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Abstract

Most model selection mechanisms work in an ‘overall’ modus, providing models without
specific concern for how the selected model is going to be used afterwards. The focussed
information criterion (FIC), on the other hand, is geared towards optimum model
selection when inference is required for a given estimand. In this paper the FIC method
is extended to weighted versions. This allows one to rank and select candidate models
for the purpose of handling a range of similar tasks well, as opposed to being forced
to focus on each task separately. Applications include selecting regression models
that perform well for specified regions of covariate values. We derive these wFIC
criteria, give asymptotic results, and apply the methods to real data. Formulae for
easy implementation are provided for the class of generalised linear models.

Key-words: focussed information criterion, model selection, regression models.

1 Introduction

Model selection is most often the starting point of any data analysis. It is therefore of

importance to carefully address this modelling step. Most model selection tools attach to

each potential model a number, and then proceed by picking the model with the best (usually

either smallest or largest) value of this number. Traditional model selection techniques work

this way, such as Mallows’s Cp (1973) for linear regression or the more generally applicable

information criteria AIC (from Akaike, 1974) and BIC (from Schwarz, 1978). Once a model

is selected, the actual estimation takes place in the selected model.
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The focussed information criterion (Claeskens and Hjort, 2003) is also in this spirit,

though distinguishes itself from the other information criteria in that it can be directed

– focussed – towards a specific purpose. A model selected to estimate, for example, the

mean return of an investment taken place in one month, should not necessarily be the same

as the model to be used to estimate the mean return one year further in time. Or, in

medical studies, the model which is best for estimating the survival probability should not

be expected to be the same as the best model for estimating the median survival time. In the

construction of the FIC we therefore start by specifying the focus parameter, the quantity

we wish to estimate, and then use this information to obtain the actual FIC value via an

estimator of the mean squared error of the focus parameter’s estimator. When the focus

parameter changes, also the value of the FIC might change, leading to a possibly different

selected model.

The main issue addressed in this paper is that in many situations, the focussed infor-

mation criterion demands too much focus of its user, so to speak. For example, for regression

models the FIC can easily be used to select a model for the mean response value for a given

single covariate position. This is sometimes of relevance, and one may take a ‘median’ or

‘average’ covariate position; but in other situations one wishes to construct a model that

does well across many covariate positions.

To address this problem, we derive a weighted focussed information criterion, where we

attach to each potential model a single wFIC value, valid over all or part of the covariate

space. To explain matters clearly, we mainly concentrate on the class of generalised linear

models, though our arguments and methods would extend without serious difficulties to more

general regression models. More information on generalised linear models can be found in

the books by McCullagh and Nelder (1989) and Dobson (2002).

Section 2 briefly reviews the FIC method, in a setting of generalised linear models.

Working with weighted versions of mean squared errors, across all or a subset of covariates,

leads in Section 3 to the weighted FIC method. The wFIC method relies on weights that

are user- and context-specific. Applying a specific weighting scheme, with what we term glm

weights, gives a procedure that turns out to be large-sample equivalent to the AIC. This is

discussed in Section 4, along with some other weighting schemes of interest. Strategies for

estimating (and then minimising) more generally formed averaged risks are then taken up

in Section 5. Practical data examples, showing the applicability of the method, appear in

Section 6. Section 7 offers some concluding comments, indicating the further scope of our

work.
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2 The FIC for generalised linear models

Let the observed data be denoted Y1, . . . , Yn, together with observed covariate information

c1, . . . , cn. In a model selection situation the cis are vector valued and we wish to build

methods that somehow manage to select the components of most relevance. Often, we are

sure about including some of these covariates in the model (an intercept is an example of

this), so that the actual selection should take place over the other variables. Notationally

we split the covariate vector ci into two parts, the ‘protected’ xi with say p covariates that

are deemed necessary a priori and the ‘open’ zi containing the say q remaining covariates,

amongst which we intend to perform the selection.

2.1 The GLM class

For a generalised linear model (glm), there is a monotone differentiable link function g(·)
such that

g(E(Yi |xi, zi)) = xt
iβ + zt

iγ for i = 1, . . . , n, (1)

mapping the mean response to a linear predictor defined in terms of regression coefficients

β1, . . . , βp and γ1, . . . , γq. Thus selecting which covariate components zi,j to include amounts

to determining which γjs to keep in the model; excluding component zi,j corresponds to

using γj = 0. For (classical) linear models, the link function is the identity function. For

other examples, see Section 2.3.

We assume that Y1, . . . , Yn are independent with density function belonging to an ex-

ponential family of the form

f(yi; θi, φ) = exp
{yiθi − b(θi)

a(φ)
+ c(yi, φ)

}
for y ∈ Y ,

where the sample space Y is the same in each case and does not depend on the unknown

parameters θi and φ. The functions a(·), b(·) and c(·, ·) are fully specified. The b(·) function

plays a crucial role since its derivatives yield the mean and variance function, while a(φ) is

a scale parameter. From the two first Bartlett identities, about moment properties of the

first and second log-derivatives of the density, follow

ξi = E(Yi |xi, zi) = b′(θi) and Var(Yi |xi, zi) = a(φ)b′′(θi).

This expresses θi as a function of the mean response, given the covariates. When the so-called

canonical link function is used, that is, g(·) = (b′)−1(·), then θi = g(ξi) = xt
iβ + zt

iγ.
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2.2 The pointwise FIC for GLM

Here we derive explicit expressions for the FIC when applied to the linear predictor µ =

xtβ + ztγ = g(E(Y |x, z)) associated with a given position (x, z) in the covariate space. The

(pointwise) FIC is large-sample equivariant under smooth transformations, so the FIC for

µ(x, z) will essentially yield the same model ranking as the FIC for ξ(x, z) = E(Y |x, z).

One of the main ingredients for computing the FIC is the (normalised) Fisher informa-

tion matrix Jn,wide, computed via the second order partial derivatives of the log-likelihood

function with respect to (β, γ). We partition the matrix Jn,wide as

Jn,wide =

(
Jn,00 Jn,01

Jn,10 Jn,11

)
,

such that the block Jn,11 in the lower right corner has dimension q × q. In our calculations

we will frequently need the the lower right submatrix of dimension q× q of J−1
n,wide, which we

name Kn. This matrix may be found as Kn = (Jn,11 − Jn,10J
−1
n,00Jn,01)

−1.

For several members of the generalised linear model family, the scale parameter φ is

either known or completely specified. Examples are the Poisson and binomial distribution,

where a(φ) = 1, or the normal distribution with known variance. In case φ is known, the

information matrix takes a simple and general form, making it easy to compute in the full

generality of generalised linear models. We first decompose the n × (p + q) design matrix

into X = (xt
1, . . . , x

t
n)t of dimension n× p and Z = (zt

1, . . . , z
t
n)t of dimension n× q. Then

Jn,wide =
1

n

n∑

i=1

1

a(φ)
vi

(
xi

zi

) (
xi

zi

)t

=
1

n

1

a(φ)

(
XtV X XtV Z

ZtV X ZtV Z

)
,

where V is the diagonal weight matrix diag(v1, . . . , vn), with different formulae available for

vi = v(xi, zi). One has

vi = [b′′(θi){g′(ξi)}2]−1 =
b′′(θi)

a(φ)

(∂θi

∂ηi

)2
, (2)

where ηi = g−1(ξi) = xt
iβ + zt

iγ and ξi = E(Yi |xi, zi) = b′(θi). For the situation with φ

known, therefore, the Kn matrix takes the form

Kn = a(φ){n−1ZtV (I −X(XtV X)−1XtV )Z}−1. (3)

For canonical link functions, where θi = ηi, matters simplify to vi = b′′(xt
iβ + zt

iγ)/a(φ).

When the scale parameter φ is not known, such as with the normal distribution with

unknown mean and variance, or the gamma distribution, we shall argue that formula (3)

is still valid for Kn. This is because of an orthogonality property, namely that the mixed

second derivatives of the log-likelihood function, with respect to φ and β or γ, are seen to
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have mean zero. Thus the full information matrix takes the form

Jn,wide =




Jn,scale 0 0

0 n−1a(φ)−1XtV X n−1a(φ)−1XtV Z

0 n−1a(φ)−1ZtV X n−1a(φ)−1ZtV Z


 ,

where Jn,scale is the required −n−1 ∑n
i=1 E∂2 log f(Yi; θi, φ)/∂φ2. This implies that the q × q

lower right hand corner of the inverse information matrix remains as in (3). For the normal

distribution with φ = σ and a(σ) = σ2, for example, one finds Jn,scale = 2/σ2.

We may now describe the FIC procedure for selecting the tentatively best model for

estimating the focus parameter µ = µ(x, z) = xtβ + ztγ. The criterion works specifically

for the given (x, z) position in covariate space; if required, the procedure can be repeated

for several positions. Different submodels are indexed by the various subsets S of covariate

components 1, . . . , q, ranging from the empty set to the full list. For each submodel S one

can evaluate the estimate

µ̂S(x, z) = xtβ̂S + (πSz)tγ̂S = xtβ̂S + zt
S γ̂S (4)

that uses maximum likelihood estimates (β̂S, γ̂S) in the model that employs all of β1, . . . , βp

but only those γj for which j ∈ S. Here πS is the |S| × q projection matrix that sends z to

πSz = zS, the vector of only those zj for which j ∈ S, and |S| is the number of components

in S. The essence of the FIC is to estimate the mean squared error for each candidate

estimator and then to pick the one with lowest possible mean squared error estimate.

We need the vector ω = Jn,10J
−1
n,00

∂µ
∂β
− ∂µ

∂γ
, which here reads

ω = ZtV X(XtV X)−1x− z,

no matter whether φ is known or not. Note the dependence of ω on (x, z). Note furthermore

that premultiplying vS = πSv with πt
S produces a vector πt

SπSv of full length q, with zeroes

inserted for those components j with j 6∈ S. Define next Kn,S = (πSK−1
n πt

S)−1, which is the

|S| × |S| lower right block of the inverse of Jn,S, the information matrix for the S model,

and let finally Gn,S = πt
SKn,SπSK−1

n . The value of the focussed information criterion is now

obtained as

FIC(S; x, z) = nωt(Iq −Gn,S)γ̂wideγ̂
t
wide(Iq −Gn,S)tω + 2ωtπt

SKn,SπSω, (5)

with γ̂wide being the maximum likelihood estimator of γ in the largest of the considered

models, i.e. the one containing all of γ1, . . . , γq. For given values of (x, z), the best model

according to the FIC is that model, indexed by S, for which FIC(S; x, z) is the smallest.

The FIC stems from estimating and then adding a squared bias term and a variance

term; see Claeskens and Hjort (2003) for further discussion and applications. There is a

natural modification of (5) for the case of the squared bias being estimated with a negative

number; in such cases we truncate that term to zero. For further discussion of this point,

see also relevant comments in Hjort and Claeskens (2006).
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2.3 Examples

Here we present a short list of examples that fit in with the general framework above. Each

model may be fitted using statistical software packages, and the Jn and Kn matrices are

easily computed via the appropriate form of the vi weights. For each situation one may use

(5) to determine the best submodel for estimating xtβ + ztγ, or for any smooth function

thereof, like E(Y |x, z) or the median response median(Y |x, z).

1. Consider a non-linear normal regression setup where Yi is normal (θi, σ
2), with

θi = r(xt
iβ + zt

iγ) for some specified function r(η). Then b(θ) = 1
2
θ2, and the glm weights

of (2) become vi = r′(xt
iβ + zt

iγ)2/σ2. The ordinary linear normal model corresponds to

r(η) = η with weights vi = 1/σ2.

2. Assume the Yis are Poisson with parameters ξi = exp(xt
iβ + zt

iγ). This is Poisson

regression with canonical link function. Then b(θ) = exp(θ), and vi = exp(xt
iβ + zt

iγ).

3. Then let Yi be binomial (mi, pi), with pi = H(xt
iβ + zt

iγ), for a suitable distribution

function H. This is again a generalised linear model with b(θi) = mi log{1 + exp(θi)}, and

one finds

vi = miH
′(ηi)

2/[H(ηi){1−H(ηi)}],
with ηi = xt

iβ + zt
iγ. This can be used for probit regression, for example, where pi =

Φ(ηi) with the cumulative standard normal. For logistic regression matters simplify to

vi = mipi(1− pi).

4. Suppose positive observations Yi are modelled with Gamma distributions (c, di),

where c is fixed but di = exp(xt
iβ + zt

iγ). We use the parametrisation where the mean of Yi

is ξi = c/di. Here one finds vi = c, simply. Thus the Jn,wide matrix is proportional to the

sample variance matrix of the covariate vectors.

Suppose on the other hand that Yi is taken to be Gamma with parameters (ci, d),

this time with d fixed and flexible ci = exp(ηi), with again ηi = xt
iβ + zt

iγ. This actu-

ally corresponds to a generalised linear model in terms of the log Yi, and one finds vi =

exp(2ηi)ψ
′(exp(ηi)), where ψ′ is the trigamma function, the derivative of ψ = Γ′/Γ.

3 The weighted FIC for generalised linear models

Due to the dependence of the focus on the covariate values (x, z), also the FIC takes different

values, and will produce different rankings of candidate models, for different locations in the

covariate space. Sometimes we choose an average or median value for the regression variables

(x, z), to represent some ‘average’ or ‘median’ subject, sometimes inside a stratum. Often,

such a detailed focus point is not wanted, one might rather wish to find a good model which

works well over a major part of, or over all of, the covariate space. We wish to select a good
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model valid for a range of individuals simultaneously, say for a subgroup of the population.

We continue to use the generalised linear model setting of the previous section. To reach

precise results and concise arguments for our weighted-focussed model selection schemes we

shall employ a local misspecification framework where the true parameter is of the form

(β, γ) = (β0, δ/
√

n). Here δ = (δ1, . . . , δq)
t is fixed and unknown. This is as in Hjort and

Claeskens (2003a) and Claeskens and Hjort (2003); see also the rejoinder Hjort and Claeskens

(2003b) to the discussion of these papers. The idea is to prove results about model selectors

and estimators in terms of the local model misspecification parameter δ, and to use such for

developing appropriate model information criteria.

3.1 Some preliminary results

Suppose in general terms that a parameter of interest µ(β, γ; u) depends on some quantity

u that varies in the population being studied. Under the framework outlined above, the

true parameter value is µ(β0, δ/
√

n; u). We shall now use results developed in Hjort and

Claeskens (2003) and Claeskens and Hjort (2003), with suitable modifications. These rely

on certain regularity conditions, detailed in these papers. These conditions are mild, and

are not repeated in detail here. One such condition that we need to mention here, in order

to adequately identify the appropriate limits below, is the existence of a limit matrix J to

which Jn,wide converges, with blocks J00, etc. Similarly this defines limit versions K of Kn,

and a fortiori JS and KS, limit versions of Jn,S and Kn,S. Also, KS = (πSK−1πt
S)−1, the

lower right block (J−1
S )11 of JS.

For each u the theory as developed in Claeskens & Hjort (2003) applies to the subset-

model-based maximum likelihood estimators µ̂S(u), for which we have

√
n{µ̂S(u)− µtrue(u)} d→ ΛS(u) = (∂µ(β,γ;u)

∂β
)tJ−1

00 M + ω(u)t(δ − πt
SKSπSK−1D),

where ω(u) = J10J
−1
00 ∂µ(β, γ; u)/∂β − ∂µ(β, γ; u)/∂γ, with partial derivatives evaluated at

the null point (β0, 0). Furthermore, M ∼ Np(0, J00) and D ∼ Nq(δ,K), and these random

vectors are independent. The (M,D) variables are needed in Section 5, and furthermore the

variables (CS, DS) that appear now are linear functions of (M, D).

For a fixed set S and a fixed focus point, Lemma 3.2 of Hjort and Claeskens (2003)

applies, and yields

(√
n(β̂S − β0)√

nγ̂S

)
d→

(
CS

DS

)
∼ Np+|S|(ξS, J−1

S ),

where

ξS =

(
J−1

00 J01(Iq − πt
SKSπSK−1)δ

KSπSK−1δ

)
.
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A special case of importance is that of S being the full set {1, . . . , q}, for which

δ̂wide =
√

nγ̂wide
d→ D ∼ Nq(δ,K). (6)

For convenience of notation we adopt the notion that estimators without subset-subscript

correspond to the full model, with all γ1, . . . , γq parameters; thus δ̂ = δ̂wide, etc.

The S-indexed model works with estimates γ̂S for γj with j ∈ S but uses 0 for j /∈ S.

To deal efficiently with different functions of these it will be convenient to introduce the

extended projection matrix of dimension (p + |S|)× (p + q),

π̃S =

(
Ip 0p,q

0|S|,p πS

)
.

Allow also the introduction of the q × q matrix GS = πt
SKSπSK−1. Then

√
n

(
β̂S − β0

πt
S γ̂S − δ/

√
n

)
d→

(
CS

πt
SDS − δ

)
,

which is seen to have mean vector and variance matrix

FSδ =

(
J−1

00 J01(Iq −GS)

−(Iq −GS)

)
δ and ΓS = π̃t

SJ−1
S π̃S.

3.2 The wFIC for GLM

Consider again the linear predictor µ(x, z) = xtβ+ztγ, and the collection of submodel-based

estimators (4). The vector β̂S is always of length p, but takes on different values for different

index sets S. In contrast, the estimator γ̂S has length |S|. The construction of the weighted

FIC proceeds as follows. We start with the weighted average quadratic loss function on the

scale of the linear predictor, of the form

Ln(S) =
n∑

i=1

w(xi, zi){µ̂S(xi, zi)− µtrue(xi, zi)}2 (7)

=
n∑

i=1

w(xi, zi)(x
t
iβ̂S + zt

i,S γ̂S − xt
iβ0 − zt

iδ/
√

n)2.

The weights w(xi, zi) are user-specified and in general different from the weights v(xi, zi)

in the glm weight matrix V . We shall show that this random loss has a limit distribution,

under mild regularity conditions. Let

Ωn,w =
1

n

n∑

i=1

w(xi, zi)

(
xi

zi

) (
xi

zi

)t

, (8)

and assume this matrix converges in probability to a nonnegative definite Ωw, depending of

course on the weight function w(x, z).
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To properly study the random loss function it is convenient to express it as

Ln(S) = n

(
β̂S − βtrue

πt
S γ̂S − γtrue

)t

Ωn,w

(
β̂S − βtrue

πt
S γ̂S − γtrue

)
.

From conditions and results noted above,

Ln(S)
d→ L(S) =

(
CS

πt
SDS − δ

)t

Ωw

(
CS

πt
SDS − δ

)
.

Under mild conditions, the expected loss w-riskn(S) = E Ln(S) will converge to w-risk(S) =

E L(S). The limit loss L(S) is a quadratic form in normal variables, and has mean value

w-risk(S) = E L(S) = δtF t
SΩwFSδ + trace(ΩwΓS)

= trace(ΩwFSδδtF t
S) + trace(ΩwΓS)

= I(S) + II(S),

say, involving matrices FS and ΓS defined above. We see that the I(S) term corresponds to

weighted squared bias whereas the second term II(S) is related to weighted variance. By

earlier efforts, this second term can be expressed as II(S) = trace(Ωwπ̃t
SJ−1

S π̃S).

This leads upon estimating unknown quantities to a weighted-focussed information

criterion. The second term is not problematic, and we use

ÎI(S) = trace(Ωn,wπ̃t
SĴ−1

n,Sπ̃S),

where Ĵn,S is the appropriate sub-matrix of

Ĵn =
1

n

1

a(φ̂)

n∑

i=1

v̂i

(
xi

zi

) (
xi

zi

)t

=
1

n

1

a(φ̂)

(
XtV̂ X XtV̂ Z

ZtV̂ X ZtV̂ Z

)
,

and v̂i is the estimated version of (2), inserting xt
iβ̂wide + zt

i γ̂wide for the linear predictor

xt
iβ + zt

iγ. See the examples in Section 2.3. For the first term, we note that

δ̂δ̂t = nγ̂γ̂t d→ DDt,

a variable with mean δδt + K; recall the convention noted around (6) that γ̂ means γ̂wide,

etc. We therefore use

Î(S) = trace{Ωn,wF̂S(δ̂δ̂t − K̂n)F̂ t
S} if this is positive,

= 0 if otherwise.

The weighted focussed information criterion consists in evaluating

wFIC(S) = Î(S) + ÎI(S) (9)
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for each candidate model S, and in the end selecting the model with smallest value of this

estimated average risk. Note that all components of the above expressions are easily obtained

via standard output of any software fitting generalised linear models.

Remark 1. When more components are put into S, the I(S) term becomes smaller;

for S equal to the full {1, . . . , q} we find FS = 0, making I(wide) = 0. On the other hand,

with more components in S, the bigger is the variance II(S). Thus the wFIC method reflects

the squared modelling bias against variance balance.

Remark 2. In linear models the expression for the pointwise (unweighted) FIC has

been shown to be exact, see Claeskens and Hjort (2003), Section 5.5. There it is shown that,

without assuming normality and when using least squares estimators, the exact expression

for the mean squared error matches that obtained by FIC. This is a favourable property

which helps appreciating the obtained expression of the FIC. More precisely, in a linear

model with Yi = xt
iβ + zt

iγ + εi, where µ = xtβ + ztγ is to be estimated, we use least squares

estimators in a submodel indexed by S, leading to the estimator µ̂S = xtβ̂S + (πSz)tγ̂S.

Computing the exact bias and variance of this estimator leads to the following expression

for the mean squared error of µ̂S:

n−1(xtJ−1
n,00x + ωtπt

SKn,SπSω) + ωt(Iq − πt
SKn,SπSK−1

n )γγt(Iq −K−1
n πt

SKn,SπS)ω. (10)

This is, up to a constant not depending on the subset S, identical to the limiting expression

on which the FIC is based, compare with (5).

The same property holds when a (non-random) weight function w is included in the

loss function Ln in (8). For linear models, computing the exact mean squared error of Ln(S),

with least squares estimators inserted for β̂S and γ̂S, leads to an expression which is equal

to that one which wFIC as in (9) is based upon. Note that the error variance σ2 appears

in the denominator of the matrix Jn as the scaling factor a(σ). There is accordingly a σ2

factor implicitly featuring in the first two terms of (10), but not in the final two terms.

4 GLM weights and the AIC

The wFIC method developed above provides a quite general and versatile model selection

scheme, in that the weights wi = w(xi, zi) are fully user-specified, meant to reflect what

aspects are deemed more important than others for the use of the finally selected model.

The only caveat is that the weights should not be seriously unstable; the mathematical re-

quirement for our asymptotics to go through is that the Ωn,w matrix converges in probability

with increasing sample size. This section discusses various types of weights.
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4.1 GLM weights

The log-likelihood structure of a generalised linear model itself suggests a natural type of

weights for use in the wFIC method. If one chooses w(xi, zi) = vi/a(φ), then Ωn,w = Jn,wide.

This leads to simplifications in the w-risk(S) and wFIC(S) expressions, as we shall see now.

For simplicity of notation and presentation we work directly in the limit experiment, where

J and K etc. replace Ĵn and K̂n etc.; we also write GS = πt
SKSπSK−1. First look at

I(S) = δtF t
SJFSδ, where some manipulations give

JFS =

(
J00 J01

J10 J11

) (
J−1

00 J01(Iq −GS)

−Iq + GS

)
=

(
0

−K−1(Iq −GS)

)
.

This leads with some further efforts to

I(S) = δt(Iq −GS)tK−1(Iq −GS)δ = δt(K−1 −K−1πt
SKSπSK−1)δ,

which is estimated by

Î(S) = trace{(K−1 −K−1πt
SKSπSK−1)(DDt −K)}

= DtK−1D −DtK−1πt
SKSπSK−1D − q + |S|,

as long as this expression is positive; it is otherwise truncated to zero. Next,

II(S) = trace(Jπ̃t
SJ−1

S π̃S) = p + |S|.
This is easily obtained since the effect of pre- and post-multiplication by π̃S is that only

that submatrix of J−1 is kept for which the row (and column) numbers belong to the index

set S, entries on all other rows and columns being replaced by zero. This implies that J is

multiplied by part of its inverse matrix, leading to the simplification p + |S|. This is also

true for the data-based version ÎI(S).

To summarise this, with glm weights the limit risk takes the form

w-risk(S) = δt(K−1 −K−1πt
SKSπSK−1)δ + p + |S|,

and the canonical risk estimate (for the limit experiment) is

Î(S) + ÎI(S) =

{
Dt(K−1 −K−1πt

SKSπSK−1)D + 2|S|+ p− q if N(S) takes place,

p + |S| otherwise.
(11)

Here N(S) is the event that the trace in Î(S) is positive, i.e. that

Dt(K−1 −K−1πt
SKSπSK−1)D > q − |S|.

The N(S) takes place with high probability if δ is some distance away from zero, but in

situations where the underlying γ vector is close to zero, i.e. the narrow model is close to

being correct, the probability that N(S) does not take place is significant. The finite-sample

version of the risk estimate uses δ̂ for D and K̂n and K̂n,S for K and KS.
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4.2 The wFIC and the AIC

Now consider Akaike’s information criterion, which in the present circumstances takes the

form

AIC(S) = 2
n∑

i=1

log f(yi; θ̂i, φ̂)− 2(p + |S|),

with θ̂i being the appropriate maximum likelihood estimate of θi = θ(xi, zi), which again

depends on β̂S and γ̂S. The AIC scores may be computed for each submodel S, down to

that of the most narrow model which corresponds to S = ∅ and which uses only β1, . . . , βp, φ

as model parameters. When subtracting the smallest model’s AIC value from AIC(S),

and performing a one-step Taylor expansion, we find that, for the limiting situation where

n →∞,

AIC(S)− AIC(∅) d→ DtK−1πt
SKSπSK−1D − 2|S|.

See Claeskens and Hjort (2003, eq. (2.5)). The best models have the highest AIC scores.

We see from this and (11) that the wFIC method, when using glm weights, is essentially

large-sample equivalent to the AIC method. The word ‘essentially’ relates to the modification

for truncating an estimate of a squared bias to zero, when relevant, spelled out in (11).

Thus the wFIC provides a fresh perspective on the AIC, and our arguments even suggest a

correction to the AIC scores in cases where the event N(S) does not take place.

One may go through the list of examples in Section 2.3 to see the appropriate random

loss functions that correspond to the AIC. For the logistic regression setup of Example 3 in

that section, for example, model selection by estimating the mean of

Ln(S) =
n∑

i=1

mip(xi, zi){1− p(zi, zi)}
(
log

p̂i,S

1− p̂i,S

− log
p̂i

1− p̂i

)2

is essentially the same as AIC. Here p̂i,S is the estimated probability under model S. Simi-

larly, for Poisson regression, basing model selection on estimating

w-riskn(S) = E
n∑

i=1

exp(xt
iβ + zt

iγ)(log λ̂i,S − log λi)
2

will be large-sample equivalent to the AIC scheme, where λ̂i,S is the estimate of Poisson rate

i inside the S model. Of course other weights and other transformations can be worked with,

for logistic and Poisson regression, and such alternatives can in the perspective developed

here be seen as cousins to the AIC method.

4.3 Other types of weights

In addition to the perhaps canonical glm weights choice discussed above, the following types

of weights may be considered.
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Uniform weights. A simple choice of weights could just assign mass 1/n to each con-

tribution in the summand, with Ωn matrix simply equal to the empirical variance matrix of

the p + q-sized covariate vectors. Another choice is to let wi = 1 precisely for individuals i

belonging to a stratum of interest. This is exemplified in Section 6.

Gliding covariate window. A version of the above is to use wi = w(xi, zi; x0) equal to

1 for individuals inside a certain neighbourhood of some fixed x0. This gives a ranking of

candidate models around each fixed x0. Smoothed versions can also be contemplated, also

in a context of model assessment where the x0 is moved in its covariate space. A good final

model, then, should rank highly in all these local competitions.

Averaging over z for fixed x. Another version with some appeal is to assess models in

terms of how well they perform for a given covariate x, averaged across all likely z values.

To indicate in one particular fashion how this may be handled, let

wi ∝ f(zi − ξx, Σx),

in terms of the density f of the multinormal density Nq(0, Σx), where ξx and Σx are the

estimated mean and variance matrix for z given x.

Robust weights. There is a whole area of research addressing issues related to robust

model choice. Robustness is concerned with the downweighting (and sometimes identifi-

cation) of data vectors that are ‘outliers’ or that may exert too strong an influence on

maximum likelihood estimators. The methodology developed in this paper sticks to the

maximum likelihood estimators, as such, but the weight function of the wFIC allows down-

weighting schemes that make model selection less dependent on extreme data vectors. One

version of this would be

w(xi, zi) = h(‖(xi, zi)− (x0, z0)‖) for i = 1, . . . , n,

where the norm in question could measure a suitable distance from covariate vectors to some

robustly identified centre location (x0, z0), and where h(u)could be taken as 1 over a broad

interval, but made to go to zero beyond that interval. Another choice is h(u) = exp(−c|u|)
for a perhaps small value of c. Such a scheme assures robustness with respect to extreme or

overly influential covariate vectors.

Note before we come to the next point that the wFIC methodology also works with

weights more general than wi = w(xi, zi), as long as the Ωn,w matrix of (8) converges in prob-

ability. Thus weights of the form wi = h(resi), functions of suitably defined glm residuals,

are allowed. One such version, among several, is

wi = h(resi) =

{
1 if |resi| ≤ c,

c/|resi| if |resi| > c,

13



where resi = (Yi− ξ̂i)/σ̂i, featuring (perhaps robustified) estimates of mean and standard de-

viation for Yi. Weights of this type are dicussed, in a rather different context of robust linear

regression, by Ronchetti and Staudte (1994), who also find that c = 1.345 is a reasonable

default value for this weight function.

5 General risk averages

Above we developed a wFIC method for estimating naturally weighted averaged risks in

generalised linear models. Sometimes different risk averages are called for, however, and this

section extends the wFIC to handle such cases. We choose to stay inside the glm framework

exposited at the start of Section 3, although more general situations can be considered. A

brief motivating example is as follows: Suppose Yi data are exponentially distributed with

parameters θi = exp(xt
iβ + zt

iγ), and that one wishes to estimate the quantile distribution

µ(u) = µ(u |x, z) = {− log(1− u)}/ exp(xt
iβ + zt

iγ) for u ∈ (0, 1).

How can we select a model that provides good estimates µ̂S(u) across all deciles u =

0.1, . . . , 0.9, say?

Assume in general terms that a parameter µ(u) is to be estimated, defined in terms of

the parameters (β, γ) of a generalised linear model, and depending on some parameter u that

may or may not depend on the covariates. As in previous sections limit distributions will

be established in the framework where (β, γ) = (β0, δ/
√

n), aiming at providing adequate

finite-sample approximations for risks and averaged risks. We have

√
n{µ̂S(u)− µtrue(u)} d→ ΛS(u) = (∂µ(u)

∂β
)tJ−1

00 M + ω(u)t(δ −GSD),

where ω(u) = J10J
−1
00 ∂µ/∂β−∂µ/∂γ and GS = πt

SKSπSK−1; also, M and D are independent,

and M ∼ Np(0, J
−1
00 ) and D ∼ Nq(δ,K). Consider the loss average function

Ln(S) = n
∫
{µ̂S(u)− µtrue(u)}2 dWn(u),

where Wn represents some relevant distribution of u values, like the deciles in the quantile

example above. Assuming Wn converging to a suitable weight distribution W (or that it

simply stays fixed, independent of sample size), we have

Ln(S)
d→ L(S) =

∫
ΛS(u)2 dW (u)

under mild conditions. We measure the total averaged risk via the expected value of Ln,

which converges to

w-risk(S) = E L(S) =
∫

EΛS(u)2 dW (u),
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again under mild conditions. Here

EΛS(u)2 = τ0(u)2 + ω(u)tE(δ −GSD)(δ −GSD)tω(u)

= τ0(u)2 + ω(u)t{(Iq −GS)δδt(Iq −GS)t + K−1
S }ω(u)

in terms of τ0(u)2 = (∂µ(u)
∂β

)tJ−1
00

∂µ(u)
∂β

and the variance matrix

Var GSD = GSKGt
S = πt

SKSπSK−1πt
SKSπS = πt

SKSπS.

This leads to the expression

w-risk(S) =
∫

τ0(u)2 dW (u) + trace{(Iq −GS)δδt(Iq −GS)tR}+ trace(πt
SKSπSR) (12)

for the limit risk, where

R =
∫

ω(u)ω(u)t dW (u).

The first term is immaterial since it does not depend on S, so our generalised wFIC naturally

becomes

wFIC(S) = Î(S) + ÎI(S)

= max[trace{(Iq − Ĝn,S)(δ̂δ̂t − K̂n)(Iq − Ĝn,S)tR̂}, 0] + trace(πt
SK̂n,SπSR̂).

Here R̂ is a sample-based estimate of the R matrix.

This more general wFIC can be applied when one wishes to consider average risk across

both covariates and quantiles, for example.

6 Illustrations and applications

6.1 Diabetic retinopathy data

The Wisconsin Epidemiologic Study of Diabetic Retinopathy (Klein et al., 1984) provides

information to study diabetic retinopathy as a function of several other measurements. The

dataset consists of patient information for 348 men and 343 women. The binary outcome

variable Y = 0 indicates whether there is no or only mild nonproliferate retinopathy on both

of the eyes. A value Y = 1 is obtained when there is moderate to severe nonproliferate

retinopathy, or proliferate retinopathy for at least one of the eyes. Variables measured

are: duration of diabetes in years (x1), presence of macular edema in at least one eye (z1),

percentage of glycosylated hemoglobin (z2), body mass index (z3), pulse rate in beats per 30

seconds (z4), sex (z5, with 1 for male and 0 for female), presence of urine protein (z6), and

area of residence (urban or rural, z7).

A logistic regression model is used for the analysis. Since in earlier analysis of this

dataset it is found that duration of diabetes is an important variable (see for example
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Table 1: Values of the weighted focussed information criterion, where

weights are indicator values for men (1st column) and for women (3rd col-

umn), together with the selected variables. All logistic regression models

contain an intercept term, as well as the variable x1, duration of diabetes.

Men Women

wFICM z-variables wFICF z-variables

21.201 1,4,6 24.828 1,4,6

23.270 1,3,4,6 24.974 1,4,6,7

24.230 1,2,4,6 26.155 1,2,4,6

24.393 1,4,6,7 26.160 1,3,4,6

27.590 1,2,3,4,6 28.072 1,2,4,6,7

27.767 1,3,4,6,7 28.616 1,3,4,6,7

28.680 1,2,4,6,7 28.673 1,2,3,4,6

29.982 1,4,5,6 31.096 1,4,5,6

31.186 1,3,4,5,6 31.636 1,4,5,6,7

31.345 1,2,4,5,6 32.945 1,3,4,5,6

Claeskens, Croux and Van Kerckhoven, 2006), we include this in all of the models we con-

sider, as well as an intercept term. We perform model selection amongst the other seven

variables and allow for all possible subsets of the full model, leading to 128 possible models.

As a model selection criterion we take first wFICM(S) with weight vector (1/nM)I(male)

and next wFICF (S) with weight vector (1/nF )I(female) where the weights are indicator

variables for men (in case 1) and for women (in case 2), and nM (resp. nF ) denotes the

number of men (resp. women) in the dataset. Note that the values of wFIC(S)are computed

using the complete dataset, we are not splitting the dataset for model selection.

Table 6.1 gives for both criteria the ten smallest values, together with the variables in

the corresponding models. The best model is in both cases the model containing the binary

variables z1: presence of macular edema in at least one of the eyes and z6: indicator for

urine protein, as well as z4: pulse rate. The subgroups differ in the ranking of the next best

models, for men the body mass index (variable z3) is an important variable, while for women

the area of residence (z7) is more important, and z3 only shows in the 4th best ranked model.

Thus we learn that body mass index influences Y in possibly different ways, for men and for

women, which may be taken into account for building a final model.

As a comparison we also used the overall model selection criteria AIC and BIC. The

AIC picks the same model as the FIC does, namely the model with variables z1, z4 and

z6, while the BIC omits from this model the variable z4, pulse rate in beats per second.
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These criteria are computed using the complete dataset. When we would split the data

into the results for men and for women separately and then run the AIC selection method

separately for both data parts, AIC selects the variables z1, z2, z6 for the subset of men, and

variables z1, z4, and z6 for the subset of women. No artificial data splitting is needed for the

computation of the wFIC.

6.2 CH4 concentrations

This example consists of CH4 data, which are atmospheric CH4 concentrations (ppbv) de-

rived from flask samples collected at the Shetland Islands of Scotland (Steele, Krummel and

Langenfelds, 2002). Monthly values are expressed in parts per billion by volume (ppbv). In

total there are 110 monthly measurements, starting in December 1992 and ending December

2001. The regression variable u = time is rescaled to the (0, 1) interval, and the response

variable Y is the CH4 concentration. We use a cosine series estimator based on the model

µ(u) = E(Y |U = u) = β0 +
m∑

j=1

γj cos(πju),

where we will vary the value of m, which is the truncation point of the series. This defines

a sequence of nested models, which fits into the regression context of the previous sections

when defining zj = cos(πju). We wish to select the best order m. In our modelling efforts,

we let m be any number between 1 and 15 (the wide model). A scatter plot of the data is

shown in Figure 1(a). We applied the wFIC(S) method (9) with equal weights wi = 1, and

found that the best model is for m = 2; see the figure.

As a comparison we also computed FIC values for each of the individual 110 measure-

ment months. This means that we take as a focus parameter the mean CH4 concentration at

that particular month (without averaging), which leads to a set of 15 FIC values, one for each

order of m = 1, . . . , 15, and this for each of the 110 months. The results are summarised in

the following frequency table for the individually chosen model by FIC. For example, model

order m = 1 was chosen 75 times in the 110 model selection applications, model order m = 2

was chosen 7 times, etc.

m 1 2 3 5 6 7 10 11

frequency 75 7 1 1 3 5 3 15

The overall chosen model with m = 2 is in this case not the model which was most frequently

selected by the individual searches. Remarkably, the model with order 11 is chosen 15 times

in the individual search. A possible explanation for this is that a high frequency model of

order 11 is reflecting the random variability in the data cloud.

Another set of weights which makes sense for variables measured in time, is that which

gives more weight to more recent measurements. As an example we used the weighting
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Figure 1: (a) Scatterplot of the CH4 data, along with the estimated mean curve for the

m = 2 model. (b) The wFIC(S) values with equal weights wi = 1.

scheme i/n (i = 1, . . . , n = 110), and found in this particular case the same FIC selected

model, namely the model with truncation point m = 2.

6.3 Highway data

To illustrate robust downweighting, we use Hoffstedt’s highway data, see also Weisberg

(2005, Section 7.2). This dataset is used to explain the 1973 accident rate per million vehicle

miles, as a function of several variables. There are 39 observations made. In every model we

include an intercept term and x1, the length of the highway segment in miles. Variables to

choose from are average daily traffic count in thousands (z1), truck volume as a percent of

the total volume (z2), total number of lanes of traffic (z3), number of access points per mile

(z4), number of signalised interchanges per mile (z5), number of freeway-type interchanges

per mile (z6), speed limit in 1973 (z7), lane width, in feet (z8), width of the outer shoulder

on the roadway (in feet) (z9), and finally an indicator of the type of roadway or the source

of funding for the road (z10).

Based on robust Cp model selection, Ronchetti and Staudte (1994) support the model

which includes, in addition to x1, the variables z5, z6, z7 and z10, and also the model with

additional variables z2, z3, z4 and z9. Here we construct weights w1, . . . , w39 based on the

robustification method outlined in Section 4.3; these rely on intially used robust estimators

for the regression coefficients obtained in the full model. Five of the observations receive a

weight which is smaller than one, all other observations get weight one. The weights that
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differ from one are 0.903, 0.568, 0.436, 0.577, 0.811. These weights are then used in the

wFIC(S) construction, and lead to preferring the model with the two variables x1 and z7.

For this particular example, the model selected by FIC is more parsimonious than the model

suggested by Mallow’s Cp.

7 Concluding comments

Our paper has provided a fair middle ground between the extremes ‘blind model selection’

(where a model is found via say AIC or BIC, without any particular regard to the actual

use of the model after selection) and ‘fully focussed selection’ (where a model is selected to

perform optimally for a given estimand). We have seen that special versions of the wFIC

correspond to the AIC for generalised linear models, so our methods may be seen as suitable

generalisations of the AIC for use in situations where the context of one’s modelling and

analysis dictates more specific weighting schemes than the default ones. Below we give

some concluding remarks, pertaining to themes related to but outside the main scope of the

present paper.

1. In this paper we chose to concentrate on the generalised linear models framework,

where methods have a particularly clear structure, but it is clear that the methods can be

generalised to many other regression structures. Thus parametric regression models for mul-

tidimensional data, and for hazard rates with censored data, can be handled with essentially

the same methods. Extensions to the semiparametric Cox model are less immediate, but

can be accomplished via methods of Hjort and Claeskens (2006).

2. Our paper has developed strategies that for each model rely on maximum likeli-

hood (or asymptotically equivalent) estimators. There is a need for generalising methods

and results to more robust strategies, for example involving M-estimators. This is entirely

possible, but requires more work and will result in algebraically and structurally somewhat

less elegant methods.

3. Our wFIC(S) = Î(S) + ÎI(S) is not algebraically equivalent to the simpler one of

averaging individual FIC(S) scores. The two methods are the same only in cases where

there are no modifications of setting negative estimates of squared bias to zero. The wFIC

method, as outlined in Sections 3 and 5, performs the squared bias modification only once,

at the end, as opposed to performing this operation for each individual application.

4. Our methods stem from precise limit distribution results that involve quantities

like J and K, along with further relatives like KS and GS. Our wFIC(S) formulae involve

estimates of these quantities, say Ĵn,S, K̂n,S, and so on. The theory behind the methods

ensure that they work well as long as estimates are used that are consistent, under the local

misspecification framework (β, γ) = (β0, δ/
√

n). Among various possibilities we have chosen

19



to use the ‘wide model perspective’ in our implementations, starting from estimators Ĵn that

use estimates (β̂wide, γ̂wide).

5. We have derived methods for selecting a model, but have not discussed the con-

sequences of having selected the model in this fashion. Methods of Hjort and Claeskens

(2003a) and Claeskens and Hjort (2003) make it however possible to analyse the perfor-

mance of estimator-after-selection, also with the wFIC methods developed in the present

article.

6. Though we have been specifically concerned with model selection, methods of Hjort

and Claeskens (2003a) can be applied to provide model average procedures, say of the type

µ̂ =
∑

S

c(wFIC(S))µ̂S,

a data-dependent average across the estimators of the individual models, with

c(wFIC(S)) = exp{−1
2
κwFIC(S)}

/ ∑

S′
exp{−1

2
κwFIC(S ′)}.

Here κ is an algorithmic parameter, with small κ corresponding to near uniform weighting

while larger κ means giving nearly full weight to the model that wins the wFIC competition.

Methods of that paper also make it possible to study performances of such average estimators,

compared to the more usual estimators-post-selection.

7. Our methods have been developed inside a framework of ‘first order asymptotics’ for

general parametric models. It might be important to supplement such methods by suitable

second order corrections to make them work more precisely for moderate or smaller sample

sizes. The content of Remark 2 of Section 3 is that the wFIC(S) expression is exactly correct

for each finite n > p+q, when used in the linear model with non-random weights. This is an

indication that even the first-order approximations to risks and their estimates are adequate

also in other generalised linear models.

The situation is a bit more complicated when the weights themselves have a random

component, as with the robust type wi = h(resi) discussed in Section 4.3; here approx-

imations stemming from the first-order asymptotics might need adjustments to be more

accurate in practice. In other words, even though demonstrably Ln(S) →d L(S) and

w-riskn(S) → w-risk(S), one can expect the real variance of Ln(S) to be bigger than that of

L(S), in cases with complicated data-dependent weights.
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