
Arenberg Doctoral School of Science, Engineering & Technology
Faculty of Engineering
Department of Electrical Engineering (ESAT)

Efficient Hardware Implementations of
Cryptographic Primitives

Miroslav KNEŽEVIĆ

Dissertation presented in partial
fulfillment of the requirements for
the degree of Doctor
in Engineering

March 2011

Efficient Hardware Implementations of
Cryptographic Primitives

Miroslav KNEŽEVIĆ

Jury: Dissertation presented in partial
Prof. dr. Hugo Hens, chairman fulfillment of the requirements for
Prof. dr. Ingrid Verbauwhede, promotor the degree of Doctor
Prof. dr. Lejla Batina in Engineering

(University of Nijmegen, The Netherlands)
Prof. dr. Georges Gielen
Prof. dr. Bart Preneel
Prof. dr. Kazuo Sakiyama

(The University of Electro-Communications,
Japan)

March 2011

© Katholieke Universiteit Leuven – Faculty of Engineering
Arenbergkasteel, B-3001 Leuven-Heverlee, Belgium

Alle rechten voorbehouden. Niets uit deze uitgave mag worden vermenigvuldigd
en/of openbaar gemaakt worden door middel van druk, fotocopie, microfilm,
elektronisch of op welke andere wijze ook zonder voorafgaande schriftelijke
toestemming van de uitgever.

All rights reserved. No part of the publication may be reproduced in any form by
print, photoprint, microfilm or any other means without written permission from
the publisher.

Legal depot number D/2011/7515/32
ISBN number 978-94-6018-330-0

To the memory of my mother

Acknowledgments

Silent gratitude isn’t
much use to anyone.

G. B. Stern

Writing this personal letter of gratitude sets me up for travelling back in time,
recalling all the valuable moments I had during the past several years. Simply
too many people have been involved and generously contributed to the final shape
of this dissertation. Several individuals deserve my greatest gratitude for their
contributions and support.

First of all, I am very grateful to my PhD advisor, Prof. Ingrid Verbauwhede. Not
only did she guide me through the jungle of research all along, she also gave me a
unique opportunity to join COSIC at the very first place. I appreciate the research
freedom she offered, always giving me a chance to choose.

I am honored to have Prof. Lejla Batina, Prof. Georges Gielen, Prof. Bart Preneel,
and Prof. Kazuo Sakiyama as the members of my jury, and Prof. Hugo Hens for
chairing the jury. Thank you for carefully evaluating my dissertation and providing
the valuable feedback.

I owe my deepest gratitude to Kazuo Sakiyama and Frederik Vercauteren for
spending their precious time with the rookie, who I undoubtedly was at the
beginning of this journey. Please forgive my ignorance and silly questions I was
able to ask.

These acknowledgments would certainly remain incomplete without mentioning
the name of Vesselin Velichkov, my first office mate and comrade during the years
of our doctorates. I learned a lot from Junfeng Fan and Yong Ki Lee, and had
a unique chance to work together with dozens of eminent researchers. I would
therefore like to acknowledge some of my co-authors and people who inspired my
research in one way or another: Lejla Batina, Andrey Bogdanov, Christophe De
Cannière, Elke De Mulder, Orr Dunkelman, Benedikt Gierlichs, Duško Karaklajić,
Roel Maes, Christian Rechberger, Vladimir Rožić, and Dai Watanabe. I am also
very grateful to the rest of the COSIC crew who made my working environment
and life in Leuven very pleasant. A special thanks goes to Péla Noé and Elsy
Vermoesen for unravelling the labyrinths of bureaucracy and always effectively
solving a problem with a smile.

i

ii

I am very grateful to all of my friends who always made sure to bring me back down
to earth, never leaving me stranded. The guys from Belgrade, Leuven, Moscow,
Lausanne, Brussels. Thanks for giving me a chance to win, to lose, to be happy,
to be stubborn, to be selfish, to be generous. I would also like to thank Anya for
being kind, so unselfish, and always there for me.

Finally, I would like to thank my parents, my sister, and my big family for their
unconditional support and for taking care of me more than I sometimes deserved.

Miroslav Knežević
Leuven, March 2011

Abstract

Society is undergoing a paradigm shift where the Information and Communication
Technology (ICT) revolution goes along with the evolution of the humankind. The
Internet is all around us and plays a crucial role in our ability to communicate. We
often distribute our personal and other classified information using the benefits of
the global network. Our demands to conceal confidential data are therefore being
strongly manifested and become very important. By ensuring the objectives of
information security, such as confidentiality, data integrity, entity authentication,
non-repudiation, and many more, cryptography provides a natural solution to the
issue of data protection.

The ICT revolution has driven cryptography from the art of secret writing into
a multidisciplinary scientific study of techniques for securing digital information.
While providing aspects of information security, cryptography uses complex
mathematical objects and often represents a bottleneck in hardware and software
implementations. The research presented in this thesis deals with efficient hardware
implementations of cryptographic primitives.

The first part of the thesis is devoted to efficient implementations of finite field
arithmetic, with the application in public-key cryptography. Our focus on state
of the art algorithms for efficient modular multiplication eventually leads to the
introduction of several sets of moduli for which the modular multiplication performs
faster. Furthermore, by combining several existing algorithms, we propose the
tripartite modular multiplication, a novel method that reduces the computational
complexity of modular multiplication and increases the potential of parallel
processing.

The second part of the thesis presents techniques for high-throughput hardware
implementations of cryptographic hash functions. Our hardware implementation
of the RIPEMD-160 hash algorithm represents the fastest implementation of this
algorithm reported in the literature. As a contribution to the SHA-3 competition
launched by the National Institute of Standards and Technology (NIST), we define
a standard testing framework for a comprehensive hardware evaluation of fourteen
second-round SHA-3 candidates.

iii

iv

Finally, we discuss recent advances in lightweight cryptography. Our contribution
to this field is KATAN & KTANTAN – a family of small, very efficient, hardware-
oriented block ciphers. The family comprises six designs, the smallest of which
has size of only 462 NAND gate equivalences (GE). KATAN & KTANTAN is
the smallest family of cryptographic primitives suitable for the current CMOS
technology reported in the literature.

Samenvatting

De samenleving ondergaat een paradigmaverschuiving waar de Informatie en
Communicatie Technologie (ICT) revolutie hand in hand gaat met de menselijke
evolutie. Het internet is alomtegenwoordig en speelt een cruciale rol in ons
communicatievermogen. We delen onze persoonlijke en andere geheime informatie
vaak over het internet. De nood om vertrouwelijke informatie te verbergen,
manifesteert zich daardoor in grotere mate en is zeer belangrijk geworden. Door
een aantal aspecten van informatiebeveiliging, zoals vertrouwelijkheid, integriteit
van gegevens, authenticatie van entiteiten, onweerlegbaarheid en nog veel meer te
garanderen, biedt cryptografie een natuurlijke oplossing aan voor het vraagstuk
naar veiligheid.

De ICT revolutie heeft cryptografie omgevormd van een kunst in het geheimschrift
naar een multidisciplinair wetenschappelijk onderzoeksgebied voor technieken om
digitale informatie te beveiligen. Om bepaalde aspecten van informatiebeveiliging
te verwezenlijken, maakt cryptografie gebruik van complexe wiskundige objecten
en is daardoor vaak een knelpunt in hardware- en software-implementaties.
Het onderzoek gepresenteerd in dit proefschrift behandelt efficiënte hardware-
implementaties van cryptografische primitieven.

Het eerste deel van het proefschrift is gewijd aan efficiënte implementaties
van eindige-veld berekeningen. Onze focus op state-of-the-art algoritmes voor
efficiënte modulaire vermenigvuldigingen leidt uiteindelijk tot de invoering van
verschillende sets van moduli waarvoor de modulaire vermenigvuldiging sneller
presteert. Bovendien, door het combineren van verschillende bestaande algoritmes,
stellen we de tripartiete modulaire vermenigvuldiging voor, een nieuwe methode die
de computationele complexiteit van een modulaire vermenigvuldiging vermindert
en de mogelijkheden voor parallelle verwerking verhoogt.

Het tweede deel van het proefschrift presenteert technieken voor hardware-
implementaties van cryptografische hashfuncties met hoge doorvoer. Onze hardware-
uitvoering van het RIPEMD-160 hashalgoritme vertegenwoordigt de snelste
implementatie in de literatuur. Als bijdrage aan de SHA-3 competitie georganiseerd
door het National Institute of Standards and Technology (NIST), definiëren we een

v

vi

gestandardiseerd testkader voor een uitgebreide hardware-evaluatie van de veertien
SHA-3 kandidaten uit de tweede ronde.

Tot slot bespreken we de recente ontwikkelingen in de lichtgewichtcryptografie.
Onze bijdrage aan dit veld is KATAN & KTANTAN – een familie van kleine, zeer
efficiënte, hardware-georiënteerde blokcijfers. De familie bestaat uit zes ontwerpen,
waarvan de kleinste een grootte van slechts 462 NAND-poort equivalenties (GE)
heeft. KATAN & KTANTAN is de kleinste familie van cryptografische primitieven
die geschikt zijn voor de huidige CMOS-technologie gepubliceerd in de literatuur.

Резиме

Захваљуjући револуциjи информационих и комуникационих технологиjа (ICT),
савремено друштво доживљава значаjне промене у начину комуникациjе и
размене података. Интернет jе свуда око нас и друштво врло лако прихвата
предности коjе ICT револуциjа нуди. Подаци коjе размењуjемо користећи
глобалну мрежу, често су личне природе или спадаjу у домен врло поверљивих
информациjа. Стога се jавља проблем заштите таквих података и потреба за
његовим решењем постаjе све већа. Бавећи се многим аспектима заштите
информациjа, криптографиjа се у овом случаjу намеће као природно решење.

С почетка сматрана уметношћу таjног писања криптографиjа се, пратећи
трендове ICT револуциjе, развила у мултидисциплинарну науку заштите
таjности дигиталних података. У ту сврху криптографиjа користи комплексне
математичке обjекте због чега често представља “уско грло” хардверских и
софтверских имплементациjа. Истраживање коjим се бави ова теза разматра
управо ефикасне хардверске имплементациjе криптографских алгоритама.

Први део тезе посвећен jе ефикасним имплементациjама аритметике коначних
поља са применом у криптографским системима jавних кључева. Фокус
jе стављен на тренутно наjнапредниjе алгоритме за модуларно множење.
Након тога уводимо неколико скупова модула за коjе модуларно множење
постаjе знатно ефикасниjе. Такође, комбиновањем неколико већ постоjећих
алгоритама уводимо нови, такозвани “tripartite modular multiplication” алго-
ритам. Предложени алгоритам смањуjе комплексност модуларног множења и
посебно jе погодан за системе у коjима jе могуће извршавати више паралелних
операциjа истовремено.

Други део тезе уводи технике за ефикасно имплементирање хеш функциjа.
Имплементациjа RIPEMD-160 хеш алгоритма коjа jе описана у овом поглављу
представља тренутно наjбржу имплементациjу овог алгоритма обjављену у
академским круговима. Као допринос такмичењу за избор новог SHA-3
стандарда, организованог од стране америчког Националног Института за
Стандарде и Технологиjу (NIST), ми уводимо нови метод за тестирање и
комплетну хардвер оцену перформанси свих четрнаест SHA-3 кандидата.

vii

viii

Коначно, у последњем поглављу ове тезе разматрана су наjновиjа открића у
пољу “lightweight” криптографиjе. Као допринос том пољу ми предлажемо
KATAN & KTANTAN – фамилиjу малих, врло ефикасних блок шифара
коjа jе посебно погодна за компактне хардвер имплементациjе. Фамилиjа
садржи шест верзиjа, од коjих jе наjмања еквивалент величине свега 462
NAND интегрисаних кола. KATAN & KTANTAN тренутно представљаjу
наjкомпактниjу фамилиjу блок шифара погодну за имплементациje у посто-
jећоj CMOS технологиjи.

Contents

Contents ix

List of Figures xiii

List of Tables xix

1 Introduction 1

1.1 Outline and Summary of Contributions 5

2 Efficient Hardware Implementations of Finite Field Arithmetic 7

2.1 Introduction . 7

2.2 Preliminaries . 9

2.3 Efficient Modular Arithmetic . 11

2.3.1 Bit-Parallel Algorithms . 12

2.3.2 Digit-Serial Algorithms . 14

2.4 Faster Digit-Serial Modular Multiplication Based on Barrett and
Montgomery Reduction Methods 15

2.4.1 Related Work . 16

2.4.2 The Proposed Modular Multiplication Methods for Integers 16

2.4.3 Speeding Up Classical Modular Multiplication 17

2.4.4 Speeding Up Montgomery Multiplication 23

2.4.5 Speeding Up Bipartite Modular Multiplication 25

ix

x CONTENTS

2.4.6 Hardware Implementation of the Proposed Algorithms Based
on Barrett and Montgomery Reduction Methods 28

2.4.7 Hardware Implementation of the Proposed Algorithm Based
on Bipartite Modular Multiplication 33

2.4.8 Security Considerations . 36

2.4.9 The Proposed Multiplication Methods in GF(2n) 39

2.4.10 Summary . 43

2.5 Bit-Parallel Modular Multiplication Based on Barrett and Mont-
gomery Reduction Methods Without Precomputation 44

2.5.1 On the Security of the Proposed Sets 49

2.5.2 Bit-Parallel Finite Field Multiplication without Precomputa-
tion in GF(2n) . 50

2.5.3 Summary . 55

2.6 Tripartite Modular Multiplication 55

2.6.1 Overview of the Proposed Multiplication Algorithm 56

2.6.2 Further Exploration of the Proposed Algorithm 57

2.6.3 Cost and Performance Estimation 60

2.6.4 Hardware Implementation of the Proposed Algorithm . . . 62

2.6.5 Summary . 66

2.7 Conclusion . 66

3 High-Throughput Hardware Implementations of Cryptographic Hash
Functions 67

3.1 Introduction . 67

3.2 Popular Hash Algorithms and Their Security Considerations 69

3.3 Throughput Improving Techniques 72

3.4 On the High-Throughput Implementation of
RIPEMD-160 Hash Algorithm . 76

3.4.1 RIPEMD-160 Algorithm . 77

3.4.2 Optimization at Micro-Architecture Level 77

CONTENTS xi

3.4.3 Optimization at Gate Level 80

3.4.4 Final High-Throughput Architecture 83

3.4.5 Implementation Results and Comparison with Previous Work 85

3.4.6 Summary . 87

3.5 Extensive Hardware Comparison of Fourteen
Second-Round SHA-3 Candidates 87

3.5.1 Related Work . 89

3.5.2 General Requirements for Hardware Evaluation 89

3.5.3 Hardware Evaluation Platform for SHA-3 Candidates . . . 93

3.5.4 FPGA Evaluation Results 100

3.5.5 ASIC Evaluation Results 108

3.5.6 Correlation between ASIC and FPGA Results 113

3.5.7 The SHA-3 Finalists . 113

3.5.8 Summary . 114

3.6 Hardware Evaluation of the Luffa Hash Family 114

3.6.1 Hardware Implementation 117

3.6.2 Summary . 124

3.7 Conclusion . 125

4 Lightweight Cryptography – A Battle for a Single Gate 127

4.1 Introduction . 127

4.1.1 Related Work . 129

4.2 KATAN & KTANTAN – A Family of Small and Efficient Hardware-
Oriented Block Ciphers . 131

4.2.1 General Construction and Building Blocks 134

4.2.2 The KATAN Set of Block Ciphers 136

4.2.3 The KTANTAN Family . 139

4.2.4 Hardware Implementation 140

4.2.5 Security Analysis . 143

xii CONTENTS

4.2.6 Combined Attacks . 144

4.2.7 Cryptanalysis of KATAN & KTANTAN Family of Block
Ciphers . 147

4.2.8 New Key Schedule for KTANTAN Family of Block Ciphers 148

4.2.9 Summary . 152

4.3 Conclusion . 153

5 Conclusions and Future Work 155

Bibliography 159

List of Publications 175

Curriculum Vitae 179

List of Figures

1.1 Outline of the thesis. 4

2.1 Security versus speed and speed versus low-cost trade-off. 8

2.2 Binary representation of the proposed sets S1 and S2. 20

2.3 Binary representation of the proposed sets S3 and S4. 24

2.4 Binary representation of the proposed set S5. 28

2.5 Datapath of the modular multiplier with the shortest critical path. 30

2.6 Datapath of the modular multiplier with the minimized number of
clock cycles. 31

2.7 Datapath of our proposed multiplier. 32

2.8 Datapath of the modular multiplier with the shortest critical path
based on the BMM method. 35

2.9 Timing schedule of the BMM multiplier with the shortest critical
path. 36

2.10 Datapath of the modular multiplier with the minimized number of
clock cycles based on the BMM method. 37

2.11 Timing schedule of the BMM multiplier with the minimized number
of clock cycles. 38

2.12 Datapath of the modular multiplier based on the BMM method with
a modulus from the proposed set. 39

2.13 Timing schedule of the proposed BMM multiplier. 40

2.14 Binary representation of the proposed set F1. 42

xiii

xiv LIST OF FIGURES

2.15 Binary representation of the proposed set F2. 43

2.16 Binary representation of the proposed sets S6 and S7. 46

2.17 Binary representation of the proposed sets S8 and S9. 49

2.18 Binary representation of the proposed set F3. 51

2.19 Binary representation of the proposed set F4. 53

2.20 Procedure for modular multiplication. (a) our proposed method. (b)
bipartite method. 57

2.21 Procedure for modular multiplication for u = 4. (a) five-way parallel
computation. (b) three-way parallel computation. 59

2.22 Hierarchy of the modular multiplication. 60

2.23 Datapath of the modular multiplier based on classical and
Montgomery algorithms. 63

2.24 Datapath of the modular multiplier based on the bipartite algorithm. 64

2.25 Datapath of the modular multiplier based on the proposed algorithm. 65

3.1 Speed versus low-cost trade-off. 68

3.2 Typical hardware architecture of the cryptographic hash function. 72

3.3 Retiming transformation. 73

3.4 Unrolling transformation. 74

3.5 (a) k = 2-unrolled design. (b) retiming of the unrolled design. . . . 75

3.6 Pipelining technique. 76

3.7 Decomposing core function into multiple pipeline stages. 76

3.8 Compression function of the RIPEMD-160 algorithm. 78

3.9 Data flow graph for compression function of the RIPEMD-160
algorithm. 78

3.10 Throughput optimized DFG of the RIPEMD-160 algorithm. 80

3.11 ADD+ROT part of the loop in the RIPEMD-160 algorithm. 80

3.12 Functionality of the original ADD+ROT part in the RIPEMD-160
algorithm. 81

3.13 Functionality of the ADD+ROT part after the first transformation. 82

LIST OF FIGURES xv

3.14 Functionality of the ADD+ROT part after optimization. 82

3.15 Throughput optimized ADD+ROT part of the loop in the RIPEMD-
160 algorithm. 83

3.16 DFG of the RIPEMD-160 architecture with optimized ADD+ROT
part of the loop. 84

3.17 Using CSA instead of two adders changes the critical path. 85

3.18 Throughput optimized DFG of the RIPEMD-160 algorithm with
optimized ADD+ROT part. 86

3.19 Second-round SHA-3 candidates classified with respect to their
design properties (courtesy of Dai Watanabe from Hitachi Ltd, the
designer of Luffa hash function). 92

3.20 Evaluation environment using SASEBO-GII board. 94

3.21 Three types of architectures: (a) fully autonomous. (b) core
functionality. (c) with external memory. 96

3.22 Architecture of cryptographic FPGA. 98

3.23 Maximum throughput for various types of interface with Iw = 3.
Target platform: Virtex 5 (xc5vlx30-3ff324) FPGA board. 102

3.24 Throughput versus area graph: (a) core function only. (b) fixed
interface with w = 16 bits and Iw = 3. Target platform: Virtex 5
(xc5vlx30-3ff324) FPGA board. 104

3.25 Latency versus message size graph: (a) core function only. (b) fixed
interface with w = 16 bits and Iw = 3. Target platform: Virtex 5
(xc5vlx30-3ff324) FPGA board. 105

3.26 Minimum latency for various types of interface with Iw = 3. Target
platform: Virtex 5 (xc5vlx30-3ff324) FPGA board. 106

3.27 Latency versus area graph: (a) core function only. (b) fixed interface
with w = 16 bits and Iw = 3. Target platform: Virtex 5 (xc5vlx30-
3ff324) FPGA board. 106

3.28 (a) Dynamic power consumption. (b) dynamic energy consumption.
Target platform: Virtex 5 (xc5vlx30-3ff324) FPGA board. 107

3.29 Maximum throughput for various types of interface with Iw = 3.
Target platform: STM 90 nm CMOS technology, synthesis results. 109

xvi LIST OF FIGURES

3.30 Throughput versus area graph: (a) core function only. (b) fixed
interface with w = 16 bits and Iw = 3. Target platform: STM 90 nm
CMOS technology, synthesis results. 111

3.31 Latency versus message size graph: (a) core function only. (b) fixed
interface with w = 16 bits and Iw = 3. Target platform: STM 90 nm
CMOS technology, synthesis results. 111

3.32 Minimum latency of all 14 candidates assuming various types of
interface with Iw = 3. Target platform: STM 90 nm CMOS
technology, synthesis results. 112

3.33 Latency versus area graph: (a) core function only. (b) Fixed interface
with w = 16 bits and Iw = 3. Target platform: STM 90 nm CMOS
technology, synthesis results. 112

3.34 (a) Dynamic power consumption. (b) Dynamic energy consumption.
Target platform: STM 90 nm CMOS technology, synthesis results. 113

3.35 A generic construction of the Luffa hash algorithm. 115

3.36 The round function C ′ (w = 3). 115

3.37 The finalization function C ′′. 116

3.38 The step function. 117

3.39 SubCrumb block. 117

3.40 MixWord block. 118

3.41 Straightforward implementation of the round function. 118

3.42 High-Throughput implementation of the round function. 119

3.43 High-Throughput implementations. 120

3.44 Compact SubCrumb block. 120

3.45 Compact MixWord block. 121

3.46 Compact implementations. 122

3.47 Throughput-Area trade-offs. 123

3.48 Pipelined architecture for the Luffa hash family. 123

4.1 Security versus low-cost trade-off. 128

4.2 Block cipher – hardware perspective. 132

LIST OF FIGURES xvii

4.3 The outline of a round of the KATAN/KTANTAN ciphers. 138

4.4 Two layers of MUXes assemble the new key schedule for KTANTAN.151

List of Tables

1.1 Complexity of the current cryptographic standards (equivalent
symmetric key size of 128 bits†). 2

2.1 Complexity of basic operations in GF(pm). 12

2.2 Hardware architectures of 192-bit, 512-bit and 1024-bit modular
multipliers with digit size of w = 32 bits (Synopsys Design Compiler
version C-2009.06-SP3, synthesis results). 33

2.3 Hardware architectures of 192-bit, 512-bit and 1024-bit modular
multipliers (Synopsys Design Compiler version C-2009.06-SP3,
synthesis results). 41

2.4 Cost and performance estimation for an interleaved modular
multiplication. 62

2.5 Comparison of FPGA implementations for a 192× 192-bit modular
multiplier. Target platform: Xilinx Virtex 5 FPGA board (xc5vlx50t-
ff1136). 64

2.6 Comparison of ASIC implementations for a 192× 192-bit modular
multiplier. Target platform: UMC 0.13 µm CMOS technology
(Synopsys Design Compiler version C-2009.06-SP3, synthesis results). 65

3.1 Selecting the appropriate input of the MUX. 84

3.2 Implementation results and comparison with previous work. 87

3.3 Memory requirements for the SHA-3 candidates. 90

3.4 Results of the SHA-3 candidates on Virtex-5 (xc5vlx30-3ff324). . . 103

xix

xx LIST OF TABLES

3.5 Power and energy consumption of the SHA-3 candidates on Virtex-5
(xc5vlx30-3ff324). 104

3.6 Synthesis results of the SHA-3 candidates using 90 nm CMOS
technology. 110

3.7 High-Throughput implementations of the Luffa hash family. 119

3.8 Compact implementations of the Luffa hash family. 121

3.9 Throughput-Area trade-offs of the Luffa hash family. 122

3.10 Pipelined implementations of the Luffa hash family. 124

3.11 Comparison results with the previous standards. 124

4.1 Area requirements of selected standard cells in our UMC 0.13 µm
library (FSC0L D). 133

4.2 Parameters defined for the KATAN/KTANTAN family of ciphers. 137

4.3 The sequence of the irregular updates; IR = 1 means that the
irregular update rule is used in this round, while IR = 0 means that
this is not the case. 138

4.4 Area-Throughput trade-offs (UMC 0.13µm CMOS, Synopsys Design
Compiler version Y-2006.06, synthesis results). 141

4.5 Comparison of ciphers designed for low-end environments (optimized
for size). 142

4.6 Parameter sr,i defines the selection of the key bits. 150

4.7 Hardware overhead for the new key schedule of the KTANTAN
family (UMC 0.13µm CMOS, Synopsys Design Compiler version
C-2009.06-SP3, synthesis results). 152

4.8 Area and memory requirements for round function and expanded
key of the KATAN family (UMC 0.13µm CMOS, Synopsys Design
Compiler version C-2009.06-SP3, synthesis results). 153

Chapter 1

Introduction

In our ever growing world of technology and communication, the amount of
information we share with the rest of the digital universe is constantly increasing.
Advances in the field of digital signal processing, bringing together the power of
audio and visual experiences, are establishing the way digital information is shared.
With the appearance of cloud computing, a technology that offers online data and
application maintenance, we distribute our computational tasks and data storage
over a broad network of computers. The speed the data is transmitted with, as
well as the execution time of the remote applications play a vital role in having the
cloud computing concept widely acceptable.

The rapid employment of Radio Frequency Identification (RFID) tags, on the other
side, goes along with the expansion of ubiquitous computing, a model in which
information processing becomes thoroughly integrated into everyday’s objects and
activities. With the appearance of smart devices we are witnessing the presence of a
digital continuum, a concept that irreversibly closes the gap between high-speed and
low-cost electronics. We are already surrounded by billions of embedded devices and
that number is rapidly increasing. Besides being transparent to the end-users, the
protocols carrying out the heavy computational tasks need to be power and energy
efficient in this case. The power consumption, therefore, represents a limiting factor
for designing these low-cost devices.

We often communicate private information using the benefits of cloud and ubiquitous
computing. Neither of the two technologies is designed with security in mind and
our demands to conceal confidential information are now, more than ever, being
manifested and become very important. By ensuring confidentiality, entity and
data authentication, access control, privacy protection, and many other information
security objectives, cryptography seems to be a natural choice for addressing the
issue of security. Based on hard mathematical problems, cryptography often

1

2 INTRODUCTION

requires highly intensive computations which, in fact, represent the main restriction
for its wide application in cloud and ubiquitous computing. If not fast enough,
cryptography is simply not accepted on the Internet. In order to be transparent
while providing security and data integrity, cryptography needs to follow trends
driven by the continuous need for high speed and low power. The complexity
of cryptographic algorithms is illustrated in Table 1.1, where the current secret-
key and public-key cryptographic standards are compared with respect to their
algorithm-specific characteristics. The state and the operands size are devised to
provide security equivalent of 128-bit symmetric key (‘ECRYPT II Yearly Report
on Algorithms and Keysizes’ [1]).

Table 1.1: Complexity of the current cryptographic standards (equivalent symmetric
key size of 128 bits†).

Algorithm AES-128 SHA-256 ECC RSA
State/Operand 128 256 256 3,248Size [bit]

Critical S-box Modular Modular Modular
Operation Addition Multiplication Multiplication

Number of Rounds/ 10 64 ≈ 3,000 ≈ 5,000Modular Multiplications
†‘ECRYPT II Yearly Report on Algorithms and Keysizes’ [1].

The smallest variant of the Advanced Encryption Standard (AES-128) [39] requires
only 10 rounds to encrypt a message block of 128 bits, having an S-box as the critical
operation. This indeed is a reason why AES achieves rather good performance in
hardware. As shown by Hodjat and Verbauwhede [70], a fully pipelined architecture
of AES implemented in 0.18 µm technology approaches a throughput of 70 Gb/s.
The fully pipelined architectures comes at high price though, requiring more than
250,000 NAND gate equivalences (GE). On the other hand, relatively small state of
128 bits results in rather compact implementation of AES, requiring only 3,100 GE
in 0.13 µm CMOS technology (Hämäläinen et al. [62]).

The Secure Hash Standard (SHA-256) [76] requires 64 rounds to produce a digest
of a 512-bit message block. The state size of SHA-256 is 256 bits, while the critical
operation is modular addition. The performance loss in comparison to AES is
obvious, and therefore the fastest hardware implementation of SHA-256 provides
a throughput of 7,420 Mb/s in 0.13 µm CMOS technology (Dadda, Macchetti,
and Owen [38]). Due to the larger state size and more complex circuitry of the
round function, the smallest implementation of SHA-256 consumes 8,588 GE (Kim
and Ryou [89]). As a side-note, we mention that by the end of 2012, the National
Institute of Standards and Technology (NIST) will replace the current SHA-256
standard with the new SHA-3 standard [127].

INTRODUCTION 3

Elliptic Curve Cryptography (ECC) [120, 99] over a finite field of size 256 bits
provides security equivalent of 128-bit symmetric key. The basic operation of
ECC is a point multiplication, an operation that is heavily based on modular
multiplication, i.e. approximately 3,000 modular multiplications are necessary for
performing one ECC-256 point multiplication. Implemented in hardware, the
fastest point multiplication of ECC over 256-bit prime field needs approximately
40 µs on Xilinx Virtex-4 SX55 FPGA board, i.e. about 25,000 point multiplications
per second (Güneysu and Paar [59]). This, however, comes at high price utilizing
24,574 logic slices and 512 DSP units of the board. The compact architectures of
ECC reported in the literature are exclusively dealing with smaller fields, typically
163-bit binary fields. That is somewhat obvious choice due to the increased
complexity of public-key circuitry. Therefore the best result in this area comes
from Hein, Wolkerstorfer, and Felber [66] where the actual circuit performing ECC
over GF(2163) was fabricated, consuming around 15,000 GE in 0.18 µm CMOS
technology. The synthesis results of the same circuit without the key storage lead
to the area consumption of 11,904 GE. Another notable result is a recent work of
Lee et al. [103] where the ECC based security processor for RFID, implemented in
0.13 µm CMOS technology, requires 12,506 GE. Finally, the fastest implementation
of ECC over GF(2163) reported up to date comes from Sakiyama [146] and requires
only 12 µs for a single point multiplication, i.e. about 83,300 point multiplications
per second. The circuit is implemented in 0.13 µm CMOS technology and requires
approximately 154,000 GE.

Although ECC is becoming increasingly popular especially for low-cost devices,
RSA [144] is still the most widely used public-key algorithm today. To achieve
the security equivalent of 128-bit symmetric key, RSA needs to operate with
large numbers – up to 3,248 bits. That requires approximately 5,000 modular
multiplications for performing a single modular exponentiation, which is the basic
operation of RSA. This indeed is a reason for RSA being relatively slow compared
to other cryptographic primitives. State of the art commercially available solutions
offer at most 50 1024-bit modular exponentiations per second, running above
300 MHz and consuming around 40,000 GE in 0.13 µm CMOS technology with
additional 12 kbits of the RAM storage (Hellion ModExp Core, STD256 [3]).
The smallest design, on the other hand, consumes less than 8,000 GE including
10 kbits of RAM, but can execute only 5 modular exponentiation per second (Helion
ModExp Core, TINY32). The fastest result available in the literature comes from
Zhao et al. [181], and reports a 1024-bit modular exponentiation within 157.4 µs, i.e.
approximately 6,350 modular exponentiations per second. This, however, comes at
large area overhead resulting in a circuit of 923,000 GE, which running at 140 MHz
consumes 1.619 W in 0.18 µm CMOS technology. For the 3,248-bit RSA we expect
the results to be significantly worse with respect to overall performance.

Today’s broadband Internet is reaching the rates of 100 Gb/s (100 Gigabit
Ethernet [4]), while the arrival of its successor, i.e. Terabit Ethernet, is on

4 INTRODUCTION

the horizon already. As mentioned above, only AES with highly parallelized
implementation is currently able to fully satisfy the needs of the global network.
Other cryptographic standards are still too far away from the performance goals
driven by the Internet.

Moreover, the current standard solutions do not meet the extreme constraints of
RFIDs and therefore, it is even more important to design alternatives. In order to
ensure security for tiny pervasive devices, e.g. Electronic Product Codes (EPC) [2],
we may devote only several hundreds of gates of the chip for that purpose (Juels
and Weis [82]). AES is again the only candidate that comes close to this bound,
still requiring several thousands of gates instead.

The need for efficiency is therefore a driving force which considerably influences a
design of cryptographic primitives. Being formally defined as an accomplishment
of, or ability to accomplish a task with a minimum expenditure of time and energy,
the efficiency is one of the key requirements in assuring that the cryptographic
primitives become ubiquitous and available on multiple platforms. We consider
security as the most important measure while still trying to achieve cutting edge
performance of the cryptographic primitive. The challenge now becomes a multi-
dimensional space where different trade-offs are to be explored. Moving along the
axes of the aforementioned space is the main topic of this dissertation.

Security

Speed Low-Cost

C
ha

pt
er

 II
C

hapter IV

Chapter II,III

Figure 1.1: Outline of the thesis.

As outlined in Fig. 1.1, we dedicate three chapters of the thesis to investigate the
trade-offs most of the engineers are faced with when implementing a cryptographic
system. We explore a multitude of compromises, all having the ultimate goal of

OUTLINE AND SUMMARY OF CONTRIBUTIONS 5

ensuring a highly secure cryptosystem that runs at maximum achievable speed and
consumes the minimum amount of energy. As the ultimate goal is unfortunately
infeasible, we consider all the possible trade-offs and are only able to come close to
an optimal implementation for a certain, specific application. We propose novelties
on the algorithmic level, therefore enabling further performance improvements by
exploring the lower levels of abstraction.

1.1 Outline and Summary of Contributions

This section outlines the structure of the thesis and details the personal
contributions. The thesis is organized in five chapters.

Chapter 1: The first chapter provides a brief introduction to efficient
implementations of cryptographic primitives. We also outline a summary and
the contribution of each chapter separately.

Chapter 2: The second chapter entitled “Efficient Hardware Implementations of
Finite Field Arithmetic” provides a brief introduction to modular arithmetic and
brings forward the building blocks that are used later throughout the chapter. The
main contributions of the chapter have been published in the proceedings of several
peer-reviewed international conferences and international journals. Section 2.4
of this chapter deals with faster digit-serial modular multiplication based on the
Barrett and Montgomery algorithms, representing the results published by Knežević,
Vercauteren, and Verbauwhede [96] in the IEEE Transactions on Computers journal
and by the same authors at the International Workshop on the Arithmetic of Finite
Fields (WAIFI 2010) [97]. Section 2.5 discusses in detail how the bit-parallel version
of a modular multiplication based on the Barrett and Montgomery algorithms can
be performed without precomputation. The results are presented by Knežević,
Sakiyama, Fan, and Verbauwhede [93] at WAIFI 2008, and by Knežević, Batina,
and Verbauwhede [91] at the IEEE International Symposium on Circuits and
Systems (ISCAS 2009). Finally, the last section of the chapter introduces a new
modular multiplication algorithm, a so-called tripartite modular multiplication.
The contribution of this work is a result of Sakiyama, Knežević, Fan, Preneel, and
Verbauwhede [147] and will appear in Integration, the VLSI journal.

Chapter 3: The third chapter entitled “High-Throughput Hardware Implementa-
tions of Cryptographic Hash Functions” initially describes the basic throughput
improving techniques that are widely used in digital signal processing (DSP) systems.
The application of these, as well as several other algorithm-specific techniques are
used later throughout the chapter for the purpose of high-throughput hardware
implementations of cryptographic hash functions. Section 3.4 describes how the
hardware implementation of the well-known RIPEMD-160 hash algorithm can
be optimized by using iteration bound analysis and how its throughput can be

6 INTRODUCTION

further increased by applying some of the algorithm-specific techniques. The
contribution of this work has been published by Knežević, Sakiyama, Lee, and
Verbauwhede [94] in the IEEE International Conference on Application-specific
Systems, Architectures and Processors (ASAP 2008). Section 3.5 provides a
comprehensive hardware evaluation of fourteen second-round SHA-3 candidates.
This work by Knežević et al. [92] represents the final outcome of the collaboration
of three universities and two international institues and will appear in the IEEE
Transactions on Very Large Scale Integration (VLSI) Systems journal. In the
last section of the chapter, as a result of the work published by Knežević and
Verbauwhede [95] in the Workshop on Embedded Systems Security (WESS 2009),
the hardware evaluation of the Luffa hash family is provided.

Chapter 4: The fourth chapter, entitled “Lightweight Cryptography – A Battle
for a Single Gate”, deals with the concept of lightweight cryptography, specifically
targeting the low-cost block ciphers. After mentioning related work, we present
KATAN & KTANTAN – a family of small and efficient, hardware-oriented block
ciphers. The contribution of this work has been published by De Cannière,
Dunkelman, and Knežević [27] at the Workshop on Cryptographic Hardware and
Embedded Systems (CHES 2009). We further provide an updated key schedule for
the KTANTAN family, as a result of Bogdanov, Dunkelman, Knežević, Rechberger,
and Verbauwhede [21]. The manuscript is submitted to the IEEE Communications
Letters.

Chapter 5: The last chapter concludes and provides some directions for future
work.

Chapter 2

Efficient Hardware
Implementations of Finite
Field Arithmetic

2.1 Introduction

Finite field arithmetic and its hardware and software implementations received
considerable attention due to their extensive use in the theory of error correction
codes. After Diffie and Hellman [44] introduced the concept of public-key
cryptography (PKC) in the mid 70’s, efficient implementations of the arithmetic of
finite fields became a very exciting topic in this field.

The best-known public-key cryptosystems are based on factoring, i.e. RSA [144]
and on the discrete logarithm problem in a large prime field (Diffie-Hellman [44],
ElGamal [50], Schnorr [155], DSA [129]) or on an elliptic (hyper-elliptic) curve
over a finite field (ECC/HECC) [120, 99]. Based on the hardness of the underlying
mathematical problem, PKC usually deals with large numbers ranging from a
few hundreds to a few thousands of bits in size (‘ECRYPT II Yearly Report on
Algorithms and Keysizes’ [1]). Consequently, efficient implementations of PKC
primitives have always been a challenge.

An efficient implementation of the aforementioned cryptosystems highly depends
on the efficient implementation of modular arithmetic. More precisely, the
modular multiplication forms the basis of a modular exponentiation which is
the core operation of the RSA cryptosystem. It is also present in many other
cryptographic algorithms including those based on ECC and HECC. Implementing

7

8 EFFICIENT HARDWARE IMPLEMENTATIONS OF FINITE FIELD ARITHMETIC

an efficient modular multiplication for PKC has been a great challenge for both
software and hardware platforms because one has to deal with at least 1024-bit
integers for RSA and 160 bits or more for ECC. Chapter 14 of the ‘Handbook of
Applied Cryptography’ by Menezes, van Oorschot, and Vanstone [116] provides
a comprehensive overview of common techniques for efficient implementations
of modular arithmetic. Efficient hardware implementations of finite fields with
applications in cryptography are further treated by Guajardo et al. in [58].

Figure 2.1 illustrates the main direction of this chapter. Some of the methods
for accelerating modular multiplication, proposed in this chapter, require fixing
a portion of bits of the RSA secret parameters. State of the art attacks on
RSA benefit exactly from this fact and therefore the theoretical security of RSA
decreases. This is why we claim that the trade-off between security and speed is
scrutinized. However, we argue that, if the parameters are chosen carefully, the
practical security of RSA remains unaffected against these attacks. On the other
hand, a typical trade-off between a high-speed and a low-cost implementation
is also considered by exploring different levels of parallelism and using a digit-
serial approach. Furthermore, the tripartite modular multiplication, introduced
in Section 2.6, comes with a new level of parallelism at the algorithmic level and
therefore provides a possibility to fully explore the trade-off between speed and
area.

Security

Speed Low-Cost

Figure 2.1: Security versus speed and speed versus low-cost trade-off.

After outlining some basics of finite field arithmetic, we discuss in detail our
contributions. Section 2.4 deals with faster digit-serial modular multiplication
based on the Barrett and Montgomery reduction methods. Besides accelerating

PRELIMINARIES 9

classical and Montgomery multiplication, we also show how bipartite modular
multiplication can perform faster for a certain class of moduli. In Section 2.5,
we discuss bit-parallel algorithms and reveal how they can be adapted for special
classes of moduli, such that the precomputation can be omitted. Due to the
importance of binary fields in a multitude of hardware architectures, we devote
special attention to this class of algorithms as well. Finally, in Section 2.6 we
introduce a new efficient method for modular multiplication, so-called, tripartite
modular multiplication.

2.2 Preliminaries

This introductory section serves to provide some basic algebraic concepts that will
be used throughout the chapter. We start with the basic definitions from the theory
of finite fields. A detailed treatment of this topic can be found in ‘Introduction to
Finite Fields and Their Applications’, by Lidl and Niederreiter [108].

Let S be a set and let S × S denote the set of ordered pairs (s, t) with s, t ∈ S.
Then a mapping from S × S into S will be called a (binary) operation on S.

Definition 2.1. A group is a set G together with a binary operation * on G such
that the following three properties hold:

1. * is associative; that is, for any a, b, c ∈ G holds a ∗ (b ∗ c) = (a ∗ b) ∗ c.

2. There is an identity (or unity) element e in G such that for all a ∈ G holds
a ∗ e = e ∗ a = a.

3. For each a ∈ G there exists an inverse element a−1 ∈ G such that a ∗ a−1 =
a−1 ∗ a = e.

If the group also satisfies

4. For all a, b ∈ G holds a ∗ b = b ∗ a,

then the group is called abelian (or commutative).

Definition 2.2. A ring (R,+, ·) is a set R, together with two binary operations,
denoted by + and ·, such that:

1. R is an abelian group with respect to + .

2. · is associative – that is, (a · b) · c = a · (b · c) for all a, b, c ∈ R.

10 EFFICIENT HARDWARE IMPLEMENTATIONS OF FINITE FIELD ARITHMETIC

3. The distributive laws hold; that is, for all a, b, c ∈ R we have a·(b+c) = a·b+a·c
and (b+ c) · a = b · a+ c · a.

We call the operations + and · addition and multiplication, respectively, but
we stress that those operations are not necessarily the ordinary operations with
numbers. In the following convention, we use 0 (called the zero element) to denote
the identity element of the abelian group R with respect to addition.

A ring with a finite number of elements is called a finite ring. The ring of integers
modulo an integer M , denoted with ZM , is a common example of a finite ring.

Definition 2.3.

(i) A ring is called a ring with identity if the ring has a multiplicative identity –
that is, if there is an element e such that a · e = e · a = a for all a ∈ R.

(ii) A ring is called commutative if · is commutative.

(iii) A ring is called an integral domain if it is a commutative ring with identity
e 6= 0 in which a · b = 0 implies a = 0 or b = 0.

(iv) A ring is called a division ring if the nonzero elements of R form a group
under ·.

(v) A commutative division ring is called a field.

A field with finitely many elements is called a finite field or Galois field. The
number of elements in the field represents the order of the field.

Definition 2.4. Let F be a field. A subset K of F that is itself a field under
the operations of F will be called a subfield of F . In this context, F is called an
extension field of K. If K 6= F , we say that K is a proper subfield of F .

Definition 2.5. A field containing no proper subfields is called a prime field.

The field of integers modulo a prime number p is one of the most familiar examples
of finite fields. It is also a prime field, often denoted as Fp or GF(p), and its
extension field is denoted as Fpm or GF(pm) where m ∈ N denotes the degree
of the extension. The prime p is called the characteristic of GF(pm). This field
is of a fundamental importance and represents a basic building block for many
cryptographic primitives.

Polynomials are very often used for representing the elements of finite fields. Let
GF(p) be the finite field of characteristic p and GF(pm) its extension field of
degree m. The extension field is defined with an irreducible polynomial P (x) =∑m
i=0 Pix

i = (Pm . . . P0), such that Pi ∈ GF(p). The elements of GF(pm) are of
the form A(x) =

∑m−1
i=0 Aix

i = (Am−1 . . . A0) where Ai ∈ GF(p).

EFFICIENT MODULAR ARITHMETIC 11

Given two elements A(x), B(x) ∈ GF(pm), the addition in the extension field is
now defined as:

C(x) = A(x) +B(x) ,

where Ci = Ai +Bi mod p.

Finite field multiplication can be defined using the above notation. Given an
irreducible polynomial P (x) and two elements A(x), B(x) ∈ GF(pm), the finite
field multiplication can be defined as:

A(x) ·B(x) = A(x)B(x) mod P (x) ,

where A(x)B(x) is ordinary polynomial multiplication.

Furthermore, when dealing with the finite rings ZM , we can formally define
a modular multiplication as follows. Given a modulus M and two elements
A,B ∈ ZM , the ordinary modular multiplication is defined as:

A ·B = AB mod M .

It is clear that for M = p, p prime, ZM is equivalent to GF(p) and the ordinary
modular multiplication is in fact a finite field multiplication.

2.3 Efficient Modular Arithmetic

Modern computers usually have a word size of 8, 16, 32 or 64 bits but many other
sizes have been used. The word sizes of 8 and 16 bits have especially been interesting
for embedded computing platforms. However, for highly customized hardware
designs, such as application specific integrated circuits (ASICs), an arbitrary word
size is often used. In order to get familiar with the notation used throughout the
chapter, we first review the word representation of the operands used in modular
arithmetic.

A multiple-precision n-bit integer A is represented in radix r representation as
A = (Anw−1 . . . A0)r where r = 2w; nw represents the number of words and is
equal to

⌈
n/w

⌉
where w is a word-size; Ai is called a digit and Ai = (aw−1 . . . a0) ∈

[0, r − 1]. A special case is when r = 2 (w = 1) and the representation of
A = (an−1 . . . a0)2 is called a bit representation. A multiplication of two digits
is further referred to as a single-precision (SP) multiplication. Sometimes we
refer to it as a digit multiplication. We define a partial product as a product of
a single digit and an nw-digit integer. Similar to the case of integers, we also
denote the n-bit polynomial A(x) as A(x) =

∑nw−1
i=0 Aix

wi = (Anw−1 . . . A0) where
Ai =

∑w−1
i=0 aix

i = (aw−1 . . . a0).

In the previous section we defined addition and multiplication in finite fields. Other
basic operations, such as subtraction, field inversion, and exponentiation are carried

12 EFFICIENT HARDWARE IMPLEMENTATIONS OF FINITE FIELD ARITHMETIC

out by using these two operations. The complexity of basic operations in GF(pm) is
summarized in Table 2.1 (‘Handbook of Applied Cryptography’, Chapter 14 [116]).
Additionally, we assume that the size of p is n bits.

Table 2.1: Complexity of basic operations in GF(pm).

Operation Number of Total
GF(p) operations complexity

Addition A(x) +B(x) O(m) O(mn)
Subtraction A(x)−B(x) O(m) O(mn)
Multiplication A(x) ·B(x) O(m2) O(m2n2)
Inversion A(x)−1 O(m2) O(m2n2)
Exponentiation A(x)k, k < pm O(m3n) O(m3n3)

Since finite field multiplication (modular multiplication, in general) is considerably
more expensive than addition, it is indeed the right operation to be optimized.
There exist many different algorithms for modular multiplication and depending
on the implementation type, we can distinguish two main groups:

• Bit-parallel algorithms: these are the algorithms highly optimized for speed,
which calculate the result with a time complexity O(n) where n is the number
of bits of the operands. Their main disadvantage is a large area overhead with
a complexity of O(n2). They often result in high-speed, but very expensive
implementations. Due to the large operands used in e.g. RSA and ECC, these
algorithms are often impractical on the majority of embedded platforms.

• Digit-serial algorithms: sometimes referred to as sequential algorithms, these
algorithms trade speed for area. Multiplication is interleaved with reduction,
and hence the whole calculation is spread over many cycles, resulting in a
more compact, but slower implementation.

In this section, we outline the classical modular multiplication algorithm and
two algorithms that had a significant impact on the efficient implementation of
modular arithmetic – due to Barrett and Montgomery. As mentioned above, we
distinguish between bit-parallel and digit-serial algorithms. Therefore, we outline
the algorithms first in bit-parallel and then in their digit-serial form.

2.3.1 Bit-Parallel Algorithms

Algorithm 1 summarizes the classical modular multiplication in its bit-parallel form.
The calculation of the intermediate quotient qC at step two of the algorithm is done

EFFICIENT MODULAR ARITHMETIC 13

Algorithm 1 Classical modular multiplication algorithm (bit-parallel version).
Input: A = (an−1 . . . a0), B = (bn−1 . . . b0), M = (mn−1 . . .m0) where 0 ≤

A,B < M , 2n−1 ≤M < 2n.
Output: C = AB mod M .

1: C ⇐ AB
2: qC ⇐ bC/Mc
3: C ⇐ C − qCM
4: Return C.

by utilizing integer division, which is an expensive operation. The idea of using
the precomputed reciprocal of the modulus M and simple shift and multiplication
operations instead of division originally comes from Barrett [18]. To explain the
basic idea, we rewrite the intermediate quotient qC as:

qC =
⌊ C
M

⌋
=
⌊ C

2n−1
22n

M

2n+1

⌋
≥
⌊⌊ C

2n−1

⌋⌊ 22n

M

⌋
2n+1

⌋
= q̂ . (2.1)

The value q̂ represents an estimation of qC . In most cryptographic applications,
the modulus M is fixed during many modular multiplications and hence the value
b22n/Mc can be precomputed and reused multiple times. Furthermore, an integer
division by a power of 2 is a simple shift operation. Since the value of q̂ is an
estimated value, several correction steps at the end of the modular multiplication
have to be performed. In what follows, we shall often refer to the classical modular
multiplication based on Barrett reduction simply as Barrett multiplication.

In 1985, Montgomery [121] opened a new direction in the field of efficient modular
multiplication. The algorithm became widely used and is certainly one of the most
deployed algorithms today. We first describe its bit-parallel version as provided in
Alg. 2. Given an n-bit odd modulus M and an integer U ∈ ZM , the image or the
Montgomery residue of U is defined as A = UR mod M where R, the Montgomery
radix, is a constant relatively prime to M . If A and B are, respectively, the images
of U and V , the Montgomery multiplication of these two images is defined as:

A ∗B = ABR−1 mod M .

The result is the image of UV mod M and needs to be converted back at the
end of the process. For the sake of efficient implementation, one usually uses
R = 2n. Similar to Barrett multiplication, this algorithm uses a precomputed value
M ′ = −M−1 mod R.

14 EFFICIENT HARDWARE IMPLEMENTATIONS OF FINITE FIELD ARITHMETIC

Algorithm 2 Montgomery multiplication algorithm (bit-parallel version).
Input: A = (an−1 . . . a0), B = (bn−1 . . . b0), M = (mn−1 . . .m0), M ′ =
−M−1 mod R where 0 ≤ A,B < M , 2n−1 ≤ M < 2n, R = 2n, and
gcd(M,R)=1.

Output: C = ABR−1 mod M .
1: C ⇐ AB
2: qM ⇐ CM ′ mod R
3: C ⇐ (C + qMM)/R
4: if C ≥M then
5: C ⇐ C −M
6: end if
7: Return C.

2.3.2 Digit-Serial Algorithms

Let the modulus M be an nw-digit integer, where the radix of each digit is r = 2w.
The classical, digit-serial, modular multiplication algorithm computes AB mod M
by interleaving the multiplication and modular reduction phases as it is shown in
Alg. 3.

Algorithm 3 Classical modular multiplication algorithm (digit-serial version).
Input: A = (Anw−1 . . . A0)r, B = (Bnw−1 . . . B0)r, M = (Mnw−1 . . .M0)r where

0 ≤ A,B < M , 2n−1 ≤M < 2n, r = 2w and nw =
⌈
n/w

⌉
.

Output: C = AB mod M .
1: C ⇐ 0
2: for i = nw − 1 downto 0 do
3: C ⇐ Cr +ABi
4: qC ⇐ bC/Mc
5: C ⇐ C − qCM
6: end for
7: Return C.

Similar to its bit-parallel version, the calculation of the intermediate quotient qC at
step four of the algorithm can also be done by following the approach of Barrett [18].
In his thesis, Dhem [42] generalizes this idea and provides the following relation:

qC =
⌊ C
M

⌋
=
⌊ C

2n+β
2n+α

M

2α−β

⌋
≥
⌊⌊ C

2n+β

⌋⌊ 2n+α

M

⌋
2α−β

⌋
= q̂ . (2.2)

He determines the values of α = w+ 3 and β = −2 for which Barrett multiplication
needs at most one correction step at the end of the algorithm. Again, the modulus
M is fixed during many modular multiplications and hence the value µ = b2n+α/Mc
is precomputed and reused multiple times.

FASTER DIGIT-SERIAL MODULAR MULTIPLICATION 15

Montgomery’s algorithm has a sequential version as well. The algorithm is
summarized in Alg. 4.

Algorithm 4 Montgomery multiplication algorithm (digit-serial version).
Input: A = (Anw−1 . . . A0)r, B = (Bnw−1 . . . B0)r, M = (Mnw−1 . . .M0)r, M ′ =
−M−1

0 mod r where 0 ≤ A,B < M , 2n−1 ≤ M < 2n, r = 2w, gcd(M, r)=1
and nw =

⌈
n/w

⌉
.

Output: C = ABr−nw mod M .
1: C ⇐ 0
2: for i = 0 to nw − 1 do
3: C ⇐ C +ABi
4: qM ⇐ CM ′ mod r
5: C ⇐ (C + qMM)/r
6: end for
7: if C ≥M then
8: C ⇐ C −M
9: end if

10: Return C.

2.4 Faster Digit-Serial Modular Multiplication Based
on Barrett and Montgomery Reduction Methods

Publication Data

M. Knežević, F. Vercauteren, and I. Verbauwhede, “Faster Interleaved Modular
Multiplication Based on Barrett and Montgomery Reduction Methods,” IEEE
Transactions on Computers, vol. 59, no. 12, pp. 1715–1721, 2010.

Personal Contributions

• Principal author.

Our novel contribution consists of proposing two interleaved modular multiplication
algorithms based on Barrett and Montgomery reductions. Four large sets of moduli
for which the novel algorithms apply are proposed and analyzed from a security
point of view. We propose a hardware architecture for the modular multiplier
that is based on our methods. The results show that, concerning the speed,
our proposed architecture outperforms the modular multiplier based on standard

16 EFFICIENT HARDWARE IMPLEMENTATIONS OF FINITE FIELD ARITHMETIC

modular multiplication. Additionally, our design consumes less area compared to
the standard solutions.

2.4.1 Related Work

Before introducing related work we note here that for the moduli used in all
common ECC cryptosystems, the modular reduction can be done much faster than
the one proposed by Barrett or Montgomery, even without any multiplication.
This is the main reason behind standardizing generalized Mersenne prime moduli
(sums/differences of a few powers of 2). Standards such as FIPS 186-3 [129],
ANSI [10], and SEC2 [158] address this topic in detail.

The idea of simplifying the intermediate quotient evaluation was first presented
by Quisquater [139] at the rump session of Eurocrypt ’90. The method is similar
to the one of Barrett except that the modulus M is preprocessed before the
modular multiplication in such a way that the evaluation of the intermediate
quotient basically comes for free. Preprocessing requires some extra memory and
computational time, but the latter is negligible when many modular multiplications
are performed using the same modulus.

Lenstra [107] points out that choosing moduli with a predetermined portion is
beneficial both for storage and computational requirements. He proposes a way
to generate RSA moduli with any number of predetermined leading (trailing)
bits, with the fraction of specified bits only limited by security considerations.
Furthermore, Lenstra discusses security issues and concludes that the resulting
moduli do not seem to offer less security than regular RSA moduli. In [81], Joye
enhances the method for generating RSA moduli with a predetermined portion
proposed by Lenstra in [107].

In [64], Hars proposes a long modular multiplication method that also simplifies an
intermediate quotient evaluation. The method is based on Quisquater’s algorithm
and requires preprocessing of the modulus by increasing its length. The algorithm
contains conditional branches that depend on the sign of the intermediate remainder.
This increases the complexity of the algorithm, especially concerning the hardware
implementation where additional control logic needs to be added.

2.4.2 The Proposed Modular Multiplication Methods for Inte-
gers

In this section we propose four sets of moduli that specifically target efficient
modular multiplications by means of the classical modular multiplication based
on Barrett reduction and Montgomery multiplication. In addition to simplified
quotient evaluation, our algorithms do not require any additional preprocessing.

FASTER DIGIT-SERIAL MODULAR MULTIPLICATION 17

The algorithms are simple and especially suitable for hardware implementations.
They contain no conditional branches inside the loop and hence require a very
simple control logic.

The methods describing how to generate such moduli in case of RSA are discussed
by Lenstra [107] and Joye [81]. Furthermore, from the sets proposed in this
section one can also choose the primes that generate the RSA modulus to speed
up decryption of RSA by means of the Chinese Remainder Theorem (CRT). In
Section 2.4.8, we discuss security issues concerning this optimisation.

In both Barrett and Montgomery multiplications, the precomputed values of either
the modulus reciprocal (µ) or the modulus inverse (M ′) are used in order to avoid
multiple-precision divisions. However, single-precision multiplications still need to
be performed (step four of Alg. 3 and Alg. 4). This especially concerns hardware
implementations, as multiplication with the precomputed values often occurs within
the critical path of the whole design. Section 2.4.6 discusses this issue in more
detail.

Let us, for now, assume that the precomputed values µ and M ′ are both of type
±2δ − ε where δ ∈ Z and ε ∈ {0, 1}. By tuning µ and M ′ to be of this special type,
we transform a single-precision multiplication with these values into a simple shift
operation in hardware. Therefore, we find sets of moduli for which the precomputed
values are both of type ±2δ − ε.

2.4.3 Speeding Up Classical Modular Multiplication

In what follows, we assume that the classical modular multiplication is implemented
by means of Alg. 3, where step four of the algorithm is evaluated as summarized in
Eq. 2.2. To make the following discussion easier, we provide an analysis of Alg. 3
that is based on the work of Dhem in [42].

Analysis of Alg. 3. We assume that step four of Alg. 3 is performed according to
Eq. 2.2. Let us first consider the first iteration of Alg. 3 (i = 0). We can find an
integer γ such that C0 = ABnw−1 < 2n+γ . This represents an upper bound of C
(C0 for i = 0). The quotient q =

⌊C0
M

⌋
can now be written as

q =
⌊C0
M

⌋
=
⌊ C0

2n+β
2n+α

M

2α−β

⌋
,

where α and β are two variables. The estimation of the given quotient is now equal
to

q̂ =
⌊⌊ C0

2n+β

⌋⌊ 2n+α

M

⌋
2α−β

⌋
=
⌊⌊ C0

2n+β

⌋
µ

2α−β

⌋
,

18 EFFICIENT HARDWARE IMPLEMENTATIONS OF FINITE FIELD ARITHMETIC

where µ =
⌊

2n+α

M

⌋
is constant and may be precomputed. Let us now define the

quotient error as a function of the variables α, β and γ

e = e(α, β, γ) = q − q̂ .

Since X

Y
≥
⌊X
Y

⌋
>
X

Y
− 1 for any X,Y ∈ Z, we can write the following inequality

q =
⌊C0
M

⌋
≥ q̂ >

⌊
C0

2n+β

⌋⌊ 2n+α

M

⌋
2α−β − 1

>

(
C0

2n+β − 1
)(2n+α

M − 1
)

2α−β − 1

= C0
M
− C0

2n+α −
2n+β

M
+ 1

2α−β − 1

≥
⌊C0
M

⌋
− C0

2n+α −
2n+β

M
+ 1

2α−β − 1

= q − C0
2n+α −

2n+β

M
+ 1

2α−β − 1 .

Now, since e ∈ Z, the quotient error can be estimated as

e = e(α, β, γ) ≤
⌊
1 + C0

2n+α + 2n+β

M
− 1

2α−β
⌋
.

According to Alg. 3 we have C0 < 2n+γ and M ≥ 2n−1. Hence, we can evaluate
the quotient error as

e = e(α, β, γ) ≤
⌊
1 + 2γ−α + 2β+1 − 1

2α−β
⌋
.

Following the previous inequality, it is obvious that for α ≥ γ + 1 and β ≤ −2 we
have e = 1.

Next, we need to ensure that the intermediate remainder Ci does not grow
uncontrollably as i increases. Since A < M , Bi < 2w, Ci < M + eM and
M < 2n, after i iterations we have

Ci = Ci−12w +ABi

< (M + eM)2w +M2w

< (2 + e)2n+w .

Since we want to use the same value for e during the algorithm, the next condition
must hold

Ci < (2 + e)2n+w < 2n+γ .

FASTER DIGIT-SERIAL MODULAR MULTIPLICATION 19

To minimize the quotient error (e = 1), we must choose γ such that

3 · 2w < 2γ .

In other words, we choose γ ≥ w + 2. Now, according to the previous analysis we
conclude that for α ≥ γ + 1, β ≤ −2 and γ ≥ w + 2 we may realize a modular
multiplication with only one correction step at the end of the whole process.

It is interesting here to evaluate the size of the intermediate quotient q̂ and the
precomputed value µ as a function of the parameters α and β. As will be seen later,
this indeed represents a major drawback of the generalized Barrett multiplication
and is a reason why Montgomery’s method is superior in this case. Let us write
the following relation:

µ =
⌊2n+α

M

⌋
<
⌊2n+α

2n−1

⌋
= 2α+1 .

Obviously, the size of µ is at most λ = α+ 1 bits. Similarly, we can evaluate the
size of q̂:

q̂ =
⌊⌊ C

2n+β

⌋⌊ 2n+α

M

⌋
2α−β

⌋
<

⌊⌊ C

2n+β

⌋
2β+1

⌋
<

⌊⌊3 · 2n+w

2n+β

⌋
2β+1

⌋
,

which, for β ≤ w + 1, can be further simplified to q̂ < 3 · 2w+1. If chosen as
suggested earlier, the parameters α = w + 3 and β = −2 determine the size of q̂
and µ to be at most w+ 3 bits and λ = w+ 4 bits, respectively. This introduces an
additional overhead for software implementations, while it can be easily overcome
in hardware.

Before describing the proposed algorithm, we provide two lemmata to make the
following discussion easier.

Lemma 2.1. Let M = 2n −∆ be an n-bit positive integer and let µ =
⌊
2n+α/M

⌋
where α ∈ N. If 0 < ∆ ≤

⌊ 2n
1+2α

⌋
, then µ = 2α.

Proof. Rewrite 2n+α as 2n+α = M2α+2α∆. Since it is given that 0 < ∆ ≤
⌊ 2n

1+2α
⌋
,

we conclude that 0 < 2α∆ < M . By definition of Euclidean division, this shows
that µ = 2α.

Lemma 2.2. Let M = 2n−1 +∆ be an n-bit representation and let µ =
⌊
2n+α/M

⌋
where α ∈ N. If 0 < ∆ ≤

⌊ 2n−1

2α+1−1
⌋
, then µ = 2α+1 − 1.

20 EFFICIENT HARDWARE IMPLEMENTATIONS OF FINITE FIELD ARITHMETIC

Proof. Rewrite 2n+α as 2n+α = M(2α+1 − 1) + 2n−1 −∆(2α+1 − 1). Since 0 <
∆ ≤

⌊ 2n−1

2α+1−1
⌋
, we conclude that 0 ≤ 2n−1 −∆(2α+1 − 1) < M . By definition of

Euclidean division this shows that µ = 2α+1 − 1.

The interleaved modular multiplication algorithm based on general Barrett
reduction is given in Section 2.3.2. Now, according to Lemmata 2.1 and 2.2
we can define two sets of moduli for which the modular multiplication based on
Barrett reduction can be improved. These sets are of type

S1 : M = 2n −∆1 where 0 < ∆1 ≤ b
2n

1 + 2α
⌋

;

S2 : M = 2n−1 + ∆2 where 0 < ∆2 ≤
⌊ 2n−1

2α+1 − 1
⌋
.

(2.3)

Figure 2.2 further illustrates the properties of the two proposed sets S1 and S2. As
we can see from the figure, approximately α bits of the modulus are fixed to be all
0’s or all 1’s, while the other n− α bits are arbitrarily chosen1.

mn-α-1	

…all 1’s…	
 mn-α-2	
 …	
 m0	
1	

n-1	
 0	

S1 	
 m1	

S2 	
 …all 0’s…	
 …	
 m0	
1	
 m1	

Figure 2.2: Binary representation of the proposed sets S1 and S2.

The proposed modular multiplication algorithm is shown in Alg. 5. The parameters
α and β are important for the quotient evaluation. As we show later, to minimize
the error in quotient evaluation, α and β are chosen such that α = w + 3 and
β = −2.

In contrast to Barrett multiplication where the quotient is evaluated as q̂ =⌊⌊ C

2n+β

⌋⌊
2n+α
M

⌋
2α−β

⌋
, in our proposed algorithm the evaluation basically comes for free:

q̂ =

⌊
C
2n

⌋
if M ∈ S1 ;⌊

C
2n−1

⌋
if M ∈ S2 .

This saves one single-precision multiplication and additionally increases the speed
of the proposed modular multiplication algorithm.

1If mn−α−2 = 1 for M ∈ S1 (mn−α−1 = 0 for M ∈ S2), then the remaining n−α−2 (n−α−1)
least significant bits can be arbitrarily chosen. Otherwise, if mn−α−2 = 0 (mn−α−1 = 1), then
the remaining n− α− 2 (n− α− 1) least significant bits are chosen such that Eq. 2.3 is satisfied.

FASTER DIGIT-SERIAL MODULAR MULTIPLICATION 21

Algorithm 5 Proposed interleaved modular multiplication based on generalized
Barrett reduction (α = w + 3 and β = −2).
Input: A = (Anw−1 . . . A0)r, B = (Bnw−1 . . . B0)r, M ∈ S1∪S2 where 0 ≤ A,B <
M , r = 2w and nw =

⌈
n/w

⌉
.

Output: C = AB mod M .
C ⇐ 0
for i = nw − 1 downto 0 do
C ⇐ Cr +ABi

q̂ =

⌊
C
2n

⌋
if M ∈ S1⌊

C
2n−1

⌋
if M ∈ S2

C ⇐ C − q̂M
end for
if C ≥M then
C ⇐ C −M // At most 1 subtraction is needed.

end if
while C < 0 do
C ⇐ C +M // At most 2 additions are needed.

end while
return C.

Proof of Alg. 5. To prove the correctness of the algorithm, we need to show that
there exist α, β ∈ Z, such that q̂ can indeed be represented as

q̂ =

⌊
C
2n

⌋
if M ∈ S1 ;⌊

C
2n−1

⌋
if M ∈ S2 .

As shown in the analysis of Alg. 3, to have the minimized quotient error, the
parameters α and β need to be chosen such that α ≥ w + 3 and β ≤ −2. Let us
first assume that M ∈ S1. According to Lemma 2.1 it follows that µ = 2α. Now, q̂
becomes equal to

q̂ =
⌊⌊ C

2n+β

⌋
µ

2α−β

⌋
=
⌊⌊ C

2n+β

⌋
2α

2α−β

⌋
=
⌊⌊ C

2n+β

⌋
2β
⌋
.

For β ≤ 0 the previous equation becomes equivalent to

q̂ =
⌊ C

2n
⌋
.

For the case where M ∈ S2 we have, according to Lemma 2.2, that µ = 2α+1 − 1.
Now, q̂ becomes equal to

q̂ =
⌊⌊ C

2n+β

⌋
(2α+1 − 1)

2α−β

⌋
=
⌊⌊ C

2n+β

⌋
2β+1

(
1− 1

2α+1

)⌋
.

22 EFFICIENT HARDWARE IMPLEMENTATIONS OF FINITE FIELD ARITHMETIC

To further simplify the proof we choose β = −2 and the previous equation becomes
equivalent to

q̂ =
⌊⌊ C

2n−2

⌋1
2

(
1− 1

2α+1

)⌋
.

If we choose α such that

2α+1 > max
{⌊ C

2n−2

⌋}
, (2.4)

the expression of q̂ simplifies to

q̂ =

⌊

C
2n−1

⌋
− 1 if 2 |

⌊
C

2n−2

⌋
;⌊

C
2n−1

⌋
if 2 -

⌊
C

2n−2

⌋
.

(2.5)

The inequality (2.4) can be written as

2α+1 >
⌊max{C}

2n−2

⌋
,

where max{C} is evaluated in the analysis of Alg. 3 and given as max{C} =
(2 + e)2n+w. To have the minimal error, we choose e = 1 and get the following
relation

2α+1 >
⌊3 · 2n+w

2n−2

⌋
=
⌊
3 · 2w+2

⌋
.

The latter inequality is satisfied for α ≥ w + 3.

If instead of Eq. 2.5 we use only q̂ =
⌊

C
2n−1

⌋
, the evaluation of the intermediate

quotient q̂ will, for 2 |
⌊

C
2n−2

⌋
, become greater than or equal to the real intermediate

quotient q. Due to this fact C can become negative at the end of the current
iteration. Hence, we need to consider the case where C < 0. Let us prevent C
from an uncontrollable decrease by putting a lower bound with C > −2n+γ where
γ ∈ Z. Since X

Y
≥
⌊X
Y

⌋
>
X

Y
− 1 for any X,Y ∈ Z, we can write the following

FASTER DIGIT-SERIAL MODULAR MULTIPLICATION 23

inequality (note that C < 0 and M > 0)

q̂ =
⌊⌊ C

2n+β

⌋⌊ 2n+α

M

⌋
2α−β

⌋
≤
⌊

C
2n+β

⌋⌊ 2n+α

M

⌋
2α−β

<
C

2n+β

(2n+α

M − 1
)

2α−β

= C

M
− C

2n+α

<
⌊ C
M

⌋
+ 1− C

2n+α

= q + 1− C

2n+α

< q + 1 + 2γ−α .

Now, since q, q̂, e ∈ Z, we choose α ≥ γ+1 and the quotient error gets estimated as
−1 ≤ e ≤ 0. If in the next iteration it again happens that 2 |

⌊
C

2n−2

⌋
, the quotient

error will become −2 ≤ e ≤ 0.

Finally, to assure that C will remain within the bounds during the i-th iteration
we write

Ci = Ci−12w +ABi

= (Ci−2 − qM + eM)2w +ABi

> (0 + eM)2w + 0

> e2n+w > −2n+γ .

The worst case is when e = −2 and then it must hold γ > w + 1. By choosing
α = w + 3 and β = −2 all conditions are satisfied and hence, q̂ is indeed a good
estimate of q. At most one subtraction or 2 additions at the correction step are
required to obtain C = AB mod M .

2.4.4 Speeding Up Montgomery Multiplication

Similar to Lemmata 2.1 and 2.2 we also provide Lemmata 2.3 and 2.4 that are at
the heart of the proposed modular multiplication algorithm based on Montgomery
reduction.
Lemma 2.3. Let M = ∆2w + 1 be an n-bit positive integer, i.e. 2n−w−1 ≤ ∆ <
2n−w, and let M ′ = −M−1 mod 2w where w ∈ N, then M ′ = −1.

24 EFFICIENT HARDWARE IMPLEMENTATIONS OF FINITE FIELD ARITHMETIC

Proof. Since M = 1 mod 2w we clearly have −M−1 = −1 mod 2w.

Lemma 2.4. Let M = ∆2w − 1 be an n-bit positive integer, i.e. 2n−w−1 < ∆ ≤
2n−w and let M ′ = −M−1 mod 2w where w ∈ N, then M ′ = 1.

Proof. Since M = −1 mod 2w we clearly have −M−1 = 1 mod 2w.

According to the previous two lemmata we can easily find two sets of moduli for
which the precomputational step in Montgomery multiplication can be excluded.
The resulting algorithm is shown in Alg. 6. The proposed sets are of type

S3 : M = ∆32w + 1 where 2n−w−1 ≤ ∆3 < 2n−w ;
S4 : M = ∆42w − 1 where 2n−w−1 < ∆4 ≤ 2n−w .

(2.6)

Figure 2.3 further illustrates the properties of the two proposed sets S3 and S4. As
we can see from the figure, w − 1 bits of the modulus are fixed to be all 0’s or all
1’s, while the other n− w + 1 bits are arbitrarily chosen. To fulfill the condition
gcd(M, r) = 1 (see Alg. 4), the least significant bit of M is set to 1.

…	
 1	
1	
 mn-2	
S3 	

S4 	

…all 0’s…	

1	
1	
 …all 1’s…	

mw	

mw	
…	
mn-2	

n-1	
 0	

Figure 2.3: Binary representation of the proposed sets S3 and S4.

Due to the use of special type of moduli, the evaluation of the intermediate
Montgomery quotient is simplified compared to the original algorithm given in
Alg. 4. As in our case the value of M ′ is simply equal to 1 or −1, the Montgomery
quotient qM = (C mod r)M ′ mod r becomes now

qM =
{
−C mod r if M ∈ S3 ;
C mod r if M ∈ S4 .

Since r = 2w, the calculation of qM basically comes for free.

Proof of Alg. 6. Follows immediately from Lemma 2.3 and Lemma 2.4.

FASTER DIGIT-SERIAL MODULAR MULTIPLICATION 25

Algorithm 6 Proposed interleaved modular multiplication based on Montgomery
reduction.
Input: A = (Anw−1 . . . A0)r, B = (Bnw−1 . . . B0)r, M ∈ S3∪S4 where 0 ≤ A,B <
M , r = 2w and nw =

⌈
n/w

⌉
.

Output: C = ABr−nw mod M .
C ⇐ 0
for i = 0 to nw − 1 do
C ⇐ C +ABi

qM =
{
−C mod r if M ∈ S3
C mod r if M ∈ S4

C ⇐ (C + qMM)/r
end for
if C ≥M then
C ⇐ C −M

end if
return C.

2.4.5 Speeding Up Bipartite Modular Multiplication

Publication Data

M. Knežević, F. Vercauteren, and I. Verbauwhede, “Speeding Up Bipartite Modular
Multiplication,” in Arithmetic of Finite Fields, Third International Workshop –
WAIFI 2010, vol. 6087 of Lecture Notes in Computer Science, pp. 166–179, Springer,
2010.

Personal Contributions

• Principal author.

Our novel contribution consists of proposing a new set of moduli for which the
bipartite modular multiplication performs faster. We also analyze the proposed
set from a security point of view and propose a novel architecture of the modular
multiplier that efficiently handles the proposed algorithm.

An algorithm that efficiently combines classical and Montgomery multiplication, in
finite fields of characteristic 2, was independently proposed by Potgieter [136] and
Wu [176] in 2002. Published in 2005, a bipartite modular multiplication (BMM)
by Kaihara and Takagi [83] extended this approach to the ring of integers. The
method efficiently combines classical modular multiplication with Montgomery’s
multiplication algorithm. It splits the operand multiplier into two parts that can be
processed separately in parallel, increasing the calculation speed. The calculation is

26 EFFICIENT HARDWARE IMPLEMENTATIONS OF FINITE FIELD ARITHMETIC

performed using Montgomery residues defined by a modulus M and a Montgomery
radix R, R < M . Next, we outline the main idea of the BMM method.

Let the modulus M be an nw-digit integer, where the radix of each digit is r = 2w
and let R = rk where 0 < k < nw. Consider the multiplier B to be split into two
parts BH and BL so that B = BHR+BL. Then, the Montgomery multiplication
modulo M of the integers A and B can be computed as follows:

A ∗B = ABR−1 mod M

= A(BHR+BL)R−1 mod M

=
(
(ABH mod M) + (ABLR−1 mod M)

)
mod M .

The left term of the previous equation, ABH mod M , can be calculated using the
classical modular multiplication that processes the upper part of the split multiplier
BH . The right term, ABLR−1 mod M , can be calculated using Montgomery
multiplication that processes the lower part of the split multiplier BL. Both
calculations can be performed in parallel. Since the split operands BH and BL are
shorter in length than B, the calculations ABH mod M and ABLR−1 mod M are
performed faster than ABR−1 mod M .

Similar to the previous section, we propose a large set of moduli, for which the
speed of bipartite modular multiplication, where the Barrett and Montgomery
algorithms are the main ingredients, significantly increases. As will be shown later,
we consider state of the art attacks on public-key cryptosystems, and show that the
proposed set is safe to use in practice for both ECC/HECC and RSA cryptosystems.
We propose a hardware architecture for the modular multiplier that outperforms
the multiplier based on the standard BMM method.

Since the BMM method utilizes both Barrett and Montgomery multiplication
algorithms, one needs to precompute both µ =

⌊
2n+α/M

⌋
and M ′ = −M−1

0 mod r.
Let us, for now, assume that the precomputed values are both of type 2γ where
γ ∈ Z. By tuning µ and M ′ to be of this special type, we transform a single-
precision multiplication with these values into a simple shift operation in hardware.
Therefore, we find a set of moduli for which the precomputed values are both of
type 2γ . A lemma that defines this set is given below:

Lemma 2.5. Let M = 2n −∆2w − 1 be an n-bit positive integer in radix r = 2w
representation with ∆ ∈ Z, w ∈ N and w < n. Now, let µ =

⌊
2n+α/M

⌋
where

α ∈ N and M ′ = −M−1
0 mod r. The following statement holds:

µ = 2α ∧ M ′ = 1 ⇒ 0 ≤ ∆ ≤
⌊

2n − 2α − 1
2w(2α + 1)

⌋
.

FASTER DIGIT-SERIAL MODULAR MULTIPLICATION 27

Proof. To prove the lemma, we first rewrite 2n+α as 2n+α = M2α + ∆2w+α + 2α.
Now, the reciprocal µ of the modulus M can be written as:

µ =
⌊2n+α

M

⌋
= 2α +

⌊∆2w+α + 2α
M

⌋
= 2α +

⌊ θ
M

⌋
.

Having that µ = 2α, the inequality 0 ≤ θ < M must hold. By solving the left part
of inequality (θ ≥ 0) we get:

∆ ≥ −2−w . (2.7)

Similar, for the right part of inequality (θ < M) we get:

∆ <
2n − 2α − 1
2w
(
2α + 1

) . (2.8)

From the condition M ′ = −M−1
0 mod r = 1 it follows that M = −1 mod r. This

is true for all ∆ ∈ Z. Finally, a condition that the modulus M is an n-bit integer
(2n−1 ≤M < 2n) makes the last condition for ∆:

−2−w < ∆ ≤ 2n−w−1 − 2−w . (2.9)

Now, from the inequalities (2.7), (2.8), (2.9) and the fact that ∆ ∈ Z, follows the
final condition for ∆:

0 ≤ ∆ ≤
⌊

2n − 2α − 1
2w(2α + 1)

⌋
.

The previous theorem defines a set of moduli for which both conditions µ = 2α and
M ′ = 1 are satisfied. As mentioned earlier, to minimize the number of correction
steps in the Barrett algorithm, we choose α = w + 3. Finally, the proposed set is
defined as:

S5 : M = 2n −∆52w − 1 where 0 ≤ ∆5 ≤
⌊

2n − 2w+3 − 1
2w(2w+3 + 1)

⌋
.

Figure 2.4 further illustrates the properties of the proposed set. As can be seen,
the w least significant bits and the w + 3 most significant bits are fixed to be all
1’s while the other n− 2w − 3 bits can be randomly chosen.

The evaluation of the intermediate quotient for the Barrett algorithm, q̂, now
becomes equal to:

q̂ =
⌊⌊ C

2n+β

⌋
µ

2α−β

⌋
=
⌊⌊ C

2n+β

⌋
2α

2α−β

⌋
=
⌊⌊ C

2n+β

⌋
2β
⌋
.

28 EFFICIENT HARDWARE IMPLEMENTATIONS OF FINITE FIELD ARITHMETIC

…all 1’s…	
 …	
 1	
1	

n-1	
 0	

S5 	
 …all 1’s…	
mw	

w+3	
 w	
n-2w-3	

mn-w-4	

Figure 2.4: Binary representation of the proposed set S5.

For β ≤ 0, the previous equation simplifies and is equivalent to q̂ =
⌊
C
2n

⌋
. Since

M ′ = 1, the intermediate quotient for the Montgomery multiplication also gets
simplified: qM = C mod r.

Finally, the bipartite modular multiplication for the proposed set of moduli is given
in Alg. 7. After the final addition is performed, one more correction step might be
necessary since 0 ≤ CH + CL < 2M .

Algorithm 7 BMM algorithm for the proposed set of moduli.
Input: A = (Anw−1 . . . A0)r, B = (Bnw−1 . . . B0)r = BHr

k + BL, M =
(Mnw−1 . . .M0)r ∈ S5, where 0 ≤ A,B < M , r = 2w, 0 < k < nw and
nw =

⌈
n/w

⌉
.

Output: C = ABr−k mod M .

1: CH ⇐ 0
2: for i = nw − 1 downto k do
3: CH ⇐ CHr +ABi
4: q̂ ⇐

⌊
CH/2n

⌋
5: CH ⇐ CH − q̂M
6: end for
7: if CH ≥M then
8: CH ⇐ CH −M
9: end if

1: CL ⇐ 0
2: for i = 0 to k − 1 do
3: CL ⇐ CL +ABi
4: qM ⇐ CL mod r
5: CL ⇐ (CL + qMM)/r
6: end for
7: if CL ≥M then
8: CL ⇐ CL −M
9: end if

Return C ⇐ CH + CL.

2.4.6 Hardware Implementation of the Proposed Algorithms
Based on Barrett and Montgomery Reduction Methods

To verify our approach in practice, we implement a set of multipliers that are based
on our proposal and compare them with the multipliers that support the original
Barrett and Montgomery algorithms. In order to have an objective comparison

FASTER DIGIT-SERIAL MODULAR MULTIPLICATION 29

between different designs, we define a relative throughput as

Tr = fmax
N

,

where fmax is a maximum frequency and N is a number of clock cycles. The total
throughput is then obtained as T = BTr, where B is the number of bits processed
in 1/Tr time.

To maximize the throughput, one obviously needs to decrease N and increase fmax.
Typically, there are plenty of trade-offs to explore in order to make an optimal
(in this case fastest) design. To make an objective comparison, we distinguish
between designs that aim at the shortest critical path and the ones that achieve
the minimum number of clock cycles. We address each of them separately, in the
coming subsections.

Optimization Goal: Shortest Critical Path

A modular multiplier with the shortest critical path (bold line) is depicted in
Fig. 2.5 and consists of two multiple-precision multipliers (π1, π2). Apart from
the multipliers, the architecture contains an additional adder denoted with Σ.
Having two multiple-precision multipliers may seem redundant at first glance,
but the multiplier π1 uses data from A and B that are fixed during a single
modular multiplication. Now, by running π1 and π2 in parallel, we speed-up the
whole multiplication process. Both Barrett and Montgomery algorithms can be
implemented based on this architecture. If the target is a more compact design,
one can also use a single multiple-precision multiplier which does not reduce the
generality of our discussion.

The critical path of the whole design occurs from the output of the register C to
the input of the temporary register in π2, passing through one multiplexer, one
single-precision multiplier and one adder (bold line).

Optimization Goal: Minimum Number of Clock Cycles

In order to minimize the number of clock cycles needed for one modular
multiplication, the architecture from Fig. 2.5 is modified as depicted in Fig. 2.6.
Another single-precision multiplier (π3), consisting only of pure combinational logic,
is added without requiring any clock cycles for calculating its product.

Multipliers π1 and π2 perform multiplications at lines three and five of both Alg. 3
and Alg. 4, respectively. A multiplication performed in step four of both algorithms
is done by multiplier π3. An eventual shift of the register C is handled by the
controller. The exact schedule of the functional parts of the multiplier is as follows:

30 EFFICIENT HARDWARE IMPLEMENTATIONS OF FINITE FIELD ARITHMETIC

n-bit	
 n-bit	
 n-bit	

n+λ-bit	

+	

*	

n+w-bit	

+	

+	

A	
 B	
 M	

w	
w	
 λ	
λ	

n+w	
2w	
 2λ	
n+λ	

n+λ+1	
 n+λ	

n+λ	
n+w	

n+λ+1 -bit	

π1	
 π2	

C	

Σ	

λ-bit	

µ or M’	

*	

Barrett: λ = w + 4 MS bits	

Montgomery: λ = w LS bits	

λ	

λ	

Figure 2.5: Datapath of the modular multiplier with the shortest critical path.

π1 → Σ → π1π2π3 → Σ → Σ → π1π2π3 → Σ → Σ → . . . In case of generalized
Barrett reduction, the precomputed value µ is λ = w + 4-bits long, while for the
case of Montgomery the precomputed value M ′ is λ = w-bits long. Due to the
generalized Barrett algorithm, the multiplier π2 uses the most significant λ bits2 of
the product calculated by π3, while for the case of Montgomery, it uses the least
significant λ bits of the same product. This is indeed a reason for Montgomery’s
multiplier being superior compared to the one of Barrett.

The critical path of the whole design occurs from the output of the register C to
the input of the temporary register in π2, passing through two single-precision
multipliers and one adder (bold line).

2As previously discussed, not all of the λ = w+ 4 bits are necessary. Instead, one can use only
w + 3 bits.

FASTER DIGIT-SERIAL MODULAR MULTIPLICATION 31

n-bit	
 n-bit	
 n-bit	
 λ-bit	

*	

*	

n+λ-bit	

+	

*	

n+w-bit	

+	

+	

A	
 B	
 M	
 µ or M’	

w	
w	
 λ	
λ	

λ	
λ	

n+w	
2w	
 2λ	
n+λ	

n+λ+1	
 n+λ	

n+λ	
n+w	

n+λ+1 -bit	

2λ	

Barrett: λ = w + 4 MS bits	

Montgomery: λ = w LS bits	

λ	

π1	
 π2	

π3	

λ	

C	

Σ	

Figure 2.6: Datapath of the modular multiplier with the minimized number of
clock cycles.

Proposed Multiplier

A major improvement of the new algorithms is the simplified quotient evaluation.
This fact results in the new proposed architecture for the efficient modular multiplier
as shown in Fig. 2.7. It consists of two multiple-precision multipliers (π1 and π2)
only. The most important difference is that there are no multiplications with
the precomputed values and hence, the critical path contains one single-precision
multiplier and one adder only (bold line). To compare the performance with the
architectures proposed in Fig. 2.5 and Fig. 2.6, we have synthesized a number of
multipliers.

Results

To show this in practice, we have synthesized 192-bit, 512-bit and 1024-bit
multipliers, each with digit size of 32 bits. The code was first written in GEZEL [154]

32 EFFICIENT HARDWARE IMPLEMENTATIONS OF FINITE FIELD ARITHMETIC

n-bit	
 n-bit	
 n-bit	

*	

n+λ-bit	

+	

*	

n+w-bit	

+	

+	

A	
 B	
 M	

w	
w	
 λ	
λ	

n+w	
2w	
 2λ	
n+λ	

n+λ+1	
 n+λ	

n+λ	
n+w	

n+λ+1 -bit	

π1	
 π2	

C	

Σ	

Figure 2.7: Datapath of our proposed multiplier.

and tested for its functionality and then translated to VHDL and synthesized using
the Synposys Design Compiler version C-2009.06-SP3. We used a UMC 0.13 µm
CMOS High-Speed standard cell library and the results can be found in Table 2.2.
The size of the designs is given as the number of NAND gate equivalences (GE).

The designs that are based on Barrett and Montgomery algorithms, with the
minimum number of clock cycles are outperformed up to 62 % and 17 %, respectively.
The same architecture outperforms the modular multiplier based on standard
Barrett reduction with the shortest critical path up to 11 %. The architecture with
the shortest critical path based on Montgomery reduction is outperformed up to
12 %.

Additionally, designs based on our algorithms demonstrate area savings in
comparison to the standard algorithms. Note that the obtained results are based
on the synthesis only. After the place and route is performed we expect a decrease
of the performance for all implemented multipliers and hence we believe that the
relative speed-up will approximately remain the same.

FASTER DIGIT-SERIAL MODULAR MULTIPLICATION 33

Table 2.2: Hardware architectures of 192-bit, 512-bit and 1024-bit modular
multipliers with digit size of w = 32 bits (Synopsys Design Compiler version
C-2009.06-SP3, synthesis results).

Algorithm Design n Area Frequency N Tr
[bit] [kGE] [MHz] [cycles] [kHz]
192 42.57 303 61 4.967

Fig. 2.5 512 63.21 280 321 0.872
1024 99.46 270 1,153 0.234
192 46.14 187 55 3.400

Classical Fig. 2.6 512 65.65 182 305 0.597
1024 98.89 178 1,121 0.159
192 42.08 304 55 5.527

Fig 2.7 512 62.52 280 305 0.918
1024 90.39 274 1,121 0.244
192 34.06 305 61 5.000

Fig. 2.5 512 59.67 287 321 0.894
1024 92.37 267 1,153 0.232
192 40.32 262 55 4.764

Montgomery Fig. 2.6 512 55.49 254 305 0.833
1024 85.19 255 1,121 0.227
192 37.30 308 55 5.600

Fig. 2.7 512 59.07 292 305 0.957
1024 90.21 282 1,121 0.252

Finally, it is interesting to consider the choice of the digit size. As will be discussed
in Section 2.4.8, the upper bound of the digit size is decided by security margins.
A typical digit size of 8, 16, 32, 64 or even 128 bits seems to provide a reasonable
security margin for an RSA modulus of 1024 bits or more. On the other side, with
the increase of digit size, the number of cycles decreases for the whole design and
the overall speed-up is increasing. It is also obvious that a larger digit size implies
a larger circuit and thus the performance trade-off concerning throughput and area
would be interesting to explore.

2.4.7 Hardware Implementation of the Proposed Algorithm
Based on Bipartite Modular Multiplication

Obviously, the goal of the BMM algorithm is to utilize parallel computation and
hence, increase the speed of modular multiplication. Therefore, in order to compare

34 EFFICIENT HARDWARE IMPLEMENTATIONS OF FINITE FIELD ARITHMETIC

different designs with the same input size, we again use the relative throughput as
a measure for comparison.

Similar to the previous subsection, we again distinguish between designs that aim
at the shortest critical path and the ones that achieve the minimum number of
clock cycles. We address each of them separately, in the next subsections.

Optimization Goal: Shortest Critical Path

A modular multiplier based on the BMM algorithm, depicted in Fig. 2.8, consists of
four multiple-precision multipliers (πH1, πH2, πL1, πL2). Apart from the multipliers,
the architecture contains some additional adders (ΣL, ΣH and Σ). The multiple-
precision multipliers are implemented in a digit-serial manner which typically
provides a good trade-off between area and speed. The multipliers πH1 and πH2
assemble together the Barrett modular multiplier that processes the most significant
half of B (that is BH). Similarly, the multipliers πL1 and πL2 form the Montgomery
multiplier that processes the least significant half of B (that is BL). The results of
both multipliers are finally added together, resulting in C = ABr−k mod M . The
parameters k and α are chosen such that the execution speed is maximized and
the number of correction steps is minimized: k =

⌊
nw/2

⌋
and α = w + 3.

A choice of the specific architecture is based on the following criteria. The two levels
of parallelism are exploited such that the number of clock cycles needed for one
modular multiplication is minimized. First, the BMM algorithm itself is constructed
such that the Barrett part and the Montgomery part of the multiplier work
independently, in parallel. Second, the multiple-precision multipliers πH1 and πH2 in
the Barrett part, and πL1 and πL2 in the Montgomery part operate with independent
data such that they run in parallel and speed-up the whole multiplication process.
The critical path is minimized and consists of one multiplexer, a single-precision
multiplier and an adder (bold line, Fig. 2.8).

In order to avoid any ambiguity we provide a graph in Fig. 2.9 which shows the
exact timing schedule of separate blocks inside the multiplier. With i (0 ≤ i < k)
we denote the current iteration of the algorithm. Each iteration consists of nw + 3
clock cycles except the first iteration that lasts for nw + 1 cycles.

Optimization Goal: Minimum Number of Clock Cycles

In order to minimize the number of clock cycles needed for one modular
multiplication, the architecture from Fig. 2.8 is modified as depicted in
Fig. 2.10. Two single-precision multipliers (πH3 and πL3), consisting only of pure
combinational logic, are added without requiring any clock cycles for calculating
their products.

FASTER DIGIT-SERIAL MODULAR MULTIPLICATION 35

n-bit	
 n-bit	
n-bit	

*	

 n+3w-bit	

+

*	

n+w-bit	

+

+

A	
 B	
M	
 M’	

w	
w	
 w	
w	

w	

n+w	
2w	
 2w	
n+w	

n+w+1	
 n+w	

n+w	
n+w	

n+w+1 -bit	

πL2	
 πL1	

*	

 n+w-bit	

+
 n+3λ-bit	

+

µ	

λ	
λ	
 w	
w	

λ	

n+λ	
2λ	
 2w	
n+w	

n+λ+1	
n+λ	

n+w	
n+λ	

n+λ+1 -bit	

πH1	
 πH2	

BH	
 BL	

+
n	
n	

n-bit	
 C	

CL	
CH	

λ-bit	
 w-bit	

ΣH	
 ΣL	

Σ	

*	

+

Figure 2.8: Datapath of the modular multiplier with the shortest critical path
based on the BMM method.

We again provide a graph in Fig. 2.11 which shows the timing schedule of the
multiplier. Each iteration now consists of nw + 2 clock cycles except the first that
lasts for nw + 1 cycles.

The critical path of the whole design occurs from the output of the register ZH to
the input of the temporary register in πH1, passing through two single-precision
multipliers and one adder (bold line).

Proposed Multiplier

An architecture of the modular multiplier based on the BMM method with the
moduli from the proposed set (see Alg. 7) is shown in Fig. 2.12. The most important
difference is that there are no multiplications with the precomputed values and
hence, the critical path contains one single-precision multiplier and one adder only.
A full timing schedule of the multiplier is given in Fig. 2.13. The number of cycles
remains the same as in the architecture from Fig. 2.10 while the critical path
reduces.

36 EFFICIENT HARDWARE IMPLEMENTATIONS OF FINITE FIELD ARITHMETIC

πH1	
 ●	
●	
 ●	
●	
 ●	
●	

…	

●	
●	
 ●	
●	
 ●	
●	

πH2	
 ●	
 ●	
 ●	
 ●	
 ●	
 ●	

πL1	
 ●	
●	
 ●	
●	
 ●	
●	
 ●	
●	
 ●	
●	
 ●	
●	

πL2	
 ●	
 ●	
 ●	
 ●	
 ●	
 ●	

ΣH	
 ●	
 ●	
●	
 ●	
●	
 ●	
●	
 ●	
●	
 ●	
●	
 ●	

ΣL	
 ●	
 ●	
●	
 ●	
●	
 ●	
●	
 ●	
●	
 ●	
●	
 ●	

Σ	
 ●	

i	
 0	
 1	
 2	
 3	
 …	
 k-2	
 k-1	
 k	

Figure 2.9: Timing schedule of the BMM multiplier with the shortest critical path.

Results

To show this in practice, we have synthesized 192-bit, 512-bit and 1024-bit
multipliers, each with the digit size of 16, 32 and 64 bits. The designs were
synthesized using UMC 0.13 µm CMOS High-Speed standard cell library with
Synopsys Design Compiler version C-2009.06-SP3. The results are given in
Table 2.3.

Observing the implementation results, we conclude that our proposed design
outperforms the standard BMM design with the shortest critical path by 17 %. A
design that is based on standard BMM with the minimum number of clock cycles
is outperformed by at most 68 %. Furthermore, our design consumes less area than
all its counterparts.

2.4.8 Security Considerations

In this section we analyze the security implications of choosing primes in one of
the sets S1 . . . S5 for use in ECC/HECC and in RSA.

In the current state of the art, the security of ECC/HECC over finite fields GF(p)
only depends on the extension degree of the field (see ‘Handbook of Elliptic and
Hyperelliptic Curve Cryptography’ by Avanzi et al. [12]). Therefore, the security
does not depend on the precise structure of the prime p. This is illustrated by the
particular choices for p that have been made in several standards such as SEC [158],
NIST [129], ANSI [10]. In particular, the following primes have been proposed:
p192 = 2192 − 264 − 1, p224 = 2224 − 296 + 1, p256 = 2256 − 2224 + 2192 + 296 − 1,
p384 = 2384 − 2128 − 296 + 232 − 1, and p521 = 2521 − 1. It is easy to verify that
for w ≤ 28 all primes are in one of the proposed sets. As such at least one of our

FASTER DIGIT-SERIAL MODULAR MULTIPLICATION 37

n-bit	
 n-bit	
n-bit	
 w-bit	

*	

*	

n+w-bit	

+

*	

n+w-bit	

+

+

w	
w	
 w	
w	

w	
w	

n+w	
2w	
 2w	
n+w	

n+w+1	
 n+w	

n+w	
n+w	

n+w+1 -bit	

2w	

πL3	

λ-bit	

*	

n+w-bit	

+
 n+λ-bit	

+

µ	

λ	
λ	
 w	
w	

λ	
λ	

n+λ	
2λ	
 2w	
n+w	

n+λ+1	
n+λ	

n+w	
n+λ	

n+λ+1 -bit	

2λ	

πH3	

BH	
 BL	

+
n	
n	

n-bit	

A	
 B	
M	
 M’	

πL2	
 πL1	
πH1	
 πH2	

C	

CL	
CH	

ΣH	
 ΣL	

Σ	

+

*	

*	

Figure 2.10: Datapath of the modular multiplier with the minimized number of
clock cycles based on the BMM method.

methods applies for all primes included in the standards. In conclusion: choosing a
prime of prescribed structure has no influence on the security of ECC/HECC.

The case of RSA requires a more detailed analysis than ECC/HECC. First, we
assume that the modulus N is chosen from one of the proposed sets. This is
a special case of the security analysis given by Lenstra in [107] followed by the
conclusion that the resulting moduli do not seem to offer less security than regular
RSA moduli.

Next, we assume that the primes p and q, which constitute the modulus N = pq,
are both chosen in one of the sets Si. To analyze the security implications of the
restricted choice of p and q, we first make a trivial observation. The number of
n-bit primes in the sets S1 . . . S4 for n > 259 + w (n > 259 + 2w for S5) is large
enough such that exhaustive listing of these sets is impossible, since a maximum of
w + 3 (2w + 3 for S5) bits are fixed.

The security analysis then corresponds to attacks on RSA with partially known

38 EFFICIENT HARDWARE IMPLEMENTATIONS OF FINITE FIELD ARITHMETIC

πH1	
 ●	
 ●	
 ●	

…	

●	
 ●	
 ●	

πH2	
 ●	
 ●	
 ●	
 ●	
 ●	
 ●	

πH3	
 ●	
 ●	
 ●	
 ●	
 ●	
 ●	

πL1	
 ●	
 ●	
 ●	
 ●	
 ●	
 ●	

πL2	
 ●	
 ●	
 ●	
 ●	
 ●	
 ●	

πL3	
 ●	
 ●	
 ●	
 ●	
 ●	
 ●	

ΣH	
 ●	
 ●	
●	
 ●	
●	
 ●	
●	
 ●	
●	
 ●	
●	
 ●	

ΣL	
 ●	
 ●	
●	
 ●	
●	
 ●	
●	
 ●	
●	
 ●	
●	
 ●	

Σ	
 ●	

i	
 0	
 1	
 2	
 3	
 …	
 k-2	
 k-1	
 k	

Figure 2.11: Timing schedule of the BMM multiplier with the minimized number
of clock cycles.

factorization. This problem has been analyzed extensively in the literature and
the first results come from Rivest and Shamir [143] in 1985. They describe an
algorithm that factors N in polynomial time if 2/3 of the bits of p or q are known.
In 1995, Coppersmith [34] improved this bound to 3/5.

Today’s best attacks all rely on variants of Coppersmith’s algorithm published in
1996 [36, 35]. A good overview of these algorithms is given by May in [112, 113].
The best results in this area are as follows. Let N be an n bit number, which is
a product of two n/2-bit primes. If half of the bits of either p or q (or both) are
known, then N can be factored in polynomial time. If less than half of the bits are
known, say n/4− ε bits, then the best algorithm simply guesses ε bits and then
applies the polynomial time algorithm, leading to a running time exponential in
ε. In practice, the values of w (typically w ≤ 128) and n (n ≥ 1024) are always
such that our proposed moduli remain secure against Coppersmith’s factorization
algorithm, since at most w + 3 (2w + 3 for S5) bits of p and q are known.

Finally, we consider a similar approach extended to the multi-prime RSA, a special
fast RSA-type of cryptosystem introduced by Takagi [161]. Specifically, we consider
moduli of the form N = prq where p and q have the same bit-size. This attack
is an extension of Coppersmith’s work and was proposed by Boneh, Durfee and
Howgrave-Graham [24]. Assuming that p and q are of the same bit-size, one needs a
1/(r+1)-fraction of the most significant bits of p in order to factor N in polynomial
time. In other words, for the case r = 1, we need half of the bits, whereas for, e.g.
r = 2 we need only a third of the most significant bits of p. These results show
that the primes p, q ∈ S, assembling an RSA modulus of the form N = prq, should
be used with care. This is especially true when r is large. Note that if r ≈ log p,

FASTER DIGIT-SERIAL MODULAR MULTIPLICATION 39

n-bit	
 n-bit	
n-bit	

*	

n+w-bit	

+	

*	

n+w-bit	

+	

+	

A	
 B	
M	

w	
w	
 w	
w	

n+w	
2w	
 2w	
n+w	

n+w+1	
 n+w	

n+w	
n+w	

n+w+1 -bit	

πL2	
 πL1	

*	

n+w-bit	

+	

n+λ-bit	

+	

λ	
λ	
 w	
w	

n+λ	
2λ	
 2w	
n+w	

n+λ+1	
n+λ	

n+w	
n+λ	

n+λ+1 -bit	

πH1	
 πH2	

BH	
 BL	

+	

n	
n	

n-bit	
 C	

CL	
CH	

ΣH	
 ΣL	

Σ	

*	

+	

Figure 2.12: Datapath of the modular multiplier based on the BMM method with
a modulus from the proposed set.

the latter factoring method factors N in polynomial time for any primes p, q ∈ N.

2.4.9 The Proposed Multiplication Methods in GF(2n)

Following the same principles described in the previous sections, we provide a special
set of moduli for which the digit-serial multiplication in GF(2n) based on Barrett
reduction has no precomputation and has a simplified quotient evaluation. Second,
we show how the interleaved digit-serial multiplication based on Montgomery
reduction for a complementary set of moduli, can also be performed without
precomputation and with simplified quotient evaluation. As these algorithms
operate in a binary field, they are specially suitable for efficient hardware
implementations.

To make the following discussion easier we introduce the floor function for
polynomials in the following manner. Let M(x) and U(x) be polynomials over GF(2)
with deg(M(x)) = n and deg(U(x)) > n, then there exist unique polynomials q(x)

40 EFFICIENT HARDWARE IMPLEMENTATIONS OF FINITE FIELD ARITHMETIC

πH1	
 ●	
 ●	
 ●	

…	

●	
 ●	
 ●	

πH2	
 ●	
 ●	
 ●	
 ●	
 ●	
 ●	

πL1	
 ●	
 ●	
 ●	
 ●	
 ●	
 ●	

πL2	
 ●	
 ●	
 ●	
 ●	
 ●	
 ●	

ΣH	
 ●	
 ●	
●	
 ●	
●	
 ●	
●	
 ●	
●	
 ●	
●	
 ●	

ΣL	
 ●	
 ●	
●	
 ●	
●	
 ●	
●	
 ●	
●	
 ●	
●	
 ●	

Σ	
 ●	

i	
 0	
 1	
 2	
 3	
 …	
 k-2	
 k-1	
 k	

Figure 2.13: Timing schedule of the proposed BMM multiplier.

and Z(x) over GF(2) where deg(Z(x)) ≤ n−1, such that U(x) = q(x)M(x)+Z(x).
The polynomial q(x) is called the quotient and is denoted by the floor function as

q(x) =
⌊
U(x)/M(x)

⌋
= U(x) divM(x) . (2.10)

The following lemma is the analogue of Lemma 2.2.

Lemma 2.6. Let M(x) = xn + ∆(x) be an irreducible polynomial over GF(2)
such that ∆(x) =

∑n−w
i=0 mix

i where 1 < w < n, mi ∈ GF (2) and let µ(x) =⌊
xn+w−1/M(x)

⌋
. Then it holds µ(x) = xw−1.

Proof. Rewrite xn+w−1 as xn+w−1 = xw−1M(x)+xw−1∆(x). Since deg(xw−1∆(x)) ≤
n−1 and deg(M(x)) = n, we conclude that the quotient is indeed µ(x) = xw−1.

Based on Lemma 2.6, we define a set of irreducible polynomials for which the digit-
serial multiplication in GF(2n) based on Barrett reduction has no precomputation
and has a simplified quotient evaluation. The set is illustrated in Fig. 2.14

F1 : M(x) = xn + ∆1(x) where ∆1(x) =
n−w∑
i=0

mix
i . (2.11)

In [43], Dhem presents a digit-serial multiplication in GF(2n) based on Barrett
modular reduction. Based on it, we propose a digit-serial multiplication algorithm
for the proposed set in Alg. 8.

FASTER DIGIT-SERIAL MODULAR MULTIPLICATION 41

Table 2.3: Hardware architectures of 192-bit, 512-bit and 1024-bit modular
multipliers (Synopsys Design Compiler version C-2009.06-SP3, synthesis results).

Design n w Area Frequency N Tr
[bit] [bit] [kGE] [MHz] [cycles] [MHz]

16 48.20 340 103 3.301
192 32 85.66 224 34 6.588

64 212.40 137 16 8.563
16 96.31 315 593 0.531

Fig. 2.8 512 32 134.10 209 169 1.237
64 259.84 134 53 2.528
16 177.93 300 2,209 0.136

1024 32 208.59 193 593 0.325
64 356.37 134 169 0.793
16 50.17 230 97 2.371

192 32 84.25 147 31 4.742
64 220.73 82 14 5.857
16 97.44 234 577 0.406

Fig. 2.10 512 32 127.33 144 161 0.894
64 271.54 80 49 1.633
16 169.49 223 2,177 0.102

1024 32 198.01 145 577 0.251
64 341.59 82 161 0.509
16 44.65 343 97 3.536

192 32 83.14 240 31 7.742
64 204.73 138 14 9.857
16 95.23 323 577 0.560

Fig. 2.12 512 32 137.41 229 161 1.422
64 247.35 134 49 2.735
16 183.01 316 2,177 0.145

1024 32 211.07 212 577 0.367
64 346.40 134 161 0.832

Proof of Alg. 8. The correctness of the algorithm follows directly from Lemma 2.6
since µ = xw−1 and the quotient evaluation thus becomes

q̂(x) =
⌊⌊ C(x)

xn−1

⌋
µ(x)

xw−1

⌋
=
⌊⌊ C(x)

xn−1

⌋
xw−1

xw−1

⌋
=
⌊C(x)
xn−1

⌋
.

42 EFFICIENT HARDWARE IMPLEMENTATIONS OF FINITE FIELD ARITHMETIC

mn-w	

n	
 0	

F1 	
 …all 0’s…	
 …	
 m0	
1	
 m1	

Figure 2.14: Binary representation of the proposed set F1.

Algorithm 8 Proposed digit-serial multiplication in GF(2n) based on Barrett
reduction.
Input: A(x) =

∑nw−1
i=0 Ai(x)xiw, B(x) =

∑nw−1
i=0 Bi(x)xiw, M(x) ∈ F1, nw =

dn/we.
Output: C(x) = A(x)B(x) mod M(x).
C(x)⇐ 0
for i = nw − 1 downto 0 do
C(x)⇐ C(x)xw +A(x)Bi(x)
q̂(x)⇐

⌊
C(x)
xn−1

⌋
C(x)⇐ C(x) + q̂(x)M(x)

end for
return C(x).

Similar to Lemma 2.6 we also give Lemma 2.7 that is at the heart of the proposed
multiplication in GF(2n) based on Montgomery reduction.

Lemma 2.7. Let M(x) = xn + xw∆(x) + 1 be an irreducible polynomial over
GF(2) such that ∆(x) =

∑n−w−1
i=0 mix

i where 1 < w < n, mi ∈ GF (2) and let
M ′(x) = M(x)−1 mod xw. Then it holds M ′(x) = 1

Proof. Note that M(x) ≡ 1 mod xw, which shows immediately that M ′(x) = 1.

We now define a set of irreducible polynomials for which the digit-serial
multiplication in GF(2n) based on Montgomery reduction has no precomputation
and has a simplified quotient evaluation. Figure 2.15 illustrates its binary
representation.

F2 : M(x) = xn + xw∆2(x) + 1 where ∆2(x) =
n−w−1∑
i=0

mix
i . (2.12)

The Montgomery multiplication algorithm for finite fields of characteristic 2 was
proposed by Koç and Acar in [31]. Based on this algorithm we propose a digit-serial
multiplication in GF(2n) which skips the precomputation and has a simplified
quotient evaluation (see Alg. 9).

FASTER DIGIT-SERIAL MODULAR MULTIPLICATION 43

…	
 1	
1	
 mn-1	
F2 	
 …all 0’s…	
mw	

n	
 0	

Figure 2.15: Binary representation of the proposed set F2.

Algorithm 9 Proposed digit-serial multiplication in GF(2n) based on Montgomery
reduction.
Input: A(x) =

∑nw−1
i=0 Ai(x)xiw, B(x) =

∑nw−1
i=0 Bi(x)xiw, M(x) ∈ F2, r(x) =

xw, nw = dn/we.
Output: C(x) = A(x)B(x)r(x)−nw mod M(x).
C(x)⇐ 0
for i = 0 to nw − 1 do
C(x)⇐ C(x) +Ai(x)B(x)
q(x)⇐ C(x) mod r(x)
C(x)⇐ (C(x) +M(x)q(x))/r(x)

end for
return C(x).

Proof of Alg. 9. The correctness follows immediately from Lemma 2.7 since
M ′(x) = 1.

2.4.10 Summary

In this section we proposed two interleaved modular multiplication algorithms
based on Barrett and Montgomery reductions. We introduced two sets of moduli
for the algorithm based on Barrett’s and two sets of moduli for the algorithm based
on Montgomery’s algorithm. Another set of moduli for which the performance of
bipartite modular multiplication considerably increases is also proposed. These
sets contain moduli with a prescribed number (typically the digit-size) of zero/one
bits, either in the most significant or least significant part. Due to this choice,
our algorithms have no precomputational phase and have a simplified quotient
evaluation, which makes them more efficient than existing solutions. Since the
security level of ECC/HECC does not depend at all on the precise structure of the
prime p, our proposed set is safe to be used for constructing underlying fields in
elliptic curves cryptography. The case of RSA is also discussed and if used with
care (w ≤ 128 and n ≥ 1024) our proposed set does not decrease the security of
RSA.

Moreover, Lenstra [107] and Joye [81] have already shown that the generation of
RSA moduli with a predetermined portion can be as efficient as a regular generation

44 EFFICIENT HARDWARE IMPLEMENTATIONS OF FINITE FIELD ARITHMETIC

of RSA moduli. Generating primes with a predetermined portion is therefore trivial
and is straightforward for implementation.

Furthermore, following a similar approach, we defined two sets of moduli for finite
fields of characteristic 2 for which the modular multiplication over GF(2n) becomes
faster and simplified.

2.5 Bit-Parallel Modular Multiplication Based on
Barrett and Montgomery Reduction Methods
Without Precomputation

Publication Data

M. Knežević, L. Batina, and I. Verbauwhede, “Modular Reduction Without
Precomputational Phase,” in IEEE International Symposium on Circuits and
Systems – ISCAS 2009, pp. 1389–1392, IEEE, 2009.

M. Knežević, K. Sakiyama, J. Fan, and I. Verbauwhede, “Modular Reduction in
GF(2n) Without Precomputational Phase,” in Arithmetic of Finite Fields, Second
International Workshop – WAIFI 2008, vol. 5130 of Lecture Notes in Computer
Science, pp. 77–87, Springer, 2008.

Personal Contributions

• Principal author.

Our novel contribution consists of proposing several sets of moduli for which the
precomputational phase in Barrett and Montgomery reduction algorithms can be
avoided. We discuss the case of integers and finite fields of characteristic 2.

In the previous section, we discussed in detail the approach of accelerating digit-
serial multiplication algorithms. As outlined in Section 2.3, the bit-parallel
algorithms represent another important aspect of implementing efficient modular
multiplication. These algorithms normally use significantly more area and provide
much faster multiplication as a result. In this section, we deal with the bit-parallel
algorithms and propose the sets of integers and the sets of polynomials for which
the precomputational stage in both Barrett and Montgomery algorithms can be
omitted.

In Section 2.3.1, we have outlined the bit-parallel modular multiplication algorithms
that are based on Barrett and Montgomery reduction. In this section, we first

BIT-PARALLEL MODULAR MULTIPLICATION WITHOUT PRECOMPUTATION 45

provide two special sets of moduli for which the precomputational step in Barrett
multiplication can be avoided. Second, we propose a modular multiplication
algorithm that is based on Barrett reduction and show how using a modulus
from the defined sets can be beneficial for skipping the precomputational step.
Then, we show how Montgomery multiplication, with using complementary sets
of moduli, can also be performed very efficiently without precomputation. A
modular multiplication based on these algorithms can be implemented at a very
high throughput in hardware. Finally, by providing two additional sets of moduli,
we extend the same approach to finite fields of characteristic 2.

Starting with the basic idea of the proposed modular multiplication based on
Barrett’s algorithm we give two lemmata as follows.

Lemma 2.8. Let M = rnw−1 + ∆ be an nw-digit positive integer in radix r
representation, such that 0 ≤ ∆ <

⌊
r(nw−1)/2⌋ and µ =

⌊
r2nw−2/M

⌋
. Then it

holds µ = rnw−1 −∆.

Proof. Rewrite r2nw−2 as r2nw−2 = (rnw−1 −∆)M + ∆2. Since it is given that
0 ≤ ∆ <

⌊
r(nw−1)/2⌋, we conclude that 0 ≤ ∆2 < M . By definition of Euclidean

division, this shows that µ = rnw−1 −∆.

Lemma 2.9. Let M = rnw − ∆ be an nw-digit positive integer in radix r
representation, such that 0 < ∆ <

⌊
rnw/2

⌋
and µ =

⌊
r2nw/M

⌋
. Then it holds

µ = rnw + ∆.

Proof. Rewrite r2nw as r2nw = (rnw + ∆)M + ∆2. Since it is given that 0 < ∆ <⌊
rnw/2

⌋
, we conclude that 0 < ∆2 < M . By definition of Euclidean division, this

shows that µ = rnw + ∆.

The bit-parallel classical modular multiplication based on Barrett reduction is
given in Section 2.3.1. Now, according to Lemmata 2.8 and 2.9, we can define two
sets of primes for which the Barrett reduction can be performed without using a
precomputational phase. These sets are of type:

S6 : M = rnw−1 + ∆6 where 0 ≤ ∆6 <
⌊
r(nw−1)/2⌋ ;

S7 : M = rnw −∆7 where 0 < ∆7 <
⌊
rnw/2

⌋
.

(2.13)

To further illustrate the properties of the two proposed sets, we give Fig. 2.16
where the moduli from each set are represented in radix 2 representation. Note
that here k =

⌊
n−1

2
⌋
, mi ∈ {0, 1} and, additionally, Eq. (2.13) has to be satisfied.

46 EFFICIENT HARDWARE IMPLEMENTATIONS OF FINITE FIELD ARITHMETIC

…all 0’s…	
 0	
 mk	
 …	
 m0	
1	
 0	

n-1	
 n-2	
 k+1	
 k	
 0	
k-1	

S6 	
 m1	
mk-1	

…all 1’s…	
 1	
 mk	
 …	
 m0	
1	
 1	
S7 	
 m1	
mk-1	

Figure 2.16: Binary representation of the proposed sets S6 and S7.

The precomputed reciprocal needed for Barrett’s algorithm can be easily formed
together with the modulus as:

µ =
{
rnw−1 −∆6 if M ∈ S6 ;
rnw + ∆7 if M ∈ S7 .

The proposed modular multiplication based on Barrett algorithm is shown in
Alg. 10.

Algorithm 10 Modular multiplication without precomputation based on Barrett
algorithm.
Input: A = (Anw−1 . . . A0)r, B = (Bnw−1 . . . B0)r, M ∈ S6 ∪ S7, µ, r ≥ 3,

0 ≤ A,B < M .
Output: C = AB mod M .
C = AB

q̂ ⇐

⌊⌊

C

rnw−1

⌋
µ

rnw−1

⌋
if M ∈ S1⌊⌊

C

rnw−1

⌋
µ

rnw+1

⌋
if M ∈ S2

C ⇐ C mod rnw+1 −Mq̂ mod rnw+1

if C < 0 then
C ⇐ C + rnw+1

end if
while C ≥M do
C ⇐ C −M

end while
Return: C.

Proof of Alg. 10. To show the correctness of the algorithm we first assume that
M ∈ S6. The case M ∈ S7 is completely analogous. Let q = bC/Mc and
r = C mod M = C − qM . In the algorithm, q̂ is an estimate of q since

C

M
= C

rnw−1
r2nw−2

M

1
rnw−1 .

BIT-PARALLEL MODULAR MULTIPLICATION WITHOUT PRECOMPUTATION 47

We now show that q−3 ≤ q̂ ≤ q. The right part of the inequality is straightforward
to prove as it is

q̂ =
⌊⌊ C

rnw−1

⌋
µ

rnw−1

⌋
≤
⌊

C

rnw−1
r2nw−2

M

1
rnw−1

⌋
=
⌊
C

M

⌋
= q .

Next, we prove the left part of the inequality. Since X

Y
≥
⌊X
Y

⌋
>
X

Y
− 1 for any

X,Y ∈ N, we can write the following inequality

q =
⌊ C
rnw−1

r2nw−2

M

rnw−1

⌋

≤
⌊(⌊ C

rnw−1

⌋
+ 1
)(⌊

r2nw−2

M

⌋
+ 1
)

rnw−1

⌋

=
⌊⌊ C

rnw−1

⌋
µ

rnw−1 +
⌊

C
rnw−1

⌋
+
⌊
r2nw−2

M

⌋
+ 1

rnw−1

⌋
.

Since C < M2 and M = rnw−1 + ∆6 ≥ rnw−1, where 0 ≤ ∆6 <
⌊
r(nw−1)/2⌋, it

follows that⌊ C

rnw−1

⌋
+
⌊r2nw−2

M

⌋
+ 1 ≤

⌊
M2

rnw−1

⌋
+ rnw−1 + 1

= rnw−1 + 2∆6 +
⌊

∆2
6

rnw−1

⌋
+ rnw−1 + 1

≤ 2rnw−1 + 2∆6 + 2 .

Finally, we have

q ≤
⌊⌊ C

rnw−1

⌋
µ

rnw+1 + 2rnw−1 + 2∆6 + 2
rnw−1

⌋

=
⌊⌊ C

rnw−1

⌋
µ

rnw+1 + 2 + 2∆6 + 2
rnw−1

⌋
≤ q̂ + 3 .

48 EFFICIENT HARDWARE IMPLEMENTATIONS OF FINITE FIELD ARITHMETIC

Similarly, for the case when M ∈ S7 we have

q =
⌊ C
rnw−1

r2nw

M

rnw+1

⌋

≤
⌊(⌊ C

rnw−1

⌋
+ 1
)(⌊

r2nw

M

⌋
+ 1
)

rnw+1

⌋

≤
⌊⌊ C

rnw−1

⌋
µ

rnw+1 + 2 + 2∆7r + 2
rnw+1

⌋
≤ q̂ + 3 .

Hence, q̂ is indeed a good estimate of q and at most 3 subtractions at the correction
step are required to obtain C = AB mod M . This concludes the proof.

In contrast to the original Barrett algorithm for integers, our proposed algorithm
differs not only in the lack of the precomputational phase, but also in the number
of correction steps. While in the original Barrett reduction algorithm, the number
of correction steps is at most 2, in our modified reduction algorithm this number
can be at most 3. One can further reduce the number of redundant subtractions
by increasing the precision of µ by two or more digits. The same approach was
applied by Dhem [42] to the original Barrett algorithm, resulting in the improved
Barrett reduction where at most one subtraction needs to be performed at the
correction step.

Similar to Lemmata 2.8 and 2.9 we also give Lemmata 2.10 and 2.11 that are
the starting points for the proposed modular reduction based on Montgomery
algorithm.

Lemma 2.10. Let M = ∆rk + 1 be an nw-digit positive integer in radix r
representation where rnw−k−1 ≤ ∆ < rnw−k, k =

⌈
nw−1

2
⌉

and let M ′ =
−M−1 mod rnw−1. Then it holds M ′ = ∆rk − 1.

Proof. In order to prove the lemma we need to show that MM ′ = −1 mod rnw−1.
Indeed, if we express the product MM ′ as

MM ′ = (∆rk + 1)(∆rk − 1)

= ∆2r2k − 1 ,

it becomes obvious that MM ′ = −1 mod rnw−1.

Lemma 2.11. Let M = ∆rk − 1 be an nw-digit positive integer in radix r
representation where rnw−k−1 < ∆ ≤ rnw−k, k =

⌈
nw−1

2
⌉

and let M ′ =
−M−1 mod rnw−1. Then it holds M ′ = ∆rk + 1.

BIT-PARALLEL MODULAR MULTIPLICATION WITHOUT PRECOMPUTATION 49

Proof. Analogous to the proof of Lemma 2.10, we write

MM ′ = (∆rk − 1)(∆rk + 1)

= ∆2r2k − 1

= −1 mod rn−1 .

According to Lemmata 2.10 and 2.11, we can easily find two sets of moduli for
which the precomputational step in Montgomery reduction can be excluded. The
proposed sets are of type

S8 : M = ∆8r
k + 1 where rnw−k−1 ≤ ∆8 < rnw−k ;

S9 : M = ∆9r
k − 1 where rnw−k−1 < ∆9 ≤ rnw−k ,

(2.14)

where k =
⌈
nw−1

2
⌉
. To further illustrate the properties of the two proposed

sets, we give Fig. 2.17 where the moduli from each set are represented in radix 2
representation. Note that here k =

⌈
n−1

2
⌉

and mi ∈ {0, 1}.

…	
 0	
 0	
 1	
1	
S8 	
 …all 0’s…	
 0	
mn-2	
 mk+1	

…	
 1	
 1	
 1	
1	
S9 	
 …all 1’s…	
 1	
mn-2	
 mk+1	

n-1	
 n-2	
 k+1	
 k	
 0	
k-1	

Figure 2.17: Binary representation of the proposed sets S8 and S9.

The precomputed inverse needed for the Montgomery algorithm can be easily
formed together with the modulus as:

M ′ =
{

∆8r
k − 1 if M ∈ S8 ;

∆9r
k + 1 if M ∈ S9 .

The modified algorithm is shown in Alg. 11.

2.5.1 On the Security of the Proposed Sets

As we can see from Figs. 2.16 and 2.17, one half of the modulus (either the most or
the least significant half) is always filled with all 0’s or all 1’s. In the current state
of the art, the security of ECC/HECC over prime fields GF(p) does not depend

50 EFFICIENT HARDWARE IMPLEMENTATIONS OF FINITE FIELD ARITHMETIC

Algorithm 11 Modular multiplication without precomputation based on
Montgomery algorithm.
Input: A = (Anw−1 . . . A0)r, B = (Bnw−1 . . . B0)r, M ∈ S8 ∪ S9, M ′, R = rnw ,

0 ≤ A,B < M .
Output: C = ABR−1 mod M .
qM ⇐ ABM ′ mod R
C ⇐ (AB + qMM)/R
if C ≥M then
C ⇐ C −M

end if
Return: C.

at all on the precise structure of the prime p. Hence, choosing a prime from the
proposed sets has no influence on the security of ECC/HECC.

The security analysis for the RSA corresponds to attacks on RSA with partially
known factorization. This problem has been analyzed extensively in the literature
and the best attacks all rely on variants of Coppersmith’s algorithm [35]. The best
results in this area are as follows: let N be an n-bit number, which is a product of
two n/2-bit primes (p and q). If half of the bits of either p or q (or both) are known,
then N can be factored in polynomial time. Hence, it is important to stress here
that, due to the Coppersmith’s method of factoring, the proposed sets of integers
(S6, S7, S8, and S9) must not be used as prime factors for the RSA moduli. Clearly,
our proposed method for bit-parallel modular multiplication is not applicable to
RSA.

2.5.2 Bit-Parallel Finite Field Multiplication without Precompu-
tation in GF(2n)

The ideas described in the previous section are further applied to finite fields of
characteristic 2. A set of irreducible polynomials, for which the precomputational
phase in Barrett reduction over GF(2n) is not needed, is defined by the following
lemma. This lemma is the analogue of Lemma 2.8.

Lemma 2.12. Let M(x) = xn +
∑l
i=0mix

i and µ(x) = x2n divM(x) be
polynomials over GF(2), where l = bn/2c. Then it holds µ(x) = M(x).

Proof. In order to prove that the previous lemma holds we need to find a polynomial
B(x) of degree n− 1 or less that satisfies x2n = M(x)2 +B(x). Indeed, if we write

BIT-PARALLEL MODULAR MULTIPLICATION WITHOUT PRECOMPUTATION 51

x2n as

x2n = M(x)2 +B(x)

= x2n +
l∑
i=0

mix
2i +

n−1∑
i=0

bix
i ,

then we can choose coefficients bi, 0 ≤ i ≤ n− 1, such that b2j = mj and b2j+1 = 0,
0 ≤ j ≤ l. This concludes the proof.

Now, according to Lemma 2.12, we can define a set of moduli for which the Barrett
reduction does not require a precomputational step. This set is of type

F3 : M(x) = xn +
l∑
i=0

mix
i where l =

⌊n
2

⌋
; (2.15)

and the algorithm is shown in Alg. 12. Figure 2.18 illustrates its structure. It
is interesting to note here that, for this special case, the irreducible polynomial
can be chosen from the set that contains 2bn/2c different polynomials. This set
represents the pool from which the irreducible polynomials are chosen.

m0	
m1	
…	
mk	
0	
…all 0’s…	
0	

n	
 n-1	
 k+1	
 k	
 0	
k-1	

1	
F3 	
 mk-1	

Figure 2.18: Binary representation of the proposed set F3.

Algorithm 12 Finite field multiplication based on Barrett reduction over GF(2n)
without precomputation.
Input: A(x) =

∑n−1
i=0 aix

i, B(x) =
∑n−1
i=0 bix

i, M(x) ∈ F3, where ai, bi ∈ GF(2).
Output: C(x) = A(x)B(x) mod M(x).
C(x) = A(x)B(x) div xn
q(x) = C(x)M(x) div xn
C(x) =

(
A(x)B(x) + q(x)M(x)

)
mod xn

Return: C(x).

In order to prove the correctness of Alg. 12, we introduce the following definition.

Definition 2.6. Let P (x) and Q(x) denote arbitrary polynomials of degree p
and q, respectively. We define ∆(n) = P (x)

Q(x) such that n = p − q and n ∈ Z. In
other words, with ∆(n) we denote an arbitrary element from the set of all rational
functions of degree n.

52 EFFICIENT HARDWARE IMPLEMENTATIONS OF FINITE FIELD ARITHMETIC

Proof of Alg. 12. We provide the proof for any modulus M(x) where µ(x) =
x2n divM(x). Consequently, the proof holds for our special case of M(x) ∈
F3 and µ(x) = M(x). Let us first introduce the following notations: Q(x) =
A(x)B(x) divM(x), Q1(x) = A(x)B(x) div xn, Q2(x) = µ(x)Q1(x), and Q3(x) =
Q2(x) div xn.

Using notation from Def. 2.6 and starting from the original Barrett reduction we
can write

µ(x) = x2n divM(x)

= x2n

M(x) + ∆(−1) .

Similarly, we can express Q1(x) as

Q1(x) = A(x)B(x) div xn

= A(x)B(x)
xn

+ ∆(−1)

=
(
Q(x)M(x)

xn
+ ∆(−1)

)
+ ∆(−1)

= Q(x)M(x)
xn

+ ∆(−1) ,

Using the previous equations, Q2(x) and Q3(x) can be written as

Q2(x) = µ(x)Q1(x)

=
(

x2n

M(x) + ∆(−1)
)(

Q(x)M(x)
xn

+ ∆(−1)
)

= Q(x)xn + x2n

M(x)∆(−1) + Q(x)M(x)
xn

∆(−1) + ∆(−1)∆(−1)

= Q(x)xn + ∆(n− 1) + ∆(n− 1) + ∆(−2)

= Q(x)xn + ∆(n− 1) ,

Q3(x) = Q2(x) div xn

=
(
Q(x)xn + ∆(n− 1)

)
div xn

= Q(x) .

BIT-PARALLEL MODULAR MULTIPLICATION WITHOUT PRECOMPUTATION 53

Finally, we can evaluate C(x) = A(x)B(x) mod M(x) as

C(x) = A(x)B(x) mod xn +M(x)
(
A(x)B(x) divM(x)

)
mod xn

= A(x)B(x) mod xn +M(x)Q(x) mod xn

= A(x)B(x) mod xn +M(x)Q3(x) mod xn .

This concludes the proof.

Lemma 2.13 defines the set of irreducible polynomials for which the precomputa-
tional step in Montgomery reduction over GF(2n) is not needed.

Lemma 2.13. Let M(x) =
∑n
i=lmix

i + 1 and M ′(x) = M(x)−1 mod xn be
polynomials over GF(2), where l = dn/2e. Then it holds M ′(x) = M(x).

Proof. In order to prove the lemma we need to show that M(x)2 = 1 mod xn.
Indeed, if we write M(x)2 as

M(x)2 = M(x)M(x)

=
n∑
i=l

mix
2i + 1 ,

it becomes obvious that M(x)2 = 1 mod xn, since l = dn/2e. This concludes the
proof.

The set is now defined as

F4 : M(x) =
n∑
i=l

mix
i + 1 where l =

⌈n
2

⌉
; (2.16)

and the algorithm is shown in Alg. 13. Its illustration is given in Fig. 2.19. Similar
to the case of Barrett, this set also contains 2bn/2c elements, out of which the
irreducible polynomials are chosen.

…	
 0	
 0	
 1	
1	
F4 	
 …all 0’s…	
 0	
mn-1	
 mk+1	

n	
 n-1	
 k+1	
 k	
 0	
k-1	

Figure 2.19: Binary representation of the proposed set F4.

54 EFFICIENT HARDWARE IMPLEMENTATIONS OF FINITE FIELD ARITHMETIC

Algorithm 13 Montgomery multiplication over GF(2n) without precomputation.
Input: A(x) =

∑n−1
i=0 aix

i, B(x) =
∑n−1
i=0 bix

i, M(x) ∈ F4, R(x) = xn, where
ai, bi ∈ GF(2).

Output: C(x) = A(x)B(x)R−1(x) mod M(x).
C(x) = A(x)B(x)
qM (x) = C(x)M(x) mod R(x)
C(x) =

(
C(x) + qM (x)M(x)

)
divR(x)

Return: C(x).

Proof of Alg. 13. Similar to the case of finite field multiplication based on Barrett
reduction, here we also provide the proof for any modulus M(x) where M ′(x) =
M(x)−1 mod R(x). Let D(x) = A(x)B(x) and let Q1(x) = D(x) mod R(x),
Q2(x) = M ′(x)Q1(x) mod R(x), and Q3(x) = M(x)Q2(x).

The polynomial D(x) can be written as D(x) = D1(x)R(x) +D0(x), where R(x) =
xn. There exists a polynomial S(x) of degree n− 1 such that

D0(x) +M(x)S(x) = 0 mod R(x) ,

In other words, S(x) can be expressed as

S(x) = −D0(x)M(x)−1 mod R(x) .

At the same time it holds

D(x) +M(x)S(x) = D(x) mod M(x) ,

D(x) +M(x)S(x) = 0 mod R(x) .

Finally, we have

C(x) =
(
D(x) +M(x)S(x)

)
divR(x)

= D(x)R(x)−1 mod M(x) .

Now, it is obvious that:

M ′(x) = −M−1(x) mod R(x)

Q1(x) = D0(x)

Q2(x) = S(x)

Q3(x) = M(x)S(x) .

This concludes the proof.

TRIPARTITE MODULAR MULTIPLICATION 55

2.5.3 Summary

Four distinct sets of primes and two distinct sets of irreducible polynomials, for
which the precomputational step in bit-parallel modular multiplication algorithms
can be excluded, are introduced in this section. The proposed methods for modular
multiplication are very suitable for fast hardware implementations of some public-
key cryptosystems and in particular of Elliptic Curve Cryptography.

2.6 Tripartite Modular Multiplication

Publication Data

K. Sakiyama, M. Knežević, J. Fan, B. Preneel, and I. Verbauwhede, “Tripartite
Modular Multiplication,” Integration, the VLSI journal, 14 pages, 2011. To appear.

Personal Contributions

• Involved in: Implementation; Cost and performance estimation; Text writing.

Our novel contribution consists of proposing a new modular multiplication algorithm.
The algorithm is similar to the existing bipartite modular multiplication and by
using the approach of Karatsuba, it introduces additional level of parallelism.

The bipartite modular multiplication was introduced in Section 2.4.5 and its
performance was further improved by choosing a special set of moduli. By
integrating the classical modular multiplication with Montgomery multiplication,
the BMM algorithm achieves an additional level of parallelism, which is indeed
the main feature of the algorithm. In this section we propose a new modular
multiplication algorithm that effectively integrates three algorithms, a classical
modular multiplication based on Barrett reduction, the Montgomery multiplication
and the Karatsuba multiplication. The novelty comes at higher algorithmic level
and the performance can be further improved by parallelizing any of its ingredients
(Barrett, Montgomery or Karatsuba multiplication). The proposed algorithm
minimizes the number of single-precision multiplications and enables more than
3-way parallel computation. This section investigates the cost and speed trade-
offs for a hardware implementation of the proposed modular multiplication and
compares the results with implementations of previous algorithms.

Among the integer or polynomial multiplication techniques, two important methods
are Karatsuba algorithm [84] and its generalization – Toom-Cook’s algorithm
(sometimes known as Toom-3) [166]. They both reduce the number of single-
precision multiplications by reusing the intermediate partial products. By

56 EFFICIENT HARDWARE IMPLEMENTATIONS OF FINITE FIELD ARITHMETIC

recursively using Karatsuba’s method, one multiplication of two nw-digit integers
has complexity of O(nlog23

w), while Toom-k has complexity O(nlogk2k−1
w). Both

algorithms can provide faster multiplication than the normal schoolbook method.
Karatsuba’s algorithm can accelerate multiplication by representing two nw-digit
integers as A = A1R + A0 and B = B1R + B0, where R = 2k is chosen for an
efficient implementation. Then, the product of AB can be computed as

AB = p1R
2 + (p2 − p0 − p1)R+ p0 , (2.17)

where

p0 = A0B0, p1 = A1B1, p2 = (A0 +A1)(B0 +B1) . (2.18)

Therefore, we need only three sub-product multiplications while the standard,
schoolbook multiplication needs four sub-products. The highest speed is achieved
when choosing k to be around nw/2. By using Karatsuba’s method recursively, the
time complexity becomes O(nlog23

w).

2.6.1 Overview of the Proposed Multiplication Algorithm

We explain the proposed algorithm by starting from the basic version that is based
on the following equation derived from Karatsuba’s algorithm.

ABR−1 mod M =(A1R+A0)(B1R+B0)R−1 mod M

=
{
A1B1R+ (A1B0 +A0B1) +A0B0R

−1} mod M

=
{
p1R mod M

+ (p2 − p0 − p1) mod M

+ p0R
−1 mod M

}
mod M ,

(2.19)

where

p0 = A0B0, p1 = A1B1, p2 = (A0 +A1)(B0 +B1) . (2.20)

In Eq. (2.19), nw-digit inputs A and B are split into two blocks as A = (A1, A0)R
and B = (B1, B0)R, and then Karatsuba’s method is applied for performing
multiplication of AB. Here, R is chosen as R = rk where k = dnw/2e for an

TRIPARTITE MODULAR MULTIPLICATION 57

efficient implementation although k can be arbitrarily chosen. We call this case a
u-split version where u = 2. In total, we have three terms that can be computed
independently by using the existing algorithms described in the previous sections.
To obtain a high-speed implementation, one can compute these three different
terms in parallel. Figure 2.20 explains the main idea of the proposed algorithm and
compares with the bipartite algorithm. For a modular multiplication with nw-digit
polynomial-basis inputs, A(x) = A1(x)R(x)+A0(x) and B(x) = B1(x)R(x)+B0(x)
where R(x) = xk, we can use the same sequence as shown in Eq. (2.19).

A =	
 A	

B1	
B =	

A =	

B =	

p1 = A1B1	

p0 = A0B0	

p2 - p0 - p1 	

 = A0B1 + A1B0	

Reduction: multiple of M	

Reduction: multiple of M	

ABR-1 mod M	

AB1	

AB 0	

Reduction: multiple of M	

Reduction: multiple of M	

ABR-1 mod M	

*	

+	

(a) Proposed Method (u = 2)	
 (b) Bipartite	

*	

+	

1	

3	

2	

1	

2	

B0	

A1	
 A0	

B1	
 B0	

Figure 2.20: Procedure for modular multiplication. (a) our proposed method. (b)
bipartite method.

2.6.2 Further Exploration of the Proposed Algorithm

For a further exploration of the proposed algorithm, we can split the inputs
into more blocks, e.g. A = (A3, A2, A1, A0)R for an nw-digit integer input and
A(x) =

∑3
i=0Ai(x)R(x)i for an nw-digit polynomial-basis value, where R = rk

and R(x) = xk where k = dnw/4e. In this example case of u = 4, we can explore

58 EFFICIENT HARDWARE IMPLEMENTATIONS OF FINITE FIELD ARITHMETIC

further parallelism as

ABR−2 mod M =
[
p3R

4 mod M + (p7 − p2 − p3)R3 mod M

+
{

(p6 − p1 + p2 − p3)R2

+ (p8 + p0 + p1 + p2 + p3 − p4 − p5 − p6 − p7)R

+ (p5 − p0 + p1 − p2)
}

modM

+ (p4 − p0 − p1)R−1 mod M + p0R
−2 mod M

]
modM ,

(2.21)

where

p0 = A0B0, p1 = A1B1, p2 = A2B2, p3 = A3B3 ,

p4 = (A0 +A1)(B0 +B1), p5 = (A0 +A2)(B0 +B2) ,

p6 = (A1 +A3)(B1 +B3), p7 = (A2 +A3)(B2 +B3) ,

p8 = (A0 +A1 +A2 +A3)(B0 +B1 +B2 +B3) .

(2.22)

This example case allows us to perform modular multiplication up to 5-way parallel
computing as shown in Eq. (2.21). Parameters p0, p1, . . . , p8 in Eq. (2.22) are
computed with complexity of 9 sub-product multiplications and 14 additions.

For the reduction steps, we apply Barrett and Montgomery reduction to the terms
that require reduction (i.e. 1st, 2nd, 6th and 7th term in Eq. (2.21)). For the other
terms, we use a simple modular addition or subtraction. The final reduction step
is performed after adding up all the partial results derived from each term.

Due to the carry-free arithmetic, for a (modular) multiplication over a binary
field, the reduction is only needed for terms that require Barrett and Montgomery
reduction (again, these are 1st, 2nd, 6th and 7th term in Eq. (2.21)). Figure 2.21 a
summarizes the 4-split version of the proposed algorithm.

For a better area-performance trade-off, the method described in Fig. 2.21 a can
be modified as shown in Fig. 2.21 b. It illustrates a 3-way parallel computational
sequence equivalent to the one in Fig. 2.21 a. The 3-way parallel version can
save area cost by sharing the hardware for reduction. The critical path delay
increases slightly due to the one extra addition before the reduction. However, this

TRIPARTITE MODULAR MULTIPLICATION 59

A =	
 A3	

B =	

p0	

Reduction: multiple of M	

ABR-2 mod M	

*	

+	

(a) 5 Parallel Computing (u = 4) 	

1	

4	

A2	
 A1	
 A0	

B3	
 B2	
 B1	
 B0	

 p5 - p0 + p1 - p2	

 p8 + p0 + p1 + p2 + p3	

 - p4 - p5 - p6 - p7 	

 p6 – p1 + p2 – p3	

Reduction: multiple of M	

p7 - p2 - p3	

p4 - p0 - p1	

Reduction: multiple of M	

Reduction: multiple of M	

p3	

2	

3	

5	

A =	
 A3	

B =	

p0	

Reduction: multiple of M	

ABR-2 mod M	

*	

+	

(b) 3 Parallel Computing (u = 4)	

1	

3	

A2	
 A1	
 A0	

B3	
 B2	
 B1	
 B0	

 p5 - p0 + p1 - p2	

 p8 + p0 + p1 + p2 + p3	

 - p4 - p5 - p6 - p7 	

 p6 – p1 + p2 – p3	

p7 - p2 - p3	

p4 - p0 - p1	

Reduction: multiple of M	

p3	

2	

Figure 2.21: Procedure for modular multiplication for u = 4. (a) five-way parallel
computation. (b) three-way parallel computation.

speed penalty occurs only for the case of integer multiplication where the carry
propagation is present.

To illustrate further, we also mention the case of u = 8 for which we need 27
dnw/8e×dnw/8e-digit multiplications to prepare the partial products p0, p1, . . . , p26
since each dnw/4e×dnw/4e-digit multiplication in Eq. (2.22) can be computed with
three dnw/8e × dnw/8e-digit by using Karatsuba’s method. In general, we need
3v dnw/ue × dnw/ue-digit multiplications for u = 2v, where v is a non-negative
integer.

Finally, to give an idea of possible improvements of our algorithm, we provide
Fig. 2.22 which represents the hierarchy of modular multiplication. In order to
further improve the performance of tripartite (and bipartite) multiplication, one can
use an optimized (pipelined, parallelized, etc) implementation of any of the levels
below. For example, the pipelined implementation of Montgomery multiplication,
as described by Suzuki [160], can be used to further parallelize our algorithm.
However, in this section we focus on the higher algorithmic level and therefore we
leave this practical question open for further analysis.

60 EFFICIENT HARDWARE IMPLEMENTATIONS OF FINITE FIELD ARITHMETIC

Bipartite, 	

Tripartite	

Multiplication 	

Classical, Montgomery	

Modular Multiplication	

Multiple-precision Multiplication	

(Karatsuba, Toom-Cook, etc)	

Single-precision Multiplication	

Figure 2.22: Hierarchy of the modular multiplication.

2.6.3 Cost and Performance Estimation

In order to have a fast multiplier while still preserving a relatively low area, we
consider here a digit-serial approach. We further assume that the multiplier has
enough parallel processing units such that the full degree of parallelism can be
exploited both for bipartite and tripartite algorithms. In short, we consider here
so-called serial-parallel multipliers.

To make a fair comparison of modular multipliers implemented using different
algorithms we use the following criteria. A computational complexity of the
algorithm is considered to be the number of single-precision multiplications
necessary for performing the whole algorithm. Therefore, we assume that
an addition can be implemented very efficiently in hardware. Since the only
requirement for achieving full parallelism is to use a sufficient number of single-
precision multipliers, we consider only the number of single-precision multipliers
as the area estimation. We stress here that the size of the whole architecture will,
of course, be only proportional and not equal to the size of all single-precision
multipliers. The size of a single-precision multiplier is w × w bits.

We assume that, besides maximizing the throughput, an important goal is to keep
the number of single-precision multipliers as small as possible. Hence, we consider
the case with the minimal number of single-precision multipliers while still allowing
fully parallel processing. The critical path delay is assumed to be the same in all
cases and equal to the delay of one single-precision multiplier – tSP . Finally, the
total speed-up is considered for the case when nw →∞. This is a theoretical result
and will be different in practice as the final speed also depends on the physical size
of a design.

The number of single-precision multiplications is the main criterium for the speed
comparison. Therefore, we first calculate the computational complexities for
the classical modular multiplication based on Barrett’s algorithm, Montgomery

TRIPARTITE MODULAR MULTIPLICATION 61

multiplication and bipartite modular multiplication, respectively. We assume that
addition in hardware can be implemented in a single clock cycle at a reasonable
hardware cost.

The complexity of the classical modular multiplication based on Barrett reduction
can be simply obtained by analyzing Alg. 3. At step three of the algorithm we need
to perform nw single-precision multiplications. Using the trick of Barrett, step
four can be performed at the cost of a single digit multiplication. Finally, step five
of the algorithm requires another nw digit multiplications. In total, to perform a
classical modular multiplication, we need 2n2

w + nw single-precision multiplications.

By analyzing Alg. 4 we conclude that the complexity of Montgomery multiplication
is also equal to 2n2

w + nw single-precision multiplications.

Assuming that we combine the classical modular multiplication based on Barrett
reduction and Montgomery multiplication to implement the BMM algorithm, the
complexity becomes equal to n2

w + nw/2 single-precision multiplications (for the
case of k = dnw/2e). Although it requires more resources, the BMM algorithm can
speed up a modular multiplication by up to two times.

Next, we provide the analysis of computational complexity for the proposed,
tripartite algorithm. Let us consider the general case, namely a u-split version
of the proposed algorithm. Assuming the algorithm being fully parallelized, the
most time-consuming part is the classical modular multiplication based on Barrett
reduction and the Montgomery multiplication. As discussed in Section 2.3.2, in
order to compute the nw ×nw-digit modular multiplication, they use λ = w+ 4-bit
and λ = w-bit digit single-precision multiplications, respectively. Step three of
both Alg. 3 and Alg. 4 requires nw/u single-precision multiplications, while step
four requires only one single-precision multiplication. Since the modulus M is
an nw-digit integer, step five of both algorithms still requires nw single-precision
multiplications. Finally, to perform a full nw × nw-digit modular multiplication we
need

nw
u

(nw
u

+ 1 + nw
)

= u+ 1
u2 n2

w + 1
u
nw

single-precision multiplications.

The data in Table 2.4 only represents the theoretical result based on the number
of single-precision multipliers used in our design. To show the practical value
of our proposal, we implement an interleaved modular multiplier and compare
it with the implementations of other algorithms. Next, we discuss the hardware
implementation in detail.

62 EFFICIENT HARDWARE IMPLEMENTATIONS OF FINITE FIELD ARITHMETIC

Table 2.4: Cost and performance estimation for an interleaved modular
multiplication.

Algorithm Number of SP Number of SP Critical Speed-Up
multipliers† multiplications† Path Delay‡ [n→∞]

Classical 1 2n2
w + nw tSP 1

Montgomery 1 2n2
w + nw tSP 1

Bipartite 2 n2
w + 1

2 nw tSP 2
Proposed (u = 2) 3 3

4 n2
w + 1

2 nw tSP 2.67
Proposed (u = 4) 9 5

16 n2
w + 1

4 nw tSP 6.40
Proposed (u = 8) 27 9

64 n2
w + 1

8 nw tSP 14.22
†A single-precision multiplier is of size w × w bits.
‡A critical path delay is assumed to be the latency of a single-precision multiplier.

2.6.4 Hardware Implementation of the Proposed Algorithm

In order to verify our algorithm in practice, we implement the proposed solution
on two different hardware platforms. First, we provide the figures for the Xilinx
Virtex-5 FPGA board (xc5vlx50t-ff1136). Second, we provide the ASIC synthesis
results using UMC 0.13 µm CMOS process and Synopsys Design Compiler version
C-2009.06-SP3. Additionally, we implement the classical multiplier based on Barrett
reduction, the Montgomery and the bipartite multipliers, and compare them with
our results.

For the FPGA implementation, our strategy is to use dedicated DSP48E slices
on the board for implementing single-precision multipliers. Implemented this way,
the whole design achieves a higher speed and consumes less bit-slices. However,
DSP48E slices are a limited resource on our testing FPGA board and hence the
goal is to use the minimal number of single-precision multipliers, yet allowing the
full parallelism on the algorithmic level.

The described strategy results in an architecture for classical and Montgomery
algorithms as shown in Fig. 2.23. As mentioned in Section 2.4.3, we use λ = w
bits digit-size for the case of Montgomery and λ = w + 4 bits digit-size for the
case of classical modular multiplication based on Barrett reduction. A single λ× λ
single-precision multiplier is used in both cases (inside the digit-serial multiplier
π1).

An architecture for the bipartite method is described in Fig. 2.24. It consists
of a classical modular multiplier based on Barrett reduction and a Montgomery
multiplier. Two digit-serial multipliers (π1 and π2) were used, each containing one
single-precision multiplier.

Finally, our proposed architecture for the u = 2-split version is depicted in Fig. 2.25.

TRIPARTITE MODULAR MULTIPLICATION 63

n-bit	
 n-bit	
λ-bit	

A	
 B	
µ	

n-bit	

M	

+	

n+λ+1	

n+λ

n+λ+1-bit	
 T	

q	
 λ

*	

n+λ-bit	

+	

λ λ	

2λ n+λ

×	
 π1	

λ λ	

n+λ

Figure 2.23: Datapath of the modular multiplier based on classical and Montgomery
algorithms.

As discussed in Section 2.6.1, it consists of a classical modular multiplier based
on Barrett reduction (π1), Montgomery multiplier (π2) and Karatsuba multiplier
in the middle (π3) – all running in parallel. Instead of computing A1B1R mod
M , the classical modular multiplier on the left-hand side of Fig. 2.25 computes
A1B1R mod M−A1B1 and stores the result in register TH where A1B1 is a partial
product necessary for the Karatsuba part. The same holds for the Montgomery
multiplier which instead of A0B0R

−1 mod M computes A0B0R
−1 mod M −A0B0

and stores the result in register TL. Finally, all three parts are added together,
resulting in the final n+ 2-bit product.

Since in most cryptographic applications the result of one modular multiplication is
used as input to another, successive modular multiplication, the result needs to be
reduced and remain strictly smaller than the modulus. At most three subtractions
are necessary for this final reduction.

Table 2.5 shows the results of our FPGA implementations. We have implemented
a 192× 192-bit modular multiplier with digit size of w = 32 bits, based on all the
mentioned algorithms and compared them with our solution. All the designs were
implemented using maximum speed as the main constraint. The results clearly
show that concerning speed, our algorithm outperforms all the previously proposed
solutions. As the comparison criteria we use the relative throughput defined as:

Tr = Frequency
Number of cycles .

64 EFFICIENT HARDWARE IMPLEMENTATIONS OF FINITE FIELD ARITHMETIC

λ-bit	
 n-bit	
n-bit	

µ	
 B	
A	

n-bit	

M	

+	
n+λ+1	
n+λ	

n+λ+1-bit	
 TH	

λ	

×	

w-bit	

M’	

+	
n+w+1	

n+w	

n+w+1-bit	
 TL	

×	

w	

MSB	
 LSB	

n/2	
 n/2	

+	

n+1-bit	
 T	

n	
n	
n	
λ	 n	
 w	
λ	 w	

π1	
 π2	

Classical based on Barrett	
 Montgomery	

λ λ	

n+λ

w w	

n+w

Figure 2.24: Datapath of the modular multiplier based on the bipartite algorithm.

An area overhead of about 660 bit-slices, compared to the bipartite design, is mainly
due to the use of additional adders and multiplexers necessary for the control logic.
A better resource sharing is also possible at the cost of maximum frequency and
therefore we have obtained a design of 1408 bit-slices running at a frequency of
69 MHz. Finally, a speed-up of almost 150 % compared to the classical method
and about 25 % compared to the bipartite method is obtained.

Table 2.5: Comparison of FPGA implementations for a 192 × 192-bit modular
multiplier. Target platform: Xilinx Virtex 5 FPGA board (xc5vlx50t-ff1136).

Algorithm Bit DSP48E Number Frequency Tr Speed
slices slices of cycles [MHz] [MHz] Up

Classical 988 6 78 77 0.987 1
Montgomery 849 4 78 102 1.308 1.325

Bipartite 1313 10 39 77 1.974 2
Proposed (u = 2) 1979 14 30 74 2.467 2.499

Table 2.6 shows the results of our ASIC synthesis results. The same architectures

TRIPARTITE MODULAR MULTIPLICATION 65

λ-bit	
 n-bit	
n-bit	

µ	
 B	
A	

n-bit	

M	

+	
n+λ+1	
n+λ	

n+λ+1-bit	
 TH	

λ	

×	

w-bit	

M’	

+	
n+w+1	

n+w	

n+w+1-bit	
 TL	

×	

w	

MSB	
 LSB	

n/2	

+	

n/2	
n	
λ	 n	
 w	
λ	 w	

π1	
 π2	
×	
 π3	

+	
 +	

MSB	

n/2	

LSB	

n/2	

MSB	

n/2	

n+2-bit	
 T	

Classical based on Barrett	
 Montgomery	
Karatsuba	

λ λ	

n+λ

w w	

n+w

w w	

n+w

Figure 2.25: Datapath of the modular multiplier based on the proposed algorithm.

as in the case of FPGA were synthesized and compared to each other. As can
be observed, concerning the speed performance, our proposal outperforms the
classical modular multiplier by nearly 3 times and the bipartite multiplier by 45 %.
However, this comes at a larger hardware cost and therefore our multiplier is
around 2.38 times bigger than the classical one and about 56 % bigger than the
bipartite multiplier.

Table 2.6: Comparison of ASIC implementations for a 192 × 192-bit modular
multiplier. Target platform: UMC 0.13 µm CMOS technology (Synopsys Design
Compiler version C-2009.06-SP3, synthesis results).

Algorithm Area Number Frequency Tr Speed
[kGE] of cycles [MHz] [MHz] Up

Classical 42.33 78 191 2.448 1
Montgomery 31.70 78 229 2.936 1.199

Bipartite 64.45 39 193 4.949 2.022
Proposed (u = 2) 100.77 30 215 7.167 2.928

66 EFFICIENT HARDWARE IMPLEMENTATIONS OF FINITE FIELD ARITHMETIC

2.6.5 Summary

We have introduced a new modular multiplication algorithm suitable for efficient
hardware implementations. We have also implemented a hardware modular
multiplier based on the proposed algorithm that effectively integrates three different
algorithms, the classical modular multiplication based on Barrett reduction,
Montgomery multiplication and Karatsuba multiplication. The results show
that, speed-wise, our proposed algorithm outperforms all the previously proposed
solutions.

We believe that the proposed algorithm offers a new alternative for efficient modular
multiplication on both software and hardware platforms. The cost and performance
trade-offs when increasing the value of u further (i.e. u > 8) still need to be explored.
The software implementation and the scheduling problem on multicore platforms
still remains a challenge. We also plan to implement the proposed algorithm for
multiplication in binary field. Another direction for future work would be to use the
Toom-Cook algorithm for the multiplication step instead of Karatsuba’s method.

2.7 Conclusion

In this chapter we explicitly showed how some of the most adopted algorithms
today, i.e. Barrett, Montgomery, and bipartite, can be further accelerated by using
special classes of moduli. The algorithms have shown to be secure for use in today’s
public-key cryptosystems.

As a final contribution to this chapter, we proposed a new, so-called, tripartite
modular multiplication, an algorithm that benefits from combining the algorithms of
Barrett, Montgomery, and Karatsuba. By its construction, the algorithm provides
ample parallelism and therefore offers a possibility to fully explore the trade-off
between area and speed.

Chapter 3

High-Throughput Hardware
Implementations of
Cryptographic Hash Functions

3.1 Introduction

Hash functions are deterministic mathematical algorithms that map arbitrary
length sequences of bits into a hash result of a fixed, limited length. The mapping
is done in a way that these hash results can be considered as unique fingerprints.

Cryptographic hash algorithms are one of the most important primitives in security
systems. They are most commonly used for digital signature algorithms [129],
message authentication and as building blocks for other cryptographic primitives
such as hash based block ciphers, e.g. Bear, Lion [9] and Shacal [63], stream ciphers
and pseudo-random number generators.

The typical example of hash based message authentication is protecting the
authenticity of the short hash result instead of protecting the authenticity of
the whole message. Consequently, in digital signatures the signing algorithm
is always applied to the hash result rather than to the original message. This
ensures both performance and security benefits. Hash algorithms can also be used
to compare two values without revealing them. The typical examples for this
application are password authentication mechanisms.

At the same time the need for high-throughput optimized implementations of the
hash functions is getting essential in almost every security application. Due to the

67

68 HIGH-THROUGHPUT HARDWARE IMPLEMENTATIONS OF CRYPTOGRAPHIC HASH FUNCTIONS

iterative mode of operations, an efficient implementation of the hash algorithm has
always been a challenge. In this chapter we focus on hardware implementations
of hash functions and we specifically target high-throughput implementations.
We propose several techniques that result in a higher speed of the design, often
coming at the cost of higher area requirements. Security, on the other side,
remains unaffected. Hence, Fig. 3.1 illustrates a typical trade-off that is examined
throughout this chapter.

Security

Speed Low-Cost

Figure 3.1: Speed versus low-cost trade-off.

As the hash algorithms are widely used in many security applications, it is very
important that they fulfill certain security properties. Depending on the application
the hash function is used in, some of the properties are more important than the
others. Generally, it is accepted that a cryptographic hash function has to satisfy
the following three requirements:

1. Preimage resistance: It must be hard to find any preimage for a given
hash output, i.e. given a hash output H getting a message M such that
H = Hash(M) must be hard.

2. Second Preimage resistance: It must be hard to find another preimage for
a given input, i.e. given M0 and Hash(M0) getting M1 6= M0 such that
Hash(M0) = Hash(M1) must be hard.

3. Collision resistance: It must be hard to find two different inputs with the
same hash output, i.e. getting M0 and M1 such that Hash(M0) = Hash(M1)
must be hard.

POPULAR HASH ALGORITHMS AND THEIR SECURITY CONSIDERATIONS 69

Furthermore, it should be easy to compute the hash value for any given message. A
hash algorithm that is characterized by the first two properties is called a One-Way
Hash Algorithm. If all three properties are met we say that the hash algorithm
is Collision Resistant. Finding collisions of a specific hash algorithm is the most
common way of attacking it.

There are a few different types of hash algorithms described in the literature. Some
of them are based on block ciphers, modular arithmetic, cellular automata, knapsack
and lattice problems, algebraic matrices, etc. Historically, most cryptographic hash
functions were based on block ciphers, e.g. the early DES-based hash function
proposed by Rabin [140] in 1978. Preneel et al. [138] described in a systematic
way how a block cipher can be used to construct a hash function whose output
size corresponds to the block size of the cipher. The most commonly used hash
algorithms, known as dedicated hash algorithms, are especially designed for hashing
and are not provably secure. In 1990, Rivest designed the dedicated hash function
MD4 [141]. Nowadays, the biggest class of these algorithms is based on design
principles of the MD4 family.

A brief overview of the basic hash applications as well as a detailed discussion about
the possible hash constructions is given in the ‘Encyclopedia of Cryptography and
Security’ by Tilborg [168], chapter ‘Hash Functions’. More details concerning this
topic can be found in chapter 9 of ‘Handbook of Applied Cryptography’ [116]. For
a thorough survey of analysis and design of cryptographic hash functions we refer
to Preneel’s dissertation [137].

The chapter is organized as follows. Section 3.2 gives a brief historical overview of
the most popular hash algorithms and their security considerations. Section 3.3
discusses several basic DSP techniques for improving the throughput. In Section 3.4
we give an example of speeding up an algorithm by using some of the algorithm-
specific techniques and illustrate this approach by implementing the RIPEMD-160
hash function. The extensive hardware comparison of fourteen second-round SHA-3
candidates is treated in Section 3.5. Finally, in Section 3.6 we discuss in detail a
hardware evaluation of the Luffa hash family.

3.2 Popular Hash Algorithms and Their Security
Considerations

The design philosophy of the most commonly used hash algorithms such as MD5,
the whole SHA family, and RIPEMD is based on design principles of the MD4
family. In this section we give a short overview and provide historical facts about
existing attacks on these algorithms.

MD4 is a 128-bit cryptographic hash algorithm introduced by Rivest in 1990 [141].

70 HIGH-THROUGHPUT HARDWARE IMPLEMENTATIONS OF CRYPTOGRAPHIC HASH FUNCTIONS

The structure of MD4 is based on basic arithmetic operations and several Boolean
functions. After it was proposed, several other hash algorithms were constructed
based on the same design principles: a 256-bit extension of MD4 [141], MD5 [142],
HAVAL [182], RIPEMD [26], RIPEMD-160 [48], SHA-0 [5], SHA-1 [6], SHA-256,
SHA-384, SHA-512, SHA-224 [7], etc. The first attack on MD4 was published
already in 1991 by Merkle, den Boer, and Bosselaers [40]. The attack was performed
on a reduced version of MD4 (2 out of 3 rounds). Additionally, in November 1994,
Vaudenay mounts an attack where the last round is omitted [169]. In Fall of 1995,
Dobbertin finds collisions for all three rounds of MD4 [47]. A few years after
Rivest designed the strengthened version MD5, it was shown by den Boer and
Bosselaers [41] that the compression function of MD5 is not collision resistant.
At the beginning of 1996, Dobbertin also found a free-start collision of MD5 in
which the initial value of the hash algorithm is replaced by a non-standard value
making the attack possible [46]. Finally, in the rump session of Crypto 2004 it
was announced that collisions for MD4, MD5, HAVAL-128 and RIPEMD were
found. In 2005, Wang et al. [172, 170, 173, 171] publish several cryptanalytic
articles showing that the use of a differential attack can find a collision in MD5
in less than an hour while the same attack applied to MD4 can be performed in
less than a fraction of a second. The latest results by Stevens et al. [159] in 2009,
present a refined chosen-prefix collision for MD5 which requires only 249 calls of
the compression function. The same work also improves identical-prefix collisions
for MD5 to about 216 compression function calls.

The first version of the SHA family, known as SHA-0, was introduced by the
American National Institute for Standards and Technology (NIST) in 1993 [5].
This standard is also based on the design principles of the MD4 family. One year
after proposing SHA-0, NIST discovered a certificational weakness in the existing
algorithm. By introducing a minor change they proposed the new Secure Hash
standard known as SHA-1 [6]. The message digest size for both algorithms is 160
bits. The first attack on SHA-0 was published in 1998 by Chabaud and Joux [33]
and was probably similar to the classified attack developed earlier (the attack that
resulted in the upgrade to SHA-1). This attack shows that a collision in SHA-0
can be found after 261 evaluations of the compression function. According to the
birthday paradox, a brute force attack would require 280 operations on average.
In August 2004, Joux et al. [80] first showed a full collision on SHA-0 with a
complexity of 251 computations. Finally, in 2005 Wang, Yin, and Yu announced
the full collision in SHA-0 in just 239 hash operations [173] and reported that
collision in SHA-1 can be found in complexity less than 269 computations [171].

The following generation of SHA algorithms known as the SHA-2 family was
introduced by NIST in 2000 and adopted as an ISO standard in 2003 [76]. All three
hash algorithms (SHA-256, SHA-384 and SHA-512) have much larger message
digest size (256, 384, and 512 bits, respectively). The youngest member of this
family is SHA-224 and was introduced in 2004 as a Change Notice to FIPS 180-2 [7].

POPULAR HASH ALGORITHMS AND THEIR SECURITY CONSIDERATIONS 71

There are only a few security evaluations of the SHA-2 algorithms so far. The first
security analysis was done by Gilbert and Handschuh [56] in 2003 and it showed
that neither Chabaud and Joux’s attack, nor Dobbertin-style attacks apply to
these algorithms. However, they show that slightly simplified versions of the SHA-2
family are surprisingly weak. In the same year Hawkes and Rose [65] announced
that second preimage attacks on SHA-256 are much easier than expected. A
cryptanalysis of step-reduced SHA-2 is done by Aoki et al. [11], Indesteege et al. [74],
Mendel et al. [114], Nikolić et al. [132], and Sanadhya et al. [150, 149, 151, 148].
Although pointing out possible weaknesses of the SHA-2 family, these analyses did
not lead to actual attacks so far.

In [167], van Oorschot and Wiener showed that in 1994 a brute-force collision
search for a 128-bit hash algorithm could be done in less than a month with a $10
million investment. Nowadays, according to Moore’s law, the same attack could
be performed in less than two hours. As a countermeasure to this attack, the size
of the hash result has to be at least 160 bits. RIPEMD-160 is a hash algorithm
with a message digest of 160 bits that was designed by Dobbertin, Bosselaers and
Preneel in 1996 [48]. The intention was to make a stronger hash algorithm and
replace the existing 128-bit algorithms such as MD4, MD5 and RIPEMD. To the
best of our knowledge the only study concerning the security of RIPEMD-160
so far, is published by Rijmen et al. [115]. In this analysis, the authors extend
existing approaches using recent results in cryptanalysis of hash algorithms. They
show that methods successfully used to attack SHA-1 are not applicable to full
RIPEMD-160. Additionally, they use analytical methods to find a collision in a
3-round variant of RIPEMD-160.

In response to the above mentioned attacks on the most popular hash algorithms,
NIST launched a worldwide competition for the development of a new hash function.
Similar to the development of the present block cipher standard – AES, NIST uses
a competition model that has been proven to assure a fair selection among various
candidates [127]. The competition is organized in three phases, with the final phase
scheduled to complete by the end of 2012. Out of the original 64 submissions to
the first phase, fourteen candidates have been selected for detailed analysis in the
second phase (Blake, BMW, CubeHash, ECHO, Fugue, Grøstl, Hamsi, Keccak, JH,
Luffa, Shabal, SHAvite-3, SIMD, Skein). On December 9, 2010, NIST announced
five finalists that advanced to the third, and final round (Blake, Grøstl, JH, Keccak,
and Skein).

The selection of the winning candidates is driven by considering security properties
as well as implementation efficiency of the proposed hash algorithms both in
hardware and software. However, a systematic cryptanalysis of hash functions
is not well established. It is hard to measure the cryptographic strength of a
hash function beyond obvious metrics such as digest length. For this reason, the
implementation efficiency of hardware and software plays a vital role in the selection
of the finalist.

72 HIGH-THROUGHPUT HARDWARE IMPLEMENTATIONS OF CRYPTOGRAPHIC HASH FUNCTIONS

3.3 Throughput Improving Techniques

In 1997, Bosselaers, Govaerts, and Vandewalle [25] analyzed the MD4-based designs
with respect to their performance, especially emphasizing the potential of software
parallelism. Their prediction that the future architectures will be able to exploit
this potential actually came true with the appearance of the multi-core processors.

A systematic approach for designing the throughput optimal hardware architectures
of the same class of hash functions is treated by Lee et al. [104, 105]. The
authors show that the implementation of cryptographic hash functions has adapted
techniques, more than expected, from the architectures, design methods, and tools
of digital signal processing systems.

In this section we outline some of the standard DSP techniques such as retiming,
unrolling, pipelining, and combinations of those, for the purpose of high-throughput
hardware implementations of cryptographic hash functions.

A typical, somewhat simplified, hardware architecture of a cryptographic hash
function is illustrated in Fig. 3.2. The black squares represent the sequential logic
while the grey circles represent the combinational logic. The message block M, of
size B bits, is first stored in the input register, after which the core function F is
iteratively applied n times by updating its state register. Sometimes, the result
needs to be processed by a so-called finalization function before it is stored in the
output register, after which the final digest H is delivered. In order to simplify this
discussion we ignore the eventual presence of the finalization function. Obviously,
not all cryptographic hash function will necessarily follow the architecture given in
Fig. 3.2. The figure rather serves to illustrate the principal usage of several basic
throughput-improving DSP techniques.

M	
 H	

F	

STATE	

REGISTER	

INPUT	

REGISTER	

OUTPUT	

REGISTER	

Figure 3.2: Typical hardware architecture of the cryptographic hash function.

The number of times the core function is applied is usually denoted as the number
of rounds. Due to the large design space of hardware architectures, we rather
use the number of clock cycles as a quantitative measure. We assume that n
rounds of the core function are applied to the state register during In clock cycles.
Furthermore, we recall the definition of the critical path as the longest path between
any two storage elements. The critical path is therefore inversely proportional to
the maximum frequency of the design (fmax). The maximum throughput is now

THROUGHPUT IMPROVING TECHNIQUES 73

estimated as:
T = fmaxB

In
.

Obviously, in order to increase the overall throughput given the size of the input
message block B, one needs to increase the maximum frequency of the design and/or
to decrease the total number of clock cycles. Next, we outline some of the popular
DSP techniques for improving the overall throughput of the design. Note that the
techniques are described in their basic form, while more advanced applications
depend on the characteristics of the algorithm itself. One such algorithm dependent
application is given in Section 3.4, where a so-called iteration bound analysis
is introduced and specifically used for improving the throughput of the MD4
based cryptographic hash functions. A detailed treatment of the iteration bound
analysis can be found in the ‘VLSI Digital Signal Processing Systems: Design and
Implementation’ book by Parhi [133].

Retiming

Retiming, as first introduced by Leiserson et al. in 1983 [106], is a widely used
technique in the design of DSP systems. It is a transformation technique that
changes the locations of unit-delay elements (registers) in a circuit without affecting
the input/output characteristic of the circuit. Unlike pipelining, retiming does not
increase the latency of the system.

By observing Fig. 3.2, it is obvious that the critical path of the design is placed
along the core function F, between the input and the state register. As already
mentioned, the function F is purely combinational, and therefore the critical path
can be shortened by splitting the core function into two functions F1 and F2 of a
lower complexity, i.e. F = F2(F1), and placing the state register in between. This
is illustrated in Fig. 3.3. Ideally, the critical path of F1(F2) should be smaller than
the critical path of F.

M	
 H	

F1	
 F2	

INPUT	

REGISTER	

STATE	

REGISTER	

OUTPUT	

REGISTER	

Figure 3.3: Retiming transformation.

Retiming is a technique that is also used in the iteration bound analysis. We discuss
more about this method, which turns out to be very suitable for implementing the
MD4-based algorithms, as introduced by Lee et al. [104, 105], in Section 3.4.

74 HIGH-THROUGHPUT HARDWARE IMPLEMENTATIONS OF CRYPTOGRAPHIC HASH FUNCTIONS

Unrolling

Unrolling, sometimes referred to as loop unwinding, is a known transformation
technique for improving the speed of an algorithm at the expense of the total
design size. Similar to its software counterpart, loop unrolling in hardware reduces
the number of cycles necessary for the execution of a certain algorithm. It mainly
consists of replications of the loop body corresponding to consecutive iterations.

Assuming that the core function F from Fig. 3.2 needs to be executed n times, an
equivalent algorithm, a so-called k-unrolled design can be implemented as depicted
in Fig. 3.4. The core function F is simply replicated k times and sequentially
concatenated such that F(1) = F(2) . . . = F(k) = F. For the sake of simplicity, we
assume that k|n. This condition only assures that the output register remains
physically connected to F(k). If k = n, we say that the algorithm is fully unrolled.
As pointed out by Cardoso and Diniz [30], only deciding whether or how to apply
the loop unrolling, either fully or partially, already leads to a large design space
exploration problem.

M	
 H	

F(1)	
 F(2)	
 F(k)	

…	

INPUT	

REGISTER	

STATE	

REGISTER	

OUTPUT	

REGISTER	

Figure 3.4: Unrolling transformation.

One of the advantages of loop unrolling in hardware lays in the fact that the
performance of an unrolled structure can often be further improved, such that the
critical path of the k-unrolled design is less than k times the critical path of the
initial design. Furthermore, this technique in combination with retiming is quite
powerful and widely used in iteration bound analysis for obtaining a throughput
optimal design.

We illustrate the symbiosis of these two techniques by providing Fig. 3.5, whilst
Fig. 3.2 again serves as the start design. Assume that the core function is atomic, i.e.
the function F cannot be further decomposed into functions of a lower complexity.
Assume further, for the sake of simplicity, that the whole algorithm requires only 2
rounds. A simple k = 2-unrolling is first performed resulting in the design given in
Fig. 3.5 a. Since the function F is atomic, we can assume that the performance of
two concatenated core functions cannot be much improved. Therefore, the resulting
design will roughly have the same throughput as the starting one. Now, by simply
applying the retiming technique we can place the state register in between the
two core functions as illustrated in Fig. 3.5 b and reduce the critical path. Hence,

THROUGHPUT IMPROVING TECHNIQUES 75

the overall throughput increases around two times. This symbiosis is especially
of interest for MD4-based hash functions where multiple loops are present in the
system.

M	
 H	

F	
 F	

INPUT	

REGISTER	

STATE	

REGISTER	

OUTPUT	

REGISTER	

M	
 H	

F	
 F	

INPUT	

REGISTER	

STATE	

REGISTER	

OUTPUT	

REGISTER	

(a)

(b)

Figure 3.5: (a) k = 2-unrolled design. (b) retiming of the unrolled design.

Pipelining

Before describing the well-known pipelining technique, we need to stress that the
majority of cryptographic hash functions are recursive algorithms and therefore
the use of pipelining is meaningful only for the scenarios where multiple messages
are hashed.

Pipelining is a fundamental technique used in DSP systems for increasing the overall
throughput. A basic idea is to split the processing of independent data into a series
of steps such that the data is processed in parallel and the result is stored at the
end of each step. To illustrate, we provide Fig. 3.6, which represents the pipelined
version of the initial design (see Fig. 3.2). Similar to the unrolling, we call this
k-pipelined design (k represents the level of pipeline) and F(1) = F(2) . . . = F(k) = F.
Obviously, if k = n the design is fully pipelined. Again, for the sake of simplicity,
we assume that k|n.

Since the core function is replicated k times, the size of the design is proportional
to the level of pipeline in this case. Another approach, if applicable, may often
provide a better area-time trade-off. Assuming that the core function F can be
decomposed into k functions of a lower complexity, i.e. F = Fk(Fk−1(. . . (F1) . . .)
we can introduce the pipeline as given in Fig. 3.7. This approach can be considered
as a combination of retiming and a classical pipelining.

76 HIGH-THROUGHPUT HARDWARE IMPLEMENTATIONS OF CRYPTOGRAPHIC HASH FUNCTIONS

M	
 H	

F(1)	
 F(2)	
 F(k)	

…	

INPUT	

REGISTER	

OUTPUT	

REGISTER	

Figure 3.6: Pipelining technique.

M	
 H	

F1	
 F2	
 Fk	

…	

INPUT	

REGISTER	

OUTPUT	

REGISTER	

Figure 3.7: Decomposing core function into multiple pipeline stages.

3.4 On the High-Throughput Implementation of
RIPEMD-160 Hash Algorithm

Publication Data

M. Knežević, K. Sakiyama, Y. K. Lee, and I. Verbauwhede, “On the High- Through-
put Implementation of RIPEMD-160 Hash Algorithm,” in IEEE International
Conference on Application-Specific Systems, Architecture and Processors – ASAP
2008, pp. 85–90, IEEE Computer Society, 2008.

Personal Contributions

• Principal author.

Our novel contribution consists of proposing two new high-throughput architectures
for the FPGA implementation of the RIPEMD-160 hash algorithm. We apply
some of the algorithm-specific transformations and, to the best of our knowledge,
achieve the highest throughput of the RIPEMD-160 algorithm reported up to date.
Using the Xilinx Virtex2Pro FPGA board we achieve a throughput of 624 Mb/s at
the cost of 4410 LUTs. For the sake of completeness we provide ASIC synthesis
results as well. Implemented in 0.13 µm CMOS technology, our design reaches
3.4 Gb/s at the cost of 28,210 GE.

HIGH-THROUGHPUT HARDWARE IMPLEMENTATION OF RIPEMD-160 HASH ALGORITHM 77

3.4.1 RIPEMD-160 Algorithm

Algorithm 14 RIPEMD-160 algorithm.
T = rols(A + Fi(B,C,D) + Xi + Ki) + E
E = D
D = rol10(C)
C = B
B = T
A = E
T′ = rols′(A′ + F′i(B′,C′,D′) + X′i + K′i) + E′
E′ = D′
D′ = rol10(C′)
C′ = B′
B′ = T′
A′ = E′

RIPEMD-160 shown in Alg. 141 is a hash algorithm that takes an input of arbitrary
length (less than 264 bits) and produces an output of 160-bit length after performing
five independent rounds. Each round is composed of 16 iterations resulting in
80 iterations in total. RIPEMD-160 operates on 512-bit message blocks which
are composed of sixteen 32-bit words. The compression function consists of two
parallel datapaths as shown in Fig. 3.8.

Fi and F′i are non-linear functions and Ki and K′i are fixed constants. Temporary
variables A, B, C, D and E for the left and A′, B′, C′, D′ and E′ for the right
datapath, are initialized with the five 32-bit chaining variables, h0, h1, h2, h3 and
h4 respectively. Chaining variables are either initialized with fixed values to hash
the first 512-bit message block or updated with the intermediate hash values for
the following message blocks. Each step of the algorithm uses a different message
word Xi for the left and X′i for the right datapath. All the 16 message words are
reused for each round but in a different order. For a detailed description of the
algorithm please refer to work of Dobbertin et al. [48].

3.4.2 Optimization at Micro-Architecture Level

The MD family hash algorithms can be considered as an example of digital signal
processing systems. Block diagrams are most frequently used to graphically
represent a DSP system. A data flow graph (DFG) is an example of a block
diagram where the nodes represent computations (or functions) and directed edges

1With + we denote addition modulo 232.

78 HIGH-THROUGHPUT HARDWARE IMPLEMENTATIONS OF CRYPTOGRAPHIC HASH FUNCTIONS

Fi, Ki	
 Fi’, Ki’	
Xi	
 Xi’	

h0	
 h1	
 h3	
h2	
 h4	

h1	
 h3	
h2	
h0	
 h4	

Figure 3.8: Compression function of the RIPEMD-160 algorithm.

B	
 C	
 E	
rol(10)	

F	

+	
rol(s)	
+	
 +	
 +	
 A	

Ki	
 Xi	

D	

TD	
TD	
 TD	
 TD	

TD	

Figure 3.9: Data flow graph for compression function of the RIPEMD-160 algorithm.

represent datapaths. Each edge has a nonnegative number of delays associated with
it. These unit-delay elements (often called algorithmic delays) can also be treated
as functional blocks as they are implemented using registers. As an example of
a DFG we can look at Fig. 3.9, where the functional nodes are represented with
the light gray circles and registers are represented with the black squares. One
unit-delay TD is associated to each edge, that is at the input of the register.

HIGH-THROUGHPUT HARDWARE IMPLEMENTATION OF RIPEMD-160 HASH ALGORITHM 79

The iteration bound of the circuit is defined as

T∞ = maxl∈L
{
tl
wl

}
(3.1)

where tl is the loop calculation time, wl is the number of algorithmic delays (marked
with TD in Fig. 3.9) in the l-th loop, and L is the set of the all possible loops.
A DFG of RIPEMD-160, which is shown in Fig. 3.9, is derived from Alg. 14
and contains five different loops. The iteration bound is determined by the loop
B→ F→ +→ rol(s)→ +→ B (dashed line) and is equal to

T∞ = 2×Delay(+) +Delay(F) +Delay(rol) . (3.2)

The critical path of the DFG in Fig. 3.9 is the path marked with the bold lines(
4×Delay(+) +Delay(rol)

)
and it is larger than the iteration bound. Therefore,

to achieve a throughput optimal design, we need to apply some transformations on
the given DFG.

In [102], Lee et al. apply some DSP techniques on SHA-2 family hash algorithms,
such as the iteration bound analysis and the retiming and unrolling transformations.
By applying these techniques, an architecture whose critical path is equal to the
iteration bound can be derived. In this optimization, the functional operations
used in a hash algorithm, e.g. non-linear functions and additions, are assumed
to be atomic, i.e. a functional operation cannot be split or merged into some
other functional operations. In other words, the optimization is limited to the
micro-architecture level.

By applying only the retiming transformation, we can obtain a DFG of RIPEMD-
160 whose critical path delay is reduced to the iteration bound. Figure 3.10 shows
the DFG after retiming transformation and the critical path is again marked with
the bold lines. Now the critical path delay is equal to the iteration bound, which
means that the DFG given in Fig. 3.10 represents a throughput optimal architecture
that achieves a theoretical upper bound at the micro-architecture level. Note here
that it is not always possible to achieve the throughput optimal design by using
the retiming transformation only. It is sometimes necessary to apply additional
techniques such as unrolling for this purpose. A complete methodology concerning
this matter can be found in the work of Lee et al. [104, 105].

Due to the retiming transformations, two adders are placed between registers E
and A1 now. This causes A1 to be initialized with h0 + X0 + K0 instead of only
with h0. Making the values of Xi and Ki equal to zero at the last iteration, A1
becomes equal to A.

80 HIGH-THROUGHPUT HARDWARE IMPLEMENTATIONS OF CRYPTOGRAPHIC HASH FUNCTIONS

B	
 C	
 D	
 E	
rol(10)	

F	

+	
rol(s)	
+	
 +	
 +	
A1	

Ki+1	
 Xi+1	

TD	
TD	
 TD	
 TD	

TD	

Figure 3.10: Throughput optimized DFG of the RIPEMD-160 algorithm.

In the next section we present gate level optimizations by merging a few functional
nodes, which results in an architecture with an even higher throughput.

3.4.3 Optimization at Gate Level

Analyzing Fig. 3.10 we notice that a set of functional nodes consists of four modular
adders, one non-linear function and two cyclic shifts. As the critical path is in the
loop, the only way of optimizing the DFG is to optimize the loop. Unfortunately,
the variable cyclic shift is placed between two modular adders and prevents us
from using a carry save adder (CSA) instead. However, in this section we show
how another approach can be used to further improve the overall performance of
the loop.

A1	

F	

E	

B	

+	

32	

32	
 32	

32	

+	
rol(s)	

Figure 3.11: ADD+ROT part of the loop in the RIPEMD-160 algorithm.

HIGH-THROUGHPUT HARDWARE IMPLEMENTATION OF RIPEMD-160 HASH ALGORITHM 81

Let us consider a simple example shown in Fig. 3.11 where the part of the loop
with three 32-bit inputs, A1, E and F, and one output, B, is shown. To simplify
the discussion we omit the input s which represents the number of bits in the
cyclic shift. The functionality of this block is given in Fig. 3.12. After adding two
operands A1 and F, the cyclic shift is applied, and the operand E is finally added
resulting in the output B. We define carry 1 as the carry bit that may occur in
the result of adding (32− s) least significant bits (LSBs) of A1 and F. This bit will
be propagated to the s most significant bits (MSBs) of the sum. Another carry
bit (carry 2) may occur in the result of the whole addition and will be discarded
before the rotation starts (due to the modular addition).

A1	

F	

A1 + F	

Rot(A1 + F)	

E	

s	
 32 - s	

B	

rol(s)	

carry_2	
 carry_1	

Figure 3.12: Functionality of the original ADD+ROT part in the RIPEMD-160
algorithm.

In order to optimize the given block, we rotate operands A1 and F before adding
them together. Doing this we have to take care of the carry bits carry 1 and
carry 2. The latter carry must not be propagated after the rotation of the two
operands. To prevent this carry propagation we can subtract the vector ∆ from
the sum of Rot(A1) and Rot(F) as shown in Fig. 3.13. The bit value δ is equal
to 1 if carry 2 = 1, otherwise δ = 0. Besides the carry 2, we also need to take
care of the carry 1 bit. This carry must be added to the rotated operands Rot(A1)
and Rot(F) (see Fig. 3.13). Depending on the carry 1 and carry 2 we have four

82 HIGH-THROUGHPUT HARDWARE IMPLEMENTATIONS OF CRYPTOGRAPHIC HASH FUNCTIONS

different possibilities. In order to reduce the critical path, we compute all four
possibilities in parallel.

Rot(A1)	

Rot(F)	

B	

E	

s	
32 - s	

0 0 0 … 0 0 	
 0 0 … 0	

carry_2	

carry_1	

Δ δ	

Figure 3.13: Functionality of the ADD+ROT part after the first transformation.

The only drawback of this architecture is that subtraction of ∆ and addition of
carry 1 is still executed within the loop which does not decrease the critical path.
Since addition is an associative operation we can subtract the vector ∆ from the
operand E before entering the loop, as illustrated in Fig. 3.14.

Rot(A1)	

Rot(F)	

B	

E	

s	
32 - s	

0 0 0 … 0 0 	
 0 0 … 0	

carry_2	

carry_1	

Δ δ	

Figure 3.14: Functionality of the ADD+ROT part after optimization.

HIGH-THROUGHPUT HARDWARE IMPLEMENTATION OF RIPEMD-160 HASH ALGORITHM 83

Using similar design criteria, we add carry 1 after adding Rot(A1), Rot(F) and E.
Instead of using one additional adder for this operation, we use a CSA and the
fact that the carry form of CSA is always shifted to the left for one position before
the final addition. In this way we just need to change the LSB bit of the shifted
carry form depending on carry 1.

The architecture describing this whole logic is shown in Fig. 3.15. To achieve
a high-throughput of the algorithm we prepare all four possibilities in parallel.
The values of carry 1 and carry 2 determine which input of the MUX will be
propagated to the output value B as it is shown in Table 3.1. Note here that
input E1 is obtained as E1 = D−∆ where ∆ is chosen such that δ = 1. Input E
represents the case where δ = 0.

rol(s)	
 rol(s)	

CSA	

rol(s)	
 rol(s)	

CSA	

+	
 +	
 +	
 +	

B	

F	
 F	
A1	
 E	
 E1	
A1	

'1'	
 '1'	

carry_1	

carry_2	

+	

A1	
 F	

carry_2	

32	
 32	

32	
1	

+	

A1	
 F	

carry_1	

32 - s	
 32 - s	

32 - s	
1	

32	
 32	
 32	
 32	
 32	
 32	

0	
 1	
 2	
 3	

-	

D	

32	
 32	

32	

E1	

(δ = 0)	
 Δ	
(δ = 1)

Figure 3.15: Throughput optimized ADD+ROT part of the loop in the RIPEMD-
160 algorithm.

3.4.4 Final High-Throughput Architecture

Following the design principles described in the previous section and using
an additional retiming transformation we can obtain the final high-throughput
architecture for the RIPEMD-160 algorithm. The first step is to use the throughput
optimized part of the loop instead of the original one (see Fig. 3.15). A DFG that
shows this architecture is given in Fig. 3.16. The optimized part of the loop is
denoted as a black box (ADD+ROT).

84 HIGH-THROUGHPUT HARDWARE IMPLEMENTATIONS OF CRYPTOGRAPHIC HASH FUNCTIONS

Table 3.1: Selecting the appropriate input of the MUX.
MUX carry 2 carry 1

0 0 0
1 0 1
2 1 0
3 1 1

B	
 C	
 D	
 E	
rol(10)	

+	
 +	
A1	

Ki+1	
 Xi+1	

ADD + ROT	

F	

-	

Δ (δ = 1)	

TD	
TD	
 TD	
 TD	

TD	

Figure 3.16: DFG of the RIPEMD-160 architecture with optimized ADD+ROT
part of the loop.

The fact that we use the optimized part of the loop now moves the critical path
between registers E and A1. This problem can be easily solved by using a CSA
instead of two adders. Figure 3.17 shows this solution.

As the critical path occurs between the output of E and the input of B (bold line)
now, we need to introduce one more register E1 and move the subtractor at its
input as shown in Fig. 3.18. In this way the critical path is placed within the loop
again and the high-throughput architecture of RIPEMD-160 is finally obtained.

HIGH-THROUGHPUT HARDWARE IMPLEMENTATION OF RIPEMD-160 HASH ALGORITHM 85

B	
 C	
 D	
 E	
rol(10)	

+	
 CSA	
A1	

Ki+1	
 Xi+1	

ADD + ROT	

F	

-	

TD	
TD	
 TD	
 TD	

TD	

Δ (δ = 1)	

Figure 3.17: Using CSA instead of two adders changes the critical path.

3.4.5 Implementation Results and Comparison with Previous
Work

In order to verify the speed of our architectures we have implemented the proposed
solutions using GEZEL [154]. Both implementations were verified on a Xilinx
Virtex2Pro FPGA board. Our results and comparison with previous work are
given in Table 3.2.

Sklavos and Koufopavlou [156] propose a RIPEMD processor that performs both
RIPEMD-128 and RIPEMD-160 hash algorithms and they separately implement
a RIPEMD-160 processor for comparison purposes. In order to achieve the high
throughput of 2.1 Gb/s the authors use a pipelining technique. However, due to the
recursive mode of operation of the RIPEMD-160 algorithm, using pipelining is only
possible for hashing independent messages. Our architecture with the optimized
loop can easily be pipelined and for this special case we achieve a throughput of
3.122 Gb/s. Pipelining is done by replicating a DFG of the RIPEMD-160 algorithm
five times, one for each of the five different nonlinear functions. However, as this
comes at high price of occupied area and is only useful in limited numbers of
applications, we do not provide more details about the pipelined implementation.

Another issue we would like to point out here is again related to the result of
Sklavos and Koufopavlou [156]. The authors report a hardware evaluation of a

86 HIGH-THROUGHPUT HARDWARE IMPLEMENTATIONS OF CRYPTOGRAPHIC HASH FUNCTIONS

B	
 C	
 D	
 E	
rol(10)	

+	
 CSA	
A1	

Ki+1	
 Xi+1	

ADD + ROT	

F	

E1	
-	

TD	
 TD	
 TD	

TD	

TD	

TD	

Δ (δ = 1)	

Figure 3.18: Throughput optimized DFG of the RIPEMD-160 algorithm with
optimized ADD+ROT part.

RIPEMD processor on a Xilinx XC2V250 device and report an area consumption
of 2014 CLBs. However, the mentioned device consists of only 1,536 slices, i.e. 384
CLBs (see Virtex-II Platform FPGA User Guide [178]). In the same paper they
also report the use of a Xilinx v200bg256 device which is another series of Xilinx
devices and comprises of 5,292 Logic Cells, i.e. 1176 CLBs (see Virtex 2.5V FPGA
Complete Data Sheet [177]). Therefore, we are not able to provide a completely
fair comparison, and we decide to use a Xilinx Virtex2Pro (XC2VP30) device for
the purpose of our evaluation.

Here, we can also notice that the speed of the architecture with optimized
ADD+ROT part is 10 % faster than the version without. On the other hand the
size is 65 % larger due to parallel processing shown in Fig. 3.39 and the use of one
additional register (see Fig. 3.18).

Finally, for the sake of completeness, we have also synthesized our design using UMC
0.13 µm CMOS process and Synopsys Design Compiler version C-2009.06-SP3.
The fastest version reaches a throughput of 3.4 Gb/s, requiring 28,210 GE.

EXTENSIVE HARDWARE COMPARISON OF FOURTEEN SECOND-ROUND SHA-3 CANDIDATES 87

Table 3.2: Implementation results and comparison with previous work.

Design FPGA Frequency Number of Throughput Sizechip [MHz] cycles [Mb/s]
[131](1) EPF10K50 26.66 162 84 1964 LC
[49](2) XCV300E 42.90 337 65 2008 LUT
[86](3) XC2V4000 43.47 162 137.4 14,911 LUT
[156](4) XC2V250(5) 73 82 455 2014 CLB(5)

Fig. 3.10 XC2VP30 90.97 82 568 2721 LUT
Fig. 3.18 XC2VP30 100.05 82 624 4410 LUT
(1) This is a unified architecture of MD5 and RIPEMD-160 hash algorithms.
(2) This is a unified architecture of MD5, RIPEMD-160, SHA-1 and SHA-256 hash algorithms.
(3) This is a unified architecture of MD5, RIPEMD-160 and SHA-1 hash algorithms.
(4) In the original paper throughput of 2.1 Gb/s is shown for hashing 5 independent messages.

To make a fair comparison we consider throughput for a single message only.
(5) In the original paper the use of 2014 CLBs, 4006 FGs and 1600 DFFs is reported.

However, XC2V250 device contains only 384 CLBs [178] and therefore we assume
that the reported results are obtained using another Xilinx device.

3.4.6 Summary

We showed how the iteration bound analysis can be used for the high-throughput
implementation of the RIPEMD-160 hash algorithm. Since the iteration bound is a
theoretical minimum of the critical path, there is no further throughput optimization
at the micro-architecture level. Thus, we further improve the performance of our
architecture at the gate level, achieving the final high-throughput implementation
of the RIPEMD-160 algorithm. This approach can be a guideline for a high-
throughput implementation of other popular hash algorithms.

3.5 Extensive Hardware Comparison of Fourteen
Second-Round SHA-3 Candidates

Publication Data

M. Knežević, K. Kobayashi, J. Ikegami, S. Matsuo, A. Satoh, Ü. Kocabaş, J. Fan,
T. Katashita, T. Sugawara, K. Sakiyama, I. Verbauwhede, K. Ohta, N. Homma,
and T. Aoki, “Fair and Consistent Hardware Evaluation of Fourteen Round Two
SHA-3 Candidates,” IEEE Transactions on VLSI, 13 pages, 2011. To appear.

88 HIGH-THROUGHPUT HARDWARE IMPLEMENTATIONS OF CRYPTOGRAPHIC HASH FUNCTIONS

Personal Contributions

• Involved in: Planning; Implementation; Evaluation; Data analysis; Text
writing.

Our novel contribution consists of proposing a platform, a design strategy and
evaluation criteria for a fair and consistent hardware evaluation of the second-round
SHA-3 candidates. Using a SASEBO-GII FPGA board as a common platform,
combined with well defined hardware and software interfaces, we compare all 256-bit
version candidates with respect to area, throughput, latency, power and energy
consumption.

Our approach defines a standard testing harness for SHA-3 candidates, including the
interface specification for the SHA-3 module on our testing platform. The second
contribution is that we provide both FPGA and 90 nm CMOS ASIC synthesis
results and thereby are able to compare the results. Our third contribution is that
we release the source code of all the candidates and by using a common, fixed,
publicly available platform, our claimed results become reproducible and open for
public verification.

The performance evaluation of hardware, including the measurement of the power
consumption, execution time, and hardware resources, is a rather complex problem.
There are several reasons for this. Most importantly, the design space for hardware
performance evaluation is larger than that of software. Additional design constraints
(such as low-area, max-throughput, and min-energy) are required to define an
optimal implementation. Second, accurate and generic performance evaluation
metrics are hard to obtain. A throughput can be characterized provided that the
hardware design can be accurately timed. The area metrics depend strongly on
the target technology (ASIC/FPGA). A measurement of the power consumption is
the most difficult, and is almost never mentioned in the literature.

In this section we address most of these issues and therefore, we summarize our
contributions as follows:

• First, we propose a platform, a design strategy, and evaluation criteria for a
fair and consistent hardware evaluation of the SHA-3 candidates.

• Second, we use a prototyping approach by mapping each of the 256-bit
version hash candidates onto a SASEBO-GII FPGA board [125]. The hash
candidates are then evaluated with respect to throughput, latency, hardware
cost, and power and energy consumption.

• Third, we provide synthesis results in 90 nm CMOS technology with respect
to throughput and circuit size. In addition, we provide power and energy
consumption estimates.

EXTENSIVE HARDWARE COMPARISON OF FOURTEEN SECOND-ROUND SHA-3 CANDIDATES 89

• Finally, by releasing the source code of all the candidates and by using
a common, fixed, publicly available platform, our claimed results become
reproducible and open for public verification.

3.5.1 Related Work

Recently, several research groups have proposed comprehensive performance
evaluation methods, which evaluate a set of hash algorithms on a common platform.

• Tillich et al. [164] developed RTL VHDL/Verilog code for all SHA-3
candidates. They present synthesis results in 180 nm CMOS technology.
In order to reach the highest degree of accuracy, they further perform the
place & route for the best versions of all fourteen candidates [165].

• Gaj et al. [54] developed a scripting system called ATHENa, targeted towards
FPGA. A fair comparison is achieved by defining a standard interface
and by automatic design space exploration. Furthermore, in [53] they
report a comparison of all 512-bit version SHA-3 candidates using the same
methodology.

• Baldwin et al. [16] propose a standard interface to achieve a fair comparison
and illustrate their approach by providing the hardware figures for all fourteen
SHA-3 candidates. They evaluate hardware designs and test for all message
digest sizes (224, 256, 384, and 512 bits) and also include the padding as part
of the hardware for the SHA-3 hash functions.

• Henzen et al. [69] evaluated all fourteen second-round SHA-3 candidates
using 90 nm CMOS technology. All designs were placed & routed and the
post-layout figures were reported.

• Guo et al. [60] presented post place and route figures for all fourteen candidates
in 130 nm CMOS technology.

3.5.2 General Requirements for Hardware Evaluation

In this section, we reconsider the main requirements for conducting a fair and
consistent hardware evaluation of the fourteen SHA-3 candidates.

First, we comment on the feasibility of compact implementations. Second, we
discuss the speed performance metrics and power/energy consumption. Then, we
open a question concerning fair comparison and consistent hardware evaluation of
the remaining SHA-3 candidates. Finally, we present an attempt to classify the
candidates with respect to their design properties. This classification will be useful,
later on, for drawing some conclusions and comparing different candidates.

90 HIGH-THROUGHPUT HARDWARE IMPLEMENTATIONS OF CRYPTOGRAPHIC HASH FUNCTIONS

Table 3.3: Memory requirements for the SHA-3 candidates.

Candidate
State Total Total Total
Size Memory [72] Memory† Area
[bit] [bit] [GE] [GE]

Blake 512 768 4,608 13,560 [68]
BMW 512 1,536 9,216 N/A‡

CubeHash 1,024 1,024 6,144 7,630 [19]
ECHO 2,048 2,560 15,360 82,800 [110]
Fugue 960 960 5,760 59,220 [61]
Grøstl 512 1,024 6,144 14,620 [163]
Hamsi 512 768 4,608 N/A‡

JH 1,024 1,024 6,144 N/A‡
Keccak 1,600 1,600 9,600 N/A‡
Luffa 768 768 4,608 10,340 [119]

Shabal 1,408 1,408 8,448 23,320 [19]
SHAvite-3 896 1,024 6,144 N/A‡

SIMD 512 3,072 18,432 N/A‡
Skein 512 768 4,608 N/A

Estimates for versions with 256-bit digest size are given.
† We estimate the size of a single flip-flop to be 6 GE.
‡ To the best of our knowledge, as of March 2011, these candidates

had no published figures for low-cost hardware implementations.

Area: Lower Bound on Compact Implementations

Depending on the application scenarios, one of the decision points, prior to starting
with the hardware evaluation, is a choice of the actual architecture. Therefore, we
provide a lower bound estimation on each of the fourteen candidates and argue
that, given the required security margins, there are no candidates suitable for
a lightweight implementation. Our estimation is simply based on the minimum
amount of total memory needed for a certain algorithm. We define the state
size to be the size of the chaining variable (see Table 3.3). We also refer to the
work of Ideguchi et al. [72], that studies the RAM requirements of various SHA-3
candidates for the low-cost 8-bit CPUs. Furthermore, we estimate the size of the
required memory with respect to the number of gate equivalences (GE), which
represents the lower bound size. Finally, we provide figures for current, compact
implementations of some of the second-round candidates.

Comparing the lower bound size of all fourteen candidates with the size of
state of the art lightweight block ciphers, e.g. PRESENT [22] and KATAN &

EXTENSIVE HARDWARE COMPARISON OF FOURTEEN SECOND-ROUND SHA-3 CANDIDATES 91

KTANTAN [27], we conclude that all candidates are rather suited for a so-called
welterweight category. Therefore, in this work, we focus only on the high-throughput
variants of all second-round candidates.

Speed: Latency versus Throughput

Regarding the speed of a hash candidate, we distinguish two performance figures.
Depending whether the input message is a long (we consider very long messages in
this case) or a short one (e.g. 256 bits or less), we evaluate the throughput and
the latency, respectively. The throughput is defined as the amount of information
processed per unit of time (bits/s), while the latency represents the time delay
necessary for processing a certain amount of information from start to end (s).

This approach provides a fair comparison and an accurate evaluation for each of the
candidates. In both cases, the speed performance is a function of several factors:
maximum frequency, number of clock cycles necessary for a hash operation, number
of cycles necessary for input and output, and the input block size. Furthermore,
the latency also depends on the message size and the presence of the finalization
function. Later, in Section 3.5.3, we provide formulae that support the previous
discussion.

Power versus Energy

The power consumption of a hash design is measured during a complete hash
operation. The total power consumption can be seen as the sum of the static
and the dynamic power dissipation. The energy cost is therefore the integral of
the power consumption over the period of a hash operation. In order to obtain a
standardized nJ/bit metric, the energy cost is normalized to the input block size
and to the message length for long and short messages, respectively.

Fair Comparison

An important requirement for an open competition such as the SHA-3 competition
is a fair comparison. To achieve this goal, we need to consider the following two
aspects. First, the evaluation environment needs to be open and available to
all designers and evaluators. It also needs to be unified and common for all the
candidates. Second, the claimed results need to be reproducible and open for public
verification. By using a common, fixed platform and making our code publicly
available, we achieve the desired goal.

92 HIGH-THROUGHPUT HARDWARE IMPLEMENTATIONS OF CRYPTOGRAPHIC HASH FUNCTIONS

Classification of Candidates

Another interesting issue to consider is the great diversity of all the second-round
candidates. Therefore, we first classify all the algorithms with respect to their
design properties. Figure 3.19 represents such a classification.

Sponge

Wide-pipe

Narrow-pipe

8-bit S-box

ARX

4-bit S-box/Boolean

BLAKE

CubeHash

Keccak

JH

Hamsi

Luffa

Skein

SIMD

Shabal

Grøstl

SHAvite-3

ECHO

Fugue

Blue
Midnight
Wish

Figure 3.19: Second-round SHA-3 candidates classified with respect to their design
properties (courtesy of Dai Watanabe from Hitachi Ltd, the designer of Luffa hash
function).

With respect to the main source of non-linearity used in a design, all fourteen
candidates can be classified into three main groups, as indicated by the three parts
of the pie.

• 8-bit S-box based: ECHO, Fugue, Grøstl, SHAvite-3.

• 4-bit S-box/Boolean based: Hamsi, JH, Keccak, Luffa.

• Addition Rotation XOR (ARX) based: Blake, BMW, CubeHash, Shabal,
SIMD, Skein.

Another classification by comparing the size of the compression function to the
digest size and the input block size is possible, as indicated by the concentric
circuits on the pie. If the output length of the intermediate compression function is
equal to the digest size, the structure is called a narrow-pipe. The candidates with
the output length of the compression function larger than the final hash length
are classified as wide-pipe. Finally, the candidates whose compression function size

EXTENSIVE HARDWARE COMPARISON OF FOURTEEN SECOND-ROUND SHA-3 CANDIDATES 93

and digest size are fixed, and whose input block size is determined by considering
a trade-off between security and efficiency are called the sponge constructions.
Therefore, depending on the size of the compression function, the candidates can
again be classified into three subgroups.

• Narrow-pipe: Blake, Hamsi, SHAvite-3, Skein.

• Wide-pipe: BMW, ECHO, Grøstl, JH, SIMD.

• Sponge: CubeHash, Fugue, Keccak, Luffa, Shabal.

Finally, we classify the candidates with respect to their input block size.

• 32-bit: Fugue, Hamsi.

• 256-bit: CubeHash, Luffa.

• 512-bit: Blake, BMW, Grøstl, JH, Shabal, SHAvite-3, SIMD, Skein.

• 1024-bit: Keccak.

• 1536-bit: ECHO.

Another classification, with respect to the number of cycles necessary for performing
the hash operation, is also possible but would highly depend on the implementation
strategy. Therefore we do not consider it at this time. However, this observation
becomes interesting later, in Section 3.5.4, where the implementation results
are discussed in detail. Next, we discuss our proposed evaluation scheme. We
describe the evaluation environment, hardware/software interface, design strategy,
evaluation metrics and finally, we provide the experimental results.

3.5.3 Hardware Evaluation Platform for SHA-3 Candidates

Figure 3.20 illustrates the target platform for our evaluation, which includes a
SASEBO-GII board, a PC and an oscilloscope. The SASEBO board includes two
FPGAs: a control FPGA and a cryptographic FPGA. On the PC, a test program
enables a user to enter a sample message, which is transmitted to the control FPGA
through a USB interface. The control FPGA controls the data flow to send this
message to the cryptographic FPGA, where hash operations are performed. After
the hash operation is done, the digest is returned to the PC through the control
FPGA. As illustrated in Fig. 3.20, the interface between the control FPGA and
the cryptographic FPGA is fixed and common among all SHA-3 candidates.

The control FPGA checks the latency of a single hash operation that is performed
on the cryptographic FPGA and reports the number of clock cycles to the PC. The

94 HIGH-THROUGHPUT HARDWARE IMPLEMENTATIONS OF CRYPTOGRAPHIC HASH FUNCTIONS

EoM	

idata	

load	
fetch	

odata	

ack	

zbus_rstn	

Control	

FPGA

Cryptographic	

FPGA

zbus_clk	

16	
16	

usb_txen	
usb_rxfn	

usb_rdn	

usb_wr	

usb_d	8	

SASEBO-GII	

PC	
 init	

modified	

SASEBO-	

Checker	

Oscillo-	

scope	

Figure 3.20: Evaluation environment using SASEBO-GII board.

PC then reports two different performance metrics. One is the number of clock
cycles including the interface overhead while the other one is excluding the cycles
for the data input and output.

During message hashing, we also measure the power consumption of the hashing
operation. This trace, in combination with the performance data, enables a precise
characterization of the power dissipation and energy consumption of the SHA-3
candidate on the cryptographic FPGA.

Hardware and Software Interface

A key concept in our approach is the use of a standard interface to integrate
the hash algorithms inside the cryptographic FPGA. In this section, we describe
the major principles of this interface. We also compare our ideas with those of
several other proposals, including the interfaces defined by Chen et al. [180], by
Gaj et al. [32], and by Baldwin et al. [15].

In the following observations, it is useful to refer to the method used to interface
SHA-3 candidates in software. For that purpose, the software implementations use
an Application Program Interface (API) defined by NIST [128]. Three function
calls are used:

• void init(hashstate *d) initializes the algorithm state of the hash, which
is typically stored in a separate structure in order to make the hash
implementation re-entrant.

• void update(hashstate *d, message *s) hashes a message of a given
length and updates the hash state. The message is chopped into pieces of a
standard length called a block. In case the message length is not an integral

EXTENSIVE HARDWARE COMPARISON OF FOURTEEN SECOND-ROUND SHA-3 CANDIDATES 95

number of blocks, the API will use a padding procedure which extends the
message until it reaches an integral number of blocks in length.

• void finalize(hashstate *d, digest *t) extracts the actual digest from
the hash state.

A hardware interface for a SHA-3 module emulates a similar functionality as the
software API interface. The hardware interface therefore needs to address the
following issues.

Handshake protocol: The hash interface needs to synchronize data transfer
between the SHA-3 module and the environment. This is done by using a handshake
protocol and one can distinguish a master and a slave protocol, depending on
which party takes the initiative to establish the synchronization. The interface
by Chen [180] uses a slave protocol for the input and output of the algorithm.
The interfaces by Baldwin [15] and Gaj [32] define a slave protocol for the input
and a master protocol for the output. The former type of interface is suited for
a co-processor in an embedded platform, while the latter one is suited for high-
throughput applications that would integrate the SHA-3 module using First Input
First Output (FIFO) buffers. The interface in our proposal uses a slave protocol.

Wordlength: Typical block and digest lengths are wider (e.g. 512 bits) than
the word length that can be provided by the standard platforms (e.g. 32 bits).
Therefore, each hash operation will result in several data transfers. While this
overhead is typically ignored by hardware designers, it is inherently part of the
integration effort of the SHA-3 module. In our proposal, we use a 16-bit interface,
which size is driven by the size of the data-bus shared among the control FPGA
and the cryptographic FPGA.

Control: The functions of the software API need to be translated to the equivalent
control signals in hardware. One approach, followed by Gaj [32], is to integrate
this control as in-band data in the data stream. A second approach is to define
additional control signals on the interface, for example to indicate the message
start and end. This is the approach taken by Chen [180] and Baldwin [15]. We
follow the same approach in our proposal as well.

Padding: Finally, padding may or may not be included in the SHA-3 hardware
module. In the latter case, the hardware module implicitly assumes that an integer
number of blocks will be provided for each digest. Common padding schemes are
defined by in-band data formatting, and this makes it possible to implement the
padding outside of the hardware module. The interface proposal by Baldwin [15]
explicitly places the padding hardware into the interface. The other interface
proposals leave the padding to be done outside of the hardware module. However,
Chen [180] assumes that the hardware padding will only be implemented at the
word-level, while Gaj [32] supports bit-level padding as well. We follow the approach
of Chen.

96 HIGH-THROUGHPUT HARDWARE IMPLEMENTATIONS OF CRYPTOGRAPHIC HASH FUNCTIONS

Note that there are many solutions to the interface issue, and that we present
only one approach. We also observe that the key issue for a fair comparison is
to use a common interface for all the candidates. In addition, and that is very
important, we show that our performance evaluation mechanism allows to factor
out the overhead of the interface communication.

Design Strategy

Besides a standard platform, our approach also defines a design strategy. As
classified by Schaumont et al. [153] there are three types of cores that can be
distinguished with respect to their implementation scope (register mapped, memory
mapped and network mapped). Similar to this approach, Tillich [162] proposes the
following classification:

Core	

Function	

Input	

Register	

Core	

Function	

Input	

External
Memory	

Register	

Core	

Function	

Input	

(a)	
 (b)	
 (c)	

Figure 3.21: Three types of architectures: (a) fully autonomous. (b) core
functionality. (c) with external memory.

• Fully Autonomous Implementation (Fig. 3.21a): Equivalent to a register
mapped implementation proposed by Schaumont et al. [153]. In this
architecture, one transfers the message data to a hash function over multiple
clock cycles, until a complete message block is provided. The hash module
buffers a complete message block locally, before initializing the hash operation.
Therefore, this architecture can work autonomously, and the resulting hash
module is well suited for the integration into other architectures (e.g. System-
on-Chip).

• Implementation of the Core Functionality (Fig. 3.21b): This architecture
has only the core part of a hash function, and ignores the storage of a full

EXTENSIVE HARDWARE COMPARISON OF FOURTEEN SECOND-ROUND SHA-3 CANDIDATES 97

message block. In other words, this architecture ignores the influence of a
fixed interface on the total hardware performance.

• Implementation with External Memory (Fig. 3.21c): Equivalent to a memory
mapped implementation proposed by Schaumont et al. [153]. In this
architecture, only data necessary for executing the hashing calculation is
stored in registers. Other data (e.g. intermediate values) is stored in the
external memory. In general, the external memory is less expensive than
the register based memory. Therefore, the architecture becomes a low-cost
implementation. However, this architecture requires additional clock cycles
for accessing the external memory, and therefore it is not suitable for high-
throughput implementations.

In this work, we choose the Fully Autonomous architecture.

Previous work for evaluating hardware performance has been realized without using
a standardized architecture, i.e. different architectures are used. For example, the
design method by Namin et al. [124] and Baldwin et al. [14] are based on the core
functionality type and they provide a rough estimate of the performance of hash
function hardware. On the other hand, the design method by Tillich et al. [164] and
Jungk et al. [13] is based on the fully autonomous type. They assume the presence
of an ideal interface such that the input data for the hash function hardware is sent
in a single cycle. Consequently, their evaluation results cannot be used directly for
a performance evaluation of an accelerator of a CPU where only a limited amount
of data is available in one clock cycle.

In this work, we estimate the influence of the standard hardware interface on
each of the fourteen candidates. Our choice of a 16-bit data width is driven by
the specification of the common evaluation platform, i.e. SASEBO-GII board. In
addition, we provide evaluation metrics that allow us to estimate the hardware
performance for an arbitrary data width as well. One can easily obtain the figures
by taking into account the highest achievable frequency and the input block size of
each of the candidates. Furthermore, we provide the hardware figures by factoring
out the overhead introduced by the standard interface.

Figure 3.22 shows the detailed architecture of the cryptographic FPGA which we
use for evaluating hardware performance. The cryptographic FPGA consists of an
interface block which controls input and output, and a core function block which
executes a hashing process. There are several SHA-3 candidates which need to
keep an input message during the hashing process. In our environment, we use a
message register file for that purpose.

98 HIGH-THROUGHPUT HARDWARE IMPLEMENTATIONS OF CRYPTOGRAPHIC HASH FUNCTIONS

Input /Output	
Interface	

Hash	

Value	

Register	

Cryptographic FPGA	

idata	

init	

EoM	

zbus_clk	

zbus_rstn	

load	

fetch	

ack	

odata	

EN / start	

Ld_msg	

busy	

hash	
16	

16	
256	
 Message	

Register	

Intermediate	

Value Register	

Hash Function	

Core	

Figure 3.22: Architecture of cryptographic FPGA.

Platform Specific Evaluation Topics

We implement fourteen SHA-3 candidates on the cryptographic FPGA, Xilinx
Virtex-5 (xc5vlx30-3ff324) placed on the SASEBO-GII evaluation board. We
check the hardware performance in terms of speed and hardware cost. The speed
performance is evaluated by calculating latency or throughput, depending on the
message length. It is calculated using the input block size, the maximum clock
frequency, and the total number of clock cycles with or without the communication
overhead. The cost performance is evaluated with the number of slices, registers,
and LUTs for FPGA and the number of gate equivalences for ASIC. A design that
has a high throughput with a low hardware cost is regarded as efficient. The power
consumption of a hash design is measured during a complete hash operation. The
energy cost is therefore the integral of the power consumption over the period of a
hash operation. In order to obtain a standardized nJ/bit metric, the energy cost is
normalized with respect to the input block size and to the message length for long
and short messages respectively.

In order to make the following discussion easier we introduce notations that are
used further in this section.

A hash function executes a hashing process for each data block of input block size,
and uses the result as a chaining value for the next input data block to perform
the whole hashing process. The number of clock cycles needed for hashing M bits
of data can be expressed as

I = Mp

B
(Iin + Icore) + Ifinal + Iout . (3.3)

Here, Mp

B is the number of hash core invocations where the hash core processes a
B-bit data block per single invocation. Note that the coefficients of Ifinal and Iout

EXTENSIVE HARDWARE COMPARISON OF FOURTEEN SECOND-ROUND SHA-3 CANDIDATES 99

B : Input block size,
w : Word size (interface data width),
I : Total number of clock cycles,

Iin : Number of clock cycles for loading one message block,
Iout : Number of clock cycles for outputting the message digest,
Icore : Number of clock cycles for completing the hash process,
Ifinal : Number of clock cycles for the finalization,

Iw : Number of clock cycles for transmitting one word of data,
fmax : Maximum clock frequency,

T : Throughput,
L : Latency,
M : Size of the message without padding,
Mp : Size of the message with padding,
H : Size of the message digest (hash output).

are both equal to one, since these processes are only executed when outputting
the final message digest. The number of clock cycles needed for the input of the
message block and the output of the hash result can be evaluated as

Iin = B

w
Iw ,

Iout = H

w
Iw . (3.4)

In our specific protocol, we use w = 16 bits and Iw = 3 cycles. The former is
driven by the evaluation platform specification, while the latter is a result of a
simple acknowledgement-based protocol. As a result, the final throughput can be
expressed as

T = Mpfmax
Mp

B

(
Iin + Icore

)
+ Ifinal + Iout

. (3.5)

It is also useful to estimate the throughput of the core function only, by factoring
out the interface part. Therefore, we write

TCore = Mpfmax
Mp

B
Icore + Ifinal

. (3.6)

When Mp is sufficiently large, for example in the case of hashing a long message,
Ifinal and Iout are negligible in Eq. 3.5 and Eq. 3.6. In this case, the throughput

100 HIGH-THROUGHPUT HARDWARE IMPLEMENTATIONS OF CRYPTOGRAPHIC HASH FUNCTIONS

is approximated as

TLongMessage = Bfmax
Iin + Icore

,

TLongMessageCore = Bfmax
Icore

. (3.7)

On the other hand, when Mp is small, for example in the case of hashing a short
message for authentication, we cannot ignore Ifinal and Iout. Moreover, as the
latency is an important metric for a short message (rather than the throughput),
we use Eq. 3.8 to compare the speed performance of the SHA-3 candidates.

L = Mp

T
,

LCore = Mp

TCore
. (3.8)

Finally, we calculate power and normalized energy per bit consumption for both
short and long messages. By PU and PF we denote the power consumption during
the update and the final phase, respectively, and by f we denote the operating
frequency.

PShortMessage =
Mp

B
IcorePU + IfinalPF

Mp

B
Icore + Ifinal

,

EShortMessage =
Mp

B
IcorePU + IfinalPF

Mf
,

PLongMessage = PU ,

ELongMessage = PUIcore
Bf

. (3.9)

3.5.4 FPGA Evaluation Results

We implement SHA-256 and all fourteen SHA-3 candidates aiming at high-
throughput hardware implementations2. Although it is not possible to completely
factor out the designer’s influence in our comparison, all fifteen algorithms were

2 We release the Verilog/VHDL source code for these 15 algorithms at http://www.rcis.aist.
go.jp/special/SASEBO/SHA3-en.html.

http://www.rcis.aist.go.jp/special/SASEBO/SHA3-en.html
http://www.rcis.aist.go.jp/special/SASEBO/SHA3-en.html

EXTENSIVE HARDWARE COMPARISON OF FOURTEEN SECOND-ROUND SHA-3 CANDIDATES 101

prototyped and tested using the same evaluation platform. Each of them was
evaluated according to the metrics indicated above, comparing speed performance,
area, power consumption and energy consumption.

Table 3.4 and Table 3.5 show a comprehensive summary of the measurement results.
Bold and gray data represent the best and the worst result in its class, respectively.
As with all measurement data, it is important to understand the assumptions used
when collecting these numbers. The tables include the following quantities for each
candidate.

• The input message block size in bits;

• The highest clock frequency achievable on the Virtex-5 FPGA (xc5vlx30-
3ff324) in MHz.

• The latency in terms of clock cycles. Several cases are shown: the cycle count
of the input interface overhead (Iin); the cycle count of the output interface
overhead (Iout); the cycle count of the core function (Icore); and the cycle
count of the final processing (Ifinal). All mentioned measures are defined in
Section 3.5.3.

• The throughput of the design in Mb/s. This value is calculated assuming that
the FPGA is operating at the maximum achievable clock frequency for the
given design. Both the throughput with (T) and without (TCore) interface
overhead is shown.

• The latency of the design for short messages in µs. This value is calculated
assuming that the FPGA is operating at the maximum achievable clock
frequency for the given design. Both the latency with (L) and without
(LCore) interface overhead is shown. We choose the size of a short message
to be 256 bits prior to padding.

• The area cost of the design, in terms of occupied Virtex-5 slices, number
of slice registers, and number of slice LUTs. The number of occupied slices
provides the primary area measure in this case, while the numbers of slice
registers and slice LUTs illustrate the actual utilization of the occupied slices.

• The power consumption of the design for long and short messages. For
long messages, the average power consumption includes only the core
functionality. For short messages, the average power consumption includes the
core functionality and the finalization. The power consumption is measured
directly on the core power supply of the FPGA. The power consumption is
measured with the FPGA operating at 24 MHz which is the default operating
frequency of the board.

• The energy consumption of the design for long and short messages. The energy
consumption is normalized with the input block size and the message length

102 HIGH-THROUGHPUT HARDWARE IMPLEMENTATIONS OF CRYPTOGRAPHIC HASH FUNCTIONS

Figure 3.23: Maximum throughput for various types of interface with Iw = 3.
Target platform: Virtex 5 (xc5vlx30-3ff324) FPGA board.

for long and short messages, respectively (expressed in nJ/bit). Also in this
case, the difference between long-message energy and short-message energy
relates to the inclusion of the finalization processing in the measurement.

As can be seen from the amount of reported data, there are many different
dimensions where the comparison is possible. Since our main goal is a high-
throughput implementation of all the candidates, we provide Fig. 3.23 where the
candidates are compared with respect to the highest achievable throughput. We
also offer the throughput estimates assuming different interfaces. The throughput
is first estimated for the core function. Next, we provide the throughput figures
assuming the ideal interface, meaning that we use only Iw clock cycles for the input
and another Iw clock cycles for the output. Finally, we measure the throughput
assuming a realistic interface width (from 16 bits to 128 bits).

Here, we draw an interesting, somewhat natural conclusion. The influence of the
interface width is more noticeable for the candidates that have a small number of
rounds and a larger size of the input block. Therefore, one may notice that the
influence of the fixed interface is especially noticeable for BMW, Grøstl, Keccak,
and Luffa.

In order to have a complete picture regarding the hardware cost that one needs
to pay for implementing a high-throughput version of each candidate, we provide
Fig. 3.24. The left-hand side of the figure represents a throughput versus area
graph, ignoring the influence of the fixed interface, while the right-hand part shows
the same graph by taking the interface into account. The candidates within the
dashed ellipse are the ones with the largest Throughput/Area ratio.

EXTENSIVE HARDWARE COMPARISON OF FOURTEEN SECOND-ROUND SHA-3 CANDIDATES 103

Ta
bl

e
3.

4:
R

es
ul

ts
of

th
e

SH
A

-3
ca

nd
id

at
es

on
V

irt
ex

-5
(x

c5
vl

x3
0-

3ff
32

4)
.

In
pu

t
M

ax
.

To
ta

lN
um

be
r

of
Lo

ng
M

es
sa

ge
Sh

or
t

M
es

sa
ge

N
um

be
r

N
um

be
r

N
um

be
r

SH
A

-3
B

lo
ck

C
lo

ck
C

lo
ck

C
yc

le
s

T
hr

ou
gh

pu
t

La
te

nc
y

[µ
s]

of
of

of
C

an
di

da
te

Si
ze

Fr
eq

I i
n

I o
u
t

I c
o
r
e

I f
in
a
l

[M
b/

s]
M

=
25

6
bi

ts
O

cc
up

ie
d

Sl
ic

e
Sl

ic
e

[b
it

s]
[M

H
z]

T
T
C
o
r
e

L
L
C
o
r
e

Sl
ic

es
R

eg
is

te
rs

LU
Ts

SH
A

-2
56

51
2

26
0

96
48

68
0

81
2

1,
95

8
0.

81
5

0.
26

2
60

9
1,

22
4

2,
04

5
B

la
ke

51
2

11
5

99
48

22
0

48
7

2,
67

6
1.

44
3

0.
19

1
1,

66
0

1,
39

3
5,

15
4

B
M

W
51

2
34

96
48

2
2

17
8

8,
70

4
4.

35
3

0.
11

8
4,

35
0

1,
31

7
15

,0
12

C
ub

eH
as

h
25

6
18

5
48

48
16

16
0

74
0

2,
96

0
1.

81
6

1.
03

8
59

0
1,

31
6

2,
18

2
E

C
H

O
1,

53
6

14
9

31
5

48
99

0
55

3
2,

31
2

3.
10

1
0.

66
4

2,
82

7
4,

19
8

9,
88

5
Fu

gu
e

32
78

6
48

2
37

31
2

1,
24

8
2.

01
3

0.
70

5
4,

01
3

1,
04

3
13

,2
55

G
rø

st
l

51
2

15
4

96
48

10
10

74
4

7,
88

5
1.

06
5

0.
13

0
2,

61
6

1,
57

0
10

,0
88

H
am

si
32

21
0

6
48

4
5

67
2

1,
68

0
0.

68
1

0.
19

5
71

8
84

1
2,

49
9

JH
51

2
20

1
96

48
39

0
76

2
2,

63
9

0.
91

0
0.

19
4

2,
66

1
1,

61
2

8,
39

2
K

ec
ca

k
1,

02
4

20
5

19
2

48
24

0
97

2
8,

74
7

1.
28

8
0.

11
7

1,
43

3
2,

66
6

4,
80

6
Lu

ffa
25

6
26

1
48

48
9

9
1,

17
2

7,
42

4
0.

65
5

0.
10

3
1,

04
8

1,
44

6
3,

75
4

Sh
ab

al
51

2
22

8
96

48
50

15
0

80
0

2,
33

5
1.

50
9

0.
87

7
1,

25
1

2,
06

1
4,

21
9

SH
Av

it
e-

3
51

2
25

1
10

8
48

38
0

88
0

3,
38

2
0.

77
3

0.
15

1
1,

06
3

1,
36

3
3,

56
4

SI
M

D
51

2
75

96
48

46
0

27
0

83
5

2.
53

3
0.

61
3

3,
98

7
6,

69
3

13
,9

08
Sk

ei
n

51
2

91
10

2
48

19
19

38
5

2,
45

2
2.

06
6

0.
41

8
1,

37
0

1,
95

6
4,

97
9

104 HIGH-THROUGHPUT HARDWARE IMPLEMENTATIONS OF CRYPTOGRAPHIC HASH FUNCTIONS

Table 3.5: Power and energy consumption of the SHA-3 candidates on Virtex-5
(xc5vlx30-3ff324).

Power [W] Energy [nJ/bit]SHA-3
Candidate Long Short Long Short

Msg Msg Msg Msg
SHA-256 0.21 0.21 0.65 1.30

Blake 0.27 0.27 0.49 0.98
BMW 0.41 0.41 0.07 0.27

CubeHash 0.23 0.23 0.61 7.27
ECHO 0.28 0.28 0.75 4.49
Fugue 0.36 0.37 0.95 3.28
Grøstl 0.31 0.31 0.25 1.00
Hamsi 0.23 0.23 1.19 1.52

JH 0.25 0.25 0.80 1.60
Keccak 0.29 0.29 0.29 1.16
Luffa 0.24 0.24 0.36 1.07

Shabal 0.23 0.23 0.94 7.62
SHAvite-3 0.24 0.24 0.73 1.45

SIMD 0.29 0.29 1.09 2.17
Skein 0.30 0.30 0.47 1.86

(a) (b)

Figure 3.24: Throughput versus area graph: (a) core function only. (b) fixed
interface with w = 16 bits and Iw = 3. Target platform: Virtex 5 (xc5vlx30-3ff324)
FPGA board.

EXTENSIVE HARDWARE COMPARISON OF FOURTEEN SECOND-ROUND SHA-3 CANDIDATES 105

(a) (b)

Figure 3.25: Latency versus message size graph: (a) core function only. (b) fixed
interface with w = 16 bits and Iw = 3. Target platform: Virtex 5 (xc5vlx30-3ff324)
FPGA board.

Due to the very small number of rounds of the core function, the hash candidate
BMW provides the highest core throughput among all candidates. The hardware
price, however, due to the heavy unrolled architecture, is large (BMW also consumes
most of the hardware resources). Other candidates that have noticeably high core
throughput are Keccak, Grøstl and Luffa. Furthermore, Luffa and Keccak achieve
a high core throughput with a relatively small hardware cost.

Assuming a fixed interface with parameters w = 16 bits and Iw = 3, which indeed
complies with our evaluation platform, Luffa achieves the highest throughput. Luffa
also has the highest hardware efficiency since it achieves the highest throughput
with a relatively small hardware cost. Other candidates that have noticeably high
throughput in this case are Keccak and SHAvite-3.

To have a complete picture regarding the latency of all candidates with respect
to different sizes of the unpadded message, we provide Fig. 3.25. The left-hand
side represents the core latency of all candidates versus message size, while the
right-hand side represents the latency by taking the 16-bit interface into account. It
is interesting to observe that for short messages, with less than 512 bits, CubeHash,
Shabal, and Fugue show rather high core latency. This is due to the fact that
these candidates have a large number of rounds in the final stage of the hashing
process. The stair-steps on the graph appear due to the fact that an additional
message block for padding is needed whenever we hash an unpadded message with
size equal to the input block size of the algorithm.

In order to explore the influence of a fixed interface on the minimum latency, we
additionally provide Fig. 3.26. Here, we assume the length of the short unpadded
message to be 256 bits. It can be noticed that Luffa has the shortest core latency
among all candidates. Even when including the interface overhead, Luffa shows the

106 HIGH-THROUGHPUT HARDWARE IMPLEMENTATIONS OF CRYPTOGRAPHIC HASH FUNCTIONS

Figure 3.26: Minimum latency for various types of interface with Iw = 3. Target
platform: Virtex 5 (xc5vlx30-3ff324) FPGA board.

(a) (b)

Figure 3.27: Latency versus area graph: (a) core function only. (b) fixed interface
with w = 16 bits and Iw = 3. Target platform: Virtex 5 (xc5vlx30-3ff324) FPGA
board.

best performance. The candidates with a larger number of cycles needed for the
finalizing stage, such as CubeHash, Fugue, and Shabal, have noticeably high core
latency. The biggest influence of a fixed standard interface is again demonstrated
by BMW.

Finally, in Fig. 3.27 we show a latency versus area graph. Regarding the core
latency versus area, we can select the set of candidates which show somewhat
better performance compared to others, and those are: Luffa, Keccak, SHAvite-3,
Hamsi, Blake, and Skein. With respect to the total latency (including the interface

EXTENSIVE HARDWARE COMPARISON OF FOURTEEN SECOND-ROUND SHA-3 CANDIDATES 107

(a) (b)

Figure 3.28: (a) Dynamic power consumption. (b) dynamic energy consumption.
Target platform: Virtex 5 (xc5vlx30-3ff324) FPGA board.

overhead) versus area, the set containing Hamsi, Luffa, and SHAvite-3 shows the
best performance. These candidates show the smallest Latency-Area product.

Power and Energy Consumption

As mentioned in Section 3.5.2, we distinguish between a platform-dependent power
(static power) and an algorithm-dependent power consumption (dynamic power).
We measured the static power dissipation of the Virtex 5 FPGA on SASEBO-GII
to be around 200 mW. Hence, the power numbers listed in Table 3.5 are dominated
by the static power. To have an accurate comparison, we simply compare the
candidates with respect to their algorithmic properties by measuring the dynamic
power only, as depicted in Fig. 3.28a (the dynamic power is simply obtained by
subtracting the static power from the total power consumption).

Due to the similar behavior during the update and the final phase, the difference
between the power consumption for long and short messages is negligible. On the
other hand, the dynamic energy consumption (see Fig. 3.28b) differs for long and
short messages and is especially noticeable for candidates which require additional
cycles for the finalizing stage (CubeHash, Fugue, Grøstl, Shabal, and Skein). ECHO
and Keccak also have the same discrepancy, and this is due to the large input
block while hashing a short message of only 256 bits. Since BMW is the largest
design among all candidates, its power consumption is thereby the largest as well.
However, due to the very small number of cycles needed for a hashing operation,
BMW on the other hand consumes the least amount of energy.

108 HIGH-THROUGHPUT HARDWARE IMPLEMENTATIONS OF CRYPTOGRAPHIC HASH FUNCTIONS

Algorithmic Features versus Implementation Results

Recalling the classification from Fig. 3.19 we conclude that no obvious connection
can be made between the hardware performance and the design properties of
the fourteen candidates. As an illustration we provide the fact that the top 5
designs with respect to the core throughput are Keccak (4-bit S-box/Boolean,
Sponge, 1024-bit), BMW (ARX, wide-pipe, 512-bit), Grøstl (8-bit S-box, wide-pipe,
512-bit), Luffa (4-bit S-box/Boolean, Sponge, 256-bit) and SHAvite-3 (8-bit S-box,
narrow-pipe, 512-bit). They, all together, basically cover the complete design space
as defined in Section 3.5.2.

However, several interesting conclusions can still be made by observing some of
the algorithmic features versus the implementation results. Therefore, we observe
that the narrow-pipe designs (Blake, Hamsi, SHAvite-3, and Skein) offer relatively
low core throughput. Grøstl, Keccak, and Luffa, on the other hand, provide high
throughput regardless of the interface type (none of them is a narrow-pipe design).
Designs with very small input block size of only 32 bits (Fugue and Hamsi) offer a
relatively small core throughput. ECHO, which is the candidate with the largest
input block size also offers a small throughput, but this is more because ECHO
has the largest number of rounds for hashing a block of the message.

As a conclusion of this section we argue that the Sponge based candidates with
the light non-linear part (4-bit S-box/Boolean based) and large “input block
size/number of rounds” ratio (Keccak and Luffa) show somewhat better overall
performance in comparison to the other candidates. Due to the simplicity of
the design, they have the shortest critical path, which in combination with the
large “input block size/number of rounds” ratio results in high throughput and
low latency.

3.5.5 ASIC Evaluation Results

In order to have a complete picture regarding the possible hardware platforms,
we synthesized the code of SHA-256 and all fourteen SHA-3 candidates using
the STM 90 nm CMOS technology. We used Synopsys Design Compiler version
A-2007.12-SP3. The tool automatically estimated power consumptions by using its
own signal switching model for the datapaths, and thus we did not control test
vectors for the power estimation.

We synthesized several circuits from one design by changing speed constraints, and
chose the three circuits, which showed the smallest size, the highest throughput,
and the highest efficiency (throughput/gate). The result are presented in Table 3.6.

Our results are based on synthesis and we only provide the core throughput and
the core latency as measures of speed. However, as we further plan to tape out the

EXTENSIVE HARDWARE COMPARISON OF FOURTEEN SECOND-ROUND SHA-3 CANDIDATES 109

Figure 3.29: Maximum throughput for various types of interface with Iw = 3.
Target platform: STM 90 nm CMOS technology, synthesis results.

candidates which advanced to the third, and final round of the competition, and
to use a very similar evaluation platform (SASEBO-R), we provide estimates of
the interface influence on the ASIC performance as well.

Similar to the previous section, we provide the following figures:

• Fig. 3.29 – Maximum throughput of all fourteen candidates assuming various
types of interface.

• Fig. 3.30 – Throughput versus area graph.

• Fig. 3.31 – Latency versus message size graph.

• Fig. 3.32 – Minimum latency of all fourteen candidates assuming various
types of interface.

• Fig. 3.33 – Latency versus area graph.

• Fig. 3.34 – Power and energy consumption.

Since the designs were implemented to achieve the highest throughput, only the first
subrow in each row is relevant for comparison of maximum frequency, maximum
core throughput, and minimum core latency. Therefore, we mark (in bold and
gray) fastest and slowest designs by observing the first subrows only. For other
columns, we mark the extreme results by observing every subrow in each row.

110 HIGH-THROUGHPUT HARDWARE IMPLEMENTATIONS OF CRYPTOGRAPHIC HASH FUNCTIONS
Ta

bl
e

3.
6:

Sy
nt

he
sis

re
su

lts
of

th
e

SH
A

-3
ca

nd
id

at
es

us
in

g
90

nm
C

M
O

S
te

ch
no

lo
gy

.

S
H

A
-3

M
ax

.
M

ax
.

C
or

e
M

in
.

C
or

e
T

ot
al

D
y
n
am

ic
D

y
n
am

ic
E

n
er

gy
H

ar
d
w

ar
e

C
an

d
id

at
e

F
re

q
.†

T
h
ro

u
gh

p
u
t†

L
at

en
cy
†

A
re

a
P

ow
er
‡

[p
J
/b

it
]

E
ffi

ci
en

cy
[M

H
z]

[M
b
/s

]
[µ

s]
[G

E
]

[m
W

]
L

on
g

M
sg

S
h
or

t
M

sg
[k

b
/s

G
E

]

S
H

A
-2

56
73

5
5,

53
6

0.
09

18
,6

77
3.

11
2.

31
4.

62
29

0.
6

35
6

2,
68

0
0.

19
13

,1
99

2.
09

1.
55

3.
09

20
3.

0
11

7
87

8
0.

58
11

,3
32

1.
77

1.
32

2.
63

77
.4

B
L

A
K

E
-3

2
28

6
6,

66
8

0.
08

36
,9

44
10

.8
4

4.
66

9.
31

18
0.

5
26

0
6,

06
1

0.
08

30
,2

92
4.

94
2.

12
4.

25
20

0.
1

14
7

3,
41

2
0.

15
23

,2
14

3.
77

1.
62

3.
24

14
7.

0

B
M

W
-2

56
10

1
25

,9
37

0.
04

12
8,

65
5

9.
25

0.
36

1.
44

20
1.

6
84

21
,6

03
0.

05
11

5,
00

1
8.

46
0.

33
1.

32
18

7.
9

67
17

,2
62

0.
06

10
5,

56
6

7.
47

0
.2

9
1

.1
6

16
3.

5

C
u
b
eH

as
h
16

/3
2-

25
6

51
5

8,
24

7
0.

37
35

,5
48

7.
07

4.
42

53
.0

0
23

2.
0

35
2

5,
83

4
0.

55
21

,3
36

4.
07

2.
54

30
.5

3
26

4.
1

17
2

2,
74

9
1.

12
1

6
,3

2
0

3.
60

2.
25

26
.9

8
16

8.
5

E
C

H
O

-2
56

36
2

5,
62

1
0.

27
10

1,
06

8
17

.2
4

11
.1

1
11

.1
1

55
.6

26
0

4,
04

0
0.

38
97

,8
03

8.
88

5.
73

34
.3

6
59

.6
14

7
2,

27
8

0.
67

57
,8

34
8.

32
5.

36
32

.1
6

39
.4

F
u
gu

e-
25

6
17

0
2,

72
1

0.
32

56
,7

34
3.

57
2.

23
7.

66
48

.0
11

3
1,

80
8

0.
49

45
,5

53
3.

01
1.

88
6.

46
37

.9
78

1,
24

5
0.

71
46

,6
83

2.
92

1.
82

6.
27

26
.7

G
rø

st
l-

25
6

33
8

17
,2

97
0.

06
13

9,
11

3
22

.5
2

4.
40

17
.5

9
12

4.
3

25
8

13
,1

96
0.

08
86

,1
91

12
.7

4
2.

49
9.

95
15

3.
1

12
8

6,
54

7
0.

16
56

,6
65

7.
85

1.
53

6.
13

11
5.

5

H
am

si
-2

56
97

1
7,

76
7

0.
04

67
,5

82
6.

94
8.

67
11

.1
1

11
4.

9
54

4
4,

34
8

0.
08

36
,9

81
3.

44
4.

31
5.

51
11

7.
6

35
2

2,
81

7
0.

12
32

,1
16

2.
80

3.
50

4.
48

87
.7

J
H

-2
56

76
3

10
,0

22
0.

05
54

,5
94

2.
94

2.
24

4.
48

18
3.

6
69

4
9,

11
7

0.
06

42
,7

75
2

.0
7

1.
57

3.
14

21
3.

1
35

3
4,

63
9

0.
11

31
,8

64
2.

13
1.

63
3.

25
14

5.
6

K
ec

ca
k
(-

25
6)

78
1

3
3

,3
3

3
0

.0
3

50
,6

75
6.

36
1.

55
6.

21
65

7.
8

54
1

23
,0

63
0.

04
33

,6
64

3.
62

0.
88

3.
54

68
5.

1
35

5
15

,1
30

0.
07

29
,5

48
3.

52
0.

86
3.

44
51

2.
0

L
u
ff

a-
25

6
1

0
1

0
28

,7
32

0
.0

3
39

,6
42

5.
14

1.
81

5.
42

72
4.

8
53

8
15

,2
93

0.
05

19
,7

97
2.

85
1.

00
3.

01
7

7
2

.5
26

3
7,

46
6

0.
10

19
,3

59
2.

91
1.

02
3.

07
38

5.
6

S
h
ab

al
-2

56
59

2
6,

05
9

0.
34

34
,6

42
5.

80
5.

66
45

.3
0

17
4.

9
54

4
5,

56
5

0.
37

30
,3

28
3.

13
3.

05
24

.4
2

18
3.

5
35

1
3,

59
3

0.
57

27
,7

52
3.

16
3.

08
24

.6
5

12
9.

5

S
H

A
v
it

e-
3 2

56
62

5
8,

42
1

0.
06

59
,3

90
3.

61
2.

68
5.

36
14

1.
8

49
3

6,
63

7
0.

08
42

,0
36

2.
46

1.
83

3.
66

15
7.

9
20

7
2,

78
4

0.
18

33
,8

75
2.

41
1.

79
3.

57
82

.2

S
IM

D
-2

56
28

5
3,

17
1

0.
16

13
8,

98
0

13
.5

6
12

.1
8

24
.3

7
22

.8
26

1
2,

90
6

0.
18

12
2,

11
8

10
.7

7
9.

67
19

.3
5

23
.8

11
3

1,
25

9
0.

41
88

,9
47

10
.7

4
9.

64
19

.2
9

14
.2

S
ke

in
-5

12
-2

56
25

1
6,

73
4

0.
15

43
,1

32
17

.1
7

6.
37

25
.4

8
76

.4
20

6
5,

55
1

0.
18

28
,7

82
4.

42
4.

68
18

.7
3

87
.7

50
1,

34
7

0.
76

22
,5

62
3.

25
3.

25
13

.0
1

79
.0

†
O

n
ly

th
e

fi
rs

t
su

b
ro

w
in

ea
ch

ro
w

is
re

le
va

n
t

fo
r

co
m

p
ar

is
on

of
M

ax
.

F
re

q
u
en

cy
,

M
ax

.
C

or
e

T
h
ro

u
gh

p
u
t,

an
d

M
in

.
C

or
e

L
at

en
cy

.
‡
T

h
e

p
ow

er
co

n
su

m
p
ti

on
is

es
ti

m
at

ed
fo

r
th

e
fr

eq
u
en

cy
of

10
0

M
H

z.

EXTENSIVE HARDWARE COMPARISON OF FOURTEEN SECOND-ROUND SHA-3 CANDIDATES 111

(a) (b)

Figure 3.30: Throughput versus area graph: (a) core function only. (b) fixed
interface with w = 16 bits and Iw = 3. Target platform: STM 90 nm CMOS
technology, synthesis results.

(a) (b)

Figure 3.31: Latency versus message size graph: (a) core function only. (b) fixed
interface with w = 16 bits and Iw = 3. Target platform: STM 90 nm CMOS
technology, synthesis results.

112 HIGH-THROUGHPUT HARDWARE IMPLEMENTATIONS OF CRYPTOGRAPHIC HASH FUNCTIONS

Figure 3.32: Minimum latency of all 14 candidates assuming various types of
interface with Iw = 3. Target platform: STM 90 nm CMOS technology, synthesis
results.

(a) (b)

Figure 3.33: Latency versus area graph: (a) core function only. (b) Fixed interface
with w = 16 bits and Iw = 3. Target platform: STM 90 nm CMOS technology,
synthesis results.

EXTENSIVE HARDWARE COMPARISON OF FOURTEEN SECOND-ROUND SHA-3 CANDIDATES 113

(a) (b)

Figure 3.34: (a) Dynamic power consumption. (b) Dynamic energy consumption.
Target platform: STM 90 nm CMOS technology, synthesis results.

3.5.6 Correlation between ASIC and FPGA Results

By observing the provided graphs we argue that there is a good level of correlation
between the ASIC and the FPGA results, with a few considerable differences.
For example, when observing Fig. 3.24a and Fig. 3.30a, we notice that Fugue
and Grøstl differ considerably, while Blake and Hamsi differ noticeably. Further
comparing Fig. 3.24b versus Fig. 3.30b, Fig. 3.27a versus Fig. 3.27a, and Fig. 3.27b
versus Fig. 3.33b we notice that Fugue, Grøstl, and JH differ considerably. Another
considerable difference is in the power/energy consumption for BMW, ECHO, and
Grøstl. These three candidates are the largest in area among all, and since the
power is estimated and measured using different platforms (ASIC and FPGA), this
difference is acceptable. Therefore, we conclude that the obtained FPGA results
represent a rather reliable way of estimating the ASIC performance, especially with
respect to speed and area.

3.5.7 The SHA-3 Finalists

On December 9, 2010, NIST has selected five SHA-3 finalists to advance to the
final round:

• Blake

• Grøstl

• JH

• Keccak

• Skein

114 HIGH-THROUGHPUT HARDWARE IMPLEMENTATIONS OF CRYPTOGRAPHIC HASH FUNCTIONS

In 2012, NIST will choose a single algorithm to become the SHA-3 standard.
An extensive cryptanalysis as well as a thorough performance examination on a
multitude of platforms of these five algorithms is therefore expected before the
winner is finally announced.

3.5.8 Summary

For a complete hardware evaluation, there are plenty of evaluation platforms to
be considered. Therefore, fixing one is crucial for conducting a fair and consistent
comparison. In this section, we proposed an evaluation platform and a consistent
evaluation method to conduct a fair hardware evaluation of the remaining SHA-
3 candidates. This proposal meets the requirements analyzed from actual hash
applications and conditions of standard selection. The platform includes a SASEBO-
GII evaluation board, evaluation software, and appropriate interface definition.
Using this method, we implement all the second-round SHA-3 candidates and
obtain the resulting cost and performance factors. This technical study provides a
fair and consistent evaluation scheme. At the end, we hope that by sharing our
experience we contribute to the SHA-3 competition and by providing the proposed
methodology we influence other similar future selections of standard cryptographic
algorithms.

3.6 Hardware Evaluation of the Luffa Hash Family

Publication Data

M. Knežević and I. Verbauwhede, “Hardware Evaluation of the Luffa Hash Family,”
in Workshop on Embedded Systems Security – WESS 2009, 6 pages, 2009.

Personal Contributions

• Principal author.

Our novel contribution consists of providing efficient hardware architectures for
the Luffa hash algorithm. We explore different trade-offs and propose several
architectures, targeting both compact and high-throughput designs.

In the previous section, we provided a thorough hardware comparison of all fourteen
second-round SHA-3 candidates. Here, we focus on the Luffa hash algorithm. We
explore some of the possible trade-offs and propose several architectures, targeting
both compact and high-throughput designs. The most compact architecture of

HARDWARE EVALUATION OF THE LUFFA HASH FAMILY 115

10,157 gate equivalences (GE) was achieved for the 224/256-bit version of Luffa.
The same version, optimized for speed, achieves a throughput of 32.7 Gb/s, while
the pipelined design approaches the throughput of 291.7 Gb/s. Techniques such as
retiming, pipelining and simple multiplexing were used for the high-throughput,
pipelined and compact implementations, respectively.

Figure 3.35 illustrates a generic construction of the Luffa hash algorithm. It consists
of the intermediate mixing C ′ (called a round function) and the finalization C ′′.
The round function is a composition of a message injection function MI and a
permutation P of w 256-bit inputs as shown in Fig. 3.36 (Luffa-224/256 variant).
The permutation is divided into multiple sub-permutations Qj of 256-bit inputs.

P H

C ’

C’’P PMI MI MI

V0

V1

Vw - 1

M
(1)

M
(2)

M
(N)

Figure 3.35: A generic construction of the Luffa hash algorithm.

PMI
M

(i)

H
(i)

0

H
(i)

1

H
(i - 1)

2

H
(i - 1)

1

H
(i - 1)

0

H
(i)

2

Q1

Q2

Q0

256 bits

2

2

2

Figure 3.36: The round function C ′ (w = 3).

The family of hash functions Luffa consists of four variants specified by the output
hash length (224, 256, 384 and 512 bits). The main difference is the number of
sub-permutations w and the message injection function MI used in each of them.

116 HIGH-THROUGHPUT HARDWARE IMPLEMENTATIONS OF CRYPTOGRAPHIC HASH FUNCTIONS

The number of sub-permutations equals 3, 4 and 5 for the version of 224/256-bit,
384-bit and 512-bit Luffa, respectively.

The finalization C ′′ consists of iterating an output function OF and a round
function with a fixed message 0x00 . . . 0. If the number of (padded) message blocks
is greater than one, a blank round with a fixed message block 0x00 . . . 0 is applied
at the beginning of the finalization. The output function XORs all the block values
and outputs the result of 256-bits. Figure 3.37 illustrates the finalization function.
The output of the hash function is defined as Z0 for the 224/256-bit version, Z0
concatenated with the most significant half of Z1 for the 384-bit version, and Z0
concatenated with Z1 for the 512-bit version of Luffa.

Q1

Qw - 1

Q0

Q1

Qw - 1

Q0

OF

Z0 Z1

H
(N)

w - 1

H
(N)

1

H
(N)

0

256 bits

MI MI

0

a blank round

(if N>1)

0

Figure 3.37: The finalization function C ′′.

The round function of Luffa uses a non-linear permutation Qj with input and
output size of 256 bits. The main component of the permutation Qj is the step
function which consists of SubCrumb and MixWord blocks, as illustrated in Fig. 3.38.
A SubCrumb block contains 4-bit input S-boxes (see Fig. 3.39) while MixWord
represents linear permutations of two 32-bit words (see Fig. 3.40). The parameters
σi are fixed and given as σ1 = 2, σ2 = 14, σ3 = 10, σ4 = 1. Finally, AddConstant
is performed before the output of the step function is ready. It is a simple XOR
with precalculated constant values. To perform the complete round, one needs to
execute the message injection function once and the step function 8 times. For
a detailed description of the Luffa hash family please refer to the work of De
Cannière et al. [28].

HARDWARE EVALUATION OF THE LUFFA HASH FAMILY 117

SubCrumb (bit slice) SubCrumb (bit slice)

MixWord MixWord MixWord MixWord

AddConstant

a
(r - 1)

0 a
(r - 1)

1 a
(r - 1)

2 a
(r - 1)

3 a
(r - 1)

4 a
(r - 1)

5 a
(r - 1)

6 a
(r - 1)

7

a
(r)

0 a
(r)

1 a
(r)

2 a
(r)

3 a
(r)

4 a
(r)

5 a
(r)

6 a
(r)

7

32 bits

Figure 3.38: The step function.

S

a
3 , l a

2 , l a
1 , l a

0 , l

x
0 , lx

1 , lx
2 , lx

3 , l

1 bit

Figure 3.39: SubCrumb block.

3.6.1 Hardware Implementation

In this section we propose four different architectures for the Luffa hash family.
First, we target a high-throughput architecture. Second, we focus on a compact
design. Then, we show some of the possible area-throughput trade-offs, and finally
we propose a fully pipelined architecture that reaches a throughput of 291.7 Gb/s.

A hardware performance evaluation of the Luffa hash family was done by
synthesizing the proposed designs using a 0.13 µm CMOS High-Speed standard cell
library. The code was first written in GEZEL [154] and tested for its functionality
using the test vectors provided by the software implementations. The GEZEL code
was then translated to VHDL and synthesized using the Synopsys Design Compiler
version Y-2006.06.

High-Throughput Implementation

For the high-throughput implementation, the goal was to minimize the critical path.
To implement the round function, we have used w permutation blocks in parallel,
each of them containing 64 S-boxes and 4 MixWord blocks. The straightforward
implementation, outlined in Fig. 3.41, resulted in a critical path of 1.18 ns and
a cycle count of 8. The critical path was placed from the input of the message

118 HIGH-THROUGHPUT HARDWARE IMPLEMENTATIONS OF CRYPTOGRAPHIC HASH FUNCTIONS

<<<σ
1

<<<σ
2

<<<σ
3

<<<σ
4

xk xk +4

yk +4
yk

32 bits

Figure 3.40: MixWord block.

injection function to the output of the permutation block (dashed arrow). Inputs
and outputs of the step function (permutation block) are denoted as Arj where
1 ≤ r ≤ 8 and 0 ≤ j ≤ w − 1.

A(r)0	

A(r)1	

A(r)w-1	

A(r-1)0	

A(r-1)1	

A(r-1)w-1	

V0	

V1	

Vw-1	

MI	
 P	

M(i)	

.	
.	
.	

.	
.	
.	

.	
.	
.	

.	
.	
.	

Figure 3.41: Straightforward implementation of the round function.

As the message injection function is performed only once at the beginning of every
round, we moved the state registers at the input of the permutation blocks (see
Fig. 3.42). It resulted in a faster design, shortening the critical path to only 0.87 ns.
One more clock cycle had to be spent in order to perform the complete round, but
the final throughput got increased by about 20 %.

The synthesis results are given in Table 3.7. As we can see, all variants of the Luffa
hash algorithm achieve a throughput of more than 30 Gb/s. The throughput for

HARDWARE EVALUATION OF THE LUFFA HASH FAMILY 119

A(r)0	

A(r)1	

A(r)w-1	

A(r-1)0	

A(r-1)1	

A(r-1)w-1	

V0	

V1	

Vw-1	

MI	
 P	

M(i)	

.	
.	
.	

.	
.	
.	

.	
.	
.	

.	
.	
.	

Figure 3.42: High-Throughput implementation of the round function.

“one-block” message as well as for the very long message was calculated according
to the following equation:3

Throughput = Frequency
Number of Cycles × 256 bit .

Table 3.7: High-Throughput implementations of the Luffa hash family.
Luffa Area Freq. Number of cycles Throughput

Variant [GE] [MHz] per round [Mb/s]
224/256 25, 833 1, 149 9 32, 683

384 34, 401 1, 149 9 32, 683
512 40, 715 1, 111 9 31, 602

To show some of the possible trade-offs regarding the high-throughput implementa-
tion, we have synthesized a number of different designs only by changing the clock
frequency and hence, changing the total performance of the design (see Fig. 3.43).

Compact Implementation

A compact implementation was made using only one non-linear permutation block.
Inside the permutation block we have used only two S-boxes for implementing the

3“One-block” message is a message of exactly 256 bits after the padding is performed, so its
hashing does not require the blank round in the finalization phase. For a very long message, the
number of cycles spent for the finalization is negligible.

120 HIGH-THROUGHPUT HARDWARE IMPLEMENTATIONS OF CRYPTOGRAPHIC HASH FUNCTIONS

0

5000

10000

15000

20000

25000

30000

35000

16 21 26 31 36 41 46

T
h

ro
u

g
h

p
u

t
[M

b
/s

]

Area [kGE]

Luffa 224/256

Luffa 384

Luffa 512

Figure 3.43: High-Throughput implementations.

SubCrumb block (see Fig. 3.44). To perform the whole SubCrumb operation we have
used 32 cycles, regularly using the most significant bits of the registers a0 . . . a7 to
be the inputs of the S-boxes. The registers were then shifted to the left and the
least significant bits were updated using the outputs of the S-boxes.

Sbox	

a3[31]	
 a2[31]	
 a1[31]	
 a0[31]	

a0[0]	
a1[0]	
a2[0]	
a3[0]	

Sbox	

a4[31]	
 a7[31]	
 a6[31]	
 a5[31]	

a5[0]	
a6[0]	
a7[0]	
a4[0]	

Figure 3.44: Compact SubCrumb block.

A single MixWord block was used for performing the MixWord operation (see
Fig. 3.45). This approach resulted in a large number of cycles, while on the
other hand it efficiently reduced the final gate count. We used w 256-bit registers
to maintain the internal state.

As can be seen from Table 3.8, the most compact implementation is obtained for
Luffa-224/256 and consumes approximately 10 kGE. Note that our only goal for
the compact implementation was to have a small circuit size, regardless of the final
throughput. Hence, we fixed the frequency to 100 MHz and synthesized our design.

HARDWARE EVALUATION OF THE LUFFA HASH FAMILY 121

a0	
 a1	
 a2	
 a3	

MixWord	

a4	
 a5	
 a6	
 a7	

ak	
 ak+4	

Figure 3.45: Compact MixWord block.

To show some of the possible trade-offs regarding the compact implementations we
provide Fig. 3.46.

Table 3.8: Compact implementations of the Luffa hash family.
Luffa Area Freq. Number of cycles Throughput

Variant [GE] [MHz] per round [Mb/s]
224/256 10, 157 100 891 29

384 13, 168 100 1188 21
512 16, 720 100 1485 17

Throughput-Area Trade-Offs

Finally, to show all the possible trade-offs, we have also implemented a version with
only one non-linear permutation block but this time, inside the permutation block,
we have used 64 S-boxes and 4 MixWord blocks. This approach efficiently reduced
the number of clock cycles, while introducing a small overhead in area. Thus, a
design of, e.g. Luffa-224/256 containing only 12.9 kGE achieved a throughput of
more than 15 Gb/s. For each of the Luffa hash functions we have synthesized
a few versions, some of them with the constraints on area and some with the
constraints on speed. The most compact and the fastest designs are given in
Table 3.9, whereas Fig. 3.47 further shows the throughput-area trade-offs for the
given implementations.

122 HIGH-THROUGHPUT HARDWARE IMPLEMENTATIONS OF CRYPTOGRAPHIC HASH FUNCTIONS

0

50

100

150

200

250

10 12 14 16 18 20

T
h

ro
u

g
h

p
u

t
[M

b
/s

]

Area [kGE]

Luffa 224/256

Luffa 384

Luffa 512

Figure 3.46: Compact implementations.

Table 3.9: Throughput-Area trade-offs of the Luffa hash family.
Luffa Area Freq. Number of cycles Throughput

Variant [GE] [MHz] per round [Mb/s]
224/256 12, 057 221 25 6, 279
224/256 17, 315 781 25 22, 222

384 15, 535 193 33 5, 491
384 21, 853 699 33 19, 891
512 18, 643 195 41 5, 556
512 25, 264 662 41 18, 837

Pipelined Implementation

When hashing independent message blocks, one can benefit from using the pipelined
architecture as illustrated in Fig. 3.48. Multiple non-linear permutation blocks
need to be added (8w blocks) as well as 8w pipelined 256-bit registers (one for each
permutation block). This approach effectively increases the throughput more than
8 times at the cost of additional area overhead. As can be seen from Table 3.10,
a throughput of 291.7 Gb/s is achieved for the Luffa-224/256 version at a cost
of 151.3 kGE. This is a fully pipelined implementation and achieves the highest
throughput in case of hashing 8 independent messages in parallel.

HARDWARE EVALUATION OF THE LUFFA HASH FAMILY 123

0

5000

10000

15000

20000

25000

10 12 14 16 18 20 22 24 26

T
h

ro
u

g
h

p
u

t
[M

b
/s

]

Area [kGE]

Luffa 224/256

Luffa 384

Luffa 512

Figure 3.47: Throughput-Area trade-offs.

H0	

H1	

Hw-1	

V0	

V1	

Vw-1	

MI	
 P0	

Mj	

.	
.	
.	
.	
.	
.	

.	
.	
.	

P1	

.	
.	
.	

P7	

.	
.	
.	

. . .	

. . .	

. . .	

.	
.	
.	

.	
.	
.	

Figure 3.48: Pipelined architecture for the Luffa hash family.

Comparison with Previous Standards

To compare our implementations with the implementations of the previous
standards (SHA-1 and SHA-2), we provide Table 3.11 with the state of art results
concerning the ASIC technology. Observing the results we can conclude that
concerning throughput, the Luffa hash family outperforms all the previous standards.
The only implementation that is more compact than Luffa is the implementation
of SHA-1 proposed by Kim and Ryou [88]. This is however to be expected as the
digest size produced by SHA-1 is 160 bits long in comparison to 256-bit digest of
Luffa-224/256.

Please note that the compact implementation of SHA-256 by Kim and Ryou [89]
has appeared after our results were published. Their implementation consumes
only 8,588 GE using 0.25 µm CMOS process which is less than the most compact
Luffa design.

124 HIGH-THROUGHPUT HARDWARE IMPLEMENTATIONS OF CRYPTOGRAPHIC HASH FUNCTIONS

Table 3.10: Pipelined implementations of the Luffa hash family.
Luffa Area Freq. Number of cycles Throughput

Variant [GE] [MHz] per round [Mb/s]
224/256 151, 347 1, 282 9 291, 738

384 222, 293 1, 219 9 277, 507
512 273, 211 1, 219 9 277, 507

Table 3.11: Comparison results with the previous standards.

Design Technology Area Throughput
[µm] [GE] [Mb/s]

SHA-1 [101]† 0.18 54, 133 3, 103
SHA-224/256 [102]† 0.13 22, 025 5, 975
SHA-224/256 [38]† 0.13 N/A > 7, 420
SHA-384/512 [102]† 0.13 43, 330 9, 096

Luffa-224/256† 0.13 25, 833 32, 683
Luffa-384† 0.13 34, 401 32, 683
Luffa-512† 0.13 40, 715 31, 602

SHA-1 [88]‡ 0.25 6, 812 130
SHA-224/256 [152]‡ 0.13 11, 484 1, 096
SHA-384/512 [152]‡ 0.13 23, 146 1, 455

Luffa-224/256‡ 0.13 10, 157 29
Luffa-384‡ 0.13 13, 168 21
Luffa-512‡ 0.13 16, 720 17

† High-Throughput designs.
‡ Compact designs.

3.6.2 Summary

The hardware implementations of the Luffa hash family have been evaluated in
this section. We conclude that the design is very well suited for both compact and
high-throughput implementations. The most compact architecture of 10,157 GE
was achieved for the 224/256-bit version of Luffa. The same version achieves a
maximum throughput of 32.7 Gb/s, while the pipelined design reaches a throughput
of 291.7 Gb/s. Due to ample parallelism provided by the Luffa hash family, it
is possible to make plenty of trade-offs and choose the most appropriate design
for a specific application. For example, a design of, e.g. Luffa-224/256 achieving
20.7 Gb/s consumes 16.7 kGE, while the design that consumes only 12.9 kGE
achieves a throughput of more than 15 Gb/s.

CONCLUSION 125

Regarding hardware implementations, one can further explore the different levels of
parallelism and make trade-offs by trading the throughput for the circuit size and
vice versa. An especially challenging part remains the compact implementation
of hash functions in general and hence, we expect more research effort in that
direction.

3.7 Conclusion

Some of the well-known DSP techniques, used in the context of efficient hardware
implementations of hash functions, have been discussed in this chapter. Combining
them with several algorithm-specific techniques we achieved the highest throughput
of the RIPEMD-160 hash function reported in literature. Due to the parallel
computation used in this approach we tested our implementation on the Xilinx
Virtex2Pro FPGA board and achieved a throughput of 624 Mb/s.

An extensive hardware evaluation of the fourteen second-round SHA-3 candidates
was also presented in this chapter. By using a widely available testing platform,
fixing a design strategy and evaluation criteria, and by publishing our code online,
we established an environment for a comprehensive and fair evaluation that can
be reproduced and publicly verified. The final decision of NIST, assuring that
Blake, Grøstl, JH, Keccak, and Skein advance to the third, final round, is to some
extent driven by the candidates’ performance both in hardware and software. It
is not surprising to see Keccak in the final round, as its hardware performance
turned out to be best or second best, or at least in the top five according to all our
evaluation criteria. Grøstl, for example, has one of the highest core throughputs
both in ASIC and on an FPGA. JH has the smallest dynamic power consumption
in ASIC among all candidates and it has one of the shortest latencies on both
platforms. Blake and Skein on the other hand are both narrow-pipe and ARX
based designs. Although one of the conclusions of Section 3.5.4 (where we compare
algorithmic features against the implementation results) is that the narrow-pipe
designs provide relatively low core throughput, these designs have the most in
common with the biggest class of MD4-based hash algorithms. Therefore, we expect
these two candidates to achieve further improvement in hardware performance by
applying some of the algorithm-specific techniques, as discussed in this chapter.

Finally, we have further evaluated the hardware performance of the Luffa hash
family, one of the fourteen SHA-3 candidates, by providing a wide range of its
ASIC implementations. Luffa did not advance to the final round of the competition
although, together with Keccak, provides the best performance in hardware.

Chapter 4

Lightweight Cryptography – A
Battle for a Single Gate

4.1 Introduction

Technological developments in the field of low-end devices, such as Radio Frequency
Identification (RFID) tags, are proceeding at a rapid pace preserving, however,
never ending implementation challenges. Driven by the very fierce constraints, two
of those are of utmost importance: silicon area and power. Based on economical
and technical limitations respectively, these two constraints remain the key factors
in today’s evolution of low-cost devices. Due to the linear relationship between
silicon area and chip manufacturing costs from one side, and the billions of tags
produced every year from the other, the total production cost is naturally a limiting
factor. A very constrained chip area, where an additional gate might lead to the
solution not being used, is a way of addressing this challenge. Furthermore, the
passive RFID tags are supplied with energy of the electromagnetic field provided
by a reader, the strength of which decreases with operating distance. Therefore,
the less power a passive RFID tag consumes, the longer the operating distance.
Finally, assuming small footprint and reduced power consumption are achieved,
one must not ignore the importance of speed since the implemented protocols need
to be transparent to the end-users.

Low-end devices are used in many applications and environments, leading to an
ever increasing need to provide security (and privacy). In order to satisfy these
needs, several suitable building blocks, such as secure and low-cost block ciphers,
have been developed in the past years. The growing importance as well as the lack
of secure and suitable candidates, has initiated a line of research aiming to satisfy

127

128 LIGHTWEIGHT CRYPTOGRAPHY – A BATTLE FOR A SINGLE GATE

these requirements. Some stream ciphers, such as Grain [67] and Trivium [29]
may also be considered fit for these constrained environments, with 1,293 GE
and 749 GE1 implementations, respectively. However, some protocols cannot be
realized using stream ciphers, thus, leaving the issue of finding a more compact
and secure block cipher open.

It becomes clear that, once entering the world of lightweight cryptography, one
has to be ready to sacrifice a certain level of security for efficient implementations.
Specifically, targeting cryptographic primitives such as block ciphers we try to
reduce the key length and the block size to an absolute acceptable minimum,
therefore reducing the overall security of the primitive. Hence, a typical trade-off
that is considered throughout this chapter is illustrated in Fig. 4.1.

Security

Speed Low-Cost

Figure 4.1: Security versus low-cost trade-off.

The chapter deals with one of the solutions to this open problem. We propose
KATAN & KTANTAN, a family of small and efficient hardware-oriented block
ciphers. The first set of ciphers consists of the KATAN ciphers, KATAN32,
KATAN48, and KATAN64. All three ciphers accept 80-bit keys and have a
different block size (n-bit for KATANn). These three block ciphers are highly
compact and achieve the minimal size (while offering adequate security). The
second set, composed of KTANTAN32, KTANTAN48, and KTANTAN64, realize
even smaller block ciphers in exchange for agility. KTANTANn is more compact
than KATANn, but at the same time, is suitable only for cases where the device is
initialized with one key that can never be altered, i.e. for the KTANTAN families,

1This work is a full-custom design implemented with C2MOS dynamic logic, by
Mentens et al. [117]. The die size is equivalent to 749 standard CMOS logic NAND gates. The
clock frequency required for this solution is far from being suitable for constrained environments.

INTRODUCTION 129

the key of the device is burnt into the device. Thus, the only algorithmic difference
between KATANn and KTANTANn is the key schedule (which is considered slightly
more secure in the KATANn case).

Before going into details and providing a description of the KATAN & KTANTAN
family, we first outline some related work.

4.1.1 Related Work

After the work of Feldhofer et al. [52], who provided the smallest implementation of
the Advanced Encryption Standard (AES) [39] at the time, requiring only 3,400 GE,
it became clear that AES is the candidate block cipher for low-cost devices. In
2006, Hämäläinen et al. [62] further improved the previous work by proposing a
low area implementation of AES that requires only 3,100 GE and 160 clock cycles.

One of the requirements of the initial AES development as stated by the
National Institute of Standards and Technology (NIST) in 1997, was to have
an algorithm capable of protecting sensitive government information well into
the next century [126]. Therefore, the block size and the key size of the smallest
flavor of AES, both 128 bits, offer security margins that are not always needed
for securing low-cost devices. In fact, a solution to this matter has already been
proposed back in 1994 when Wheeler and Needham designed the Tiny Encryption
Algorithm (TEA) [175]. TEA operates on a 64-bit data state with a key of 128
bits and consists of 64 rounds. As a response to a related key attack on TEA
by Kelsey et al. [85], the tweaked version of TEA, called XTEA was published
in 1998 [174]. The simplicity of the basic round function of TEA, led to the
implementation by Yu et al. [179] of only 2,335 GE.

The years 2005 and 2006 bring several lightweight block ciphers, starting with
mCrypton, a design proposed by Lim and Korkishko [109]. It has a 64-bit state and
is specified for three different key lengths of 64, 96, and 128 bits, each requiring the
equivalent size of 2,420 GE, 2,681 GE, and 2,949 GE, respectively. The Scalable
Encryption Algorithm (SEA), proposed by Standaert et al. [157] is mainly targeted
at embedded software applications, having a key and a block size of 96 bits. Instead
of being a low-cost solution only, special emphasis is put on scalability in this case.
This additional feature comes at a price of higher area requirements. Implemented
by Macé et al. [111], the design results in a total area of 3,758 GE. Published by
Hong et al. [71], HIGHT is a generalized Feistel-like structure with 64-bit block size
and a 128-bit key. The authors claim a hardware requirement of 3,048 GE for the
realization of this block cipher. Finally, as introduced by Poschmann et al. [100],
a design based on the Data Encryption Standard (DES) with a new lightweight
S-box, called DESL, resulted in 1,848 GE, requiring 144 cycles to encrypt a single
block. The same paper proposes a stronger variant, DESXL, requiring 2,168 GE.
Both variants have a key size of 56 bits and 64-bit data block.

130 LIGHTWEIGHT CRYPTOGRAPHY – A BATTLE FOR A SINGLE GATE

In 2007, inspired by the AES finalist SERPENT [20], Bogdanov et al. [22] introduce
the PRESENT block cipher. PRESENT has an SP-Network structure with a key
of 80 bits and a block size of 64 bits, and can be implemented using the equivalent
of 1,570 GE. A more dedicated implementation of PRESENT in 0.35 µm CMOS
technology reaches 1,000 GE. The same design in 0.25 µm and 0.18 µm CMOS
technology consumes 1,169 GE and 1,075 GE, respectively [145].

In 2009, Izadi et al. [79], introduce MIBS, a new lightweight block cipher. Its Feistel
structure with a lightweight round function achieves the smallest implementation
of 1,396 GE, having a key and a block size of 64 bits. The bigger version with key
size of 80 bits is implemented with minimum 1,530 GE.

Recently, a new block cipher, taking into account the cryptographic implications
of integrated circuit (IC) printing [55], is proposed by Knudsen et al. [98]. The
PRINT cipher comes in two flavors, with 48 and 96-bit block size while the effective
key length equals five thirds of the actual block size. Due to the properties of IC
printing, a promising technology that is still in the early stages of its development,
the hardware size of the key schedule is proportional to the Hamming weight of
the key. Therefore, the smallest implementation of the PRINT cipher requires only
402 GE, while the biggest one consumes 967 GE. Although providing a remarkable
result assuming IC printing technology is fully mature, the PRINT cipher does
not seem practical for current CMOS technology. The final layout of the PRINT
cipher circuit is key-dependent and, unless the same key is embedded into millions
of tags, mass production of such circuits is economically infeasible. Concerning
the cryptanalysis of the PRINT cipher, Abdelraheem, Leander, and Zenner [8]
show that about half of the rounds of the cipher can be successfully broken using
differential cryptanalysis.

Another notable result is recent work of Poschmann et al. [135] where the GOST
block cipher [130] is implemented in only 651 GE while having a key-length of 256
bits. The architecture benefits from GOST’s simple key schedule and assumes that
the key is fixed and cannot be changed once the circuit has been manufactured.
The latest cryptanalysis result by Isobe [78] showed that a 256-bit key of the full
GOST cipher can be recovered with 2225 computations and 232 known plaintexts.

For an in-depth discussion of lightweight cryptography from the engineering
perspective, we refer to Poschmann’s thesis entitled ‘Lightweight Cryptography –
Cryptographic Engineering for a Pervasive World’ [134], as well as Feldhofer’s
‘Low-Power Hardware Design of Cryptographic Algorithms for RFID Tags’
dissertation [51].

KATAN & KTANTAN – A FAMILY OF LOW-COST HARDWARE-ORIENTED BLOCK CIPHERS 131

4.2 KATAN & KTANTAN – A Family of Small and
Efficient Hardware-Oriented Block Ciphers

Publication Data

C. D. Cannière, O. Dunkelman, and M. Knežević, “KATAN & KTANTAN – A
Family of Small and Efficient Hardware-Oriented Block Ciphers,” in Cryptographic
Hardware and Embedded Systems – CHES 2009, vol. 5747 of Lecture Notes in
Computer Science, pp. 272–288, Springer, 2009.

Personal Contributions

• Involved in: Feedback on hardware requirements; Hardware optimizations;
Implementation; Text writing.

Our novel contribution consists of proposing a new family of very efficient hardware
oriented block ciphers. The family contains six block ciphers divided into two
flavors. All block ciphers share the 80-bit key size. The smallest cipher of the
entire family, KTANTAN32, can be implemented in only 462 GE, while the biggest
one, KATAN64, uses 1,054 GE.

While analyzing the previous solutions to the problem of having a lightweight
cryptographic primitive, we have noticed that the more compact the cipher is,
the more area is dedicated for storing the intermediate values and key bits. For
example, in Grain [67], almost all of the 1,294 GE which are required, are used
for maintaining the internal state. This phenomena also exist in DESL [100] and
PRESENT [22], but to a lesser degree. This follows from a two-fold reasoning.
First, stream ciphers need an internal state of at least twice the security level while
block ciphers are exempt from this requirement. Second, while in stream ciphers it
is possible to use relatively compact highly nonlinear combining functions, in block
ciphers the use of an S-box puts a burden on the hardware requirements.

Figure 4.2 represents a view of a block cipher by looking through the eyes of a
hardware designer. As already mentioned, the biggest portion of the cipher is
dedicated to the memory necessary for performing the key schedule as well as for
maintaining the state of the cipher. By having a key size of at least 80 bits and a
block size of no less than 32 bits we can achieve a moderate security level against
brute force attacks. The way security is actually achieved is determined by the
smallest portion of the cipher – the datapath. In order to control the whole design,
the control logic needs to be integrated as well. Having a minimized datapath and
incorporating the control logic within the datapath itself seems to be a good method
towards achieving area minimization of block ciphers. This is indeed the way we
address the problem in our contribution to the field of lightweight cryptography.

132 LIGHTWEIGHT CRYPTOGRAPHY – A BATTLE FOR A SINGLE GATE

Block size	

Memory	

Datapath	

 & 	

Control	

Logic	

Key size	

Figure 4.2: Block cipher – hardware perspective.

Another interesting issue that we have encountered during the analysis of previous
results is the fact that various implementations not only differ in the basic gate
technology, but also in the number of gate equivalents required for storing a bit. In
the standard library we have used in this work, a simple flip-flop implementation
can take between 5 and 12 GE. This, of course, depends on the type of the flip-
flop that is used (scan or standard D flip-flop, with or without set/reset signals,
input and output capacitance, etc). Typical flip-flops that are used to replace a
combination of a multiplexer and a flip-flop are, so-called, scan flip-flops of which
the most compact version, in our library, has a size equivalent to 6.25 GE. These
flip-flops basically act as a combination of a simple D flip-flop and a MUX2to1.
Using this type of flip-flops is beneficial both for area and power consumption.

In order to avoid any ambiguity we provide Table 4.1 with the area requirements
of the selected standard cells available in our UMC 0.13 µm library. The library
contains many other cells and we only outline ones that are of interest to us. The
size of the cells varies depending mainly on the driving strength of the cell. A
synthesis tool will therefore choose an appropriate cell depending on many factors,
e.g. speed constraints, physical area constraints, fan-in, fan-out, length of the wires,
etc.

Furthermore, we notice that in PRESENT [22], the 80-bit key is stored in an
area of about 480 GE, i.e. about 6 GE for one bit of memory, while in DESL,
the 64-bit state is stored in 780 GE (about 12 GE for a single bit). As we have
already discussed, this is related to many different factors such as the type of
flip-flops, technology, library, etc. Finally, we note that in some cases (which do
not necessarily fit an RFID tag due to practical reasons) it is possible to reduce the
area required for storing one memory bit to only 8 transistors (i.e. about 2 GE).
This approach was presented by Mentens et al. [117].

An additional issue which we observed is that in many low-end applications, the
key is loaded once to the device and is never changed. In such instances, it should

KATAN & KTANTAN – A FAMILY OF LOW-COST HARDWARE-ORIENTED BLOCK CIPHERS 133

Table 4.1: Area requirements of selected standard cells in our UMC 0.13 µm library
(FSC0L D).

Standard cell Number of inputs Area [µm2] Area [GE]
NOT 1 3 – 28 0.75 – 7

2 4 – 23 1 – 5.75
NAND 3 6 – 14 1.5 – 3.5

4 12 – 18 3 – 4.5
2 4 – 40 1 – 10

NOR 3 6 – 13 1.5 – 3.25
4 11 – 19 2.75 – 4.75
2 5 – 19 1.25 – 4.75

AND 3 7 – 16 1.75 – 4
4 10 – 33 2.5 – 8.25

OR 2 5 – 25 1.25 – 6.25
3 7 – 26 1.75 – 6.5
2 11 – 16 2.75 – 4

XOR 3 22 – 26 5.5 – 6.5
4 30 – 31 7.5 – 7.75
2 9 – 28 2.25 – 7

MUX 3 16 – 27 4 – 6.75
4 25 – 35 6.25 – 8.75

D Flip Flop 1 20 – 40 5 – 10
Scan Flip Flop 1 25 – 47 6.25 – 11.75

be possible to provide an encryption solution which can handle a key which is not
stored in volatile memory, in a more efficient manner.

A final issue related to reducing the area requirements of the cipher is the block
size. By decreasing the block size, it is possible to further reduce the memory
complexity of the cipher. On the other hand, reducing the plaintext size to less
than 32 bits has strong implications on the security of the systems using this cipher.
For example, due to the birthday bound, a cipher with block size smaller than 32
bits is distinguishable from a family of random permutations after 216 blocks.

The life span of a simple RFID tag indeed fits this restriction, but some RFID tags
and several devices in sensor networks may need to encrypt larger amounts of data
(especially if the used protocols require the encryption of several values in each
execution). Thus, we decided to offer 3 block sizes to implementers — 32 bits, 48
bits, and 64 bits.

Our specific design goals are as follows:

134 LIGHTWEIGHT CRYPTOGRAPHY – A BATTLE FOR A SINGLE GATE

• For an n-bit block size, no differential characteristic with probability greater
than 2−n exists for 128 rounds (about half the number of rounds of the
cipher).

• For an n-bit block size, no linear approximation with bias greater than 2−n/2
exists for 128 rounds.

• No related-key key-recovery or slide attack with time complexity smaller than
280 exists on the entire cipher.

• High enough algebraic degree for the equation describing half the cipher to
thwart any algebraic attack.

We note that the first two conditions ensure that no differential-linear attack (or
a boomerang attack) exist for the entire cipher as well. We also had to rank the
possible design targets as follows:

• Minimize the size of the implementation.

• Keeping the critical path as short as possible.

• Increase the throughput of the implementation (as long as the increase in
the foot print is small).

• Decrease the power consumption of the implementation.

4.2.1 General Construction and Building Blocks

Following the design of KeeLoq [118], we decided to adopt a cipher whose structure
resembles a stream cipher. To this extent we have chosen a structure which
resembles Trivium [29], or more precisely, its two register variant Bivium as the
base for the block cipher. While the internal state of Trivium consists of 288 bits
to overcome the fact that in each round, one bit of internal state is revealed, for
the block cipher this extra security measure is unnecessary. Hence, we select the
block size and the internal state of the cipher to be equal.

The structure of the KATAN & KTANTAN ciphers is very simple — the plaintext
is loaded into two registers (whose lengths depend on the block size). Each round,
several bits are taken from the registers and enter two nonlinear Boolean functions.
The outputs of the Boolean functions are loaded in the least significant bits of the
registers (after they were shifted). Of course, this is done in an invertible manner.
To ensure sufficient mixing, 254 rounds of the cipher are executed.

We have devised several mechanisms used to ensure the security of the cipher, while
maintaining a small foot print. The first one is the use of an LFSR instead of a

KATAN & KTANTAN – A FAMILY OF LOW-COST HARDWARE-ORIENTED BLOCK CIPHERS 135

counter for counting the rounds and to stop the encryption after 254 rounds. As
there are 254 rounds, an 8-bit LFSR with as sparse polynomial feedback can be
used. The LFSR is initialized with some state, and the cipher has to stop running
the moment the LFSR arrives to some predetermined state.

We have implemented the 8-bit LFSR counter, and the result fits in a gate equivalent
of 60 GE, whilst using an 8-bit counter (the standard alternative) took 80 GE.
Moreover, the expected speed of the LFSR (i.e. the critical path) is shorter than
the one for the 8-bit counter.

Another advantage of using an LFSR is the fact that when considering one of the
bits taken from it, we expect a sequence which keeps on alternating between 0’s and
1’s in a more irregular manner than in a counter (of course the change is linear).
We use this feature to enhance the security of our block ciphers as described later.

One of the problems that may arise in such a simple construction is related to
self-similarity attacks such as the slide attacks. For example, in KeeLoq [118] the
key is used again and again. This made KeeLoq susceptible to several slide attacks
(see for example the work of Curtois et al. [37] and Indesteege et al. [73]). A simple
solution to this problem is to have the key loaded into an LFSR with a primitive
feedback polynomial (thus, altering the subkeys used in the cipher). This solution
helps the KATAN family to achieve security against the slide attack.

While the above building block is suitable when the key is loaded into memory, in
the KTANTAN family, it is less favorable (as the key is hardcoded in the device).
Thus, the only means to prevent a slide attack is by generating a simple, non-
repetitive sequence of bits from the key. To do so, we use the “round counter” LFSR,
which produces easily computed bits, that at the same time follow a non-repetitive
sequence.

The third building block which we use prevents the self-similarity attacks and
increases the diffusion of the cipher. The cipher actually has two (very similar
but distinct) round functions. The choice of the round function is made according
to the most significant bit of the round-counting LFSR. This irregular update
also increases the diffusion of the cipher, as the nonlinear update affects both the
differential and the linear properties of the cipher.

Finally, both KATAN and KTANTAN were constructed such that an implementa-
tion of the 64-bit variants can support the 32-bit and the 48-bit variants at the cost
of small extra controlling hardware. Moreover, given the fact that the way the key
is stored and the subkeys are derived is the only difference between a KATANn and
KTANTANn cipher, it is possible to design a very compact circuit that supports
all six ciphers.

136 LIGHTWEIGHT CRYPTOGRAPHY – A BATTLE FOR A SINGLE GATE

4.2.2 The KATAN Set of Block Ciphers

The KATAN ciphers come in three variants: KATAN32, KATAN48 and KATAN64.
All the ciphers in the KATAN family share the key schedule which accepts an
80-bit key and 254 rounds as well as the use of the same nonlinear functions.

We start by describing KATAN32, and describe the differences of KATAN48
and KATAN64 later. KATAN32, the smallest of this family has a plaintext and
ciphertext size of 32 bits. The plaintext is loaded into two registers L1, and L2 (of
respective lengths 13 and 19 bits) where the least significant bit of the plaintext
is loaded in bit 0 of L2, whilst the most significant bit of the plaintext is loaded
in bit 12 of L1. In each round, L1 and L2 are shifted to the left (bit i is shifted
to position i+ 1), where the new computed bits are loaded in the least significant
bits of L1 and L2. After 254 rounds of the cipher, the contents of the registers are
then exported as the ciphertext (where bit 0 of L2 is the least significant of the
ciphertext).

KATAN32 uses two nonlinear functions fa(·) and fb(·) in each round. The nonlinear
functions fa and fb are defined as follows:

fa(L1) = L1[x1]⊕ L1[x2]⊕ (L1[x3] · L1[x4])⊕ (L1[x5] · IR)⊕ ka

fb(L2) = L2[y1]⊕ L2[y2]⊕ (L2[y3] · L2[y4])⊕ (L2[y5] · L2[y6])⊕ kb
where IR is an irregular update rule (i.e. L1[x5] is XORed in the rounds where the
irregular update is used), and ka and kb are the two subkey bits. For round i, ka
is defined to be k2i, whereas kb is k2i+1. The selection of the bits {xi} and {yj}
are defined for each variant independently, and listed in Table 4.2.

After the computation of the nonlinear functions, the registers L1 and L2 are
shifted, where the MSB falls off (into the corresponding nonlinear function), and
the LSB is loaded with the output of the second nonlinear function, i.e. after the
round the LSB of L1 is the output of fb, and the LSB of L2 is the output of fa.

The key schedule of the KATAN32 cipher (and the other two variants KATAN48
and KATAN64) loads the 80-bit key into an LFSR (the least significant bit of the
key is loaded in position 0 of the LFSR). Each round, positions 0 and 1 of the
LFSR are generated as the round’s subkey k2i and k2i+1, and the LFSR is clocked
twice. The feedback polynomial that was chosen is a primitive polynomial with
minimal hamming weight of 5 (there are no primitive polynomials of degree 80
with only 3 monomials):

x80 + x61 + x50 + x13 + 1 .

We note that these locations compose a full difference set, and thus, are less likely
to lead to guess and determine attacks faster than exhaustive key search.

KATAN & KTANTAN – A FAMILY OF LOW-COST HARDWARE-ORIENTED BLOCK CIPHERS 137

In other words, let the key be K, then the subkey of round i is ka||kb = k2·i||k2·i+1
where

ki =
{
Ki for i = 0 . . . 79 ,
ki−80 ⊕ ki−61 ⊕ ki−50 ⊕ ki−13 otherwise .

The differences between the various KATAN ciphers are:

• The plaintext/ciphertext size,

• The lengths of L1 and L2,

• The position of the bits which enter the nonlinear functions,

• The number of times the nonlinear functions are used in each round.

While the first difference is obvious, we define in Table 4.2 the lengths of the
registers and the positions of the bits which enter the nonlinear functions used in
the ciphers. The selection of the bits {xi} and {yj} are defined for each variant
independently, and are listed in Table 4.2.

For KATAN48, in one round of the cipher the functions fa and fb are applied
twice. The first pair of fa and fb is applied, and then after the update of the
registers, they are applied again, using the same subkeys. Of course, an efficient
implementation can implement these two steps in parallel. In KATAN64, each
round applies fa and fb three times (again, with the same key bits).

Table 4.2: Parameters defined for the KATAN/KTANTAN family of ciphers.
Cipher |L1| |L2| x1 x2 x3 x4 x5

KATAN32/KTANTAN32 13 19 12 7 8 5 3
KATAN48/KTANTAN48 19 29 18 12 15 7 6
KATAN64/KTANTAN64 25 39 24 15 20 11 9
Cipher y1 y2 y3 y4 y5 y6

KATAN32/KTANTAN32 18 7 12 10 8 3
KATAN48/KTANTAN48 28 19 21 13 15 6
KATAN64/KTANTAN64 38 25 33 21 14 9

We outline the structure of KATAN32 (which is similar to the round function of
any of the KATAN variants or the KTANTAN variants) in Fig. 4.3.

Finally, specification-wise, we define the counter which counts the number of rounds.
The round-counter LFSR is initialized to the all 1’s state, and clocked once using

138 LIGHTWEIGHT CRYPTOGRAPHY – A BATTLE FOR A SINGLE GATE

L1	

L2	

x5	
 x4	
 x3	
 x2	
 x1	

y2	
 y3	
 y4	
 y5	
 y6	
y1	

kb	

ka	
IR	

Figure 4.3: The outline of a round of the KATAN/KTANTAN ciphers.

the feedback polynomial x8 +x7 +x5 +x3 + 1. Then, the encryption process starts,
and ends after 254 additional clocks when the LFSR returns to the all 1’s state.
As mentioned earlier, we use the most significant bit of the LFSR to control the
irregular update (i.e. as the IR signal). For sake of completeness, in Table 4.3 we
provide the sequence of irregular rounds.

Table 4.3: The sequence of the irregular updates; IR = 1 means that the irregular
update rule is used in this round, while IR = 0 means that this is not the case.

IR0−39 1111111000 1101010101 1110110011 0010100100
IR40−79 0100011000 1111000010 0001010000 0111110011
IR80−119 1111010100 0101010011 0000110011 1011111011
IR120−159 1010010101 1010011100 1101100010 1110110111
IR160−199 1001011011 0101110010 0100110100 0111000100
IR200−239 1111010000 1110101100 0001011001 0000001101
IR240−253 1100000001 0010 – –

We note that due to the way the irregular update rule is chosen, there are no
sequences of more than 7 rounds that share the pattern of the regular/irregular
updates. This ensures that any self-similarity attack cannot utilize more than 7
rounds of the same function (even if the attacker chooses keys that suggest the

KATAN & KTANTAN – A FAMILY OF LOW-COST HARDWARE-ORIENTED BLOCK CIPHERS 139

same subkeys). Thus, it is easy to see that such attacks are expected to fail when
applied to the KATAN family.

4.2.3 The KTANTAN Family

The KTANTAN family is very similar to the KATAN family except of the key
schedule. While in the KATAN family, the 80-bit key is loaded into a register which
is then repeatedly clocked, in the KTANTAN family of ciphers, the key is burnt
(i.e. fixed) and the only possible “flexibility” is the choice of subkey bits. Thus, the
design problem in the KTANTAN ciphers is choosing a sequence of subkeys in a
secure, yet efficient manner.

In order to minimize the hardware size, while maintaining the throughput, we
treat the key as 5 words of 16 bits each. From each 16-bit word we pick the same
bit (using a MUX16to1) according to the four most significant bits of the round
controlling LFSR. Then, out of the five bits, we choose one using the four least
significant bits of the round-counting LFSR.

Formally, let K = w4||w3||w2||w1||w0, where the least significant bit of w0 is the
least significant bit of K, and the most significant bit of w4 is the most significant bit
of K. We denote by T the round-counting LFSR (where T7 is the most significant
bit), then, let ai = MUX16to1(wi, T7T6T5T4), where MUX16to1(x, y) gives the
y-th bit of x. Then, the key bits which are used are

ka = T3 · T2 · (a0)⊕ (T3 ∨ T2) ·MUX4to1(a4a3a2a1, T1T0)

kb = T3 · T2 · (a4)⊕ (T3 ∨ T2) ·MUX4to1(a3a2a1a0, T1T0)
(where MUX4to1(x, y) is a MUX with 4 input bits and 1 output bit).

When considering ka or kb, of the 80-bit key, only one bit is used only twice, 15 are
used four times, and the remaining 64 bits are used 3 times (but in total each key
bit is used at least 5 times). Moreover, even if an attacker tries to pick two keys
which realize the same subkey sequence for either ka or kb, the maximal length of
such a sequence for either ka or kb is 35 rounds (i.e. necessarily after 35 rounds the
sequences differ). We also note that due to the irregular update, during these 35
rounds, the round function is going to be different in any case.

The last issue concerning the KTANTAN key schedule is finding the most efficient
way to implement it. One possible solution is to have the entire selection logic
in one round. This approach requires 5 parallel MUX16to1 and our hardware
implementations show that the total area consumed by the MUXes is about 180 GE.
A second approach is to use one MUX16to1 and re-use it over 5 clock cycles. At
first glance, this approach may lead to a smaller circuit (while the implementation
is slower). However, due to the cost of the extra control logic, this approach is not
only slower, but leads to larger circuits.

140 LIGHTWEIGHT CRYPTOGRAPHY – A BATTLE FOR A SINGLE GATE

4.2.4 Hardware Implementation

We implement KATAN32 using Synopsys Design Compiler version Y-2006.06 and
the FSC0L D 0.13 µm standard cell CMOS library tailored for UMC’s 0.13 µm
Low Leakage process. Our implementation requires 802 GE, of which 742 GE are
used for the sequential logic, and 60 GE are used for the combinational logic. In
other words, the memory occupies 92.5 % of the total design. As already discussed,
this amount of memory is the minimum requirement for designing a moderately
secure, low-cost block cipher. All of the other logic, which in this case represents
7.5 % of the cipher, serves to control the design and to provide security against
attacks other than brute force. At 100 kHz the cipher consumes only 381 nW,
running at the speed of 12.5 kb/s. This is the gate level power estimation obtained
using Synopsys Design Compiler version Y-2006.062.

For KATAN48 the implementation size is 927 GE (of which 842 are for the sequential
logic) and the total power consumption is estimated to be 439 nW. For the 64-bit
variant, KATAN64, the total area is 1,054 GE (of which 935 are for the sequential
logic) and the power consumption 555 nW.

Here we would like to note that further area reduction for KATAN48 and KATAN64
is possible by utilizing a clock gating technique. As explained above, the only
difference between KATAN32 on one hand and KATAN48 and KATAN64 on the
other, is the number of times nonlinear functions fa and fb are applied with the
same subkeys per single round. Therefore, we can clock the key register and the
counter such that they are updated once in every two (three) cycles for KATAN48
(KATAN64). However, this approach reduces the throughput two (three) times
respectively, and is useful only when a compact implementation is an ultimate goal.
An area of 916 GE with a throughput of 9.4 kb/s (at 100 kHz) is obtained for
KATAN48 and 1,027 GE with a throughput of 8.4 kb/s (at 100 kHz) for KATAN64.

At the cost of a little hardware overhead, the throughput of the KATAN family
of block ciphers can be doubled or even tripled. To increase the speed of the
cipher, we double (triple) the logic for the nonlinear functions fa and fb as well
as the logic for the feedback coefficients of the counter and the key register. The
implementation results are given in Table 4.4.

KTANTAN32 is implemented using the same FSC0L D 0.13 µm CMOS library.
Our implementation requires 462 GE, of which 244 GE are used for the sequential
logic, and 218 GE are used for the combinational logic. The simulated power
consumption at 100 kHz, and throughput of 12.5 kb/s is only 146 nW. For the
synthesis and the power estimation we have again used the same version of Synopsys
Design Compiler.

2Although the gate level power estimation gives a rough estimate, it is useful for comparison
with related work reported in the literature.

KATAN & KTANTAN – A FAMILY OF LOW-COST HARDWARE-ORIENTED BLOCK CIPHERS 141

Table 4.4: Area-Throughput trade-offs (UMC 0.13µm CMOS, Synopsys Design
Compiler version Y-2006.06, synthesis results).

Cipher Block Key Size GE per Bit Throughput?
[bit] [bit] [GE] of Memory [kb/s]

KATAN32 32 80 802 6.25 12.5
KATAN32 32 80 846 6.25 25
KATAN32 32 80 898 6.25 37.5
KATAN48† 48 80 916 6.25 9.4
KATAN48 48 80 927 6.25 18.8
KATAN48 48 80 1,002 6.25 37.6
KATAN48 48 80 1,080 6.25 56.4
KATAN64† 64 80 1,027 6.25 8.4
KATAN64 64 80 1,054 6.25 25.1
KATAN64 64 80 1,189 6.25 50.2
KATAN64 64 80 1,269 6.25 75.3

KTANTAN32 32 80 462 6.25 12.5
KTANTAN32 32 80 673 6.25 25
KTANTAN32 32 80 890 6.25 37.5
KTANTAN48† 48 80 571 6.25 9.4
KTANTAN48 48 80 588 6.25 18.8
KTANTAN48 48 80 827 6.25 37.6
KTANTAN48 48 80 1,070 6.25 56.4
KTANTAN64† 64 80 684 6.25 8.4
KTANTAN64 64 80 688 6.25 25.1
KTANTAN64 64 80 927 6.25 50.2
KTANTAN64 64 80 1,168 6.25 75.3
? — A throughput is estimated for frequency of 100 kHz.
† — Using clock gating.

For KTANTAN48 the implementation size of 588 GE (of which 344 are used for
the sequential logic) is obtained together with an estimated power consumption of
234 nW. For the 64-bit variant, KTANTAN64, the total area is 688 GE (of which
444 are for the sequential logic) and the power consumption 292 nW. By using the
clock gating as explained above, an area of 571 GE (684 GE) and a throughput of
9.4 kb/s (8.4 kb/s) for KATAN48 (KATAN64) is achieved.

Similar to the KATAN family, we can also double (triple) the throughput for all
the versions of KTANTAN family. To do that, we double (triple) the number of
MUX16to1, MUX4to1, round functions fa and fb, and all the logic used for the
feedback coefficients of the counter. Additionally, a few more gates are necessary
to perform the key schedule efficiently.

While here we put emphasis on the smallest possible variants, it can be easily

142 LIGHTWEIGHT CRYPTOGRAPHY – A BATTLE FOR A SINGLE GATE

seen that increasing the speed of the implementation is feasible with only a small
hardware overhead. Therefore, we provide more implementation results in Table 4.4.
We compare our results with previous constructions in Table 4.5. We note here
that some of the implementations achieve an amazingly low gate count due to
the number of GE per bit of memory used. As already discussed, this is an issue
inherent not only to the encryption algorithm, but also a matter of the technology
that is used.

Table 4.5: Comparison of ciphers designed for low-end environments (optimized
for size).

Cipher Block Key Size GE per Bit Throughput? Technology
[bit] [bit] [GE] of Memory [kb/s] [µm]

AES-128 [52] 128 128 3,400 7.97 12.4 0.35
AES-128 [62] 128 128 3,100 5.8 0.08 0.13
HIGHT [71] 64 128 3,048 N/A 188.25 0.25

mCrypton [109] 64 64 2,420 5 492.3 0.13
DES [100] 64 56 2,309 12.19 44.4 0.18

DESL [100] 64 56 1,848 12.19 44.4 0.18
PRESENT-80 [22] 64 80 1,570 6 200 0.18
PRESENT-80 [145] 64 80 1,000 N/A 11.4 0.35

MIBS-64 [79] 64 64 1,396 6 200 0.18
MIBS-80 [79] 64 80 1,530 6 200 0.18

TEA [179] 64 128 2,335 N/A N/A N/A
SEA [111] 96 96 3,758 N/A 103 0.13
Grain [57] 1 80 1,294 7.25 100 0.13

Trivium [117] 1 80 749 2♦ 100† 0.35
KATAN32 32 80 802 6.25 12.5 0.13
KATAN48 48 80 927 6.25 18.8 0.13
KATAN64 64 80 1,054 6.25 25.1 0.13

KTANTAN32 32 80 462 6.25 12.5 0.13
KTANTAN48 48 80 588 6.25 18.8 0.13
KTANTAN64 64 80 688 6.25 25.1 0.13

? — A throughput is estimated for frequency of 100 kHz.
† — This throughput is projected, as the chip requires higher frequencies.
♦ — This is a full-custom design using C2MOS dynamic logic.

One may argue that further area reduction comes by serializing input/output of
the plaintext (and the key for KATAN)/ciphertext. While this seems to be a good
approach at first glance, one must not ignore the throughput degradation in this
case. Furthermore, one needs to introduce the clock gating and be able to control
such an implementation in an efficient way, not introducing more overhead than
savings by using this method.

KATAN & KTANTAN – A FAMILY OF LOW-COST HARDWARE-ORIENTED BLOCK CIPHERS 143

4.2.5 Security Analysis

Our design philosophy was based on providing a very high level of security. To do
so, we designed the ciphers with very large security margins. For example, as a
design target we have set an upper bound for the differential probability of any
128-round differential characteristic at 2−n for an n-bit block size.

Differential and Linear Cryptanalysis

We have analyzed all ciphers under the assumption that the intermediate encryption
values are independent. While this assumption does not necessarily hold, it simplifies
the analysis and is not expected to change the results too much. Moreover, in our
analysis we always take a “worst case” approach, i.e. we consider the best scenario
for the attacker, which most of the times does not happen. Hence, along with the
large security margins, even if the assumption does not hold locally, it is expected
that our bounds are far from being tight.

To simplify the task of identifying high probability differentials, we used computer-
aided search. Our results show that depending on the used rounds, the best
42-round differential characteristic for KATAN32 has probability of 2−11 (it may
even be lower for different set of rounds). Hence, any 126-round differential
characteristic must have probability no more than (2−11)3 = 2−33. Similar results
hold for linear cryptanalysis (the best 42-round linear approximation has a bias of
2−6, i.e. a bias of 2−16 for 126-round approximation).

For KATAN48, the best 43-round differential characteristic has probability of at
most 2−18. Hence, any 129-round differential characteristic has probability of at
most (2−18)3 = 2−54. As the probability of an active round is at least 2−4 this
actually proves that our design criteria for 128-round differential characteristics is
satisfied. The corresponding linear bias is 2−10 (for 43 rounds) or 2−28 (for 129
rounds).

Finally, repeating the analysis for KATAN64, our computer-aided search found
that the best 37-round differential characteristic has probability 2−20. Hence, any
111-round differential characteristic has probability of at most 2−60, along with the
fact that the best 18-round differential characteristic has probability of at most
2−5, then the best 129-round differential characteristic has probability of no more
than 2−65. The linear bounds are 2−11 for 37 rounds and 2−31 for 111 rounds.

Hence, we conclude that the KATAN family is secure against differential and linear
attacks. As there is no difference between the KATAN and the KTANTAN families
with respect to their differential and linear behaviors, then the above is also true
for the KTANTAN family.

144 LIGHTWEIGHT CRYPTOGRAPHY – A BATTLE FOR A SINGLE GATE

4.2.6 Combined Attacks

As shown in the previous section, the probability of any differential characteristic
of 128 rounds can be bounded by 2−n for KATANn. Moreover, even for 64 rounds,
there are no “good” characteristics. Hence, when trying to combine these together,
we do not expect to obtain good combined attacks.

For example, consider a differential-linear approximation. As noted before, the
differential characteristic of 42-round KATAN32 has probability at most 2−11. The
bias of a 42-round KATAN32 is at most 2−6. Hence, the best differential-linear
property for 120 rounds is expected to have bias of at most 2 · 2−11 · (2−6)2 = 2−22

(we assume a worst case assumption that allows the attacker to gain some free
rounds in which the differential is truncated). Of course, an attacker may try
to construct the differential-linear approximation using a different division of
rounds. However, as both the probability and bias drop at least exponentially
with the number of rounds, a different division is not expected to lead to better
differential-linear approximations.

The same holds for the (amplified) boomerang attack. The attack (just
like the differential-linear attack) treats the cipher as composed of two sub-
ciphers. The probability of constructing a boomerang quartet is p̂2q̂2, where
p̂ =

√∑
β Pr 2[α→ β] where α is the input difference for the quartet, and β

is the output difference of the characteristic in the first sub-cipher. Again, as
p̂2 ≤ maxβ Pr[α → β] which is bounded at 2−22 for 84-round KATAN32. The
same goes with respect to q̂, and thus, the probability of a boomerang quartet in
128-round KATAN32 is at most 2−44.

The same rationale can be applied to KATAN48 and KATAN64, obtaining similar
bounds. Specifically, the bounds for differential-linear bias is 2−37 (for 140 rounds)
and 2−50 (for 160 rounds), respectively. The bounds for constructing a boomerang
quartet for 128 rounds are 2−54 and 2−65, respectively.

Another combined attack which may be considered is the impossible differential
attack. This attack is based on finding a differential which has probability zero of
as many rounds as possible. The most common way to construct such a differential
is in a miss-in-the-middle manner, which is based on finding two (truncated)
differentials with probability 1 which cannot co-exist. Due to the quick diffusion,
changing even one bit would necessarily affect all bits after at most 42 rounds (37
for KATAN48 and 38 for KATAN64), and thus, there is no impossible differential
of more than 168 rounds (after 42 rounds, a change of any bit may affect all bits,
and thus, after 84 rounds, each differential may have any output difference).

Hence, we conclude that the KATAN family (as well as the KTANTAN family) of
block ciphers is secure against combined attacks.

KATAN & KTANTAN – A FAMILY OF LOW-COST HARDWARE-ORIENTED BLOCK CIPHERS 145

Slide and Related-Key Attacks

As mentioned before, the KATAN & KTANTAN family was designed to foil
self-similarity attacks by using two types of rounds which are interleaved in a
non-repeating manner. First, consider the slide attack, which is based on finding
two messages such that they share most of the encryption process (which are some
rounds apart). Given the fact that there is a difference between the deployed
round functions, this is possible only for a very small number of rounds, even if we
allow these relations to be probabilistic in nature (i.e. assume that the bit of the
intermediate value is set to 0 thus preventing the change in the function to change
the similarity between the states). For example, when considering KATAN32, there
is no slide property with probability 2−32 starting from the first round of the cipher.
The first round from which such a property can be constructed is round 19. If
an attacker achieves the same intermediate encryption value after round 19 and
round 118, he may find a “slid” pair which maintains the equality with probability
2−31 until the end of the cipher (i.e. the output of the second encryption process
will be the same as the intermediate encryption value of the first encryption at
round 155). This proves that there are no good slid properties in the cipher family
(we note that this probability is based on the assumption that the subkeys are the
same, which is not the case, unless the key is the all zeros key). When it comes
to KATAN48 or KATAN64, this probability is even lower (as there are more bits
which need to be equal to zero), i.e. 2−62 and 2−93, respectively, rendering slide
attacks futile against the KATAN & KTANTAN family (these values are actually
an upper bound as they assume that all the subkeys are the same).

Now consider a related-key attack. In the related-key setting, the attacker searches
for two intermediate encryption values as well as keys which develop in the same
manner for as many rounds as possible. As noted before, there are no “good”
relations over different rounds, which means that the two intermediate encryption
values have to be in the same round. However, by changing even one single bit
of the key causes a difference after at most 80 rounds of the similar encryption
process. Hence, no related-key plaintext pairs (or intermediate encryption values)
exist for more than 80 rounds (similarity in 80 rounds would force the key and
the intermediate encryption value to be the same). As this is independent of the
actual key schedule algorithm, it is easy to see that both KATAN and KTANTAN
are secure against this attack.

The only attack in this category which remains is a related-key differential attack.
This is the only attack where there is a difference between the two families of
ciphers according to their key schedule algorithm. We first consider the case of the
KATAN family. The key schedule of the KATAN family expands linearly the 80-bit
key into 508 subkey bits (each is used once in KATAN32, twice in KATAN48, and
thrice in KATAN64). We note that the probability of the differential is reduced
any time a difference enters one of the nonlinear functions (i.e. the AND operation).

146 LIGHTWEIGHT CRYPTOGRAPHY – A BATTLE FOR A SINGLE GATE

Thus, it is evident that good related-key differentials have as little active bits
as possible. Moreover, we can relate the number of active bits throughout the
encryption process to the issue of active bits in the key schedule. Each active bit
of the subkey (i.e. a subkey bit with a difference) either causes a difference in the
internal state (which in turn incurs probability and activation of more bits), or is
being canceled by previous differences. We note that each active subkey bit which
is not canceled, necessarily induces a probability “penalty” of 2−2 in KATAN32,
2−4 in KATAN48, and 2−6 in KATAN64. Moreover, due to the way the cipher
works, each active bit can “cancel” at most four other active subkey bits.3 Hence,
if the weight of the expanded subkey difference is more than 80, then it is assured
that the probability of any related-key differential of KATAN32 is at most 2−32

(this follows from the fact that each active bit in the intermediate encryption value
may cancel up to four subkey bit differences injected, and we shall assume a worst
case assumption that the positions align “correctly”). For KATAN48, due to the
increased penalty, it is sufficient that the minimal weight of the expanded subkey
difference is more than 60, and for KATAN64 the minimal weight needs to be
at least 54. We have analyzed the minimal weight using the MAGMA software
package, and the current bounds are between 72 and 84. Hence, we conclude
that the KATAN family of block ciphers is expected to be resistant to related-key
differential attacks.

For the KTANTAN family, due to the fixed key, the concept of related-key attacks
is of theoretical interest. Still, we can follow a more detailed analysis using the
same ideas as we used for regular differential searches. While the search space is
huge, our current results show that there is no related-key differential characteristic
for more than 150 rounds of KTANTAN32 with probability greater than 2−32.
Similar results are expected to hold for KTANTAN48 and KTANTAN64.

Cube Attacks and Algebraic Attacks

Given the low algebraic degree of the combining function, it may look as if KATAN
and KTANTAN are susceptible to algebraic attacks or the cube attack [45]. However,
when considering the degree of the expressions involving the plaintext, one can
see that after 32 rounds (for KATAN32) the degree of each internal state bit is at
least 2, which means that after 160 rounds, the degree of each internal state bit
can reach 32. For KATAN48, the degree is at least 2 after 24 rounds, (or about 48
after 144 rounds), and for KATAN64 it is 2 after 22 rounds and can reach 64 after
132 rounds). Hence, as the degree can reach the maximal possible value (and there
are some more rounds to spare), it is expected that the KATAN & KTANTAN
family is secure against algebraic attacks.

3We note that five or six can be canceled, but in this case, the probability penalty of an active
bit is increased by more than the “gain” offered by using this active bit more times

KATAN & KTANTAN – A FAMILY OF LOW-COST HARDWARE-ORIENTED BLOCK CIPHERS 147

Another possible attack is the cube attack, which was successful against reduced-
round variants of Trivium (with less initialization rounds than in Trivium). We note
that in Trivium the internal state is clocked four full cycles (i.e. each bit traverses
all the registers exactly four times). In KATAN32, most bits traverse the registers
eight times (where a few do so only seven times), going through more nonlinear
combiners (each Trivium round uses only one AND operation per updated bit),
and thus is expected to be more secure against this attack than Trivium. The same
is also true for KATAN48 (where about half of the bits traverse the registers 10
times, and the other bits do so 11 times) and KATAN64 (where most of the bits
traverse the registers 12 times, and a few do only 11 times).

4.2.7 Cryptanalysis of KATAN & KTANTAN Family of Block
Ciphers

Here, we outline the cryptanalytical results of the KATAN & KTANTAN family of
block ciphers that have been published recently.

The most notable result comes from Bogdanov and Rechberger [23] who exploit
the weaknesses in the KTANTAN key schedule. By using a variant of the
meet-in-the-middle attack on block ciphers, the authors report an attack of
time complexity 275.170 encryptions on the full KTANTAN32 cipher with only
3 plaintext/ciphertext pairs. Furthermore, they apply the same attack to
KTANTAN48 and KTANTAN64, resulting in time complexity 275.044 and 275.584

encryptions with 2 plaintext/ciphertext pairs, respectively. Due to the weaknesses
of the KTANTAN key schedule, the same attack is not applicable to the KATAN
family.

Knellwolf et al. [90] apply a conditional differential cryptanalysis of non-linear
feedback shift register (NLFSR) based cryptosystems. As a result, they report an
attack on KATAN32 reduced to 78 out of 254 rounds, recovering at least two key
bits with probability almost one and complexity 222. For KATAN48 the results
are recovering one key bit and the sum of two key bits after 70 out of 254 rounds
with a complexity of 234. The attack on KATAN64 results in recovering one key
bit and the sum of two key bits after 68 out of 254 rounds with a complexity of
235. Finally, the analysis of KATAN directly translates to the KTANTAN family
and results in a similar outcome.

Bard et al. [17] perform algebraic, AIDA/cube, and side channel analysis of the
KATAN & KTANTAN family of block ciphers. Their cube attacks reach 60, 40,
and 30 rounds, while with the algebraic attacks they break 79, 64, and 60 rounds of
KATAN32, KATAN48, and KATAN64, respectively. Furthermore, by performing
side channel attacks with one-bit information leakage from the internal state, they
show how to break the full 254-round unprotected KATAN32.

148 LIGHTWEIGHT CRYPTOGRAPHY – A BATTLE FOR A SINGLE GATE

4.2.8 New Key Schedule for KTANTAN Family of Block Ciphers

Publication Data

A. Bogdanov, O. Dunkelman, M. Knežević, C. Rechberger, and I. Verbauwhede, “On
the Key Schedules of Lightweight Block Ciphers for RFID Applications,” submitted
to IEEE Communications Letters, 3 pages, 2011.

Personal Contributions

• Involved in: Space exploration for the new key schedule; Hardware
optimizations; Implementation; Text writing.

In order to thwart the variant of the meet-in-the-middle attack proposed by
Bogdanov and Rechberger [23], we propose a tweaked key schedule of KTANTAN
which results in a small hardware overhead, yet providing enhanced security of the
cipher. Therefore, we first provide a brief overview of the attack.

Overview of the Attack

The basic idea of the attack is as follows. The starting observation is that some key
bits of K are not used in the first S1 rounds (i.e. they are neutral with respect to
those rounds). Similarly, another set of key bits is not used in the last S2 rounds.
The attack proceeds by looping through those identified key bits independently in
a forward and backward computation. As both chunks S1 and S2 do not cover the
full cipher, in addition, the matching is done in a separate partial matching phase
of the middle R− S1 − S2 rounds transformation from two fully determined states.

Necessary Condition for Bitwise Key Schedules

For the proposed attack on KTANTAN, it suffices to consider single bits at a time.
However, a generalization is possible that applies to our new design and would
consider all used sums of bits in a number of consecutive rounds. Similarly to
neutral bits, in this context, a sum-neutral key bit with respect to these rounds is
defined as a key bit that appears in a sum only if at least one other fixed key bit
occurs in this sum.

Here, we derive several useful security metrics with respect to MITM attacks,
concerning both neutral and sum-neutral bits, and show how they can be used to
define a necessary condition for the security of a cipher. The security metrics are
as follows:

KATAN & KTANTAN – A FAMILY OF LOW-COST HARDWARE-ORIENTED BLOCK CIPHERS 149

• Upper bound on the maximal number π1 of consecutive rounds that can be
covered by any partial-matching phase (under reasonable assumptions).

• Lower bound (over all possible neutral bits) on the number of middle rounds
π2 that at least need to be covered by a partial-matching phase given a
particular key schedule.

• A generalization of the above point. Lower bound (over all possible sum-
neutral bits) on the number of middle rounds π′2 that at least need to be
covered by a partial-matching phase given a particular key schedule.

Now we are ready to formulate the necessary condition for a key schedule protecting
against our attack and some of its generalizations:

Condition 1. The number of consecutive rounds that the attacker can cover by
any partial-matching phase must be smaller than the number of middle rounds that
the attacker would at least need to cover with neutral or sum-neutral bits, π1 < π′2
and π1 < π2.

New Key Schedule for KTANTAN

An 8-bit round counting LFSR is used to control the key schedule. It is defined by
the feedback polynomial

ζ8 + ζ7 + ζ5 + ζ3 + 1
and its initial state is all ones. Let lr,7lr,6...lr,1lr,0 denote the 8-bit state of
the LFSR in round r. Each round involves two key bits. The key schedule
of KTANTAN chooses two bits of K in each round. This is done by applying
two layers of MUX logic. First, K is divided into 5 chunks Wi of 16 bits each:
K = W4||W3||W2||W1||W0. One bit out of each chunk is selected:

ωr,i = MUX16to1(Wi, lr,7lr,6lr,5lr,4), i = 0, . . . , 4 ,

where the LFSR bits define the position in Wi to choose. Second, two out of these
five bits are chosen controlled by the other half of the LFSR state:

κ1,r = lr,3 · lr,2 · ωr,0 ⊕ (lr,3 ∨ lr,2) ·M1
κ2,r = lr,3 · lr,2 · ωr,4 ⊕ (lr,3 ∨ lr,2) ·M2 ,

where M1 = MUX4to1(ω4ω3ω2ω1, lr,1lr,0) and M2 = MUX4to1(ω3ω2ω1ω0, lr,1lr,0).

To construct the new key schedule we also consider two layers of the MUX logic.
Similar to the original key schedule of KTANTAN, we first divide K into 20 chunks
Wi of 4 bits each: K = W19||W18|| . . . ||W1||W0. One bit out of each chunk is now
selected as:

ωr,i = MUX4to1(Wi, lr,7lr,6), i = 0, . . . , 19 ,

150 LIGHTWEIGHT CRYPTOGRAPHY – A BATTLE FOR A SINGLE GATE

where the LFSR bits again define the position in Wi to choose. In the second layer
of MUX logic we use 10 MUX2to1 for κ1,r and another 10 for κ2,r. The outputs of
the MUX logic are now simply XORed and the key bits are obtained as:

κ1,r =
9⊕
i=0

MUX2to1({ωr,2i, ωr,2i+1}, sr,i)

κ2,r =
19⊕
i=10

MUX2to1({ωr,2i−20, ωr,2i−19}, sr,i) ,

where the value sr,i controlling the position to be selected is given in Table 4.6.

Table 4.6: Parameter sr,i defines the selection of the key bits.
sr,i lr,4 lr,4 lr,2 lr,6 lr,5 lr,3 lr,6 lr,3 lr,4 lr,2

i 0 1 2 3 4 5 6 7 8 9

sr,i lr,4 lr,3 lr,3 lr,3 lr,3 lr,2 lr,5 lr,6 lr,2 lr,7

i 10 11 12 13 14 15 16 17 18 19

As can be seen from Table 4.6, the controlling bits of the second layer MUX logic
are chosen from the 6 most significant bits of the LFSR. This approach allows
for an elegant implementation of the faster versions of the cipher. On the other
hand, this specific choice is obtained as the result of computer-assisted random
search over many possibilities. The resulting choice is a balance between high
security margin against the new attacks, and at the same time allows for good
implementation characteristics such as gate count, speed, and power consumption.
Figure 4.4 illustrates the new key schedule.

Security arguments

To back up our high security margin statement, and using previously derived
criteria, we can state the following. For our choice of key schedule we have
π2 = 219, and π′2 = 164. We have obtained π1 ∈ {52, 46, 37} for t ∈ {32, 48, 64}.
Hence we support the resistance of this choice of key schedule against our attack
and potential generalizations of it in the following way: We would need to cover at
least 164 rounds in a partial-matching phase, even though we can at most cover
{52, 46, 37} rounds. Hence, even for significantly improved matching techniques
compared to the known methods, the security margin remains high.

KATAN & KTANTAN – A FAMILY OF LOW-COST HARDWARE-ORIENTED BLOCK CIPHERS 151

MUX4to1	

3	

MUX4to1	

1	

MUX4to1	

2	

MUX4to1	

18	

MUX4to1	

19	

MUX2to1	

0	

...	

...	

ka	
 kb	

lr,7lr,6	
 lr,7lr,6	
 lr,7lr,6	
 lr,7lr,6	
 lr,7lr,6	
lr,7lr,6	

MUX2to1	

3	

MUX2to1	

19	
sr,0	
 sr,10	
 sr,1	
 sr,11	
 sr,9	
 sr,19	

K0	
 K79	

MUX4to1	

3	

MUX2to1	

1	

MUX2to1	

2	

MUX2to1	

18	

MUX4to1	

0	

Figure 4.4: Two layers of MUXes assemble the new key schedule for KTANTAN.

Hardware Overhead

In order to estimate the overhead of the new key schedule, we implement all three
versions of the new cipher and compare them with the figures we obtained for the
original designs of KTANTAN. Comparing different designs in a decent manner
is only possible once the fixed benchmarking platform is established. Therefore,
we implement all designs in Verilog and synthesize them using UMC 0.13 µm Low
Leakage standard cell library. For the purpose of synthesis and power estimates
we use Synopsys Design Compiler version C-2009.06-SP3.4 The results are given
in Table 4.7. The throughput and the power consumption are estimated for a
frequency of 100 kHz.

The results show that the new key schedule introduces a small hardware overhead
compared to the original design of KTANTAN. On the other hand, the new proposed
design still maintains good hardware characteristics and significantly outperforms
the larger members of the KATAN family.

Here, we would like to provide another, interesting observation. Please note that
the area consumption of the KTANTAN family with the old key schedule slightly
differs from the one reported in Section 4.2.4. The only difference during the
synthesis flow in these two cases was the version of the Synopsys synthesis tool.
This indeed illustrates an importance of having a fixed design flow, where factors
such as synthesis tools, standard-cell library, synthesis scripts, etc. need to be fixed.

4We were not able to use the previous version of the synthesis tool due to the licensing issue.

152 LIGHTWEIGHT CRYPTOGRAPHY – A BATTLE FOR A SINGLE GATE

Table 4.7: Hardware overhead for the new key schedule of the KTANTAN family
(UMC 0.13µm CMOS, Synopsys Design Compiler version C-2009.06-SP3, synthesis
results).

Cipher Block Key Size Throughput Power
[bits] [bits] [GE] [kb/s] [nW]

KTANTAN32 32 80 476 12.5 135
KTANTAN32† 32 80 676 25.0 181
KTANTAN32‡ 32 80 875 37.5 225

New KTANTAN48 48 80 620 18.8 189
Key KTANTAN48† 48 80 841 37.6 241

Schedule KTANTAN48‡ 48 80 1050 56.4 295
KTANTAN64 64 80 759 25.1 236
KTANTAN64† 64 80 1,004 50.2 299
KTANTAN64‡ 64 80 1,251 75.3 360
KTANTAN32 32 80 441 12.5 128
KTANTAN32† 32 80 599 25.0 155
KTANTAN32‡ 32 80 748 37.5 179

Old KTANTAN48 48 80 583 18.8 175
Key KTANTAN48† 48 80 763 37.6 210

Schedule KTANTAN48‡ 48 80 935 56.4 237
KTANTAN64 64 80 721 25.1 221
KTANTAN64† 64 80 927 50.2 266
KTANTAN64‡ 64 80 1,121 75.3 310

† — Doubled throughput.
‡ — Tripled throughput.

4.2.9 Summary

In this section we have presented two families of hardware-efficient encryption
algorithms. To our best knowledge, the design of KATAN32 provides the best
memory-datapath ratio of the block ciphers published to date. Having only 7.5 %
of combinational logic, the design truly follows the design criteria of minimizing
the hardware overhead. KATAN48 and KATAN64 achieve an overhead of 9.2 %
and 11.3 %, respectively.

Although being smaller than its sibling, the design of the KTANTAN family provides
considerably worse results in this respect. Having a hardcoded key, the KTANTAN
ciphers have a relatively heavy key schedule, which occupies the biggest part of the
combinational logic of the circuit. More specifically, KTANTAN32, KTANTAN48,
and KTANTAN64 consist of 47.2 %, 41.5 %, and 35.5 % combinational logic,
respectively. Additionally, this heavy key schedule, that was not expected to be as

CONCLUSION 153

strong as for KATAN, was indeed a weakness exploited in the development of an
attack on the KTANTAN family as described by Bogdanov and Rechberger [23].

Once considering the possibility of hardcoding the key on a device itself, a
natural solution to prevent having a weak key schedule, yet maintaining a
lightweight block cipher, is to hardcode the whole, expanded key of a stronger
key schedule. In the case of the KATAN & KTANTAN family, this requires
hardcoding 508 bits of the KATAN expanded key instead of the initial 80.
Where applicable, this might be an efficient solution. Only a round function of
KATAN is to be implemented in this case, while the expanded key is to be
stored in non-volatile memory. For the sake of illustration, we provide data in
Table 4.8.

This approach, of course, does not only apply to the KATAN & KTANTAN
family of block ciphers, but rather to any existing design. A device needs
to have enough non-volatile storage to maintain the expanded key, and that
is indeed one of the main constraints for low-end devices. For the sake of
illustration, the length of the expanded key of AES-128 is 1280 bits, while
PRESENT, for example, has an expanded key of 2048 bits.

Table 4.8: Area and memory requirements for round function and expanded key
of the KATAN family (UMC 0.13µm CMOS, Synopsys Design Compiler version
C-2009.06-SP3, synthesis results).

Cipher Round Memory for
function [GE] expanded key [bit]

KATAN32 315 508
KATAN48 455 508
KATAN64 595 508

4.3 Conclusion

By describing the design flow of the KATAN & KTANTAN family of block ciphers
in this chapter, we have shown a typical trade-off one needs to consider when
designing a lightweight cryptographic primitive. Reducing the key length and
the block size to a minimum, such that the cipher is secure against brute force
attacks, and by introducing a lightweight round function as well as a minimized
key schedule, we accomplished the desired goal. The novel idea of sharing the
datapath with the control logic of the cipher, as proposed in this chapter, has been
adopted and used in the literature ever since.

154 LIGHTWEIGHT CRYPTOGRAPHY – A BATTLE FOR A SINGLE GATE

Once entering the world of lightweight cryptography, one must not ignore the
importance of physical security of the implementation. Although coming at a
higher price, protection against side channel attacks is often necessary in order to
protect the secrets. Following this demand, our future research will address issues
of physical security of low-cost cryptographic primitives. Since both KATAN and
KTANTAN have a simple structure and use very basic components, it appears that
common techniques to protect the implementation should be easy to adopt.

Chapter 5

Conclusions and Future Work

Conclusion

In 1965, Moore [122] predicted that the number of transistors on a chip would
double about every two years. Remarkably, the industry has kept pace with this
exponential growth since the invention of the first integrated circuit in 1958 [87].
However, the physical limits of atomic structures in the current CMOS technology
are approaching a hard bound that cannot be overcome. As Moore pointed
out in 2003, “No exponential change of a physical quantity can [. . .] continue
forever” [123]. The International Technology Roadmap for Semiconductors (ITRS)
reminds that the major challenges of the next-generation lithography will come
with the appearance of 16 nm CMOS processes [77].

Predictions about the end of Moore’s law have been wrong several times already.
The next landmark, as stated by Intel, is 2020 when the limits of the current
CMOS technology could be reached [75]. No matter whether the current CMOS
technology will continue to shrink or new technologies will appear, the continuous
need for speed and low power will remain the major challenge in the domain of VLSI
digital design. Cryptography and its hardware implementations will continue to
follow demands driven by the integrated circuits development. Efficient hardware
implementations of cryptographic primitives will therefore remain an exciting
research topic.

This thesis has covered techniques for efficient hardware implementations of
cryptographic primitives. The proposed novelties are introduced mainly at the
algorithmic level and that makes them appropriate to operate on any hardware
platform. The platform-dependent optimizations at lower levels of abstraction are
still possible for further improvements of the proposed techniques.

155

156 CONCLUSIONS AND FUTURE WORK

The first contribution of the thesis is a finding of several sets of moduli for
faster modular multiplication, directly applicable to state of the art public-key
cryptosystems. The sets are suited for both Montgomery and classical modular
multiplications. Not only is the modular multiplication faster for the proposed
sets, but also the precomputational phase of the algorithms is omitted. A similar
approach is later extended to the bipartite modular multiplication. Moreover,
a novel multiplication method called tripartite modular multiplication is also
proposed in the second chapter. The algorithm represents a symbiosis of three
existing algorithms, namely Barrett, Montgomery, and Karatsuba algorithms.

The second contribution of the thesis explores techniques for high-throughput
hardware implementations of cryptographic hash functions. The iteration bound
analysis, as well as some of the algorithm-specific techniques, is applied for designing
a high-throughput architecture of the RIPEMD-160 algorithm. The throughput
of 3.4 Gb/s is reached in 0.13 µm CMOS technology and, to the best of our
knowledge, is the highest throughput of RIPEMD-160 reported in the literature. A
methodology for a fair and consistent evaluation of fourteen second-round SHA-3
candidates is also presented in the third chapter. We proposed a platform, a
design strategy and evaluation criteria in order to assure fair comparison. Using a
SASEBO-GII FPGA board as a common platform, combined with a well defined
hardware interface, we compared all 256-bit version candidates with respect to
area, throughput, latency, power and energy consumption. Our approach defines a
standard testing harness for SHA-3 candidates, including the interface specification
for the SHA-3 module on our testing platform. Additionally, we have provided
90 nm CMOS ASIC synthesis results. We released online the source code of all the
candidates and by using a common, fixed, publicly available platform, we made
our claimed results reproducible and open for public verification. As the final
contribution of Chapter 3, we proposed efficient hardware architectures for the
Luffa hash algorithm, one of the fourteen second-round SHA-3 candidates.

The third contribution of the thesis is a new family of small, very efficient, hardware-
oriented block ciphers – KATAN & KTANTAN family. The smallest design of
the entire family, KTANTAN32, can be implemented in 462 GE while achieving
encryption speed of 12.5 kb/s at 100 kHz. KATAN64, the largest and most flexible
candidate of the family uses 1,054 GE and has a throughput of 25.1 kb/s. Another
curiosity of the KATAN & KTANTAN family is that 92.5 % of KATAN32 consists
of pure sequential logic. During the design phase of the proposed family, several
novelties have been introduced. It is the first time that the actual control logic of
the cipher itself is integrated into the round function of the cipher. Also, the various
block sizes ranging from 32 to 64 bits have been considered. Finally, the concept of
hardwiring a key on the chip is also novel with this respect and significantly helps
to further reduce the area of the circuit.

CONCLUSIONS AND FUTURE WORK 157

Future Work

In Chapter 2, we introduced several hardware architectures to prove the superiority
of our proposed algorithms. We believe that further improvements of these
architectures are possible and worth to explore. The proposed algorithms are also
suitable for software implementations and it would be interesting to examine their
advantages over classical algorithms on common software platforms. The tripartite
algorithm is introduced in its basic form and an interesting question that remains is
to determine the level of parallelism that results in optimal performance. Moreover,
the tripartite algorithm is not only suited for high-speed implementations, but can
also result in more compact designs. Due to the use of Karatsuba’s algorithm, one
can further benefit from using smaller multipliers while still preserving rather good
speed performance of the circuit.

Chapter 3 dealt with high-throughput hardware implementations of hash functions.
Now, that the five finalists of the SHA-3 competition are known, a natural extension
of our work is to further consider algorithm-specific techniques and to compare
remaining candidates using the methodology we proposed. The diversity of the
candidates which advanced into the final round is still rather large. Blake and
Skein are narrow-pipe and ARX based, Grøstl is wide-pipe and based on an 8-bit
S-box, JH is wide-pipe and 4-bit S-box/Boolean based, and finally Keccak is
sponge and 4-bit S-box/Boolean based. After algorithm-specific techniques are
applied, it would certainly be interesting to find a stronger correlation between
algorithmic features and the implementation results. Moreover, the power and
energy estimates need to be done with more accuracy especially regarding the
ASIC implementations. As already pointed out, the current candidates seem not
to be suitable for very constrained devices, and therefore it would be interesting
to further explore possibilities of implementing compact versions of the remaining
candidates.

Finally, in Chapter 4, we introduced a new family of lightweight block ciphers
and we expect the proposed novelties to be applied for the future development
of compact cryptographic primitives. Some of the unveiled ideas can certainly
be used for a design of lightweight hash functions and possibly further, meaning
compact public-key cryptosystems. As the lightweight cryptography has become a
very popular research topic, we expect to see more research following that direction.
Finally, since the lightweight cryptography is meant to be used mainly in embedded
devices, another big challenge that remains is to address the side channel issues of
the proposed designs as well as lightweight cryptographic primitives in general.

Bibliography

[1] ECRYPT II Yearly Report on Algorithms and Keysizes. European Network
of Excellence in Cryptology II, 2010.

[2] EPC Tag Data Standard (TDS). Available at http://www.gs1.org/gsmp/
kc/epcglobal/tds.

[3] Helion Technology. Available at http://www.heliontech.com/index.htm.

[4] IEEE P802.3ba 40Gb/s and 100Gb/s Ethernet Task Force. Available at
http://www.ieee802.org/3/ba/.

[5] Secure Hash Standard. Federal Information Processing Standards Publication
180. National Institute of Standards and Technology (NIST), 1993.

[6] Secure Hash Standard. Federal Information Processing Standards Publication
180-1. National Institute of Standards and Technology (NIST), 1995.

[7] Secure Hash Standard. Federal Information Processing Standards Publication
180-2. National Institute of Standards and Technology (NIST), 2003.

[8] M. A. Abdelraheem, G. Leander, and E. Zenner. Differential Cryptanalysis
of Round-Reduced PRINTcipher: Computing Roots of Permutations. In Fast
Software Encryption, 18th International Workshop — FSE 2011, Lecture
Notes in Computer Science, pages 5–14. Springer, 2011. Pre-proceedings.

[9] R. Anderson and E. Biham. Two Practical and Provably Secure Block
Ciphers: BEAR and LION. In Fast Software Encryption, Third International
Workshop — FSE ’96, volume 1039 of Lecture Notes in Computer Science,
pages 113–120. Springer, 1996.

[10] ANSI. ANSI X9.62 The Elliptic Curve Digital Signature Algorithm (ECDSA).
Available at http://www.ansi.org/.

[11] K. Aoki, J. Guo, K. Matusiewicz, Y. Sasaki, and L. Wang. Preimages for
Step-Reduced SHA-2. In Advances in Cryptology — ASIACRYPT 2009,

159

http://www.gs1.org/gsmp/kc/epcglobal/tds
http://www.gs1.org/gsmp/kc/epcglobal/tds
http://www.heliontech.com/index.htm
http://www.ieee802.org/3/ba/
http://www.ansi.org/

160 BIBLIOGRAPHY

volume 5912 of Lecture Notes in Computer Science, pages 578–597. Springer,
2009.

[12] R. M. Avanzi, H. Cohen, C. Doche, G. Frey, T. Lange, K. Nguyen, and
F. Vercauteren. Handbook of Elliptic and Hyperelliptic Curve Cryptography.
CRC Press, 2005.

[13] J. A. B. Jungk, S. Reith. On Optimized FPGA Implementations of the
SHA-3 Candidate Groestl. Cryptology ePrint Archive, Report 2009/206,
2009. Available at http://eprint.iacr.org/2009/206.

[14] B. Baldwin, A. Byrne, M. Hamilton, N. Hanley, R. P. McEvoy, W. Pan, and
W. P. Marnane. FPGA Implementations of SHA-3 Candidates: CubeHash,
Grøstl, Lane, Shabal and Spectral Hash. Cryptology ePrint Archive, Report
2009/342, 2009. Available at http://eprint.iacr.org/2009/342.

[15] B. Baldwin, A. Byrne, L. Lu, M. Hamilton, N. Hanley, M. O’Neill, and
W. P. Marnane. A Hardware Wrapper for the SHA-3 Hash Algorithms.
Cryptology ePrint Archive, Report 2010/124, 2010. Available at http:
//eprint.iacr.org/2010/124.

[16] B. Baldwin, N. Hanley, M. Hamilton, L. Lu, A. Byrne, M. O’Neill, and W. P.
Marnane. FPGA Implementations of the Round Two SHA-3 Candidates. In
20th International Conference on Field Programmable Logic and Applications

— FPL 2010, pages 400–407, 2010.

[17] G. V. Bard, N. Courtois, J. Nakahara, P. Sepehrdad, and B. Zhang. Algebraic,
AIDA/Cube and Side Channel Analysis of KATAN Family of Block Ciphers.
In Progress in Cryptology — INDOCRYPT 2010, volume 6498 of Lecture
Notes in Computer Science, pages 176–196. Springer, 2010.

[18] P. Barrett. Implementing the Rivest Shamir and Adleman Public Key
Encryption Algorithm on a Standard Digital Signal Processor. In Advances
in Cryptology — CRYPTO ’86, volume 263 of Lecture Notes in Computer
Science, pages 311–323. Springer, 1987.

[19] M. Bernet, L. Henzen, H. Kaeslin, N. Felber, and W. Fichtner. Hardware
Implementations of the SHA-3 Candidates Shabal and CubeHash. In Midwest
Symposium on Circuits and Systems, pages 515–518. IEEE Computer Society,
2009.

[20] E. Biham, R. Anderson, and L. Knudsen. Serpent: A New Block Cipher
Proposal. In Fast Software Encryption, 5th International Workshop —
FSE ’98, volume 1372 of Lecture Notes in Computer Science, pages 222–
238. Springer, 1998.

http://eprint.iacr.org/2009/206
http://eprint.iacr.org/2009/342
http://eprint.iacr.org/2010/124
http://eprint.iacr.org/2010/124

BIBLIOGRAPHY 161

[21] A. Bogdanov, O. Dunkelman, M. Knežević, C. Rechberger, and
I. Verbauwhede. On the Key Schedules of Lightweight Block Ciphers for
RFID Applications. submitted to IEEE Communications Letters, 2011.

[22] A. Bogdanov, L. R. Knudsen, G. Le, C. Paar, A. Poschmann, M. J. B.
Robshaw, Y. Seurin, and C. Vikkelsoe. PRESENT: An Ultra-Lightweight
Block Cipher. In Cryptographic Hardware and Embedded Systems —
CHES 2007, volume 4727 of Lecture Notes in Computer Science, pages
450–466. Springer, 2007.

[23] A. Bogdanov and C. Rechberger. Generalizing Meet-in-the-Middle Attacks:
Cryptanalysis of the Lightweight Block Cipher KTANTAN. In Selected Areas
in Cryptography — SAC 2010, 2010. To appear.

[24] D. Boneh, G. Durfee, and N. Howgrave-Graham. Factoring N = prq for
Large r. In Advances in Cryptology — CRYPTO ’99, volume 1666 of Lecture
Notes in Computer Science, pages 326–337. Springer, 1999.

[25] A. Bosselaers, R. Govaerts, and J. Vandewalle. SHA: A Design for Parallel
Architectures? In Advances in Cryptology — EUROCRYPT ’97, volume
1233 of Lecture Notes in Computer Science, pages 348–362. Springer, 1997.

[26] A. Bosselaers and B. Preneel, editors. RIPE, Integrity Primitives for Secure
Information Systems, Final Report of RACE Integrity Primitives Evaluation
(RIPE-RACE 1040). Lecture Notes in Computer Science 1007, 1995.

[27] C. D. Cannière, O. Dunkelman, and M. Knežević. KATAN & KTANTAN
— A Family of Small and Efficient Hardware-Oriented Block Ciphers. In
Cryptographic Hardware and Embedded Systems — CHES 2009, volume 5747
of Lecture Notes in Computer Science, pages 272–288. Springer, 2009.

[28] C. D. Cannière, H.Sato, and D. Watanabe. Hash Function Luffa. In The
First SHA-3 Candidate Conference, 2009.

[29] C. D. Cannière and B. Preneel. Trivium. In The eSTREAM Finalists, volume
4986 of Lecture Notes in Computer Science, pages 244–266. Springer, 2008.

[30] J. M. P. Cardoso and P. C. Diniz. Modeling Loop Unrolling: Approaches and
Open Issues. In Computer Systems: Architectures, Modeling, and Simulation,
volume 3133 of Lecture Notes in Computer Science, pages 224–233. Springer,
2004.

[31] Ç.K. Koç and T. Acar. Montgomery Multiplication in GF(2k). Designs,
Codes and Cryptography, 14(1):57–69, 1998.

[32] CERG at George Mason University. Hardware Interface of a Secure Hash
Algorithm (SHA). Functional Specification, October 2009. Available at
http://cryptography.gmu.edu/athena/.

http://cryptography.gmu.edu/athena/

162 BIBLIOGRAPHY

[33] F. Chabaud and A. Joux. Differential Collisions in SHA-0. In Advances
in Cryptology — CRYPTO ’98, volume 1462 of Lecture Notes in Computer
Science. Springer, 1998.

[34] D. Coppersmith. Factoring with a Hint. IBM Research Report RC 19905,
1995.

[35] D. Coppersmith. Finding a Small Root of a Bivariate Integer Equation;
Factoring with High Bits Known. In Advances in Cryptology —
EUROCRYPT ’96, volume 1070 of Lecture Notes in Computer Science,
pages 178–189. Springer, 1996.

[36] D. Coppersmith. Small Solutions to Polynomial Equations, and Low Exponent
Vulnerabilities. Journal of Cryptology, 10(4):233–260, 1996.

[37] N. T. Courtois, G. V. Bard, and D. Wagner. Algebraic and Slide Attacks
on KeeLoq. In Fast Software Encryption, 15th International Workshop —
FSE 2008, volume 5086 of Lecture Notes in Computer Science, pages 97–115.
Springer, 2008.

[38] L. Dadda, M. Macchetti, and J. Owen. An ASIC Design for a High Speed
Implementation of the Hash Function SHA-256 (384, 512). In ACM Great
Lakes Symposium on VLSI, pages 421–425. ACM, 2004.

[39] J. Daemen and V. Rijmen. The design of Rijndael: AES–The Advanced
Encryption Standard. Springer, 2002.

[40] B. den Boer and A. Bosselaers. An Attack on the Last Two Rounds of MD4.
In Advances in Cryptology — CRYPTO ’91, volume 576 of Lecture Notes in
Computer Science, pages 194–203. Springer, 1992.

[41] B. den Boer and A. Bosselaers. Collisions for the Compression Function of
MD5. In Advances in Cryptology — CRYPTO ’93, volume 773 of Lecture
Notes in Computer Science, pages 293–304. Springer, 1994.

[42] J.-F. Dhem. Design of an Efficient Public-Key Cryptographic Library for
RISC-based Smart Cards. PhD Thesis, Université Catholique de Louvain,
Belgium, 1998.

[43] J.-F. Dhem. Efficient Modular Reduction Algorithm in Fq[x] and Its
Application to Left to Right Modular Multiplication in F2[x]. In Cryptographic
Hardware and Embedded Systems — CHES ’2003, volume 2779 of Lecture
Notes in Computer Science, pages 203–213. Springer, 2003.

[44] W. Diffie and M. E. Hellman. New Directions in Cryptography. IEEE
Transactions on Information Theory, 22:644–654, 1976.

BIBLIOGRAPHY 163

[45] I. Dinur and A. Shamir. Cube Attacks on Tweakable Black Box Polynomials.
In Advances in Cryptology — EUROCRYPT 2009, volume 5479 of Lecture
Notes in Computer Science, pages 278–299. Springer, 2009.

[46] H. Dobbertin. The Status of MD5 After a Recent Attack. CryptoBytes
Technical Newsletter, 2(2), 1996.

[47] H. Dobbertin. Cryptanalysis of MD4. Journal of Cryptology, 11(4):253–271,
1998.

[48] H. Dobbertin, A. Bosselaers, and B. Preneel. RIPEMD-160: A Strengthened
Version of RIPEMD. In Fast Software Encryption, Third International
Workshop — FSE ’96, volume 1039 of Lecture Notes in Computer Science,
pages 71–82. Springer, 1996.

[49] S. Dominikus. A Hardware Implementation of MD-4 Family Hash Algorithms.
In 9th IEEE International Conference on Electronics, Circuits, and Systems
– ICECS ’02, volume 3, pages 1143–1146, 2002.

[50] T. ElGamal. A Public Key Cryptosystem and a Signature Scheme Based on
Discrete Logarithms. In Advances in Cryptology — CRYPTO ’85, volume
218 of Lecture Notes in Computer Science, pages 10–18. Springer, 1986.

[51] M. Feldhofer. Low-Power Hardware Design of Cryptographic Algorithms for
RFID Tags. PhD Thesis, Graz University of Technology, Austria, 2008.

[52] M. Feldhofer, J. Wolkerstorfer, and V. Rijmen. AES Implementation on a
Grain of Sand. IEE Proceedings Information Security, 152(1):13–20, 2005.

[53] K. Gaj, E. Homsirikamol, and M. Rogawski. Comprehensive Comparison of
Hardware Performance of Fourteen Round 2 SHA-3 Candidates with 512-bit
Outputs Using Field Programmable Gate Arrays. In The Second SHA-3
Candidate Conference, 2010.

[54] K. Gaj, E. Homsirikamol, and M. Rogawski. Fair and Comprehensive
Methodology for Comparing Hardware Performance of Fourteen Round Two
SHA-3 Candidates using FPGAs. In Cryptographic Hardware and Embedded
Systems — CHES 2010, volume 6225 of Lecture Notes in Computer Science,
pages 264–278. Springer, 2010.

[55] F. Garnier, R. Hajlaoui, A. Yassar, and P. Srivastava. All-Polymer Field-Effect
Transistor Realized by Printing Techniques. Science, 265(5179):1684–1686,
1994.

[56] H. Gilbert and H. Handschuh. Security Analysis of SHA-256 and Sisters. In
Selected Areas in Cryptography — SAC 2004, volume 3357 of Lecture Notes
in Computer Science. Springer, 2004.

164 BIBLIOGRAPHY

[57] T. Good and M. Benaissa. Hardware Results for Selected Stream Cipher
Candidates. In ECRYPT Workshop, The State of the Art of Stream Ciphers

— SASC 2007, pages 191–204, 2007.

[58] J. Guajardo, T. Güneysu, S. Kumar, C. Paar, and J. Pelzl. Efficient Hardware
Implementation of Finite Fields with Applications to Cryptography. Acta
Applicandae Mathematicae, 93:75–118, 2006.

[59] T. Güneysu and C. Paar. Ultra High Performance ECC over NIST Primes
on Commercial FPGAs. In Cryptographic Hardware and Embedded Systems —
CHES 2008, volume 5154 of Lecture Notes in Computer Science, pages 62–78.
Springer, 2008.

[60] X. Guo, S. Huang, L. Nazhandali, and P. Schaumont. Fair and Comprehensive
Performance Evaluation of 14 Second Round SHA-3 ASIC Implementations.
In The Second SHA-3 Candidate Conference, 2010.

[61] S. Halevi, W. E. Hall, and C. S. Jutla. The Hash Function Fugue. Submission
Document, 2008. Available at http://domino.research.ibm.com/comm/
research_projects.nsf/pages/fugue.index.html.

[62] P. Hämäläinen, T. Alho, M. Hännikäinen, and T. D.Hämäläinen. Design
and Implementation of Low-Area and Low-Power AES Encryption Hardware
Core. In Euromicro Conference on Digital System Design, pages 577–583.
IEEE Computer Society, 2006.

[63] H. Handschuh and D. Naccache. SHACAL. Preproceedings of NESSIE first
workshop, Leuven, 2000.

[64] L. Hars. Long Modular Multiplication for Cryptographic Applications. In
Cryptographic Hardware and Embedded Systems — CHES 2004, volume 3156
of Lecture Notes in Computer Science, pages 218–254. Springer, 2004.

[65] P. Hawkes, M. Paddon, and G. Rose. On Corrective Patterns for the SHA-2
Family. Cryptology ePrint Archive, Report 2004/207, 2004. Available at
http://eprint.iacr.org/2004/207.

[66] D. Hein, J. Wolkerstorfer, and N. Felber. ECC Is Ready for RFID – A Proof
in Silicon. In Selected Areas in Cryptography — SAC 2009, volume 5867 of
Lecture Notes in Computer Science, pages 401–413. Springer, 2009.

[67] M. Hell, T. Johansson, A. Maximov, and W. Meier. The Grain Family of
Stream Ciphers. In The eSTREAM Finalists, volume 4986 of Lecture Notes
in Computer Science, pages 179–190. Springer, 2008.

[68] L. Henzen, J.-P. Aumasson, W. Meier, and R. C.-W. Phan. VLSI
Characterization of the Cryptographic Hash Function BLAKE, 2010.
Available at http://131002.net/data/papers/HAMP10.pdf.

http://domino.research.ibm.com/comm/research_projects.nsf/pages/fugue.index.html
http://domino.research.ibm.com/comm/research_projects.nsf/pages/fugue.index.html
http://eprint.iacr.org/2004/207
http://131002.net/data/papers/HAMP10.pdf

BIBLIOGRAPHY 165

[69] L. Henzen, P. Gendotti, P. Guillet, E. Pargaetzi, M. Zoller, and F. K.
Gürkaynak. Developing a Hardware Evaluation Method for SHA-3 Candidates.
In Cryptographic Hardware and Embedded Systems — CHES 2010, volume
6225 of Lecture Notes in Computer Science, pages 248–263. Springer, 2010.

[70] A. Hodjat and I. Verbauwhede. Minimum Area Cost for a 30 to 70 Gbits/s
AES Processor. In IEEE Computer Society Annual Symposium on VLSI
(ISVLSI 2004), pages 498–502. IEEE, 2004.

[71] D. Hong, J. Sung, S. Hong, J. Lim, S. Lee, B. Koo, C. Lee, D. Chang, J. Lee,
K. Jeong, H. Kim, J. Kim, and S. Chee. HIGHT: A New Block Cipher
Suitable for Low-Resource Device. In Cryptographic Hardware and Embedded
Systems — CHES 2006, volume 4249 of Lecture Notes in Computer Science,
pages 46–59. Springer, 2006.

[72] K. Ideguchi, T. Owada, and H. Yoshida. A Study on RAM Requirements
of Various SHA-3 Candidates on Low-Cost 8-bit CPUs. Cryptology ePrint
Archive, Report 2009/260, 2009. Available at http://eprint.iacr.org/
2009/260.

[73] S. Indesteege, N. Keller, O. Dunkelman, E. Biham, and B. Preneel. A Practical
Attack on KeeLoq. In Advances in Cryptology — EUROCRYPT 2008, volume
4965 of Lecture Notes in Computer Science, pages 1–18. Springer, 2008.

[74] S. Indesteege, F. Mendel, B. Preneel, and C. Rechberger. Collisions and
Other Non-random Properties for Step-Reduced SHA-256. In Selected Areas
in Cryptography — SAC 2008, volume 5381 of Lecture Notes in Computer
Science, pages 276–293. Springer, 2009.

[75] Intel. Moore’s Law. Available at http://www.intel.com/technology/
mooreslaw/.

[76] International Organization for Standardization. ISO/IEC 10118-3,
”Information technology - Security techniques - Hash functions - Part 3:
Dedicated hash functions”. 2003.

[77] International Technology Roadmap for Semiconductors. 2010 Update,
Overview, 2010. Available at http://www.itrs.net/Links/2010ITRS/
2010Update/ToPost/2010_Update_Overview.pdf.

[78] T. Isobe. A Single-Key Attack on the Full GOST Block Cipher. In Fast
Software Encryption, 18th International Workshop — FSE 2011, Lecture
Notes in Computer Science, pages 273–286. Springer, 2011. Pre-proceedings.

[79] M. Izadi, B. Sadeghiyan, S. Sadeghian, and H. Khanooki. MIBS: A New
Lightweight Block Cipher. In J. Garay, A. Miyaji, and A. Otsuka, editors,
Cryptology and Network Security, volume 5888 of Lecture Notes in Computer
Science, pages 334–348. Springer Berlin / Heidelberg, 2009.

http://eprint.iacr.org/2009/260
http://eprint.iacr.org/2009/260
http://www.intel.com/technology/mooreslaw/
http://www.intel.com/technology/mooreslaw/
http://www.itrs.net/Links/2010ITRS/2010Update/ToPost/2010_Update_Overview.pdf
http://www.itrs.net/Links/2010ITRS/2010Update/ToPost/2010_Update_Overview.pdf

166 BIBLIOGRAPHY

[80] A. Joux, P. Carribault, W. Jalby, and C. Lemuet. Collisions in SHA-0. In
Rump session of CRYPTO 2004, 2004.

[81] M. Joye. RSA Moduli with a Predetermined Portion: Techniques
and Applications. In Information Security Practice and Experience —
ISPEC 2008, volume 4991 of Lecture Notes in Computer Science, pages
116–130. Springer, 2008.

[82] A. Juels and S. A. Weis. Authenticating Pervasive Devices with Human
Protocols. In Advances in Cryptology — CRYPTO 2005, volume 3621 of
Lecture Notes in Computer Science, pages 293–308. Springer, 2005.

[83] M. E. Kaihara and N. Takagi. Bipartite Modular Multiplication. In
Cryptographic Hardware and Embedded Systems — CHES 2005, volume
3659 of Lecture Notes in Computer Science, pages 201–210. Springer, 2005.

[84] A. Karatsuba and Y. Ofman. Multiplication of Many-Digital Numbers by
Automatic Computers. Soviet Physics - Doklady, 7:595–596, 1963. Translation
from Doklady Akademii Nauk SSSR, 145:2, 293–294, 1962.

[85] J. Kelsey, B. Schneier, and D. Wagner. Related-Key Cryptanalysis of 3-WAY,
Biham-DES,CAST, DES-X, NewDES, RC2, and TEA. In International
Conference on Information and Communications Security, pages 233–246.
Springer, 1997.

[86] E. Khan, M. W. El-Kharashi, F. Gebali, and M. Abd-El-Barr. Design and
Performance Analysis of a Unified, Reconfigurable HMAC-Hash Unit. IEEE
Transaction on Circuits and Systems, 54(12):2683–2695, 2007.

[87] J. S. Kilby. Miniature Semiconductor Integrated Circuit, December 1963.
U.S. Patent 3,115,581.

[88] M. Kim and J. Ryou. Power Efficient Hardware Architecture of SHA-
1 Algorithm for Trusted Mobile Computing. In Proceedings of the 9th
international conference on Information and communications security,
ICICS’07, pages 375–385. Springer, 2007.

[89] M. Kim, J. Ryou, and S. Jun. Efficient Hardware Architecture of SHA-
256 Algorithm for Trusted Mobile Computing. In Information Security and
Cryptology, volume 5487 of Lecture Notes in Computer Science, pages 240–252.
Springer, 2009.

[90] S. Knellwolf, W. Meier, and M. Naya-Plasencia. Conditional Differential
Cryptanalysis of NLFSR-Based Cryptosystems. In Advances in Cryptology

— ASIACRYPT 2010, volume 6477 of Lecture Notes in Computer Science,
pages 130–145. Springer, 2010.

BIBLIOGRAPHY 167

[91] M. Knežević, L. Batina, and I. Verbauwhede. Modular Reduction Without
Precomputational Phase. In IEEE International Symposium on Circuits and
Systems — ISCAS 2009, pages 1389–1392. IEEE, 2009.

[92] M. Knežević, K. Kobayashi, J. Ikegami, S. Matsuo, A. Satoh, Ü. Kocabaş,
J. Fan, T. Katashita, T. Sugawara, K. Sakiyama, I. Verbauwhede, K. Ohta,
N. Homma, and T. Aoki. Fair and Consistent Hardware Evaluation of
Fourteen Round Two SHA-3 Candidates. IEEE Transactions on VLSI. 13
pages, 2011. To appear.

[93] M. Knežević, K. Sakiyama, J. Fan, and I. Verbauwhede. Modular Reduction
in GF(2n) Without Pre-Computational Phase. In Arithmetic of Finite Fields,
Second International Workshop — WAIFI 2008, volume 5130 of Lecture
Notes in Computer Science, pages 77–87. Springer, 2008.

[94] M. Knežević, K. Sakiyama, Y. K. Lee, and I. Verbauwhede. On the High-
Throughput Implementation of RIPEMD-160 Hash Algorithm. In IEEE
International Conference on Application-Specific Systems, Architecture and
Processors — ASAP 2008, pages 85–90. IEEE Computer Society, 2008.

[95] M. Knežević and I. Verbauwhede. Hardware Evaluation of the Luffa Hash
Family. In Workshop on Embedded Systems Security — WESS 2009, page 6,
2009.

[96] M. Knežević, F. Vercauteren, and I. Verbauwhede. Faster Interleaved Modular
Multiplication Based on Barrett and Montgomery Reduction Methods. IEEE
Transactions on Computers, 59(12):1715–1721, 2010.

[97] M. Knežević, F. Vercauteren, and I. Verbauwhede. Speeding Up Bipartite
Modular Multiplication. In Arithmetic of Finite Fields, Third International
Workshop — WAIFI 2010, volume 6087 of Lecture Notes in Computer Science,
pages 166–179. Springer, 2010.

[98] L. Knudsen, G. Leander, A. Poschmann, and M. Robshaw. PRINTcipher:
A Block Cipher for IC-Printing. In Cryptographic Hardware and Embedded
Systems — CHES 2010, volume 6225 of Lecture Notes in Computer Science,
pages 16–32. Springer, 2010.

[99] N. Koblitz. Elliptic Curve Cryptosystem. Math. Comp., 48:203–209, 1987.

[100] G. Leander, C. Paar, A. Poschmann, and K. Schramm. New Lightweight
DES Variants. In Fast Software Encryption, 14th International Workshop —
FSE 2007, volume 4593 of Lecture Notes in Computer Science, pages 196–210.
Springer, 2007.

[101] Y. Lee, H. Chan, and I. Verbauwhede. Throughput Optimized SHA-
1 Architecture Using Unfolding Transformation. In IEEE International

168 BIBLIOGRAPHY

Conference on Application-Specific Systems, Architecture and Processors —
ASAP 2006, pages 354–359. IEEE Computer Society, 2006.

[102] Y. Lee, H. Chan, and I. Verbauwhede. Iteration Bound Analysis and
Throughput Optimum Architecture of SHA-256 (384,512) for Hardware
Implementations. In Information Security Applications, 8th International
Workshop — WISA 2007, volume 4867 of Lecture Notes in Computer Science,
pages 102–114. Springer, 2007.

[103] Y. K. Lee, L. Batina, K. Sakiyama, and I. Verbauwhede. Elliptic Curve
Based Security Processor for RFID. IEEE Transactions on Computers,
57(11):1514–1527, 2008.

[104] Y. K. Lee, H. Chan, and I. Verbauwhede. Design Methodology for Throughput
Optimum Architectures of Hash Algorithms of the MD4-class. Journal of
Signal Processing Systems, 53:89–102, November 2008.

[105] Y. K. Lee, M. Knežević, and I. Verbauwhede. Hardware Design for Hash
functions. In Secure Integrated Circuits and Systems, Integrated Circuits and
Systems, pages 79–104. Springer, 2010.

[106] C. Leiserson, F. Rose, and J. Saxe. Optimizing Synchronous Circuitry by
Retiming. In Third Caltech Conference on VLSI, pages 87–116, 1983.

[107] A. Lenstra. Generating RSA Moduli with a Predetermined Portion. In
Advances in Cryptology — ASIACRYPT ’98, volume 1514 of Lecture Notes
in Computer Science, pages 1–10. Springer, 1998.

[108] R. Lidl and H. Niederreiter. Introduction to Finite Fields and Their
Applications. Cambridge University Press, New York, NY, USA, 1986.

[109] C. Lim and T. Korkishko. mCrypton – A Lightweight Block Cipher for
Security of Low-Cost RFID Tags and Sensors. In Information Security
Applications, 6th International Workshop — WISA 2005, volume 3786 of
Lecture Notes in Computer Science, pages 243–258. Springer, 2006.

[110] L. Lu, M. O’Neil, and E. Swartzlander. Hardware Evaluation of SHA-3
Hash Function Candidate ECHO. Presentation at the Claude Shannon
Institute Workshop on Coding and Cryptography 2009, 2009. Available
at http://www.ucc.ie/en/crypto/CodingandCryptographyWorkshop/
TheClaudeShannonInstituteWorkshoponCodingCryptography2009/
DocumentFile-75649-en.pdf.

[111] F. Macé, F.-X. Standaert, and J.-J. Quisquater. ASIC Implementations
of the Block Cipher SEA for Constrained Applications. In RFID Security
Workshop, 2007.

http://www.ucc.ie/en/crypto/CodingandCryptographyWorkshop/TheClaudeShannonInstituteWorkshoponCodingCryptography2009/DocumentFile-75649-en.pdf
http://www.ucc.ie/en/crypto/CodingandCryptographyWorkshop/TheClaudeShannonInstituteWorkshoponCodingCryptography2009/DocumentFile-75649-en.pdf
http://www.ucc.ie/en/crypto/CodingandCryptographyWorkshop/TheClaudeShannonInstituteWorkshoponCodingCryptography2009/DocumentFile-75649-en.pdf

BIBLIOGRAPHY 169

[112] A. May. New RSA Vulnerabilities Using Lattice Reduction Methods. PhD
Thesis, University of Paderborn, Germany, 2003.

[113] A. May. Using LLL-Reduction for Solving RSA and Factorization Problems:
A Survey, 2007. Avaliable at: http://www.informatik.tu-darmstadt.de/
KP/publications/07/lll.pdf.

[114] F. Mendel, N. Pramstaller, C. Rechberger, and V. Rijmen. Analysis of
Step-Reduced SHA-256. In Fast Software Encryption, 13th International
Workshop — FSE 2006, volume 4047 of Lecture Notes in Computer Science,
pages 126–143. Springer, 2006.

[115] F. Mendel, N. Pramstaller, C. Rechberger, and V. Rijmen. On the Collision
Resistance of RIPEMD-160. In Information Security 9th International
Conference — ISC 2006, volume 4176 of Lecture Notes in Computer Science,
pages 101–116. Springer, 2006.

[116] A. Menezes, P. van Oorschot, and S. Vanstone. Handbook of Applied
Cryptography. CRC Press, 1997.

[117] N. Mentens, J. Genoe, B. Preneel, and I. Verbauwhede. A Low-cost
Implementation of Trivium. In ECRYPT Workshop, The State of the Art of
Stream Ciphers — SASC 2008, pages 197–204, 2008.

[118] Microchip Technology Inc. KeeLoq® Authentication Products. Available at
http://www.microchip.com/keeloq/.

[119] S. Mikami, N. Mizushima, S. Nakamura, and D. Watanabe. A
Compact Hardware Implementation of SHA-3 Candidate Luffa,
2010. Available at http://www.sdl.hitachi.co.jp/crypto/luffa/
ACompactHardwareImplementationOfSHA-3CandidateLuffa_20101105.
pdf.

[120] V. Miller. Uses of Elliptic Curves in Cryptography. In Advances in Cryptology:
Proceedings of CRYPTO’85, volume 218 of Lecture Notes in Computer
Science, pages 417–426. Springer, 1985.

[121] P. Montgomery. Modular Multiplication without Trial Division. Mathematics
of Computation, 44(170):519–521, 1985.

[122] G. E. Moore. Cramming More Components onto Integrated Circuits.
Electronics, 38(8), 1965.

[123] G. E. Moore. No Exponential is Forever: but “Forever” can be Delayed! In
IEEE International Solid-State Circuits Conference — ISSCC 2003, volume 1,
pages 20–23, 2003.

http://www.informatik.tu-darmstadt.de/KP/publications/07/lll.pdf
http://www.informatik.tu-darmstadt.de/KP/publications/07/lll.pdf
http://www.microchip.com/keeloq/
http://www.sdl.hitachi.co.jp/crypto/luffa/ACompactHardwareImplementationOfSHA-3CandidateLuffa_20101105.pdf
http://www.sdl.hitachi.co.jp/crypto/luffa/ACompactHardwareImplementationOfSHA-3CandidateLuffa_20101105.pdf
http://www.sdl.hitachi.co.jp/crypto/luffa/ACompactHardwareImplementationOfSHA-3CandidateLuffa_20101105.pdf

170 BIBLIOGRAPHY

[124] A. Namin and M. Hasan. Implementation of the Compression Function for
Selected SHA-3 Candidates on FPGA. In IEEE International Symposium on
Parallel Distributed Processing, pages 1–4, 2010.

[125] National Institute of Advanced Industrial Science and Technology (AIST),
Research Center for Information Security (RCIS). Side-channel Attack
Standard Evaluation Board (SASEBO). Available at http://www.rcis.
aist.go.jp/special/SASEBO/.

[126] National Institute of Standards and Technology (NIST). Announcing
Development of a Federal Information Processing Standard for Advanced
Encryption Standard. Available at http://csrc.nist.gov/archive/aes/
pre-round1/aes_9701.txt.

[127] National Institute of Standards and Technology (NIST). Cryptographic Hash
Algorithm Competition. Available at http://csrc.nist.gov/groups/ST/
hash/sha-3/index.html.

[128] National Institute of Standards and Technology (NIST). ANSI C
Cryptographic API Profile for SHA-3 Candidate Algorithm Submissions,
2008. Available at http://csrc.nist.gov/groups/ST/hash/documents/
SHA3-C-API.pdf.

[129] National Institute of Standards and Technology (NIST). FIPS 186-3: Digital
Signature Standard, 2009. Available at http://csrc.nist.gov/.

[130] National Soviet Bureau of Standards. Informtation Processing System -
Cryptographic Protection. Cryptographic Algorithm GOST 28147-89, 1989.

[131] C. Ng, T. Ng, and K. Yip. A Unified Architecture of MD5 and RIPEMD-160
Hash Algorithms. In IEEE International Symposium on Circuits and Systems

— ISCAS 2007, pages 889–892. IEEE, 2007.

[132] I. Nikolić and A. Biryukov. Collisions for Step-Reduced SHA-256. In Fast
Software Encryption, 15th International Workshop — FSE 2008, volume
5086 of Lecture Notes in Computer Science, pages 1–15. Springer, 2008.

[133] K. K. Parhi. VLSI Digital Signal Processing Systems – Design and
Implementation. Wiley, NY, 1999.

[134] A. Poschmann. Lightweight Cryptography – Cryptographic Engineering for a
Pervasive World. PhD Thesis, Ruhr-University Bochum, Germany, 2009.

[135] A. Poschmann, S. Ling, and H. Wang. 256 Bit Standardized Crypto for 650
GE - GOST Revisited. In Cryptographic Hardware and Embedded Systems

— CHES 2010, volume 6225 of Lecture Notes in Computer Science, pages
219–233. Springer, 2010.

http://www.rcis.aist.go.jp/special/SASEBO/
http://www.rcis.aist.go.jp/special/SASEBO/
http://csrc.nist.gov/archive/aes/pre-round1/aes_9701.txt
http://csrc.nist.gov/archive/aes/pre-round1/aes_9701.txt
http://csrc.nist.gov/groups/ST/hash/sha-3/index.html
http://csrc.nist.gov/groups/ST/hash/sha-3/index.html
http://csrc.nist.gov/groups/ST/hash/documents/SHA3-C-API.pdf
http://csrc.nist.gov/groups/ST/hash/documents/SHA3-C-API.pdf
http://csrc.nist.gov/

BIBLIOGRAPHY 171

[136] M. J. Potgieter and B. J. van Dyk. Two Hardware Implementations
of the Group Operations Necessary for Implementing an Elliptic Curve
Cryptosystem over a Characteristic Two Finite Field. In IEEE AFRICON
2002, pages 187–192, 2002.

[137] B. Preneel. Analysis and Design of Cryptographic Hash Functions. PhD
thesis, Katholieke Universiteit Leuven, Belgium, 1993.

[138] B. Preneel, R. Govaerts, and J. Vandewalle. Hash Functions Based on Block
Ciphers: A Synthetic Approach. In Advances in Cryptology — CRYPTO ’93,
volume 773 of Lecture Notes in Computer Science, pages 368–378. Springer,
1994.

[139] J.-J. Quisquater. Encoding System According to the So-Called RSA Method,
by Means of a Microcontroller and Arrangement Implementing this System,
1992. US Patent 5,166,978.

[140] M. O. Rabin. Digitalized Signatures. In Foundations of Secure Computations,
pages 155–166. Academic Press, 1978.

[141] R. Rivest. The MD4 Message Digest Algorithm. In Advances in Cryptology
— CRYPTO ’90, volume 537 of Lecture Notes in Computer Science, pages
303–311. Springer, 1991.

[142] R. L. Rivest. The MD5 Message-Digest Algorithm. Internet Engineering
Task Force (IETF) Request for Comments (RFC) 1321, 1992.

[143] R. L. Rivest and A. Shamir. Efficient Factoring Based on Partial Information.
In Advances in Cryptology — EUROCRYPT ’85, volume 219 of Lecture Notes
in Computer Science, pages 31–34. Springer, 1986.

[144] R. L. Rivest, A. Shamir, and L. Adleman. A Method for Obtaining Digital
Signatures and Public-Key Cryptosystems. Communications of the ACM,
21(2):120–126, 1978.

[145] C. Rolfes, A. Poschmann, G. Leander, and C. Paar. Ultra-Lightweight
Implementations for Smart Devices — Security for 1000 Gate Equivalents. In
Smart Card Research and Advanced Applications — CARDIS 2008, volume
5189 of Lecture Notes in Computer Science, pages 89–103. Springer, 2008.

[146] K. Sakiyama. Secure Design Methodology and Implementation for Embedded
Public-key Cryptosystems. PhD thesis, Katholieke Universiteit Leuven, 2007.

[147] K. Sakiyama, M. Knežević, J. Fan, B. Preneel, and I. Verbauwhede. Tripartite
Modular Multiplication. Integration, the VLSI journal. 14 pages, 2011. To
appear.

172 BIBLIOGRAPHY

[148] S. K. Sanadhya and P. Sarkar. 22-Step Collisions for SHA-2. arXiv e-print
archive, arXiv:0803.1220v1, Mar. 2008. Available at http://www.arxiv.
org/.

[149] S. K. Sanadhya and P. Sarkar. Attacking Reduced Round SHA-256. In
Applied Cryptography and Network Security — ACNS 2008, volume 5037 of
Lecture Notes in Computer Science, pages 130–143, 2008.

[150] S. K. Sanadhya and P. Sarkar. New Collision Attacks against Up to 24-Step
SHA-2. In Progress in Cryptology — INDOCRYPT 2008, volume 5365 of
Lecture Notes in Computer Science, pages 91–103. Springer, 2008.

[151] S. K. Sanadhya and P. Sarkar. Non-linear Reduced Round Attacks against
SHA-2 Hash Family. In Information Security and Privacy — ACISP 2008,
volume 5107 of Lecture Notes in Computer Science, pages 254–266. Springer,
2008.

[152] A. Satoh and T. Inoue. ASIC-Hardware-Focused Comparison for Hash
Functions MD5, RIPEMD-160, and SHS. In International Conference on
Information Technology: Coding and Computing — ITCC, pages 532–537,
2005.

[153] P. Schaumont, K. Sakiyama, A. Hodjat, and I. Verbauwhede. Embedded
Software Integration for Coarse-Grain Reconfigurable Systems. Parallel and
Distributed Processing Symposium, International, 4:137–142, 2004.

[154] P. Schaumont and I. Verbauwhede. Domain-specific Tools and Methods
for Application in Security Processor Design. Kluwer Journal for Design
Automation of Embedded Systems, 7(4):365–383, 2002.

[155] C.-P. Schnorr. Efficient Identification and Signatures for Smart Cards. In
Advances in Cryptology — CRYPTO ’89, volume 435 of Lecture Notes in
Computer Science, pages 239–252. Springer, 1990.

[156] N. Sklavos and O. Koufopavlou. On the Hardware Implementation of
RIPEMD Processor: Networking High Speed Hashing, up to 2 Gbps.
Computers and Electrical Engineering, 31(6):361–379, 2005.

[157] F.-X. Standaert, G. Piret, N. Gershenfeld, and J.-J. Quisquater. SEA: A
Scalable Encryption Algorithm for Small Embedded Applications. In Smart
Card Research and Advanced Applications — CARDIS 2006, volume 3928 of
Lecture Notes in Computer Science, pages 222–236. Springer, 2006.

[158] Standards for Efficient Cryptography. SEC2: Recommended Elliptic Curve
Domain Parameters. http://www.secg.org/.

http://www.arxiv.org/
http://www.arxiv.org/
http://www.secg.org/

BIBLIOGRAPHY 173

[159] M. Stevens, A. Sotirov, J. Appelbaum, A. Lenstra, D. Molnar, D. A. Osvik,
and B. Weger. Short Chosen-Prefix Collisions for MD5 and the Creation of a
Rogue CA Certificate. In Advances in Cryptology — CRYPTO 2009, volume
5677 of Lecture Notes in Computer Science, pages 55–69. Springer, 2009.

[160] D. Suzuki. How to Maximize the Potential of FPGA Resources for Modular
Exponentiation. In Cryptographic Hardware and Embedded Systems —
CHES 2007, volume 4727 of Lecture Notes in Computer Science, pages
272–288. Springer, 2007.

[161] T. Takagi. Fast RSA-Type Cryptosystem Modulo pkq. In Advances in
Cryptology — CRYPTO ’98, volume 1462 of Lecture Notes in Computer
Science, pages 318–326. Springer, 1998.

[162] The SHA-3 Zoo. SHA-3 Hardware Implementations. Available at http:
//ehash.iaik.tugraz.at/wiki/SHA-3_Hardware_Implementations.

[163] S. Tillich, M. Feldhofer, W. Issovits, T. Kern, H. Kureck, M. Mühlberghuber,
G. Neubauer, A. Reiter, A. Köfler, and M. Mayrhofer. Compact Hardware
Implementations of the SHA-3 Candidates ARIRANG, BLAKE, Grøstl, and
Skein. Cryptology ePrint Archive, Report 2009/349, 2009. Available at
http://eprint.iacr.org/2009/349.

[164] S. Tillich, M. Feldhofer, M. Kirschbaum, T. Plos, J. Schmidt, and A. Szekely.
High-Speed Hardware Implementations of BLAKE, Blue Midnight Wish,
CubeHash, ECHO, Fugue, Grøstl, Hamsi, JH, Keccak, Luffa, Shabal, SHAvite-
3, SIMD, and Skein. Cryptology ePrint Archive, Report 2009/510, 2009.
Available at http://eprint.iacr.org/2009/510.

[165] S. Tillich, M. Feldhofer, M. Kirschbaum, T. Plos, J. Schmidt, and A. Szekely.
Uniform Evaluation of Hardware Implementations of the Round-Two SHA-3
Candidates. In The Second SHA-3 Candidate Conference, 2010.

[166] A. Toom. The Complexity of a Scheme of Functional Elements Realizing the
Multiplication of Integers. Soviet Mathematics - Doklady, 3:714–716, 1963.
Translation from Doklady Akademii Nauk SSSR, 150:3, 496–498, 1963.

[167] P. C. van Oorschot and M. J. Wiener. Parallel Collision Search with
Cryptanalytic Applications. Journal of Cryptology, 12(1):1–28, 1999.

[168] H. C. A. van Tilborg, editor. Encyclopedia of Cryptography and Security.
Springer, 2005.

[169] S. Vaudenay. On the Need for Multipermutations: Cryptanalysis of MD4
and SAFER. In Fast Software Encryption, Second International Workshop —
FSE ’94, volume 1008 of Lecture Notes in Computer Science, pages 286–297.
Springer, 1995.

http://ehash.iaik.tugraz.at/wiki/SHA-3_Hardware_Implementations
http://ehash.iaik.tugraz.at/wiki/SHA-3_Hardware_Implementations
http://eprint.iacr.org/2009/349
http://eprint.iacr.org/2009/510

174 BIBLIOGRAPHY

[170] X. Wang, X. Lai, D. Feng, H. Chen, and X. Yu. Cryptanalysis of
the Hash Functions MD4 and RIPEMD. In Advances in Cryptology —
EUROCRYPT 2005, volume 3494 of Lecture Notes in Computer Science,
pages 1–18. Springer, 2005.

[171] X. Wang, Y. L. Yin, and H. Yu. Finding Collisions in the Full SHA-1. In
Advances in Cryptology — CRYPTO 2005, volume 3621 of Lecture Notes in
Computer Science, pages 17–35. Springer, 2005.

[172] X. Wang and H. Yu. How to Break MD5 and Other Hash Functions. In
Advances in Cryptology — EUROCRYPT 2005, volume 3494 of Lecture Notes
in Computer Science, pages 19–35. Springer, 2005.

[173] X. Wang, H. Yu, and Y. L. Yin. Efficient Collision Search Attacks on SHA-0.
In Advances in Cryptology — CRYPTO 2005, volume 3621 of Lecture Notes
in Computer Science, pages 1–16. Springer, 2005.

[174] D. Wheeler and R. Needham. TEA Extensions. Available at http://www.
cix.co.uk/˜klockstone/xtea.pdf.

[175] D. Wheeler and R. Needham. TEA, a Tiny Encryption Algorithm. In Fast
Software Encryption, Second International Workshop — FSE ’94, volume
1008 of Lecture Notes in Computer Science, pages 363–366. Springer, 1995.

[176] H. Wu. Montgomery Multiplier and Squarer for a Class of Finite Fields.
IEEE Transactions on Computers, 51(5):521–529, May 2002.

[177] Xilinx. Virtex 2.5V FPGA Complete Data Sheet. Available at http://www.
xilinx.com/support/documentation/data_sheets/ds003.pdf.

[178] Xilinx. Virtex-II Platform FPGA User Guide. Available at http://www.
xilinx.com/support/documentation/data_sheets/ds031.pdf.

[179] Y. Yu, Y. Yang, Y. Fan, and H. Min. Security Scheme for RFID Tag.
Technical Report, Auto-ID Labs white paper WP-HARDWARE-022.

[180] P. S. Z. Chen, S. Morozov. A Hardware Interface for Hashing Algorithms.
Cryptology ePrint Archive, Report 2008/529, 2008. Available at http:
//eprint.iacr.org/2008/529.

[181] X. Zhao, Z. Wang, H. Lu, and K. Dai. A 6.35 Mbps 1024-bit RSA Crypto
Coprocessor in a 0.18um CMOS Technology. In International Conference on
Very Large Scale Integration, pages 216–221, 2006.

[182] Y. Zheng, J. Pieprzyk, and J. Seberry. HAVAL – A One-way Hashing
Algorithm with Variable Length of Output. In Advances in Cryptology —
ASIACRYPT ’90, volume 453 of Lecture Notes in Computer Science, pages
83–104. Springer, 1990.

http://www.cix.co.uk/~klockstone/xtea.pdf
http://www.cix.co.uk/~klockstone/xtea.pdf
http://www.xilinx.com/support/documentation/data_sheets/ds003.pdf
http://www.xilinx.com/support/documentation/data_sheets/ds003.pdf
http://www.xilinx.com/support/documentation/data_sheets/ds031.pdf
http://www.xilinx.com/support/documentation/data_sheets/ds031.pdf
http://eprint.iacr.org/2008/529
http://eprint.iacr.org/2008/529

List of Publications

Book Chapters

[1] M. Knežević, L. Batina, E. D. Mulder, J. Fan, B. Gierlichs, Y. K. Lee,
R. Maes, and I. Verbauwhede, “Signal Processing for Cryptography and Security
Applications,” in Handbook of Signal Processing Systems, pp. 161–177, Springer,
2010.

[2] Y. K. Lee, M. Knežević, and I. Verbauwhede, “Hardware Design for Hash
Functions,” in Secure Integrated Circuits and Systems, Integrated Circuits and
Systems, pp. 79–104, Springer, 2010.

International Journals

[1] M. Knežević, F. Vercauteren, and I. Verbauwhede, “Faster Interleaved Modular
Multiplication Based on Barrett and Montgomery Reduction Methods,” IEEE
Transactions on Computers, vol. 59, no. 12, pp. 1715–1721, 2010.

[2] M. Knežević, K. Kobayashi, J. Ikegami, S. Matsuo, A. Satoh, Ü. Kocabaş,
J. Fan, T. Katashita, T. Sugawara, K. Sakiyama, I. Verbauwhede, K. Ohta,
N. Homma, and T. Aoki, “Fair and Consistent Hardware Evaluation of Fourteen
Round Two SHA-3 Candidates,” IEEE Transactions on VLSI. 13 pages, 2011.
To appear.

[3] K. Sakiyama, M. Knežević, J. Fan, B. Preneel, and I. Verbauwhede, “Tripartite
Modular Multiplication,” Integration, the VLSI journal. 14 pages, 2011. To
appear.

175

176 INTERNATIONAL CONFERENCES AND WORKSHOPS

International Conferences and Workshops

[1] M. Knežević, K. Sakiyama, J. Fan, and I. Verbauwhede, “Modular Reduction
in GF(2n) Without Pre-Computational Phase,” in Arithmetic of Finite Fields,
Second International Workshop — WAIFI 2008, vol. 5130 of Lecture Notes in
Computer Science, pp. 77–87, Springer, 2008.

[2] M. Knežević, L. Batina, and I. Verbauwhede, “Modular Reduction Without
Precomputational Phase,” in IEEE International Symposium on Circuits and
Systems — ISCAS 2009, pp. 1389–1392, IEEE, 2009.

[3] M. Knežević, F. Vercauteren, and I. Verbauwhede, “Speeding Up Bipartite
Modular Multiplication,” in Arithmetic of Finite Fields, Third International
Workshop — WAIFI 2010, vol. 6087 of Lecture Notes in Computer Science,
pp. 166–179, Springer, 2010.

[4] C. D. Cannière, O. Dunkelman, and M. Knežević, “KATAN & KTANTAN
— A Family of Small and Efficient Hardware-Oriented Block Ciphers,” in
Cryptographic Hardware and Embedded Systems — CHES 2009, vol. 5747 of
Lecture Notes in Computer Science, pp. 272–288, Springer, 2009.

[5] M. Knežević, K. Sakiyama, Y. K. Lee, and I. Verbauwhede, “On the High-
Throughput Implementation of RIPEMD-160 Hash Algorithm,” in IEEE
International Conference on Application-Specific Systems, Architecture and
Processors — ASAP 2008, pp. 85–90, IEEE Computer Society, 2008.

[6] K. Kobayashi, J. Ikegami, M. Knežević, X. Guo, S. Matsuo, S. Huang,
L. Nazhandali, Ü. Kocabaş, J. Fan, A. Satoh, I. Verbauwhede, K. Sakiyama,
and K. Ohta, “Prototyping Platform for Performance Evaluation of SHA-3
Candidates,” in IEEE International Workshop on Hardware-Oriented Security
and Trust — HOST 2010, pp. 60–63, IEEE, 2010.

[7] M. Knežević and I. Verbauwhede, “Hardware Evaluation of the Luffa Hash
Family,” in Workshop on Embedded Systems Security — WESS 2009, p. 6,
2009.

[8] D. Karaklajić, M. Knežević, and I. Verbauwhede, “Low Cost Built-In Self
Test for Public Key Crypto Cores,” in Fifth International Workshop on Fault
Diagnosis and Tolerance in Cryptography — FDTC 2010, pp. 97–103, IEEE,
2010.

[9] A. Das, M. Knežević, S. Seys, and I. Verbauwhede, “Challenge-Response
Based Secure Test Wrapper for Testing Cryptographic Circuits,” in 16th IEEE
European Test Symposium — ETS 2011, IEEE. 6 pages, 2011. To appear.

[10] J. Fan, M. Knežević, D. Karaklajić, R. Maes, V. Rožić, L. Batina, and
I. Verbauwhede, “FPGA-based Testing Strategy for Cryptographic Chips: A

LOCAL CONFERENCES AND JOURNALS 177

Case Study on Elliptic Curve Processor for RFID Tags,” in IEEE International
On-Line Testing Symposium — IOLTS 2009, pp. 189–191, IEEE, 2009.

[11] M. Knežević, V. Velichkov, B. Preneel, and I. Verbauwhede, “On the Practical
Performance of Rateless Codes,” in International Conference on Wireless
Information Networks and Systems — WINSYS 2008, p. 4, 2008.

[12] M. Knežević and V. Velichkov, “Demonstration of Unobservable Voice Over
IP,” in International Workshop on Adaptive and Dependable Mobile Ubiquitous
Systems — ADAMUS 2008, p. 3, 2008.

Local Conferences and Journals

[1] M. Knežević, V. Rožić, and I. Verbauwhede, “Design Methods for Embedded
Security,” in Telecommunications Forum (TELFOR 2008), p. 4, 2008.

[2] M. Knežević, V. Rožić, and I. Verbauwhede, “Design Methods for Embedded
Security,” Telfor Journal, vol. 1, no. 2, pp. 69–72, 2009.

[3] D. Watanabe, H. Sato, C. D. Cannière, and M. Knežević, “A New Hash Funciton
Family Luffa,” in Symposium on Cryptography and Information Security, p. 6,
2009.

[4] Y. K. Lee, L. Batina, J. Fan, D. Karaklajić, M. Knežević, Ü. Kocabaş, V. Rožić,
and I. Verbauwhede, “Tiny Public-Key Security Processor,” ISSCC09 Student
Forum, 2009.

Technical Reports and Deliverables

[1] D. Karaklajić, M. Knežević, and I. Verbauwhede, “Multiplier Based Built In
Self Test for Cryptographic Applications,” submitted to IEEE Transactions on
Computers, 2010.

[2] A. Bogdanov, O. Dunkelman, M. Knežević, C. Rechberger, and I. Verbauwhede,
“On the Key Schedules of Lightweight Block Ciphers for RFID Applications,”
submitted to IEEE Communications Letters, 2011.

[3] M. Knežević, “Hardware Evaluation of Lane,” COSIC internal report, 2009.

[4] G. Danezis, C. Diaz, M. Knežević, M. Kohlweiss, S. Nikova, S. Schiffner,
C. Troncoso, and V. Velichkov, “Algorithmic Solutions for Privacy, Anonymity
and Identity,” aeolus deliverable, 2007.

Curriculum Vitae

Miroslav Knežević was born in Sarajevo, Bosnia and Herzegovina on September 27,
1982. He received the MSc. degree in Electrical Engineering from the University of
Belgrade, Serbia in July 2006. In December 2006, he joined the COSIC research
group at the Katholieke Universiteit Leuven, Belgium as a predoctoral student. He
was working on the IBBT QoE project, implementing a software for “Anonymous
Voice over IP”. In October 2007, he started his PhD program with the emphasis on
“Efficient Hardware Implementations of Cryptographic Primitives”.

179

Arenberg Doctoral School of Science, Engineering & Technology
Faculty of Engineering

Department of Electrical Engineering (ESAT)

COmputer Security and Industrial Cryptography (COSIC)

Kasteelpark Arenberg 10 — 2446, 3001 Heverlee, Belgium

	Contents
	List of Figures
	List of Tables
	Introduction
	Outline and Summary of Contributions

	Efficient Hardware Implementations of Finite Field Arithmetic
	Introduction
	Preliminaries
	Efficient Modular Arithmetic
	Bit-Parallel Algorithms
	Digit-Serial Algorithms

	Faster Digit-Serial Modular Multiplication Based on Barrett and Montgomery Reduction Methods
	Related Work
	The Proposed Modular Multiplication Methods for Integers
	Speeding Up Classical Modular Multiplication
	Speeding Up Montgomery Multiplication
	Speeding Up Bipartite Modular Multiplication
	Hardware Implementation of the Proposed Algorithms Based on Barrett and Montgomery Reduction Methods
	Hardware Implementation of the Proposed Algorithm Based on Bipartite Modular Multiplication
	Security Considerations
	The Proposed Multiplication Methods in GF(2n)
	Summary

	Bit-Parallel Modular Multiplication Based on Barrett and Montgomery Reduction Methods Without Precomputation
	On the Security of the Proposed Sets
	Bit-Parallel Finite Field Multiplication without Precomputation in GF(2n)
	Summary

	Tripartite Modular Multiplication
	Overview of the Proposed Multiplication Algorithm
	Further Exploration of the Proposed Algorithm
	Cost and Performance Estimation
	Hardware Implementation of the Proposed Algorithm
	Summary

	Conclusion

	High-Throughput Hardware Implementations of Cryptographic Hash Functions
	Introduction
	Popular Hash Algorithms and Their Security Considerations
	Throughput Improving Techniques
	On the High-Throughput Implementation of RIPEMD-160 Hash Algorithm
	RIPEMD-160 Algorithm
	Optimization at Micro-Architecture Level
	Optimization at Gate Level
	Final High-Throughput Architecture
	Implementation Results and Comparison with Previous Work
	Summary

	Extensive Hardware Comparison of Fourteen Second-Round SHA-3 Candidates
	Related Work
	General Requirements for Hardware Evaluation
	Hardware Evaluation Platform for SHA-3 Candidates
	FPGA Evaluation Results
	ASIC Evaluation Results
	Correlation between ASIC and FPGA Results
	The SHA-3 Finalists
	Summary

	Hardware Evaluation of the Luffa Hash Family
	Hardware Implementation
	Summary

	Conclusion

	Lightweight Cryptography – A Battle for a Single Gate
	Introduction
	Related Work

	KATAN & KTANTAN – A Family of Small and Efficient Hardware-Oriented Block Ciphers
	General Construction and Building Blocks
	The KATAN Set of Block Ciphers
	The KTANTAN Family
	Hardware Implementation
	Security Analysis
	Combined Attacks
	Cryptanalysis of KATAN & KTANTAN Family of Block Ciphers
	New Key Schedule for KTANTAN Family of Block Ciphers
	Summary

	Conclusion

	Conclusions and Future Work
	Bibliography
	List of Publications
	Curriculum Vitae

