
Relational Transformation-based Tagging for Human
Activity Recognition

Niels Landwehr1, Bernd Gutmann1, Ingo Thon1, Matthai Philipose2, and Luc De
Raedt1

1 Department of Computer Science
Katholieke Universiteit Leuven

Celestijnenlaan 200 A, B-3001 Heverlee, Belgium
firstname.lastname@cs.kuleuven.be

2 Intel Research Seattle
1100 NE 45th Street

Seattle, WA 98105, USA
matthai.philipose@intel.com

Abstract. The ability to recognize human activities from sensory information
is essential for developing the next generation of smart devices. Many human
activity recognition tasks are — from a machine learning perspective — quite
similar to tagging tasks in natural language processing. Motivated by this sim-
ilarity, we develop a relational transformation-based tagging system based on
inductive logic programming principles, which is able to cope with expressive
relational representations as well as a background theory. The approach is exper-
imentally evaluated on two activity recognition tasks and compared to Hidden
Markov Models, one of the most popular and successful approaches for tagging.

1 Introduction

Smart systems that assist humans must be able to recognize the current context of the
user and the activity she is performing in order to suggest or take actions in an intel-
ligent manner. To recognize the context and activity, such systems can rely on streams
of past activities, context, and sensory information (visual, object-interaction, ...). Rec-
ognizing the current activity or context then corresponds to inferring the activity or
context from such sequential information. From a machine learning perspective, this
task is akin to many tagging tasks pursued in natural language processing. For instance,
in part-of-speech tagging, a form of ”shallow parsing”, the words in a sentence are to
be labeled with the corresponding parts-of-speech (word categories). Many techniques
have been developed and employed for this purpose. Two popular techniques for part-
of-speech tagging are Hidden Markov Models and transformation-based learning [1].
However, whereas Hidden Markov models have been applied in many different areas,
ranging from speech-recognition to activity recognition and bio-informatics, to the best
of the authors’ knowledge, transformation based learning has only seldomly been ap-
plied outside the field of natural language processing.

Because the structure of natural language is quite rigid as compared to that of typi-
cal activity recognition tasks, the existing transformation-based learners cannot directly

be applied for activity recognition. Therefore, we develop a more flexible relational
transformation-based tagger within the inductive logic programming paradigm. This
does not only provide an expressive representation but also allows one to easily incor-
porate background theory during the learning process. Thus the key contribution of this
paper is a relational extension of transformation-based tagging based upon inductive
logic programming principles. It also extends earlier work on relational transformation-
based learning by [2] in that it focuses on tagging rather than classification. More
specifically, from inductive logic programming (and the work by [2]) our technique
inherits its search and refinement techniques (including a branch-and-bound algorithm)
and from transformation-based learning the error driven stacking of rules.

The proposed method is evaluated in two activity recognition domains: “Activities
of Daily Living” (ADL) recognition from a stream of “object interaction” data [3], and
mobile phone profile prediction based on data collected by [4]. Experiments show that
obtained tagging accuracies are competitive with those of HMM-based approaches, and
it is easy to incorporate human-supplied background knowledge into the learning pro-
cess. Furthermore, and that is perhaps the key advantage of the relational transformation-
based tagger, the method can easily be extended to deal with variants of the tagging
problem, for instance the prediction of structured output tags (as in Logical Hidden
Markov Models [5]), and to cope with rich background knowledge.

2 Sequence Tagging

Sequence tagging is the task of assigning to each element in a given sequence an appro-
priate label or tag. Let W = {w1, ..., wk} denote the vocabulary of sequence elements,
and T = {t1, ..., tm} the vocabulary of tags. The most prominent instance of the tag-
ging problem is part-of-speech-tagging in natural language processing, where the task is
to assign lexical categories t ∈ T to words w ∈W in a given natural language sentence.
Many other interesting sequence analysis problems can be cast in this framework, such
as activity recognition in user modeling or gene finding and protein secondary structure
prediction in bioinformatics.

In NLP, the two most common tagging approaches are transformation-based taggers
(rule-based) and probabilistic methods (hidden Markov models or related techniques).
Both of these approaches yield competitive results, and have received much attention.
Before discussing our extension to transformation-based learning, we briefly review
these two approaches in the next two sections.

2.1 Transformation-based Tagging

Transformation-based learning is a rule-based learning approach which iteratively stacks
rules on top of each other to improve performance [1]. The basic transformation-based
learning algorithm for the tagging problem is summarized in Algorithm 1. The algo-
rithm takes as input a set S of sequences with known true tags L. During learning,
it maintains a set of current tags L̂ for all s ∈ S. L̂ is initialized with some simple
scheme, such as assigning to every element w ∈ W its most common tag t ∈ T in the
training data (procedure initial-tags). The algorithm then tries to improve the current

Algorithm 1 Basic transformation-based tagging algorithm.

tb-tagging(input: sequences S; true sequence tags L)

1 L̂ := initial-tags(S, L)
2 initialize R = []
3 repeat
4 r := find-best-rule(S, L̂, L)

5 update L̂ := apply-rule(L̂, r)
6 update R := append(R, r)
7 until (no improvement)
8 return R

tagging L̂ with respect to the true tagging L by learning a list of transformation rules
R. Transformation rules can re-tag sequence elements based on the context they appear
in. A transformation rule has the form t′ ← t : context and simultaneously replaces all
occurrences of tag t in all sequences with t′ whenever the constraint context is satisfied.

Example 1. As an example from NLP, the word “move” could be initially tagged as
“verb”, but would be re-tagged as “noun” if the preceding word was tagged as “article”.
This can be encoded by the following transformation rule:

noun← verb : word = move, preceding tag = article

The transformation rule languages employed in traditional transformation-based tag-
ging are mostly simple instantiations of some template—for instance, querying in context
the word and tag at the current position and the next or preceeding position(s). We will
replace this constraint by a first-order logical expression in Section 3.

In every iteration, the transformation rule which yields the greatest reduction in er-
ror between L̂ and L is greedily selected (find-best-rule), applied to the current tagging
L̂ and appended to the rule list R. As conditions of rules in R match not only sequence
elements but also currently predicted tags L̂, rules can effectively bootstrap the cur-
rent predictions. This makes transformation-based learning strictly more powerful than
standard rule learning [1].

2.2 Hidden Markov Model Tagging

Tagging with hidden Markov models is typically performed with a model in which there
is a hidden state qt for every possible tag t, and state emission symbols correspond to
symbols w ∈ W . That is, the observed sequence of symbols is seen as being gener-
ated by the hidden sequence of tags. Formally, the joint probability of an observation
sequence s = w1...wn with hidden tag sequence t1...tn is given by

P (w1...wn, t1...tn) = P (t1)
n−1∏
i=1

P (ti+1 | ti)P (wi | ti)

76540123t1

��

// 76540123t2

��

// 76540123t3

��

// 76540123t4

��

// 76540123t5

��?>=<89:;w1 ?>=<89:;w2 ?>=<89:;w3 ?>=<89:;w4 ?>=<89:;w5

Fig. 1. Example lattice generated by unrolling a tagging HMM to a sequence w1, ..., w5. Infer-
ence in this model is carried out with the Viterbi algorithm, which yields the most likely joint
state of the hidden variables t1, ..., t5 given the observations on w1, ..., w5.

where P (t1) is an initial probability for tag t1 and P (wi | ti), P (ti | ti−1) are condi-
tional probabilities for the emitted word wi and next tag ti+1 given the current tag ti.
When such a model is applied to a sequence w1...wn, it is unrolled into a lattice as
depicted in Figure 1, and the Viterbi algorithm [6] is employed to efficiently compute

t̂1...t̂n = arg max
t1...tn

P (t1...tn, w1...wn)

= arg max
t1...tn

P (t1...tn | w1...wn),

the most likely sequence of tags for the given sequence.
This technique has been used successfully for tagging problems in many domains.

For instance, HMM-based approaches are a popular technique for inferring hidden user
activities from a stream of object-interaction data in the so-called ADL (“Activities of
Daily Living”) problem [3, 7], which will be described in more detail below.

3 Relational Transformation-based Tagging

The general motivation for our work on relational transformation-based tagging is to
apply the transformation-based tagging methodology to complex datastreams, which
are generated for instance by sensors or sensor networks in ubiquitous computing envi-
ronments. For such complex domains it is not always possible to represent all available
information as flat (or propositional) symbols from a fixed alphabet. This problem can
be overcome by using a more expressive relational representation for sequence ele-
ments. We will therefore extend the template-based rule language traditionally used in
transformation-based learning to a more flexible relational rule language, which can
take advantage of such richer representations for sequence elements. Furthermore, it is
easy in this case to incorporate domain-specific background knowledge into the learn-
ing process. Analyzing such relational sequences has received considerable attention
recently, for instance with relational extensions of Hidden Markov Models [5] or n-
gram models [8].

Example 2. As an example, consider the ADL (“Activities of Daily Living”) recogni-
tion problem, which is visualized in Figure 2. In ADL recognition, objects which are
used in activities of daily living such as making breakfast are equipped with small RFID
tags that can be picked up by a wearable reader while a person performs an activity [3].

Relational
Representation

tag(w1, toastBread) tag(w2, toastBread) tag(w3, toastBread) ...
tag(w4, f lavorToast) tag(w5, f lavorToast) tag(w6, f lavorToast) ...

sensor(w1, toast) sensor(w2, toaster) sensor(w3, toast) ...
sensor(w4, knife) sensor(w5, butter) sensor(w6, toast) ...

time(w1, 1, 2) time(w2, 3, 6) time(w3, 7, 8) ...
time(w4, 9, 11) time(w5, 12, 13) time(w6, 14, 15) ...

Background
Knowledge

...

Activity Tag ToastBread FlavorToast BoilWater FlavorTea

Sensor
Reading

01
to

as
t

02
to

as
t

03
to

as
te

r
04

to
as

te
r

05
to

as
te

r
06

to
as

te
r

07
to

as
t

08
to

as
t

09
kn

if
e

10
kn

if
e

11
kn

if
e

12
bu

tte
r

13
bu

tte
r

14
to

as
t

15
to

as
t

16
kn

if
e

17
kn

if
e

18
ja

m
19

ja
m

20
w

at
er

21
w

at
er

22
w

at
er

23
st

ov
e

24
st

ov
e

25
cu

p
26

sp
oo

n
27

sp
oo

n
28

su
ga

r
29

su
ga

r
30

cu
p

Fig. 2. Relational representation of the ADL recognition problem. While a person is perform-
ing activities of daily living (such as preparing breakfast), a stream of object interaction data is
generated from a wearable RFID reader (“sensor reading”). This can be represented in a rela-
tional form by collapsing identical sensor readings to one sequence element wi, and encoding
the starting point and duration of the observation in another predicate. Furthermore, additional
background knowledge can be used to encode prior knowledge about the domain.

The task is to recover the activity currently performed from the stream of sensor data,
that is, to tag the sequence of object interactions with activities.

It is obvious that this kind of data is less rigidly structured than natural language
data: there are no “grammatical rules” which determine the exact sequence of touching
knife, toast, butter and jam when adding flavor to a toast. Nevertheless, context informa-
tion can help determine the right tag. For instance, using a spoon can indicate activities
FlavorTea or EatCereals. This ambiguity can be resolved by looking at the context: the
observation of a spoon closely followed by sugar indicates activity FlavorTea, while
observation of a spoon after milk and cereals indicates activity EatCereals.

Furthermore, the stream of object data obtained from the sensor has some internal
structure, as an object observation has a starting point and duration in time. A repre-
sentation in first-order logic allows to capture this structure, and to express flexible rule
conditions such as object x has (not) been observed less than t seconds before/after
the current time-step or the most frequent (currently estimated) tag around the current
time-step is t using manually defined background knowledge.

At the same time, activity recognition can be seen as a data stream mining task—the
analysis of a continuous, potentially infinite stream of data. In this context, issues such
as online learning (with only one pass through the data necessary) are of considerable
interest. However, we will not address these issues in the paper, and instead assume that
a limited amount of training data is given a priori. Extending the proposed methods to
an online-learning scenario is an interesting direction for future work.

The next section will discuss the formal learning setting for relational transformation-
based tagging, before discussing learning algorithms and experimental results.

3.1 Learning Setting

The learning setting for relational transformation-based tagging can be formalized as
follows:

Given

– a relational languageW for describing sequence elements, i.e., a set of typed first-
order logical predicates

– a set of tags T ;
– a set of training sequences S = {s1, ..., sm} with sequence elements described in
W and corresponding true tags L over T ;

– a scheme for setting initial tags given by a function init;
– a language L of transformation rules t′ ← t : q where t, t′ ∈ T , q = l1, ..., lr and

the li are atoms inW .

Find an ordered lists of transformations R = [R1, ..., Rl], Ri ∈ L, such that applying
the initial tagging scheme and afterwards transformation rules R1, ..., Rl minimizes

error(L̂) =
∑
s∈S

ns∑
i=1

δ(lis, l̂is)

where ns is the length of sequence s and lis, l̂is denote the tag assigned to element i in
sequence s according to L and L̂.

In contrast to standard (propositional) transformation-based tagging approaches, the
languages W (sequence elements) and L (rules) employed are relational; that is, rule
conditions q are first-order queries of the form l1, ..., lk where the li are first-order log-
ical atoms. Applying a first-order transformation rule t′ ← t : q means simultaneously
replacing all tags t in L̂ by t′ wherever the first-order context constraint q matches the
relational description of the corresponding sequence element.

Example 3. As an example for a relational transformation rule in the ADL recognition
domain consider

FlavorTea← EatCereals :
sensor(X, spoon), near(X, sugar, 10), not(near(X, bowl, 5))

where the variable X is bound to the sequence element under consideration and the
background predicate near/3 is defined by

near(X, O, T)←
time(X, S, D), sensor(X ′, O), time(X ′, S′, D′), dist(S, D, S′, D′, T ′), T ′ ≤ T

and dist(S, D, S′, D′, T) measures the distance between the intervals [S, S + D] and
[S′, S′ + D′]. This rule re-tags objects of type spoon from EatCereals to FlavorTea
if implied by the context.

3.2 A Branch-and-Bound Learning Algorithm

For learning the list R of relational transformation rules, a large space of possible rules
has to be searched. However, structure on the search space can be exploited to make
this search more efficient. More specifically, the algorithm we use combines ideas from
transformation-based learning (branch-and-bound search based on upper bounds for the
error reduction of a transformation rule) and inductive logic programming (refinement
search in a generalization/specialization lattice). It is closely related to the algorithm
presented in [2].

Recall that the goal of learning is to find a list R of transformation rules which
minimize error(L̂) on a set of training sequences S with known true labels L. As in
propositional transformation-based learning [1], the rule list is learned greedily: starting
with an empty list, the algorithm incrementally adds one rule after the other, at every
step selecting the rule which yields the greatest reduction in error(L̂) and updating the
current tagging L̂ (cf. Algorithm 1).

When searching for an individual rule with maximum error reduction, a signifi-
cant part of the search space can be pruned away by computing upper bounds for the
error reduction a rule can achieve. One obvious bound for the reduction achievable
by a transformation rule ti ← tj : context is given by the number of sequence ele-
ments whose true tag (in L) is ti and which are currently (in L̂) assigned tag tj . LetM
denote the current confusion matrix, i.e., M[i, j] denote the number of sequence ele-
ments with true tag ti currently tagged as tj . This can be exploited by considering rules
ti ← tj : context in (decreasing) order of their potential M [i, j] for error reduction
and keeping track of the best error reduction ∆best found so far. Now, all rules of the
form ti ← tj : context for whichM[i, j] ≤ ∆best can be removed from consideration
(cf. [1]).

This idea can be taken one step further if it is combined with a general-to-specific
search for the first-order constraint context [2]. As a complete search in the space
of first-order constraints is infeasible in most cases, we perform a greedy general-to-
specific search. To generate the specializations of the current condition q, a so-called
refinement operator ρ under θ-subsumption is employed. A conditions q1 θ-subsumes a
condition q2 if and only if there is a substitution θ such that q1θ ⊆ q2. A substitution is a
set {V1/t1, . . . , Vl/tl} where the Vi are different variables and the ti are terms, and the
application of the substitution replaces the variables V1, . . . , Vl by the corresponding
terms t1, . . . , tl. ρ(q) typically returns all minimal specializations of q within L. For
our purposes, the refinement operator specializes a condition q = l1, · · · , ln simply by
adding a new literal l to the clause yielding h← l1, · · · , ln, l. This operator is monotone
in the sense that for q′ ∈ ρ(q) the number of matches in the data can only decrease.
Consequently, the maximum gain achievable from specializations of a transformation
rule ti ← tj : q can be bounded in terms of the current matches. More specifically,
assume that a constraint q matches on a number of sequence elements in the training
data S, and that for pq of these it has a positive effect (current tag is tj , but true tag is
ti) and for nq it has a negative effect (current and true tag are tj). The error reduction
of applying the transformation ti ← tj : q is ∆q = pq − nq. It is now obvious that no
specialization ti ← tj : q′ with q′ ∈ ρ∗(q) can achieve an error reduction greater than
Γq = pq.

Algorithm 2 Branch-and-bound algorithm for relational transformation-based tagging

rtb-tagging(input: sequences S; true sequence tags L; language bias L)

1 L̂ := initial-tags(S, L)
2 initialize R := []
3 repeat
4 initialize ∆best := 0

5 computeM := confusion-matrix(L̂, L)
6 for all i, j ∈ {1, ..., k}, i 6= j, sorted byM[i, j] descending do
7 initialize Γ :=M[i, j]
8 initialize q := true
9 while (Γ > ∆best) do

10 for all q′ ∈ ρ(q,L) do
11 compute ∆q′ := error-reduction(tj ← ti : q′)
12 compute Γq′ := max-reduction(tj ← ti : q′)
13 end for
14 let q := argmaxq′ ∆q′

15 let ∆best := max(∆best, ∆q)
16 let Γ := Γq

17 end while
18 end for
19 let r := ti ← tj : q be a rule with error reduction ∆best

20 update L̂ := apply-rule(L̂, r)
21 update R := append(R, r)
22 until (no improvement)
23 return R

A greedy branch-and-bound algorithm exploiting these two bounds is outlined in
Algorithm 2. It takes as input a set of training sequences S, true sequence tags L, and the
language bias L. The algorithm starts with an empty rule list R and initial tags assigned
in L̂. Transformation rules are then greedily added to R, and their effect applied to the
current tagging L̂ (lines 3–21). Transformations are considered in order of decreasing
M[i, j] (line 6). At every step of the search for a single transformation ti ← tj : q
(lines 6–18), the algorithm keeps track of the largest reduction ∆best achieved by a rule
so far. During refinements of the context constraint q (lines 9–17) a bound Γq for the
maximum reduction that any specialization of a rule q can still achieve is computed
(max-reduction), and only parts of the search space for which Γ is greater than ∆best

are explored.

4 Experiments

The proposed method was implemented in the RETRO (for RElatational TRansfOrmation-
based tagging) system and experimentally evaluated in two real-world domains: Activ-
ity of Daily Living recognition (ADL) and mobile phone profile prediction (Phone).

Relation Description
sensor(Id, Object) The object observed at sequence element Id is Object

duration(Id, T) The object observation at sequence element Id lasted T seconds

close(Id, Obj, T)
The object Obj has been observed within T seconds of

sequence element Id

time bin(T, Bin) The time span T falls into the bin Bin ∈ {short, medium, long}

closest tag(Id, Act)
The closest sequence position to Id for which an activity

(i.e., a tag 6= “no activity”) is assigned in L̂ is tagged with Act

close used(Id, Act, T)
Less than T seconds away from sequence element Id an object

has been observed which is typically used in Act
Table 1. Example relations used to describe the activity data. Some relations are directly derived
from the data (e.g. sensor, duration, close), others include human-supplied prior knowledge
(e.g. close used).

Relational
Representation

cell(w1, 6672) cell(w2, 6671) cell(w3, 6673) ...

time(w1, 1, 15) time(w2, 16, 25) time(w3, 26, 38) ...

usr activity(w1, act) usr activity(w2, idle) usr activity(w3, act) ...

active app(w1, 101) active app(w1, 102) active app(w3, 101) ...

comm(125, sms, incoming) comm(390, call, outgoing)

Phone profile normal silent normal meeting
Cell 6672 6671 6673 7409 6673 6671 7409 7410 6739

Fig. 3. Illustration of the Phone data (predicates for cell location, duration, user activity, active
applications, and communication events).

In the ADL recognition domain, object-interaction data for a user having breakfast
at home has been gathered by a wearable RFID reader and RFID tags on objects such
as milk, cereals, kettle, water tap, cutlery etc. (23 objects in total). The stream of tags
picked up by the RFID reader indicates which object is close (approximately 10–15 cen-
timeters) to the wrist of the user at a particular point in time. A single object observation
is returned at every second—if several tags are within reach, one is returned randomly.
Note that the data is relatively noisy: tags might sometimes be missed, or a tag not re-
lated to a particular activity can be reported by the reader because the corresponding
object is accidentally close. The task is to predict the current activity performed, out of
a set of 24 possible activities such as boiling water, toasting bread, reading a newspaper
or “no activity”. The sequence data obtained from the RFID reader is represented in a
relational form by collapsing identical observations into one observation with a start-
ing point and duration in time (cf. Figure 2 for an illustration). Furthermore, additional
background predicates have been defined, see Table 1 for examples.

In the Context Phone domain, data about user communication behavior has been
gathered using a software running on Nokia Smartphones. The software automatically
logs communication and context data, such as the current provider cell, incoming and
outgoing calls and text messages, and other phone status information. The task is to

Algorithm ADL Phone

Majority tag 19.5± 22.3 56.7± 13.1
HMM Tagger 74.9± 12.5 56.7± 13.1
RETRO 75.4± 7.8 67.7± 10.3

Table 2. Average F-measure on the ADL Recognition and Phone problems based on a leave-one-
sequence-out cross-validation.

Learned Rules
ObtainNewspaper ← ReadNewspaper: close(Id, Obj, T), Obj = door,

time bin(T, medium)

FlavorTea ← EatCereals: closest tag(A, F lavorTea)

SteepTeaBag ← DrinkTea: close(Id, Obj, T), Obj = stove

PourCereal ← ObtainNewspaper: close used(Id, PourCereal, T),
not(close used(Id, ObtainNewspaper, T ′)), time bin(T, short)

SteepTeaBag ← noActivity: duration(Id, T), time bin(T, long),
closest tag(ID, SteepTeaBag)

Table 3. Examples for rules learned by RETRO on the ADL dataset.

predict the active profile of the phone (silent, meeting, or normal) at every point in
time. See Figure 3 for an illustration of the data and the predicates used.

For comparison, we have also conducted experiments with a (propositional) HMM
tagger on the two datasets. As it is not possible to encode all relevant information propo-
sitionally, we have selected the most relevant information to be used as the propositional
alphabet W . For the ADL recognition problem, this is the sequence of objects observed.
For the phone domain, it is the sequence of cells the phone was located in.

For initializing the tagging L̂ in the transformation-based tagger, RETRO simply
assigns the most frequent tag given the propositional symbol w ∈W :

init(w) = argmax
t∈T

C(w, t)

where C(w, t) is the number of times symbol w was tagged with t in the training data.
More elaborate initialization schemes (such as using the HMM tagging as an initializa-
tion for the transformation-based tagger) are an interesting direction for future work.
Furthermore, instead of a simple greedy search as outlined in Algorithm 2, a beam
search with beam size K = 10 is used. The main loop of the algorithm is terminated if
no rule with a gain of at least min gain = 10 is found.

Table 2 lists the average F-measure for RETRO and HMM tagging based on a leave-
one-sequence-out cross-validation. For the ADL recognition problem, there is no sig-
nificant difference between the two approaches. In the phone domain, the HMM tag-
ger fails to improve upon the majority tag prediction, while RETRO yields a (border-
line) significant increase in F-measure (paired sampled t-test, p = 0.051). This shows
that transformation-based approaches can be competitive with probabilistic methods in
complex tagging domains. However, the presented experiments are still preliminary,
and more empirical evaluation is needed to assess the potential of the method in more

 0

 0.05

 0.1

 0.15

 0.2

 5 10 15 20 25

F
ra

ct
io

n
 o

f
se

a
rc

h
 s

p
a
ce

 e
xp

lo
re

d

Algorithm Iteration

Bound I

 0

 0.2

 0.4

 0.6

 0.8

 1

 5 10 15 20 25

F
ra

ct
io

n
 o

f
se

a
rc

h
 s

p
a
ce

 e
xp

lo
re

d

Algorithm Iteration

Bound II

Fig. 4. Effectiveness of the two pruning schemes Bound I (maximum gain attainable from chang-
ing a certain tag into a certain other tag) and Bound II (maximum gain attainable from specializing
a given rule). Results are averaged over a leave-one-sequence-out cross-validation.

detail. Note furthermore that although HMM tagging is a standard approach in activity
recognition, more advanced probabilistic methods have recently been developed which
would possibly yield slightly higher accuracy in this domain [9].

Examples for rules learned by RETRO on the ADL recognition task are shown in
Table 3. For instance, consider the last rule: it encodes that if a sequence element cor-
responding to a long object observation is tagged with noActivity and the closest cur-
rently predicted activity is SteepTeaBag, this sequence element should also be tagged
with SteepTeaBag. This rule is useful for “filling in gaps” as SteepTeaBag only
causes characteristic object observations at the beginning and end of the activity.

Finally, Figure 4 visualizes the effectiveness of the pruning schemes based on the
two upper bounds discussed above on the ADL recognition problem. More specifi-
cally, Figure 4 (left) shows the fraction of pairs (ti, tj) that have to be considered when
searching for rules ti ← tj in lines 6–18 of Algorithm 2 as a function of the algorithm
iteration. This pruning scheme is very effective, reducing the search space by 93%–
99%. It is more effective in earlier iterations as it is easier to find a rule with yields
a large reduction in error. Figure 4 (right) shows which fraction of refinements is re-
moved from the beam when rules are refined in lines 10–13 of Algorithm 2 because
no further specialization can reach the performance of the best rule found so far. Note
that this form of pruning does not affect the computational complexity of the algorithm
but rather allows a more thorough search through the space of possible rules (given
a limited beam size) by effectively reducing the branching factor of the search. On av-
erage, the branching factor is about halfed, this is independent of the algorithm iteration.

5 Conclusions and Related Work

Motivated by the needs of activity recognition problems, we have introduced a rela-
tional transformation-based tagging system. It tightly integrates principles of inductive
logic programming (especially search, representations, operators, background knowl-
edge) with transformation-based tagging (error-driven search, branch-and-bound idea).
The approach has been evaluated on two activity recognition data sets and the results are
competitive with those of a Hidden Markov Model approach. Perhaps more important
than the experimental results obtained so far is the ease with which one can extend the
transformation-based tagging approach beyond the propositional HMM setting. Impor-
tant directions in this regard include: the use of rich sources of background knowledge
(that take not only into account the inputs but also the already available produced tags),
the prediction of structured output sequences (predicting sequences of logical atoms, cf.
[10], such as call(anna,10) denoting the prediction that anna will be called in 10 min-
utes), and relaxing the purely sequential nature of the output (which is important for
the ADL dataset where different activities may overlap in time, and therefore ordering
them is not always possible).

Acknowledgments We would like to acknowledge support for this work from the Re-
search Foundation-Flanders (FWO-Vlaanderen).

References

1. Brill, E.: Transformation-based error-driven learning and natural language processing: A
case study in part-of-speech tagging. Computational Linguistics 21(4) (1995) 543–565

2. Dehaspe, L., Forrier, M.: Transformation-based learning meets frequent pattern discovery.
In Cussens, J., ed.: Proceedings of the 1st Workshop on Learning Language in Logic, Bled,
Slovenia (1999) 40–51

3. Patterson, D., Fox, D., Kautz, H., Philipose, M.: Fine-grained activity recognition by aggre-
gating abstract object usage. In: Proceedings of ISWC 2005, Osaka (2005)

4. Raento, M., Oulasvirta, A., Petit, R., Toivonen, H.: ContextPhone - a Prototyping Platform
for Context-aware Mobile Applications. IEEE Pervasive Computing 4(2) (2006) 51–59

5. Kersting, K., De Raedt, L., Raiko, T.: Logical hidden markov models. Journal of Artificial
Intelligence Research 25 (2006) 425–456

6. Rabiner, L.: A tutorial on hidden markov models and selected applications in speech recog-
nition. Proceedings of the IEEE 77(2) (1989) 257–286

7. Wilson, D., Philipose, M.: Maximum a posteriori path estimation with input trace pertur-
bation: Algorithms and application to credible rating of human routines. In: Proceedings of
IJCAI 2005, Edinburgh, Scotland (August 2005)

8. Landwehr, N., De Raedt, L.: r-grams: Relational grams. In: Proceedings of the 20th Interna-
tional Joint Conference on Artificial Intelligence, Hyderabad, India (2007) 907–912

9. Wang, S., Pentney, W., Popescu, A.M., Choudhury, T., Philipose, M.: Common sense based
joint training of human activity recognizers. In: Proceedings of the 20th International Joint
Conference on Artificial Intelligence. (2007) 2237–2242

10. Kersting, K., De Raedt, L., Gutmann, B., Karwath, A., Landwehr, N.: Relational sequence
learning. In De Raedt, L., Frasconi, P., Kersting, K., Muggleton, S., eds.: Application of
Probabilistic ILP. Springer (2007) to appear.

