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Abstract

This paper argues that important insights into the business cycle can be obtained by
exploring the micro-structure of macroeconomic fluctuations. We fit firm-level growth data
with the Asymmetric Exponential Power density, which accounts for asymmetric dispersion
and kurtosis on either side of the modal rate. Three novel results are reported. First,
firms in the left side of the distribution, that is firms that are growing more slowly or
declining, are typically more responsive to aggregate shocks than those in the right side of
the distribution. Second, trending behavior in the volatility of firm growth is predominantly
driven by increasing dispersion in the growth of highly performing firms. Last, we deliver
evidence in support of the view that shifts in the probability mass on either side of the
mode may act as important propagators of business fluctuations. The analysis points to
financial frictions as one of the mechanisms capable of inducing non-linear micro adjustment
consistent with both aggregate and cross-sectional dynamics.
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Introduction

Business cycle analysis has traditionally focused on co-movements and correlations between
major macroeconomic aggregates, such as output, consumption, hours, employment and in-
vestment. This paper argues that important insights can be obtained by studying the micro-
structure of macroeconomic fluctuations. In doing so, we look at firm-level behavior and show
that company growth densities change systematically over the business cycle and contribute to
shaping macroeconomic fluctuations. Accounting for asymmetry in the cross section of firm
growth is crucial to these results.

To explore the micro-structure of business fluctuations we use statistical techniques devel-
oped by the literature on industrial dynamics.1 Contributors to the empirical strand of this
literature have often taken a static approach, fitting firm size and growth distributions on cross-
sections obtained by pooling data over the time dimension. An alternative line of enquiry has
looked at patterns of firm growth and their implications for firm size, as well as at the rela-
tionship between firm size and age.2 Implicit in these studies is that distributions are either
time invariant or may only evolve slowly over time, so that no particular importance is attached
to their dynamics. We contrast this view and explore the dynamics of firm growth from a
cross-sectional perspective.

We fit UK and US densities of firm growth with the Asymmetric Power Exponential (AEP)
distribution. This distribution extends the Exponential Power (EP) class of distributions put
forward by Subbotin (1923) and nests the Gaussian and the Laplace as special cases. Most
importantly, the AEP allows for different values of the parameters capturing dispersion and
kurtosis in the two halves of the density, i.e. above and below the modal growth rate. This
feature makes it possible to assess the extent to which the distribution is asymmetric and how
asymmetry changes over time.

An important result emerges from the low-frequency evolution of the UK and US densities.
In line with previous evidence we detect positive trending behavior in the volatility of the
empirical density (see, e.g., Comin and Mulani, 2006). We also identify a downward trend in
the kurtosis. However, the low-frequency dynamics of the AEP parameters capturing dispersion
and kurtosis on either side of the modal rate suggests that trends in the central moments are
predominantly driven by stronger trending behavior on the right hand side of the mode (RHS),
as compared to the LHS. These results pose an important challenge to the literature that seeks
for an explanation of diverging trends in macroeconomic and microeconomic volatility (see, e.g.,
Campbell et al., 2001; Comin and Philippon, 2006; Comin and Mulani, 2006), and especially to
those interpretations that assume symmetric patterns of change in idiosyncratic risk. Indeed,
the asymmetric trending behavior we document is not compatible with symmetric increases in
the width of the density of idiosyncratic disturbances.

We then focus on the AEP densities at the business cycle frequency. We report compelling

1Since the seminal study by Gibrat (1931), several authors have looked at the patterns in the growth of firms
and their implications for the distribution of firm sizes. Simon (1955), Hart and Prais (1956), Simon and Bonini
(1958), Mansfield (1962), Ijiri and Simon (1964, 1977), Evans (1987b), Hall (1987), Hart and Oulton (1996)
and Dunne and Hughes (1994) are some noteworthy examples. Sutton (1997) provides a detailed review of the
literature.

2Cabral and Mata (2003), Angelini and Generale (2008) and Bottazzi, Secchi, and Tamagni (2010) are notable
exceptions, although they aggregate across years to examine firm dynamics and its interplay with financial
constraints.
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evidence showing that the fitted densities are not time invariant, but exhibit shifts and contor-
tions which are systematically related to the cycle. During a downturn the width of the density
decreases on the RHS, while increasing on the LHS. For kurtosis, contractions are characterized
by a thinner (fatter) tail on the RHS (LHS). These facts lend support to the findings of Higson
et al. (2002, 2004), who show that the distribution of firm growth becomes more skewed and
leptokurtic in periods of economic slowdown.

A crucial step in the analysis consists of understanding whether changes in the density of
firm growth have a role in explaining the business cycle, or whether such movements are to be
interpreted as simple cross-sectional projections of aggregate fluctuations. We provide evidence
in line with the first view, showing that changes in the probability mass on either side of the
modal value display different correlations with the business cycle. We interpret these findings
as indicating that firms growing at a different rates may be asymmetrically affected by different
potential frictions, which become particularly relevant for the aggregate business cycle when
enough firms hit the associated adjustment threshold.3 In this case, changes in the probability
mass on either side of the density may propagate and amplify macroeconomic fluctuations.
By contrast, central moments do not have any predictive power on the business cycle. This
evidence emphasizes the importance of accounting for asymmetric patterns of firm growth. On
a more general note, a proper understanding of business cycles requires knowledge of the cross-
sectional distributions as well as the behavior of aggregate economic variables over time (see
also McGuckin, 1995, and Haltiwanger, 1997).4

In light of these findings, we assess what role financial constraints play in the asymmetric
response to real and monetary shocks. A number of empirical and theoretical studies indicate
that financial constraints are an important propagator of exogenous and policy-induced shocks.5

We evaluate the impact of the external finance premium on firms growing at different rates. It
turns out that only firms on the left of the distribution are sensitive to unforecasted changes in
the premium. By contrast, firms growing at a rate higher than the density mode are insulated
from movements in the vertical spread. This is consistent with the type of threshold effects put
forward by Campello, Graham, and Harvey (2010) and Bottazzi, Secchi, and Tamagni (2010)
to describe asymmetries in the distribution of firm growth.

Our evidence carries implications for both designing and validating business cycle models.6

The representative agent framework explicitly focuses on aggregate behavior, arguing that idio-
syncratic shocks to heterogeneous firms cancel out in the aggregate (Lucas, 1977). However,
once it is recognized that distributions underlying macroeconomic phenomena are important in
determining aggregate outcomes, the RA approach becomes inadequate and heterogeneity needs
to be taken into account. State-dependent asymmetry and secular trends in the higher moments
suggest that the cancellation of idiosyncratic shocks in the aggregate may be incomplete.

The remainder of the paper is as follows: Section 1 describes the data and provides a

3A vast literature has argued that particular forms of microeconomic adjustment - in particular when they
are lumpy - can mean that the higher moments of the cross-sectional distributions of microeconomic actions can
affect macroeconomic aggregates (see, e.g., Caballero 1992, and Caballero and Engel 1992, 1993).

4A similar point has been made, among others, by Gabaix (2010), who suggests that macroeconomic questions
can be clarified by looking at firm-level behavior.

5See, e.g., Bernanke and Gertler (1989, 1990), Greenwald and Stiglitz (1988, 1993) and Kiyotaki and Moore
(1997).

6 In this respect, the hypothesis of fat-tailed distributed growth shocks should be embodied in business cycle
frameworks, as also emphasized by Fagiolo, Napoletano, and Roventini (2008) and Gaffeo (2008).
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preliminary exploration; Section 2 briefly reviews the relevant literature on industrial dynamics
and details the statistical methodology employed in the first stage of the parametric analysis;
Section 3 explores how the estimated parameters of the AEP distribution vary over time and
their interplay with financial factors; Section 4 concludes.

1 Data Description

We employ data on UK and US quoted companies. Four main sources are used for the UK: the
Cambridge/DTI databank, the London Share Price Database (LSPD), EXSTAT and DATAS-
TREAM. The Cambridge/DTI databank is an accounting dataset. Companies were included
only if: they were admitted to the offi cial list of the stock exchange; they were independent
companies or company groups; they operated mainly in the UK; their principal activity was
manufacturing, distribution, construction, or transport and certain services. EXSTAT and
DATASTREAM, dating from 1970, are datasets that collect published company accounts data
for UK quoted companies, as well as members of the Times 1000 list of large UK companies.
These databases were expanded to include smaller quoted firms from 1975-76. The combina-
tion of databases was used to obtain the UK quoted population over the period 1964-2007. The
unique source of US data is the COMPUSTAT database of quoted companies accounts, over
the 1950-2005 period.

We consider real sales as a proxy for firm size, which is denoted by sit.7 We then compute
growth rates at the annual frequency, git = log (sit) − log (sit−1). The results reported in the
main text are obtained by removing firms growing (declining) beyond a 50% rate.8 This choice
allows us to exclude outliers and preserve a representative sample, whose average closely tracks
the real GDP growth rate.

1.1 A Preliminary Data Analysis

Before moving to a detailed parametric analysis of the distribution of firm growth, it is instruc-
tive to look at a number of stylized facts. The main point of departure from other contributions
is the emphasis on how the cross-sectional distribution of firm-level growth rates varies over
time.

We start by showing that there is substantial instability in the empirical distribution of
growth rates in the UK and US. We compute, for each pair of consecutive years, the Kolmogorov-
Smirnov (KS) statistics so as to test whether data in different years can be regarded as random
samples from the same distribution. As displayed in Figure 1, where the p-values for each pair
of consecutive years are reported, distributions are not time invariant.9 A second step consists
of examining the empirical moments. These are graphed in Figure 2. Average growth rates

7Nominal sales are deflated by the GDP deflator. Various measures, including firms’assets, the number of
employees and real sales have been traditionally used to proxy firm size. The results of various studies have
generally been invariant to different proxies (see Evans, 1987a, and Hall, 1987).

8The resulting number of observations for the UK ranges from a minimum of 311 to a maximum of 1553,
while for the US we obtain a minimum of 626 and a maximum of 7939 observations. In Appendix A we replicate
our analysis with a [−100, 100]% cut-off. The results are not qualitatively affected by extreme observations.

9We also compute the Cramer-von Mises and the Kuiper tests. The results (available, upon request, from the
authors) are not qualitatively different from those of the KS test. In addition, we also compare the empirical
density and the Gaussian. The null hypothesis is always rejected.
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track GDP growth quite closely, thus confirming that our sample provides us with a good
representation of the dynamics in aggregate activity.

Two aspects are worth mentioning. First, the standard deviation is upward trending in both
countries. This finding has been documented, among others, by Comin and Philippon (2006) and
Comin and Mulani (2006), who observe diverging trends in the standard deviation of aggregate
and firm-level growth in the US.10 Second, kurtosis trends downward but eventually converges
to a value close to three in the last years of the sample. These secular patterns suggest that the
underlying distribution has been slowly moving from being fat-tailed, to a more dispersed and
close-to-Normal distribution.

Furthermore, the distributions display shifts and contortions which seem to be correlated
with the business cycle. Strikingly, skewness is negative in recessionary periods, reflecting the
accumulation of firms in the left hand side of the distribution. This suggests the need to look
at distinct patterns of firm growth on either side of the distribution, given that it can rarely be
regarded as symmetric. In Table 1 we investigate co-movement between the sample moments
and the business cycle. In the first two columns we report measures of static and dynamic
correlation (Croux et al., 2001) between each of the moments and aggregate GDP growth.11 The
third column reports pairwise measures of business cycle concordance capturing the proportion
of time that the cycles of two series spend in the same phase (Harding and Pagan, 1999, 2002).12

All measures of co-movement show that kurtosis follows a marked pro-cyclical pattern, while
standard deviation and skewness behave counter-cyclically in both countries. These facts have
been widely documented by Higson et al. (2002, 2004).13 It is also worth noting that skewness
is more strongly correlated with the business cycle in the UK. By contrast, standard deviation
and kurtosis are more strongly correlated (in absolute value) in the US.

Overall, growth rate distributions change over time and their higher moments display size-
able correlations with economic activity. Moreover, trending behavior in standard deviation
and kurtosis may have implications for the study of business fluctuations. Nevertheless, this
evidence does not provide us with any insight as to how firms on either side of the density
behave at both business cycle and lower frequencies and, if asymmetry matters, whether this
has implications for the propagation of aggregate shocks. The rest of the analysis is explicitly
aimed at addressing these questions.

2 The Asymmetric Exponential Power Distribution

Since the seminal work by Gibrat (1931), a vast literature has explored the relationship between
firm size and growth. Views have largely converged on the fact that expected firm growth rates

10A time series measure of firm-level growth volatility is used in these studies. Campbell, Lettau, Malkiel, and
Xu (2001) document analogous trends in market and firm-level volatility. However, they adopt a cross-sectional
measure.
11Dynamic correlation on a frequency band equals the (static) correlation of the band-pass filter series (see

Croux et al., 2001, for more details).
12For each series different phases are identified by applying the Bry and Boschan (1971) algorithm. McDermott

and Scott (2000) show that concordance is symmetric around 0.5. Therefore, for series that are negatively
correlated this measure has to be read as a complement to the statistics in Table 1, which measures the proportion
of time the two series are in opposite phases of the cycle.
13Also Bachmann and Bayer (2009) report evidence on the relationship between the standard deviation of firm

growth and the cycle. They show that co-movement is even stronger if total factor productivity is considered
instead of firm growth.
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are independent of size (the Law of Proportionate Effect or Gibrat’s Law) and that firm size
densities are well approximated by a Lognormal.14 The main implication of this is that -
assuming that shocks buffeting the log of firm size are independent - the distribution of growth
rates converges to a Gaussian, provided that the Central Limit Theorem applies. However, a
number of studies have shown that the postulated Normal distribution of growth rates provides
a poor fit to the data. Instead, we see that the distribution of growth rates has a characteristic
tent-shape (on a log-log scale). Therefore, it has been proposed to fit firm growth densities
using a Laplace (or Symmetric Exponential) density.15

More recently, researchers have turned their attention to a class of fat-tailed densities, such
as the Exponential Power (EP) introduced by Subbotin (1923).16 The functional form of the
EP density is characterized by three parameters: a location parameter m, a scale parameter
a (capturing the width of the density) and a shape parameter b (decreasing in the degree of
kurtosis). Importantly, the EP density encompasses, as special cases, the Gaussian (b = 2) and
Laplace (b = 1) densities. The lower b is, the fatter the tails are. Therefore, the distribution
is commonly regarded as platikurtic for b > 2 and leptokurtic for b < 2. Furthermore, the EP
density is characterized by exponentially shaped tails that are less fat than those of power-law
densities.

The Asymmetric Exponential Power density extends the EP density, allowing for different
values of the parameters a and b in the two halves of the density. The resulting density depends
on five parameters: a positioning parameter m, two scale parameters, one for the values below
m (al) and one for values above it (ar), and two shape parameters, bl and br, which characterize
the lower and upper tail of the density, respectively. The density reads as:

fAEP (x;m, al, ar, bl, br) = A−1e
−
(
1
bl

∣∣∣x−mal ∣∣∣blθ(m−x)+ 1
br

∣∣∣x−mar ∣∣∣br θ(x−m))
, (1)

where θ (z) is the Heaviside step function, A = alb
1
bl
l Γ

(
1 + 1

bl

)
+ arb

1
br
r Γ

(
1 + 1

br

)
and Γ(·) is

the Gamma function. The functional form of fAEP is particularly useful, as it nests the two
analytical benchmarks traditionally proposed in the literature on industrial dynamics. Most
importantly, it allows for asymmetry in the distribution of firm growth, so that asymmetric
patterns of co-movement between the distribution and the cycle can be detected.

2.1 Scale Dependence

Prior to our parametric analysis, it is appropriate to rescale growth rates to allow for the
possibility that their standard deviation scales with firm size (see Hymer and Pashigian, 1962).
14However, empirical work has usually found a negative relationship between growth rate variance and firm

growth. Hymer and Pashigian (1962) were among the first to report the negative relationship between firm
growth volatility and size. In response to this regularity, empirical analyses of Gibrat’s law have begun to correct
for heteroskedasticity in firm growth rates. An additional important feature of firm growth rates is that they are
largely random and do not appear to be correlated over time (Sutton, 1997).
15See Stanley, Amaral, Buldyrev, Havlin, Leschorn, Maas, Salinger, and Stanley (1996), Amaral, Buldyrev,

Havlin, Leschhorn, Maas, Salinger, Stanley, and Stanley (1997) and Bottazzi, Dosi, Lippi, Pammolli, and Ric-
caboni (2001), who show that growth rates are distributed according to a tent-shape distribution. Bottazzi and
Secchi (2006a) explain this stylized fact by proposing a model in which firms’ ability to follow new business
opportunities increases with the number of opportunities exploited in the past.
16The EP density has proven to be a useful benchmark in a number of recent studies, providing a good fit to

cross-sections of firm growth rates (see, e.g., Bottazzi et al., 2002) and times series of growth rates for various
OECD countries (Fagiolo et al., 2008)
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Following Bottazzi and Secchi (2003), we split each cross-section into 20 quantiles (bins) and
compute the standard deviation of the associated growth rates in each bin. Thus, we fit the
following relationship, for the jth bin in the tth year:

log (σj (git)) = αt + βts̄jt−1 + ejt (2)

where σj (gi) is the standard deviation of growth rates and s̄j is the average size of firms in the
jth bin. We assume that the error term ejt is i.i.d.(0, σet ) across bins and over time.

17 Finally,
we define the rescaled growth rate for the ith firm in the jth bin as:

ĝit =
git

exp
(
α̂t + β̂ts̄jt−1

) , ∀j, t. (3)

so that (rescaled) growth rates have statistical properties independent of firm size and data
of firms in different size quantiles can be pooled together. It is important to stress that the
regularities reported in the preliminary data analysis still remain after rescaling.

3 Time Variation in the Distribution of Firm Growth

We are now ready to fit the cross-sectional distribution of growth rates with the AEP.18 To
evaluate the goodness-of-fit of the estimated densities and the statistical significance of their
parameters, we carry out a number of tests. We first compute the KS test, so as to evaluate
the distance between the estimated AEP density and its empirical counterpart, for each year in
the sample. The p-values plotted in Figure 3 show that the null hypothesis is never rejected.
We also assess the stability of the fitted densities, computing a likelihood-ratio test according
to which the null hypothesis constrains the parameters of the AEP to be the same across
consecutive years. Figure 4a reports the p-values of the test for each year/pair, and shows that
the estimated AEP parameters change significantly over time, and in both countries. Finally,
Figure 4b reports the p-values for the likelihood-ratio test of the symmetry of the distribution.
Specifically, we compare the likelihood of the symmetric EP distribution to that of the AEP.
The former can be nested in the latter by constraining the shape and scale parameters to be the
same in the two halves of the density. For the UK, we often find that the fit of the symmetric
EP is comparable to that of the AEP, whereas this is never the case for the US.

These preliminary tests confirm the goodness-of-fit of the statistical model and suggest the
presence of time-varying asymmetry in the cross-section of growth rates. Figure 5 reports the
estimated coeffi cients, together with a 68% confidence interval. The visual impression supports
our statistical inference, as the estimated densities can rarely be regarded as symmetric. The
right shape parameter is often greater than its LHS counterpart, for both the UK and the US.
Furthermore, estimates of the shape and scale parameters on the LHS tend to peak in periods of
marked economic slowdown, while the estimated coeffi cients on the RHS peak during episodes
of economic expansion.

It is also interesting to note that pairwise correlations between the AEP parameters are
rather similar in the two countries (Table 2). Indeed, strong positive correlation is found

17Negative scaling emerges throughout the time window considered, although β̂t changes substantially over
time (see Figure B1 in Appendix B).
18Theoretical and computational details for the maximum likelihood estimation are reported in Bottazzi and

Secchi (2006b).
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between the estimated shape and scale parameters on the same side of the density, whereas
the left and right scale parameters are negatively correlated. However, while strong negative
correlation is observed between the UK shape parameters, these are weakly correlated in the
US.

3.1 Asymmetries in Firm Growth

The next step in the analysis consists of exploring the dynamics of the AEP distribution.19

Table 3 reports correlation coeffi cients between the estimated parameters and GDP growth,
along with other measures of dynamic correlation and business cycle concordance. Moreover,
a test for the presence of a linear trend in the parameters is reported. We observe some clear
patterns in the long-run behavior of the AEP coeffi cients. For both countries it appears that
what was initially interpreted as a positive (negative) trend in volatility (kurtosis), appears
to be largely associated with stronger trending behavior in the parameters on the RHS of the
mode, i.e. that part of the density characterized by firms growing at a pace greater than the
modal rate. In fact, both the scale and shape parameters on the RHS of the UK density
exhibit an upward sloping trend. As to the US, all the AEP parameters display a positive linear
trend. However, trends in the RHS parameters have slopes that are statistically greater than
those characterizing their LHS counterparts.20 This adds important evidence to recent findings
of diverging trends in aggregate and microeconomic volatility (Campbell et al., 2001; Comin
and Philippon, 2006; Comin and Mulani, 2006). In particular, our results challenge standard
interpretations of this evidence that are based on symmetric patterns of change in idiosyncratic
risk (e.g., Campbell et al., 2001). We show that trending behavior in the higher moments is not
symmetric about the modal rate.21

Turning our attention to the business cycle dimension, we note that both the scale and
shape parameters on the RHS of the AEP distribution exhibit positive co-movement with GDP
growth, whereas the LHS parameters co-move negatively. Most importantly, parameters on
the LHS display stronger (negative) co-movement with economic activity, compared to their
respective counterparts on the RHS.22

Pro-cyclicality in br means that the right tail of the distribution is on average thinner during

19Our two-stage strategy consists of first estimating the AEP density for each year/cross-section and then
retrieving time series of the parameters that are used to explore the time variation of the UK and US densities.
It could be argued that using estimated regressors in the second stage may potentially bias our results. This
occurs when the estimated regressor is a noisy observation of the true unobservable parameter. In Appendix
C we discuss this point extensively, showing that this is not an issue in our analysis, as the noise is typically
negligible.
20A closer look at the graph suggests that a significant trend in the LHS parameters may just emerge as a

statistical artifact due to a positive shift in mean. This impression is confirmed by the Quandt-Andrews unknown
breakpoint test (Andrews, 1993), which identifies a shift in mean around 1974-1975.
21Campbell, Lettau, Malkiel, and Xu (2001) interpret increasing volatility of individual stocks as reflecting

an increase in idiosyncratic risk, which implies that the dispersion characterizing the underlying distribution of
shocks expands symmetrically around its mean.
22Whereas the direction of co-movement between different AEP parameters and the cycle are simliar across

countries, there are some quantitative differences. The absolute difference in the correlations between the LHS
AEP parameters and GDP growth is much higher in the UK than the US, implying stronger (negative) counter-
cyclicality in skewness. For the US, parameters estimated on either side of the density display stronger co-
movement with the cycle than their counterparts in the UK, a pattern confirmed by stronger correlation with
the cycle for the standard deviation and kurtosis in the US.
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expansions. The opposite applies to the left tail, which is composed of declining firms. Moreover,
as the scale parameters index the width of the density on either side of m, evidence of a pro-
cyclical (counter-cyclical) ar (al) signals that during expansionary periods dispersion in the
growth performance increases (decreases) on the RHS (LHS) of the mode. These findings help
to uncover the mechanism initially conjectured by Higson et al. (2002, 2004) on the presence
of counter-cyclical skewness. During a downturn, diminishing dispersion on the RHS is coupled
with increasing dispersion on the LHS. Thus, a contraction translates into a density that shifts to
the left (such a movement is captured by a drop in m) and a relative increase in the probability
mass on the LHS. As to kurtosis, contractions are characterized by a thinner (fatter) tail on the
RHS (LHS).

The remainder of the paper is aimed at deepening our understanding of the connection
between the time variation in the AEP distribution and the business cycle, and at identifying
a mechanism capable of generating a stronger correlation between firms in the left side of the
distribution and macroeconomic fluctuations.

3.2 On the Real Effects of Asymmetry

The analysis so far has revealed some distinct patterns in the co-movement between the dis-
tribution of growth rates and the business cycle. Although interesting, this evidence is still
uninformative about whether changes in the density have a role in explaining aggregate fluctua-
tions, or whether such movements are to be interpreted as simple cross-sectional manifestations
of the business cycle. The first interpretation reflects our standpoint. As stressed by Halti-
wanger (1997), non-linear micro adjustment in combination with micro heterogeneity may have
important implications for aggregate fluctuations.23 In this respect, heterogeneity in output,
employment, and investment growth rates within sectors implies a large, continuous pace of
reallocation of real activity across production sites.24 Such reallocation may involve substantial
frictions at the root of non-linear micro adjustment. In these cases, the impact of an aggregate
shock depends on where individual firms are with respect to their adjustment thresholds, which
determines time-varying elasticities of macroeconomic aggregates to aggregate shocks.

In light of these considerations, we argue that changes in the distribution of company growth
rates may be relevant in shaping aggregate fluctuations to the extent that they reflect non-trivial
interaction between heterogeneity in firm-level growth and non-linear micro adjustment mech-
anisms. To this end, it is useful to think of some frictions capable of producing asymmetric
patterns over the range of growth, such as non-convexities affecting firms’decisions on, say,
investment, inventories and labor demand, as well as irreveribilities (e.g., investment and mar-
ket exit) and financial frictions (e.g., the financial accelerator effect). We argue that when a
substantial part of the probability mass hits the threshold associated with such frictions over
the range of growth, changes in the density may act as important propagators and amplifiers
of macroeconomic fluctuations.
23Also King and Thomas (2006) show that when discrete adjustment at the micro level matters, aggregate

outcomes are driven by changes in both the intensive and extensive margin, with the latter arising from changes
in the distribution of plants at the time of production. These considerations have led many to develop macro-
economic models that explicitly consider cross-sectional distributions of plants and firms (see, among others,
Bachmann et al., 2008, Khan and Thomas 2003, 2007, 2008, and Veracierto, 2002, 2008).
24Studies on longitudinal establishment data show that heterogeneity is a key feature of firm-level growth (see,

e.g, Davis et al., 1996).
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We test these conjectures with further analysis. We start by looking at pairwise bivariate
Granger Causality tests between aggregate growth and various statistics from the empirical
and fitted densities. Table 4 asks whether central moments from the empirical density lead
aggregate fluctuations. Overall, no particular predictive power can be attributed to variations in
the empirical density when these are captured by changes in the central moments. By contrast,
the behavior of central moments generally lags the cycle, thus suggesting that changes in the
density may just be a projection of aggregate fluctuations onto the cross-section.25 However,
as discussed at different stages of the analysis, focusing on central moments might overshadow
information connected with the emergence of asymmetric patterns in firm growth. In fact,
Table 5 indicates that some of the AEP parameters display leading properties with respect
to business cycle fluctuations. Some interesting differences arise with respect to the evidence
based on the central moments. The results for the UK reveal that an increase in the probability
mass on the RHS of the density, reflected by changes in both the scale and shape parameters,
lead expansionary phases. For the US it is the overall width of the density (captured by both
the right and left scale parameters) and the mode that display leading properties with respect
to business cycle fluctuations. Importantly, movements in the right scale parameter tend to
predict positive aggregate output growth in the next period, whereas causality never runs in
the opposite direction. This confirms that increasing dispersion on the RHS of the mode, which
reflects increasing probability mass in the same region over the range of growth, reinforces and
propagates expansionary phases. Such predictions are shared by both UK and US data.

The last step in the analysis is aimed at identifying a mechanism consistent with the asym-
metric behavior uncovered so far.

3.3 Asymmetries and Financial Frictions

In recent years, a renewed interest in the role of the credit channel in propagating and amplifying
exogenous and policy-induced disturbances has returned to the fore. This channel predicts
that in the presence of asymmetric information between lenders and borrowers and imperfect
enforceability of financial contracts, a wedge emerges between the cost of external funds and
the opportunity cost of internal funds - the external finance premium. Advocates of the credit
view claim that monetary policy can affect the size of the external finance premium and, in
turn, the availability of credit to financially constrained firms.26 Exploring this mechanism in
greater detail, under a longitudinal perspective, can provide us with a deeper insight into the
microstructure of aggregate fluctuations. In fact, we argue that greater responsiveness of firms
located on the LHS of the density can be explained by financing constraints, which are likely
to be more stringent for declining firms.27

Gertler and Lown (2000) propose the vertical spread between the yield of corporate bonds of
differing risk as a reliable proxy for the external finance premium. The vertical spread, denoted
by EFPt, is defined as the difference between Moody’s seasoned BAA corporate bond yield and

25This evidence holds for all UK cross-sectional moments, whereas the skewness in the US density generally
anticipates the cycle.
26See, e.g., Greenwald and Stiglitz (1988, 1993), Bernanke and Gertler (1989, 1990), and Kiyotaki and Moore

(1997).
27The idea that financing constraints might be at the root of observed asymmetries in the size distribution

was initially explored in Cabral and Mata (2003), who argue that financial frictions can explain, to some extent,
skewed size distributions that are typically observed in young cohorts of firms.
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10 year treasury bond yield.28

A dynamic relationship between each of the AEP parameters and the contemporaneous
value of the vertical spread is fitted:29(

1− γx1L− γx2L2
)
xt = αx0 + βx1EFPt + ext , xt = {mt, alt, art, blt, brt} . (4)

The resulting estimates are reported in Table 6 and suggest that the vertical spread has
no explanatory power for the AEP parameters on the RHS. Thus, financial frictions do not
produce any statistically significant influence on firms experiencing growth beyond the modal
rate. Conversely, the spread exerts a positive impact on both the scale and shape parameters
on the LHS of the modal rate. This evidence is in line with what we might expect on a priori
grounds. As the premium behaves counter-cyclically, a positive β̂

x

1 (x = {al, bl}) signals that a
rise in EFPt is associated with decreasing kurtosis and increasing dispersion on the LHS of the
density, which is what we observe during contractions.

Overall, this evidence suggests that financial frictions may be at the root of non-linear micro
adjustment mechanisms consistent with the asymmetric patterns of firm growth. Thus, contor-
tions in the cross-sectional density can be explained by the asymmetric influence of financial
factors on firms growing at different rates. In fact, it may well be the case that while heavily
declining firms are severely constrained in the access to external finance, firms growing at a fast
pace can rely on a suffi cient degree of internally generated funds and, whenever they seek for
external finance, they can offer good collateral.

The role of financing constraints in driving asymmetric patterns of growth has recently
received empirical support by Bottazzi, Secchi, and Tamagni (2010), who show that financing
constraints, proxied by an explicit credit rating index, significantly affect firms’performance
and operate through several channels. In the short-run, along with reducing expected growth at
the firm-level, financing constraints may drive asymmetric “threshold effects”, either preventing
potentially fast growing firms from exploiting growth opportunities or depressing even further
the growth prospects of firms experiencing poor growth. Campello, Graham, and Harvey (2010)
also point to threshold effects as an important element in firm dynamics in the current financial
crisis.

4 Concluding Remarks

This paper has analyzed cross-sectional distributions of firm growth and their evolution over
time, using data for the UK and the US. Our results point to a correlation between the higher
moments of the empirical distributions and aggregate fluctuations. Specifically, whereas skew-
ness is counter-cyclical, standard deviation and kurtosis are pro-cyclical.

We then fit the Asymmetric Exponential Power (AEP) distribution to the growth of firms.
The main feature of this function is that it allows for asymmetry on either side of the modal rate
in both kurtosis and the width of the distribution. We examine how the cross-sectional distri-
butions vary over time at both business-cycle and secular frequencies. Three main conclusions
are reached.
28Unfortunately, it has only been possible to compute the vertical spread for the US, because analogous data

are not available for the UK.
29Estimation is performed by GMM, with a Newey-West covariance matrix and automatic lag-selection. A

preliminary analysis reveals that the vertical spread fails to Granger-cause any of the AEP parameters. Therefore,
past values of the spread represent a perfect instrument in (4).
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First, we find asymmetric trends in both volatility and kurtosis on either side of the modal
rate of growth. These findings add to recent evidence of diverging trends in aggregate and
microeconomic volatility (e.g., Comin and Mulani, 2006) and challenge standard interpretations
based on symmetric patterns of change in idiosyncratic risk.

Secondly, asymmetry is a distinctive feature at business cycle frequencies. During a down-
turn the width of the AEP density decreases on the RHS, while increasing on the LHS. For
kurtosis, contractions are characterized by a thinner (fatter) tail on the RHS (LHS). These re-
sults add to the findings of Higson et al. (2002, 2004), who show that the cross section becomes
more skewed and leptokurtic in periods of economic slowdown.

Thirdly, we find that changes in the distribution are not simple projections of aggregate
activity onto the cross-sectional spectrum of growth, but contain important information to
predict business fluctuations. Asymmetric changes in the probability mass on either side of
the mode may act as important amplifiers/attenuators of aggregate activity. By contrast, the
central moments do not carry any predictive power with respect to the cycle. Finally, we
provide evidence suggesting that the greater responsiveness of the left side of the distribution is
consistent with financing constraints, which can be more stringent for declining firms. We show
that the premium for external finance exerts a strong positive impact on the AEP parameters
on the LHS of the modal rate, while playing no role on the RHS.
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Figures and Tables

FIGURE 1. KOLMOGOROV-SMIRNOV TESTS FOR EACH PAIR OF CONSECUTIVE YEARS
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Notes: Figure 1 reports the p-values for the Kolmogorov-Smirnov test. The null hypothesis is that data for

different years are random draws from the same continuous distribution. Values lower than the chosen significance

value (5%) justify our estimation of different cross-sectional distributions for each year.
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FIGURE 2a. CROSS-SECTIONAL MOMENTS FOR THE GROWTH RATE- UK
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FIGURE 2b. CROSS-SECTIONAL MOMENTS OF THE GROWTH RATE - US
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Notes: The dashed (green) line is the GDP growth rate. The continuous (blue) lines are empirical moments

of the cross section in each year.
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FIGURE 3. KOLMOGOROV-SMIRNOV GOODNESS-OF-FIT TEST FOR THE AEP DENSITY
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Notes: Each figure reports the p-values associated with the Kolmogorov-Smirnov goodness-of-fit test. Exact

p-values are estimated by bootstrapping the distribution of the test statistics under the null hypothesis, with

sample size equal to those of the empirical sample. The bootstrap sample size is 5000.
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FIGURE 4a. TEST OF THE SYMMETRY OF THE DISTRIBUTION
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Notes: Each figure reports the p-values of the likelihood-ratio test of the symmetry of the distribution. We

compare the likelihood of the symmetric exponential power (EP) distribution to that of the AEP. The former

can be nested in the latter by constraining the shape and scale parameters to be the same in the two halves of

the density.

FIGURE 4b. TEST ON THE SIGNIFICANCE OF CHANGES IN THE AEP DISTRIBUTION
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Notes: Each figure reports the p-values for the likelihood-ratio tests. The null hypothesis constrains the parameters

of the AEP to be the same as those estimated in the previous year.
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FIGURE 5. ESTIMATED AEP PARAMETERS

UK US
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Notes: The figures report the estimated AEP parameters together with the 68% confidence interval.
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TABLE 1a. SUMMARY STATISTICS: EMPIRICAL MOMENTS - UK

GDP Growth Time Trend

Corr. Dyn. Corr. Conc.

Mean 0.8161 0.8534 0.6977 0.0009∗

Standard Deviation −0.1312 −0.3092 0.4419 0.0016∗∗∗

Skewness −0.5100 −0.6052 0.3023 −0.0059∗∗∗

Kurtosis 0.1729 0.3734 0.5349 −0.0410∗∗∗

TABLE 1b. SUMMARY STATISTICS: EMPIRICAL MOMENTS - US

GDP Growth Time Trend

Corr. Dyn. Corr. Conc.

Mean 0.7905 0.8490 0.7818 −0.0005∗

Standard Deviation −0.2514 −0.3730 0.3636 0.0014∗∗∗

Skewness −0.1928 −0.1077 0.5091 −0.0067∗∗∗

Kurtosis 0.2382 0.3947 0.6545 −0.0378∗∗∗

Notes: Corr. is the correlation of the moment with the real GDP growth rate. Dyn. Corr. is a measure of

dynamic correlation (Croux et al., 2001), which measures correlation at a specific frequency band: in the present

case we choose the business cycle frequency in the range [π/4, 3π/4], which corresponds to a cycle of 6− 32

quarters. Conc. stands for the business cycle concordance indicator of Harding and Pagan (1999).30 The variable

is entered as linearly detrended whenever the trend is found statistically significant at the 5% level.31 The time

trend is the estimated coeffi cient of a linear trend. ∗∗∗/∗∗/∗ indicates significance at the 1/5/10% level.

30This indicator is bounded between 0 and 1 and indicates independence between the series whenever it equals
0.5.
31The resulting measures hardly change if we compute them from the original (i.e., non detrended) variables.
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TABLE 2. PAIRWISE CORRELATIONS: AEP PARAMETERS

UK

m bl br al

bl 0.0827

br −0.2200 −0.4155

al 0.2435 0.9663 −0.4423

ar −0.4313 −0.6322 0.9027 −0.7027

US

m bl br al

bl −0.2091

br −0.5541 0.1928

al 0.0698 0.8950 0.0611

ar −0.6319 −0.2249 0.8082 −0.4730

TABLE 3a. SUMMARY STATISTICS: AEP PARAMETERS - UK

GDP Growth Time Trend

Corr. Dyn. Corr. Conc.

m 0.4268 0.5164 0.8140 −0.0038∗

bl −0.6520 −0.6950 0.3488 −0.0008

br 0.4360 0.4257 0.6047 0.0241∗∗∗

al −0.5664 −0.6149 0.3488 −0.0004

ar 0.4262 0.3968 0.6279 0.0077∗∗∗

TABLE 3b. SUMMARY STATISTICS: AEP PARAMETERS - US

GDP Growth Time Trend

Corr. Dyn. Corr. Conc.

m 0.1298 0.0804 0.4545 −0.0093∗∗∗

bl −0.6384 −0.7299 0.2909 0.0061∗∗∗

br 0.6069 0.6375 0.6727 0.0182∗∗∗

al −0.6099 −0.6653 0.2545 0.0027∗∗

ar 0.6520 0.6612 0.8182 0.0051∗∗∗

Notes: See notes to Table 1.
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TABLE 4. GRANGER CAUSALITY TESTS: CROSS-SECTIONAL MOMENTS

UK

∆y =⇒ x x =⇒ ∆y

Mean 14.2984∗∗∗ 4.2674

Standard Deviation 22.8803∗∗∗ 6.0258∗

Skewness 22.7939∗∗∗ 4.0710

Kurtosis 34.5884∗∗∗ 1.1472

US

∆y =⇒ x x =⇒ ∆y

Mean 6.6815∗∗ 0.9748

Standard Deviation 3.7489 2.7359

Skewness 4.7447∗∗ 35.9663∗∗∗

Kurtosis 8.0947∗∗ 3.7618

Notes: Table 4 reports bivariate Granger Causality tests: x alternatively represents each of the variables in the

first column, while ∆y denotes the growth rate of real GDP. In general, z =⇒ h indicates Granger Causality

from z to h (i.e., z can help at forecasting h). The bivariate system is estimated by GMM. We retrieve Wald

statistics by including two lags of each variable.32 Variables x are linearly detrended, whenever a linear trend is

found significant at the 5% level of significance.33 ∗∗∗/∗∗/∗ indicates significance at the 1/5/10% level.

TABLE 5. GRANGER CAUSALITY TESTS: AEP PARAMETERS

UK

∆y =⇒ x x =⇒ ∆y

m 7.0216∗∗ 0.4550

bl 31.4829∗∗∗ 4.4179

br 3.3028 14.2281∗∗∗

al 21.7935∗∗∗ 2.3496

ar 2.5469 10.6939∗∗∗

US

∆y =⇒ x x =⇒ ∆y

m 1.3301 29.0627∗∗∗

bl 1.3384 4.1889

br 5.1507∗ 0.1729

al 0.0397 29.9470∗∗∗

ar 0.6669 16.0716∗∗∗

Notes: See notes to Table 4.

32We have also tried different lag structures. The results are virtually unchanged if the test is computed by
including 1 or 3 lags for each variable.
33The resulting statistics hardly change if the regression comprises the original variables (i.e., non detrended)

and a linear trend, whenever this is found significant at the 5% level in Table 1.
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TABLE 6. AEP PARAMETERS AND FINANCIAL FRICTIONS - US

m bl br al ar

Const. 0.4526 0.2601 0.6592 0.3503 0.8912

(0.0008) (0.3015) (0.0000) (0.0383) (0.0000)

t −0.0052 −0.0011 0.0118 0.0004 0.0068

(0.0038) (0.7655) (0.0018) (0.8517) (0.0000)

xt−1 0.6360 0.1334 0.3664 0.2010 0.1625

(0.0000) (0.2213) (0.0085) (0.0601) (0.2493)

xt−2 −0.4131 0.1407 0.0741 −0.0111 −0.1904

(0.0000) (0.4062) (0.5816) (0.9362) (0.1602)

EFP t −0.0771 0.3224 −0.0797 0.1321 −0.0705

(0.3441) (0.0305) (0.2997) (0.0852) (0.1303)

Notes: The table reports the estimated coeffi cients and the associated p-values (in parenthesis). We estimate the

regression by GMM, with Newey-West heteroskedasticity-robust standard errors.
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Appendix A: Additional Results from the +/-100% Truncated
Sample

TABLE A1a. SUMMARY STATISTICS: EMPIRICAL MOMENTS - UK

GDP Growth Time Trend

Corr. Dyn. Corr. Conc.

Mean 0.8090 0.8447 0.7209 0.0015∗∗

Standard Deviation 0.2651 0.1203 0.6512 0.0039∗∗∗

Skewness 0.1780 0.0761 0.5581 −0.0131∗∗

Kurtosis 0.1543 0.4939 0.5349 −0.0957∗∗∗

TABLE A1b. SUMMARY STATISTICS: EMPIRICAL MOMENTS - US

GDP Growth Time Trend

Corr. Dyn. Corr. Conc.

Mean 0.7482 0.8310 0.7636 −0.0004

Standard Deviation −0.0667 −0.2003 0.4545 0.0028∗∗∗

Skewness 0.2057 0.1970 0.4909 −0.0186∗∗∗

Kurtosis 0.0604 0.1154 0.5636 −0.0723∗∗∗

Notes: Corr. stands for the correlation coeffi cient of the variable of interest with the real GDP growth rate. Dyn.

Corr. is the measure of dynamic correlation of Croux et al. (2001), which measures correlation at a specific

frequency band: in the present case we choose the business cycle frequency in the range [π/4, 3π/4], which

corresponds to a cycle of 6− 32 quarters. Conc. stands for the business cycle concordance indicator of Harding

and Pagan (1999).34 The variable is entered as linearly detrended whenever the trend is found statistically

significant at the 5% level.35 Time trend reports the estimated coeffi cient of a linear trend. ∗∗∗/∗∗/∗ indicates

significance at the 1/5/10% level.

34This indicator is bounded between 0 and 1 and indicates independence between the series whenever it equals
0.5.
35The resulting measures hardly change if we compute them from the original (i.e., non detrended) variables.
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TABLE A2. PAIRWISE CORRELATIONS: AEP PARAMETERS

UK

m bl br al

bl 0.1836

br −0.5004 −0.5263

al 0.0780 0.9183 −0.3485

ar −0.4960 −0.7109 0.8828 −0.6524

US

m bl br al

bl 0.0402

br −0.7094 −0.0764

al −0.0943 0.7956 0.0934

ar −0.5209 −0.4038 0.7597 −0.5139

TABLE A3a. SUMMARY STATISTICS: AEP PARAMETERS - UK

GDP Growth Time Trend

Corr. Dyn. Corr. Conc.

m 0.4364 0.5311 0.7209 −0.0011

bl −0.5695 −0.5387 0.3256 −0.0029

br 0.1244 0.0170 0.6047 0.0077∗∗∗

al −0.6337 −0.6616 0.3256 0.0000

ar 0.3028 0.1666 0.5814 0.0030∗

TABLE A3b. SUMMARY STATISTICS: AEP PARAMETERS - US

GDP Growth Time Trend

Corr. Dyn. Corr. Conc.

m 0.2230 0.1660 0.4727 −0.0081∗∗∗

bl −0.5707 −0.6511 0.2545 0.0009

br 0.3924 0.4739 0.7455 0.0071∗∗∗

al −0.6092 −0.6685 0.2727 0.0019∗∗

ar 0.5961 0.5936 0.7818 0.0024∗∗

Notes: See notes to Table A1.
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TABLE A4. GRANGER CAUSALITY TESTS: CROSS-SECTIONAL MOMENTS

UK

∆y =⇒ x x =⇒ ∆y

Mean 10.5724∗∗∗ 3.0310

Standard Deviation 7.4424∗∗ 1.9346

Skewness 2.8436 2.4767

Kurtosis 28.0487∗∗∗ 1.3218

US

∆y =⇒ x x =⇒ ∆y

Mean 6.7454∗∗ 0.7117

Standard Deviation 3.3634 3.9000

Skewness 0.3672 31.5676∗∗∗

Kurtosis 1.6686 0.3669

Notes: Table A4 reports bivariate Granger Causality tests: x alternatively represents each of the variables in the

first column, while ∆y denotes the growth rate of real GDP. In general, z =⇒ h indicates Granger Causality

from z to h (i.e., z can help at forecasting h). The bivariate system is estimated by GMM. We retrieve Wald

statistics by including two lags of each variable.36 Variables x are linearly detrended, whenever a linear trend is

found significant at the 5% level of significance.37 ∗∗∗/∗∗/∗ indicates significance at the 1/5/10% level.

TABLE A5. GRANGER CAUSALITY TESTS: AEP PARAMETERS

UK

∆y =⇒ x x =⇒ ∆y

m 10.3056∗∗∗ 0.5237

bl 14.8114∗∗∗ 3.6558

br 9.5450∗∗∗ 1.1592

al 16.0996∗∗∗ 2.1006

ar 8.3520∗∗ 4.4450∗

US

∆y =⇒ x x =⇒ ∆y

m 2.9491 9.5208∗∗∗

bl 0.2924 3.8248

br 2.1017 0.0688

al 0.0391 16.4799∗∗∗

ar 3.0324 15.0175∗∗∗

Notes: See notes to Table A4.

36We have also tried different lag structures. The results are virtually unchanged if the test is computed by
including 1 or 3 lags for each variable.
37The resulting statistics hardly change if the regression comprises the original variables (i.e., non detrended)

and a linear trend, whenever this is found significant at the 5% level in Table 1.
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TABLE A6. AEP PARAMETERS AND FINANCIAL FRICTIONS - US

m bl br al ar

Const. 0.4530 0.4572 0.4713 0.2528 0.7910

(0.0018) (0.0152) (0.0000) (0.0773) (0.0000)

t −0.0054 −0.0022 0.0044 −0.0003 0.0041

(0.0006) (0.2413) (0.0145) (0.8355) (0.0001)

xt−1 0.3603 0.1467 0.4849 0.2507 0.2322

(0.0378) (0.4647) (0.0003) (0.0356) (0.0520)

xt−2 −0.2347 0.0533 −0.0155 0.0300 −0.2531

(0.0568) (0.7896) (0.9224) (0.8341) (0.0681)

EFP t −0.0848 0.1623 −0.0150 0.1079 −0.0617

(0.2613) (0.0514) (0.7625) (0.0963) (0.1104)

Notes: Table A6 reports estimated coeffi cients and the associated p-values (in parenthesis). We estimate the

regression by GMM, with Newey-West heteroskedasticity-robust standard errors.
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Appendix B: Scaling Behavior

FIGURE B1: SCALING BEHAVIOR
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Notes: Panels on the LHS of the figure are estimates of the scaling parameter (β̂t) with the associated 68%

confidence interval. On the RHS we report goodness-of-fit measures for each regression.
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Appendix C: Technical Discussion of the Two-stage Estimation
Strategy

The two-stage strategy we employ consists of first estimating the AEP density in each year and
then extracting time series for the parameters. It might be argued that estimating the AEP
parameters and their dynamics simultaneously would be more effi cient, or that using estimated
regressors might bias our results. Unfortunately, the complexity of the problem we face renders
the one stage estimation unfeasible. This is mainly due to the fact that the log-likelihood
function is not well behaved. Bottazzi (2004) shows that the log-likelihood typically displays
many local maxima and that differentiating among them is not an easy task.

In this appendix we discuss how to obtain consistent and asymptotically effi cient estimates
with our two-stage approach. The main problem potentially relates to the presence of measure-
ment errors in the estimated parameters (see, e.g., Pagan, 1984). As explained above, in the
first stage we estimate the parameters of the AEP distribution by maximum likelihood (ML).
Bottazzi and Secchi (2006b) demonstrate that ML estimates are consistent and normally dis-
tributed. Furthermore, they report extensive evidence that any bias in the estimation of the
AEP parameters disappears even for relatively small sized samples.38 Nevertheless, a problem
might arise in the second stage, when using generated regressors to perform time series analysis.
It might be argued that the estimated regressor is a noisy observation of the true unobserv-
able AEP parameter.39 Let us indicate with x̂t the estimated parameter of interest, and let us
assume it as a noisy observation of the true underlying process of the parameter:

x̂t = x∗t + ηt. (5)

We then use the estimated parameter in a hypothetical dynamic regression. Specifically, let us
assume that the true underlying process is an ARX(1,1):

x∗t = ρx∗t−1 + γyt−1 + et (6)

Clearly, we deal with an unobservable variable problem examined, for instance, by Zellner
(1970). After substituting for the estimated parameter we obtain:

x̂t = ρx̂t−1 + γyt−1 + εt (7)

εt = et + ηt − ρηt−1 (8)

the standard OLS estimate is therefore inconsistent, given that E (x̂t−1εt) 6= 0.
Suppose that we can find an instrument for x̂t−1 which is uncorrelated with the noise. Then

the standard two-stage estimator is unbiased. Furthermore, this is asymptotically effi cient and,
indeed, no asymptotic gains are available by switching to a full MLE (Pagan, 1984). It turns
out that a natural instrument can be easily obtained by randomly drawing two subsamples from
the original sample and then estimating the AEP parameters for each of these samples. An
estimate for the whole sample is given by the simple average of the two estimates. Clearly this
is also an approximation of the original true value (and it is an ineffi cient one). However, in

38 In fact, any bias disappears for n > 100, which is well below the lowest sample size considered in this paper.
39 It is worth recalling that the size of the problem we are discussing can be related to the noise-to-signal ratio

in the estimation. Clearly, given the precision with which we estimate the parameters, and the fact that we deal
with consistent estimators, the problem we discuss is bound to be marginal for the case under analysis.
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principle the approximation error in this case should not be correlated with the one that arises
from the effi cient estimate. Therefore, the ineffi cient estimate is a perfect instrument for our
purpose (Fuller, 1987).

The reasoning above would suggest resorting to a IV procedure. However, the asymptotic
variance of the IV estimator is always larger and sometimes much greater than that of the
OLS estimator. Therefore, turning to IV for the sake of consistency must be balanced against
the inevitable loss of effi ciency. Furthermore, IV estimates can have very poor small sample
properties and, given that we have a small sample, it may be advisable to use OLS. The
Hausman test helps at balancing the loss of effi ciency entailed by the IV estimation with the
bias and inconsistency of the OLS estimators.40 Tables C1 and C2 report the results for the
Hausman-Wu test and the Durbin-Hausman test for each of the estimated AEP parameters.
The null hypothesis is always rejected at usual confidence levels. We conclude that the potential
endogeneity problem that arises when using estimated regressors is of little harm in our case.
Therefore, the estimated parameters in the main text are always treated as the true underlying
values.41

TABLE C1. HAUSMAN TESTS

UK

H −W D −H
m 0.9566 0.9545

bl 0.9863 0.9856

br 0.8106 0.8086

al 0.2618 0.2896

ar 0.6335 0.6507

US

H −W D −H
m 0.9086 0.9058

bl 0.1854 0.2109

br 0.3836 0.4053

al 0.6390 0.6368

ar 0.3877 0.4005

Notes: Table C1 reports the p-values associated with the Hausman-Wu (H −W ) test, as well the Durbin-

Hausman (D −H) The test is performed on the estimated coeffi cients of the AR(2) model for each of the

estimated AEP parameters. Choosing 1 or 3 lags delivers very similar results. The null hypothesis is that there

is no gain from IV estimation. For a standard regression with K regressors and K∗ restrictions, the Hausman

- Wu statistic is distributed as a F (K∗, T −K −K∗), whereas the Durbin-Hausman test is distributed as a
χ2(K∗).

40The Hausman test involves fitting the model by both IV and OLS, thus comparing a weighted square of the
difference between the two estimators.
41Nevertheless, we still use the GMM estimator with NW standard errors to correct for possible heteroskedas-

ticity and autocorrelation in the error terms.
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TABLE C2. HAUSMAN TESTS

UK

H −W D −H
m 0.8661 0.8622

bl 0.9340 0.9313

br 0.5705 0.5939

al 0.1075 0.1520

ar 0.7149 0.7299

US

H −W D −H
m 0.9805 0.9796

bl 0.2080 0.2390

br 0.3388 0.3855

al 0.6034 0.6072

ar 0.4169 0.4319

Notes: Table C2 reports the p-values for the Hausman-Wu (H −W ) and Durbin-Hausman (D −H) tests.
The test is performed on an ARX(2,2) model for each of the estimated AEP parameters, with two lags of the

GDP growth rate (this regression is analogous to that employed in the Granger Causality test reported in the

main text).
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