N1∆N∗3 ), (A.2)

where

RecAuger
cst = Cn

(
N2

cstPcst −Ncstn
2
i γnγp

)
+ Cp

(
P 2

cstNcst − Pcstn
2
i γnγp

)
(A.3)

is the Auger recombination rate when only the probe and the constant mode of the pump
irradiance are shining. It can be seen that the constant mode of the Auger recombination
rate is enhanced under modulated illumination, thus reducing the constant mode of the
excess carrier concentration and leaving room for harmonic generation. The fundamental
mode of the Auger recombination rate can be written6

RecAuger
1 =∆RecAuger

cst

+ ∆N1

{
−∆N∗1 [Cn(2Ncst + Pcst) + Cp(Ncst + 2Pcst)]

+ 2(Cn + Cp)(∆N1∆N∗1 + 3∆N2∆N∗2 + 3∆N3∆N∗3 )
}

+ 2 [Cn(2Ncst + Pcst) + Cp(Ncst + 2Pcst)] (∆N∗1 ∆N2 + ∆N∗2 ∆N3)

+ 3(Cn + Cp)(∆N
∗
1 ∆N∗1 ∆N3 + ∆N2∆N2∆N∗3 ), (A.4)

where

∆RecAuger
cst =Cn∆N1

[
2NcstPcst − n2

i γnγp +N2
cst + ∆N∗1 (2Ncst + Pcst) + ∆N1∆N∗1

]
+ Cp∆N1

[
2NcstPcst − n2

i γnγp + P 2
cst + ∆N∗1 (Ncst + 2Pcst) + ∆N1∆N∗1

]
(A.5)

represents the extra Auger recombinations which would occur in time-independent condi-
tions if additional (time-independent) ∆N1 electron and hole concentrations were added

6Note that a few constant terms have been added in this expression in order to artifically

have ∆RecAuger
cst to appear
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to the already existing Ncst and Pcst. In TP, ∆RecAuger
cst is usually larger than RecAuger

1 ,
meaning that modulated conditions reduce these extra recombinations.

As for the second and third harmonics of the Auger recombination rate, so as to
highlight their generation by the nonlinear Auger process, we write them as

RecAuger
2 =

∆N2

τAuger
2

−GAuger
2 (A.6a)

RecAuger
3 =

∆N3

τAuger
3

−GAuger
3 , (A.6b)

where τAuger
2 (resp. τAuger

3 ) and GAuger
2 (GAuger

3 ) respectively represent the pseudo Auger
recombination lifetime and generation rate of the second (resp. third) harmonic. It can
be easily proven that

1

τAuger
2

=Cn
(
2NcstPcst − n2

i γnγp +N2
cst

)
+ Cp

(
2NcstPcst − n2

i γnγp + P 2
cst

)
+ 3(Cn + Cp) (2∆N1∆N∗1 + ∆N2∆N∗2 + 2∆N3∆N∗3 ) (A.7a)

1

τAuger
3

=Cn
(
2NcstPcst − n2

i γnγp +N2
cst

)
+ Cp

(
2NcstPcst − n2

i γnγp + P 2
cst

)
+ 3(Cn + Cp) (2∆N1∆N∗1 + 2∆N2∆N∗2 + ∆N3∆N∗3 ) (A.7b)

GAuger
2 =− [Cn(2Ncst + Pcst) + Cp(Ncst + 2Pcst)] (∆N1∆N1 + 2∆N∗1 ∆N3)

− 6(Cn + Cp)∆N1∆N∗2 ∆N3 (A.7c)

GAuger
3 =− 2 [Cn(2Ncst + Pcst) + Cp(Ncst + 2Pcst)] ∆N1∆N2

− (Cn + Cp)(3∆N∗1 ∆N2∆N2 + ∆N1∆N1∆N1) (A.7d)

(A.7e)

Let us move on to the SRH recombination rate. First, we linearize the denominator
of equation (4.44). In other words, the nonlinearity induced by the denominator of the
SRH recombination rate is only taken in first order. The denominator is expanded as
follows

1

τp(N + niγn) + τn(P + niγp)
≈Den0

{
1−Den0(τp + τn)[

(∆N1 exp(iωt) + ∆N∗1 exp(−iωt)
∆N2 exp(2iωt) + ∆N∗2 exp(−2iωt)

∆N3 exp(3iωt) + ∆N∗3 exp(−3iωt)
]}

, (A.8)

where

Den0 =
1

τp(Ncst + niγn) + τn(Pcst + niγp)
. (A.9)

In the context of our investigations, this assumption proves to be good since the constant
mode of the carrier distribution (doping and constant mode of the excess carrier distri-
bution) is always larger than the other components, whether at low or high injection.
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Expanding the complete equation (4.44), the SRH recombination rate reads

RecSRH
0 =RecSRH

cst

−Den2
0(τn + τp)

[
2(Pcst +Ncst)(∆N1∆N∗1 + ∆N2∆N∗2 + ∆N3∆N∗3 )

+ 6<
(
2∆N1∆N2∆N∗3 + ∆N2

1 ∆N∗2
)]

+ Den0(2∆N1∆N∗1 + 2∆N3∆N∗3 + 2∆N2∆N∗2 ), (A.10)

where

RecSRH
cst = Den0(NcstPcst − n2

i γnγp) (A.11)

is the SRH recombination rate when only the probe and the constant mode of the pump
irradiance are shining. It can be seen that more constant recombinations occur under
harmonic excitation than in time-independent conditions. This leaves room for harmonic
generation.

The fundamental mode of the SRH recombination rate is7

RecSRH
1 =∆RecSRH

cst

−Den2
0(τn + τp)

[
(Pcst +Ncst)(−∆N∗1 ∆N1 + 2∆N∗2 ∆N3 + 2∆N∗1 ∆N2)

+ 6∆N1∆N3∆N∗3 + 3∆N2
2 ∆N∗3 + 3(∆N∗1 )2∆N3

+ 6∆N1∆N2∆N∗2 + 2∆N2
1 ∆N∗1 +NcstPcst∆N1

]
+ Den0(−∆N1∆N∗1 + n2

i γnγp + 2∆N∗1 ∆N2 + 2∆N∗2 ∆N3), (A.12)

where

∆RecSRH
cst =−Den2

0(τn + τp)∆N1

[
(Pcst +Ncst)∆N

∗
1 + ∆N1∆N∗1 − n2

i γnγp
]

+ Den0

[
(Pcst +Ncst)∆N1 + ∆N1∆N∗1 − n2

i γnγp
]

(A.13)

Similar to Auger recombinations, the second and third harmonics of the SRH recom-
bination rate are written as

RecSRH
2 =

∆N2

τSRH
2

−GSRH
2 (A.14a)

RecSRH
3 =

∆N3

τSRH
3

−GSRH
3 , (A.14b)

where τSRH
2 (resp. τSRH

3 ) and GSRH
2 (GSRH

3 ) respectively represent the pseudo SRH
recombination lifetime and generation rate of the second (resp. third) harmonic. It can

7Similar to Auger recombinations, a few constant terms have been added in this expression in

order to artifically have ∆RecAuger
cst to appear. They however disappear in the actual expression.
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be easily proven that

1

τSRH
2

=−Den2
0(τn + τp)(NcstPcst − n2

i γnγp + 6∆N1∆N∗1 + 3∆N2∆N∗2 + 6∆N3∆N∗3 )

+ Den0(Pcst +Ncst) (A.15a)

1

τSRH
3

=−Den2
0(τn + τp)(NcstPcst − n2

i γnγp + 6∆N1∆N∗1 + 6∆N2∆N∗2 + 3∆N3∆N∗3 )

+ Den0(Pcst +Ncst) (A.15b)

GSRH
2 =−Den2

0(τn + τp)[(Ncst + Pcst)(2∆N∗1 ∆N3 + ∆N2
1 )

+ 6∆N1∆N∗2 ∆N3 + 6∆N1∆N∗1 ∆N2]

+ Den0(2∆N∗1 ∆N3 + ∆N2
1 ) (A.15c)

GSRH
3 =−Den2

0(τn + τp)[2(Ncst + Pcst)∆N1∆N2 + 3∆N∗1 ∆N2
2 + ∆N3

1 ]

+ 2Den0∆N1∆N2 (A.15d)

A.7.1 Harmonic Generation due to Auger Recombinations

To confirm that the harmonics generated by the nonlinear Auger recombination rate
are of negligible amplitude, we have implemented and solved the system of four coupled
equations solving for the constant mode, fundamental mode, second and third harmonics
of the excess carrier distribution in a homogeneously doped silicon substrate.

The obtained amplitudes are shown as a function of p-type doping concentration in
Figure A.13 (Da1 = 0 and no BGN are assumed). It can be seen that the second and third
harmonics are smaller than 1% of the constant and fundamental modes, independently
from doping. Similarly, the error made on the constant and fundamental modes of the
excess carrier distribution when neglecting the harmonic generation of the nonlinear
recombination rate is also negligible.
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Figure A.13: Variation with doping in (a) the constant mode, (b) the amplitude of the fundamental
mode, (c) the amplitude of the second harmonic and (d) the amplitude of the third harmonic of the
excess carrier distribution, solutions of equations (4.32). These calculations take consideration of
the second and third harmonic generation of the Auger and SRH recombination process [equations
(A.2) to (A.15)] but neglect the effects of Da1 and BGN. The blue lines (right scales) underline the
relative error made on the constant and fundamental modes when the second and third harmonics are
neglected.
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