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Abstract

We are confronted with a growing amount of available data which are not
only noisy but also have an increasingly complex structure. The field of
machine learning, a subfield of artificial intelligence, focuses on algorithms that
deduce useful knowledge from data. Our goal is to represent knowledge using
probabilistic logic models and to reason with these models in an automated and
efficient manner. Such models bring the expressive power of first-order logic
to probabilistic models, enabling them to capture both the relational structure
and the uncertainty present in such data.

In this dissertation we focus on directed probabilistic logic models and more
specifically on CP-logic. The aim of CP-logic is to model causal knowledge
that explicitly incorporates dynamic concepts such as events and processes.
The fundamental building block is the knowledge why events occur and what
the effects of these events are. Efficient inference, however, is a bottleneck in
CP-logic and in probabilistic logic models in general, affecting also the cost
of learning. We have contributed two methods to improve the efficiency of
inference and one method for learning.

The first method, first-order Bayes ball, extracts the minimal requisite subtheory
of a CP-theory necessary to answer a particular query given evidence. Inference
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iv ABSTRACT

becomes more efficient by restricting computations to the minimal requisite
subtheory. Contrary to Bayes ball for Bayesian networks, first-order Bayes ball
reasons on the first-order level and it returns the requisite part as a first-order
CP-theory. The advantages of working on the first-order level are twofold; first,
it is more efficient to find the ground requisite network compared to current
methods. Second, the resulting requisite network is first-order, permitting it
to be used as input for lifted inference methods which exploit the symmetries
present in probabilistic logic models to improve the efficiency of inference
with several orders of magnitude. Experiments show that first-order Bayes ball
improves existing lifted inference methods by reducing the size of the theory
that needs to be analyzed and processed.

The second method to improve the efficiency of inference is contextual variable
elimination with overlapping contexts which capitalizes on deterministic
dependencies present in probabilistic logic models. Two special cases of
combining deterministic and probabilistic relations are contextual and causal
independencies, both commonly used structures in probabilistic models.
The original contextual variable elimination technique compactly represents
contextual independence by representing the probabilistic model in terms of
confactors but cannot handle causal independence because of some restrictions
in these confactors. We lift these restrictions and propose a new algorithm to
deal with more general confactors. This allows for a more efficient encoding
of confactors and a reduction of the computational cost. Experiments show
that our algorithm outperforms contextual variable elimination and variable
elimination on multiple problems.

Lastly, we propose SEM-CP-logic, an algorithm for learning ground CP-logic
from data by leveraging Bayesian network learning techniques. To this end,
certain modifications are required to parameter and structure learning for
Bayesian networks. Most importantly, the refinement operator used by the
search must take into account the fine granularity of CP-logic. Experiments in a
controlled artificial domain show that learning CP-theories with SEM-CP-logic
requires fewer training data than Bayesian network learning.



Samenvatting

We worden overstelpt met een toenemende hoeveelheid aan beschikbare data
die niet alleen ruis en fouten bevatten maar ook een steeds complexere structuur.
Machine learning, een onderdeel van artificiële intelligentie, concentreert zich
op algoritmes die betekenisvolle kennis afleiden uit data. Ons doel is om
kennis voor te stellen met behulp van probabilistisch logische modellen en
om met deze modellen te redeneren op een geautomatiseerde en efficiënte
manier. Dergelijke modellen combineren de expressieve kracht van eerste-orde
logica met probabilistische modellen zodat zowel de relationele structuur als
de onzekerheid aanwezig in de data aangepakt wordt.

In dit proefschrift concentreren wij ons op gerichte probabilistisch logische
modellen en meer specifiek op CP-logic. CP-logic heeft als doel de causale
kennis te modelleren die expliciet dynamische concepten bevat zoals gebeurte-
nissen en processen. De fundamentele bouwsteen is de kennis over waarom
gebeurtenissen plaatsvinden en wat de gevolgen van deze gebeurtenissen zijn.
Efficiënte inferentie is een knelpunt in CP-logic en in probabilistisch logische
modellen in het algemeen en beïinvloedt onrechtstreeks ook de kost van leren.
We hebben aan twee methoden gewerkt om de efficiëntie van inferentie te
verbeteren en aan één methode voor het verbeteren van leren.
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De eerste methode, eerste-orde Bayes ball, leidt de minimaal vereiste subtheorie
van een CP-theorie af die noodzakelijk is om vragen over kansen gegeven
observaties te beantwoorden. Inferentie wordt efficiënter door berekeningen
te limiteren tot de minimaal vereiste subtheorie. In tegenstelling tot Bayes
ball voor Bayesiaanse netwerken, redeneert eerste-orde Bayes ball op het
eerste-orde niveau en het herleidt het vereiste deel tot een eerste-orde CP-
theorie. De voordelen van werken op het het eerste-orde niveau zijn tweeledig;
ten eerste is het efficiënter om het basis vereiste netwerk te vinden in
vergelijking met huidige methoden. Ten tweede is het resulterend vereiste
netwerk van eerste orde, hetgeen toelaat om het te gebruiken als input voor
gelifte inferentiemethoden die gebruik maken van symmetrieën aanwezig in
probabilistisch logische modellen om de efficiëntie van inferentie met enkele
grootte ordes te verbeteren. Experimenten tonen aan dat eerste-orde Bayes ball
bestaande gelifte inferentiemethoden verbetert door de grootte van de theorie
die geanalyseerd en verwerkt moet worden te reduceren.

De tweede methode om de efficiëntie van inferentie te verbeteren omvat contex-
tuele variabele eliminatie met overlappende contexten dat voornamelijk reke-
ning houdt met deterministische afhankelijkheden aanwezig in probabilistisch
logische modellen. Twee speciale gevallen van gecombineerde deterministische
en probabilistische relaties zijn contextuele en causale onafhankelijkheden,
die beiden veel gebruikt worden in probabilistische modellen. De originele
contextuele eliminatietechniek voor variabelen vertegenwoordigt compact
contextuele onafhankelijkheid door het probabilistisch model voor te stellen als
confactors maar het kan causale onafhankelijkheid niet aan omwille van enkele
restricties in deze confactors. We heffen deze restricties op en stellen een nieuw
algoritme voor om met algemenere confactors te kunnen werken. Dit laat toe om
confactors efficiënter te coderen en om de computationele kost te verminderen.
Experimenten tonen aan dat onze algoritmes contextuele variabele eliminatie
en variabele eliminatie op meerdere problemen overtreffen.

Tenslotte stellen we SEM-CP-logic voor, een algoritme om CP-logic te leren uit
data door Bayesiaanse netwerk leertechnieken toe te passen. Hiertoe zijn een
aantal wijzigingen vereist aan parameter- en structuurleren voor Bayesiaanse
netwerken. Het is belangrijk dat de verfijningsoperator die gebruikt wordt
tijdens het zoeken rekening houdt met de fijnere granulariteit van CP-logic.
Experimenten in een gecontroleerd artificieel domein tonen aan dat leren met
SEM-CP-logic minder data vereist dan leren met Bayesiaanse netwerken.
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Introduction

1

Intelligence is the ability to see abstract relations between objects and events, the
know how to express these relations, communicate them and reason about new
objects and events. Artificial intelligence is the discipline of science that tries
to create machines that exhibit intelligent behaviour. The subfield of artificial
intelligence that concentrates on the algorithms to extract abstract relations
from data, like for example observations, is machine learning. Our goal is
to represent knowledge using probabilistic logic models and to reason with
these models in an automated and efficient manner. Probabilistic logic models
bring the expressive power of first-order logic to probabilistic models, enabling
them to capture both the relational structure and the uncertainty present in the
complex data we are confronted with nowadays.

1.1 Context

This dissertation is situated on the intersection of three fields: probability theory,
logic, and machine learning. We will explain each of these fields in more detail
followed by an introduction to the intersection of these fields: probabilistic logic
learning.
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2 INTRODUCTION

1.1.1 Probability theory

Probability theory (Kolmogorov 1933; Shafer and Vladimir 2006) allows us to
reason about a world that exhibits non-deterministic events. Outcomes of such
events are captured in random variables and interactions between such random
variables are expressed by the laws of probability. Non-determinism appears
if we have only partial knowledge of the world. This is the case in complex
systems where we cannot observe all possible events, or when external events
can disturb the events we observe and thus cause noise on our observations.

Example 1.1. An example of an event is throwing a coin. The outcome of that
event will be heads or tails. This can be modelled with a random variable we
will call coin and can take one of two values: heads or tails. For a fair coin, we
can state that the outcome of the event will be heads in half the cases and tails
in the other half. ♦

Example 1.2. Another example of an event is a signal transmitted in a computer
network, the outcome of this event is whether the signal arrives at its destination
or not. This event can be constructed from a set of events describing the
successful passing of the signal from node to node in the network. Such a
combination of events can be complex, as we will see later. ♦

A variety of formalisms has been developed to express these random variables
and the relations between them. Well known formalisms are Bayesian networks
(Pearl 1988), Markov random fields (Kindermann and Snell 1980), and stochastic
grammars. These models represent a subset of possible conditional indepen-
dence relations on which you can do more efficient inference. In Chapter 2, we
introduce Bayesian networks more formally.

Although these probabilistic formalisms are very robust with respect to noise,
a disadvantage is their ‘stiff’ structure. Probabilistic relations are defined over
specific random variables and cannot adapt easily to a changing world. This
makes it difficult to model a world with a variable number of objects and
relations between these objects. For example, modelling a computer network
as in Example 1.2 is difficult because of the complex and dynamic structure of
such a computer network. The relations between different components change
as computers are added to the network. Thus, although these components are
identical at the abstract level, e.g., every computer has parts like a CPU and
a hard disk, in the probabilistic model, every computer has to be modelled
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explicitly. There is no way of expressing probabilistic rules that are in true for
computer networks in general.

1.1.2 Logic

First-order logic (Hilbert and Ackermann 1950) and other relational formalisms
such as logic programming (Lloyd 1987) can model complex situations and
relations elegantly. It allows us to easily express knowledge about a variable
number of objects and the relations between them.

Example 1.3. For a computer network we can state that a computer c1 has a
CPU p1 with the relation cpu(c1, p1). This relation is simply stating a fact, the
knowledge that we have about computer c1. Similarly, we can express that c1
also has a second CPU p2: cpu(c1, p2). Next to these basic facts we can define
abstract rules to define general knowledge about computers in general. The
formula

∀C multiprocessor(C)↔ ∃PaPb cpu(Pa, C) ∧ cpu(Pb, C) ∧ Pa 6= Pb

states the abstract concept that a multi-processor computer is a computer
with at least two processors. The identifiers Pa, Pb and C in the formula are
logic variables representing a set of individual objects. Modelling this kind of
knowledge in a probabilistic model would require an individual relation for
every object representing a computer. ♦

While relational formalisms offer a general and expressive language, the
disadvantage is their deterministic character. It is difficult to express non-
deterministic relations in such a relational formalism where the amount of
non-determinism is precisely quantified.

1.1.3 Machine Learning

Machine learning is concerned with developing algorithms that not only take
decisions given a situation, but also learn from previous experiences to make
smarter decisions in the future. We will refer to ‘experiences‘ as data and the
knowledge distilled from the data as the model. This can be expressed more
formally as follows (Mitchell 1997):
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Definition 1.1 (Learning). A computer program is said to learn from experience
E with respect to some class of tasks T and performance measure P, if its
performance at tasks in T, as measured by P, improves with experience E.

1.1.4 Probabilistic Logic Learning

At the intersection of probability theory, logic theory and machine learning, the
field of probabilistic logic learning (PLL) appears, also called statistical relational
learning (SRL). The aim of probabilistic logic learning is to combine the strong
characteristics from probability theory, logic and machine learning into a new
whole that is stronger than its parts. Probabilistic logic learning started to gain
traction in the beginning of the nineties (Haddawy 1994; Wellman, Breese, and
Goldman 1992) and is by now a well known field (Getoor and Taskar 2007;
Kersting and De Raedt 2007) with a lot of activity.

Probability

Learning

Logic

Probabilistic
Logic
Learning

Figure 1.1: Probabilistic logic learning is the intersection of probability theory,
logic theory and machine learing. (Taken from De Raedt and Kersting (2003))

Example 1.4. A computer network in which messages are transmitted can be
elegantly modelled by means of probabilistic logic models. Such a network
typically contains a variety of devices like computers, routers, and switches
that are connected to each other by means of wires or wireless connections.
The connections between these multiple identical components can be elegantly
modelled with logic. On top of that, devices can malfunction and cables can be
noisy causing messages to get lost. There is no deterministic rule to describe
this, therefore, also probabilities are a necessary aspect of the model. ♦
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1.2 Motivation, Goal and Contributions

1.2.1 Motivation and Goal

Learning of probabilistic logic models is an active research topic and has many
promising applications (Bancilhon et al. 1986; Kok and Domingos 2009; Kersting
and De Raedt 2008; Getoor and Taskar 2007). One of the key steps for learning,
inference, however, is still a bottleneck. The expressivity we gain by combining
probability theory and logic theory brings along some new challenges with
respect to inference. Therefore, efficient inference is key to the development of
the field of probabilistic logic learning. Concretely, our goal was to improve the
inference and learning algorithms for directed probabilistic logic models.

1.2.2 Application

Mechatronics is the synergistic integration of mechanics, electronics, control
theory and computer science within product design and manufacturing, in
order to improve and/or optimize its functionality (AFNOR 2008). The field of
mechatronics is a good candidate to apply the powerful methods of probabilistic
logic learning. In this dissertation we show methods that can be applied to
create and reason with a diagnosis system for a badminton playing robot.
Such a badminton robot is part of a project of the Flanders Mechatronics
Technology Center (FMTC) at Leuven, Belgium (see Fig. 1.2). The robot is
using non-modified shuttles and rackets, which are detected and localized
using purely visual information.

The robot subsystems include mechanical design, visual detection of the
shuttle, shuttle trajectory estimation and interception, actuation, sensors, control
hardware and software. All these subsystems are connected in a complex
network in which messages are relayed from one node to another. If the robot
fails, it is non-trivial to find the reason of the failure. A possible solution is to,
first, model (parts of) this system as a probabilistic logic model by means of
expert knowledge and machine learning, and, second, use inference to compute
the most likely reason of failure given sensor observations. For a more complete
and detailed overview of the robot, see Stoev et al. (2010).

For the badminton playing robot, we can use probabilistic logic models to:



6 INTRODUCTION

• Model the software and hardware components the robot is composed
of in a modular way. The interactions between software and hardware
components can be elegantly expressed in a relational way.

• Reason with this model to find the failures that are most likely given some
observations.

• Extract the minimal requisite model that describes a particular subsystem.
This allows a design engineer to focus on the part for which he or she is
responsible without the need to know details about the other subsystems.

Figure 1.2: Badminton playing robot developed by the Flanders Mechatronics
Technology Center (FMTC).

1.2.3 Contributions

This dissertation contains four main contributions.

Extend the knowledge about CP-logic in the field of machine learning.
The probabilistic logical formalism we use is CP-logic (causal probabilistic
logic), a formalism that is based on causal processes. Our work can be seen
as an extension of the original CP-logic research that is situated in the field of
knowledge representation towards the field of machine learning. We do this
by comparing CP-logic to probabilistic formalisms like Bayesian networks and
other probabilistic logic models.
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A preprocessing method improving inference for directed probabilistic logic
models. The Bayes-ball algorithm can identify the requisite variables in a
propositional Bayesian network and thus ignore irrelevant variables that make
inference unnecessarily more expensive. In this dissertation we present a
lifted version of Bayes-ball, which works directly on the first-order level, and
shows how this algorithm applies to (lifted) inference in directed first-order
probabilistic models.

Efficient inference methods for probabilistic graphical models containing
local structure. Bayesian networks extracted from probabilistic logic for-
malisms often include relations between the variables that cannot be captured
exactly with conditional independence. In such cases, naively representing
conditional probability distributions as tables and using a general purpose
inference algorithm such as variable elimination results in redundant and
unnecessary computations. This happens for example when the conditional
probability distribution can be represented more compactly by a decision tree or
a noisy-or instead of a table. Thus, the term local structure refers to the presence
of structure in the table representing the conditional probability distribution.
Contextual variable elimination partly addresses this problem by representing
the Bayesian network in terms of smaller units. This leads to a more compact
representation and faster inference. We propose a new approach for contextual
variable elimination that lifts some of the restrictions in the original method.
This seemingly simple step shows to be powerful and allows for an even more
efficient encoding and a reduction of the computational cost.

Learning directed probabilistic logic models. We investigate the learning
of CP-logic theories by leveraging Bayesian network techniques. We study
the relation between CP-logic theories and Bayesian networks, and show that
simple CP-logic theories can be represented with Bayesian networks consisting
of noisy-or nodes, while more complex theories require close to fully connected
networks, unless additional unobserved nodes are introduced in the network.
We introduce an algorithm that learns CP-theories from training data and is
based on a transformation between CP-theories and Bayesian networks with
unobserved nodes. That is, the method applies Bayesian network learning
techniques to learn a CP-logic theory in the form of an equivalent Bayesian
network. To this end, certain modifications are required to the Bayesian network
parameter learning and structure search, the most important one being that the
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refinement operator used by the search must be able to introduce the required
unobserved nodes, and guarantee that the refined networks are valid CP-logic
theories.

1.3 Structure of the Text

The remainder of this text consists of seven chapters.

• In Chapter 2 we introduce some background to the fields of probability
theory and logic needed for the other chapters.

• In Chapter 3 we focus on CP-logic, a directed probabilistic logic model we
have chosen to use throughout the dissertation as the probabilistic logic
formalism to explain the developed methods.

• In Chapter 4 we compare CP-logic to other probabilistic logic models.
Although we explain the methods developed in this dissertation by means
of CP-logic, the proposed methods are in general applicable to directed
logic probabilistic models. This chapter shows the connection with some
other formalisms.

• In Chapter 5, we present First-order Bayes-ball, a preprocessing method to
improve the efficiency of inference for directed probabilistic logic models.
More specifically, it improves the applicability of lifted inference methods.

• In Chapter 6, we present the contextual variable elimination algorithm
for confactors with overlapping contexts. This algorithm is an inference
method that efficiently handles local structure in probabilistic graphical
models.

• In Chapter 7, we focus on learning directed probabilistic logic models.

• In Chapter 8, we summarize our work, present the main conclusions, and
propose some possible directions for future work.
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1.4 Implementation

The algorithms for inference proposed in this dissertation are implemented as
proof of concepts and combined in the corporal system1. The implementation
is available at http://dtai.cs.kuleuven.be/corporal/. The algorithm for
learning is not yet part of corporal but implemented in Python as a prototype.

1The abbreviation of the military rank of corporal is cpl, and this is also the abbreviation used
for CP-logic.

http://dtai.cs.kuleuven.be/corporal/




Background

2

In this chapter we introduce concepts from the domains of probability theory
and logic that will be used throughout this dissertations. In Section 2.1 we
discuss the basic concepts and terminology of probability theory. This includes
some well known formalisms such as Bayesian networks. In Section 2.2 we
introduce propositional logic, first-order logic and logic programming as
representation languages for complex models.

2.1 Probability Theory

In this dissertation, when we are talking about probability we use the commonly
used definition as laid out by A. N. Kolmogorov who developed a set-theoretic
definition of probability (Kolmogorov 1933). In the following sections, we
will give an overview of the concepts needed for this dissertation. For a more
detailed view on probability theory and Bayesian networks (and the proofs of
the theorems) see Neapolitan (2003) or Pearl (1988).

11
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2.1.1 Sample Space and Random Variables

Probability theory deals with experiments that have a set of distinct outcomes.
The set combining all these outcomes is the sample space. Every subset of the
sample space is called an event. A subset containing exactly one element is
called an elementary event. Once the sample space is identified, a probability
function is defined as follows:

Suppose we have a sample space Ω containing n distinct elements.

Ω = {e1, e2, . . . , en}

A function that assigns a real number Pr(E) to each event E ⊆ Ω is called
a probability function on the set of subsets of Ω if it satisfies the following
conditions:

1. 0 ≤ Pr({ei}) ≤ 1 for 1 ≤ i ≤ n

2. Pr({e1}) + Pr({e2}) + . . . + Pr({en}) = 1

3. For each event E = {ei1 , ei2 , . . . , eik} that is not an elementary event,
Pr(E) = Pr({ei1}) + Pr({ei2}) + . . . + Pr({eik}).

The pair (Ω, Pr) is called a probability space.

Instead of saying that Pr is a probability function on the set of subsets of Ω, we
often shorten it to “Pr is a probability function on Ω”.

Example 2.1. Suppose you are playing a game of badminton. Your opponent
launches the shuttle and you have to intercept and return it. You are not familiar
with the game nor your opponent and thus have no prior knowledge to how
your opponent will shoot the shuttle. We can draw an imaginary ten by four
grid above the net (see Fig. 2.1) and simplify the situation to a two dimensional
problem by assuming that speed is irrelevant. If you know where the shuttle
appears above the net, you know where to position your racket to return the
shuttle.

In this example, Ω contains all 40 possible locations where the shuttle can
appear, and we consider all locations or elementary events equiprobable. We
assign Pr({e}) = 1/40 for each e ∈ Ω. If we let (x, y) represent the event
that the shuttle appears in the square on the xth row and the yth column, then



PROBABILITY THEORY 13

Pr({(3, 1)}) = 1/40, and Pr({(3, 1), (6, 3)}) = Pr({(3, 1)}) + Pr({(6, 3)}) =

1/40 + 1/40 = 1/20. ♦
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Figure 2.1: Sample space for the position of the incoming shuttle in a game of
badminton.

In general it is cumbersome to talk about (elementary) events. It is more
intuitive to talk about states of particular objects in the world we are considering.
Therefore, a concept that is often used for representing models, is the random
variable: Given a probability space (Ω, Pr), a random variable x is a function on
Ω that assigns a unique value to each element in the sample space1. The set of
values a random variable called x can take is the space of x or the domain of x
(dom(x)). When we say x = x1, we refer to all elementary events for which x
maps to x1 and x1 is an element in the space of x.

1In this dissertation we follow the convention that a lowercase letter is used for a random variable.
This is a common convention in PLL and differs from pure probability theory where capitals are
used for random variables. In PLL, capitals are used for logic variables which are introduced in
Section 2.2
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The conditions for a sample space can be restated for random variables and are
often referred to as the axioms of probability: Let (Ω, Pr) be a probability space,
x and y random variables, xi any element in the space of x, and yj any element
in the space of y. Then

1. Pr(Ω) = 1

2. 0 ≤ Pr(x = xi) ≤ 1

3. Pr(x = xi or y = yj) = Pr(x = xi) + Pr(y = yj) if the set of events for
which x = xi and x = yj is empty

Example 2.2. In the badminton example, an intuitive random variable is the
column of an elementary event which we call x. The space of x is {0, . . . , 9}.
Another random variable could be used to refer to the set of events that has
as outcome that the shuttle appears in one of the first three columns. For this
we can declare a random variable left with space {false, true} that assigns true
to each elementary event in the first three columns, and false otherwise. The
following table represents some of the values of x and Left:

e Left X Pr(e)
(0, 0) true 0 1/40

. . . . . . . . . 1/40
(1, 0) true 1 1/40

. . . . . . . . . 1/40
(5, 2) false 5 1/40

. . . . . . . . . 1/40
(9, 3) false 9 1/40

We can now use these random variables to calculate the probability of events
like “the shuttle appears in one of the left columns”:

Pr(left = true) = Pr({(x, y) | 0 ≤ x ≤ 2, 0 ≤ y ≤ 9}) = 12 · 1/40 = 3/10

Suppose we also have a random variable right then we can express the
probability for the event “the shuttle appears in one of the left or the right
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columns” as

Pr(left = true or right = true) = Pr(left = true) + Pr(right = true)

=
3

10
+

3
10

=
3
5

because the set of elementary events where left = true and right = true is empty.
If we have a random variable Top that is true if the shuttle appears in the top 2
rows than the set of events that have left = true and the set where top = true is
not empty and therefore their probabilities are not additive. However, we can
combine the axioms of probability to state (for a proof, see Neapolitan (2003))

Pr(x = xi or y = yj) = Pr(x = xi) + Pr(y = yj)− Pr(x = xi and y = yj)

Thus in this case,

Pr(left = true or top = true)

= Pr(left = true) + Pr(top = true)− Pr(left = true, top = true)

=
3
10

+
1
2
− 3

20
=

13
20

♦

We can say that a random variable induces a probability distribution on its
space. If it is clear from the context, Pr(x = xi) may be shortened to Pr(xi).
With Pr(x) we mean the probability distribution of the random variable x on all
values xi in its space.

Example 2.3. The probability distribution over left is

Pr(le f t) =
left Pr(left)

false 7/10
true 3/10

♦
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2.1.2 Joint Probability Distribution

In the previous section, it is already shown that a set of events can be described
by combining random variables, e.g., Pr(left = true or right = true). If random
variables are combined with conjunction instead of disjunction, Pr(left =

true and right = true), it is called the joint probability of the random variables.
Say there are two random variables x1 and x2, then the combination of x1 = x1,i
and x2 = x2,j expresses those elements in sample space Ω that are mapped by
x1 to x1,i and by x2 to x2,j.

We abbreviate Pr(x1 = x1,i and x2 = x2,j) with Pr(x1 = x1,i, x2 = x2,j). If it
is clear from the context this can be shortened further to Pr(x1,i, x2,j). With
Pr(x1, x2) we express the joint probability distribution over all possible values x1,i
and x2,j. Similar to how a random variable induces a probability function on its
space, a conjunction of random variables also induces a probability function on
the Cartesian product of their spaces.

Example 2.4. The probability for left = true and top = true is

Pr(left = true, top = true) = Pr({(x, y) | 0 ≤ x ≤ 2, 0 ≤ y ≤ 1}) = 3/20

The probability distribution over left and top is

Pr(left, top) =

left top Pr(left, top)
false false 14/40
true false 6/40
false true 14/40
true true 6/40

♦

2.1.3 Marginal Probability Distribution

Given a joint probability distribution, the law of total probability states that
the probability distribution of any one of the random variables can be obtained
by summing over all values of the other variables. Given the joint probability
distribution Pr(x1, x2, . . . , xn), the marginal probability distribution of random
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variable x1 can be obtained with the following formula:

Pr(x1) = ∑
x2,...,xn

Pr(x1, x2, . . . , xn)

Example 2.5. Given the joint probability distribution over left and top, we can
deduce the marginal probability over only left as follows:

Pr(left = true) = ∑
top

Pr(left = true, top)

= Pr(left = true, top = true) + Pr(left = true, top = false)

= 6/40 + 6/40 = 3/10

♦

2.1.4 Conditional Probability

Often we want to express a relation between random variables. A useful concept
in probability theory to express relationships is conditional probability.

Let x and y be random variables such that Pr(y) 6= 0. Then the conditional
probability of x given y, denoted Pr(x | y), is given by

Pr(x | y) =
Pr(x, y)
Pr(y)

Conditional probability expresses the probability that a random variable x has a
particular value given the knowledge that the value of another random variable
y is known. If we know the value for a random variable we say that this random
variable is observed or that it is evidence.

Example 2.6. Let firstCol be a random variable that is true if the shuttle appears
in the first column, left is true if it is in the first three columns, and top is true
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for the two top rows. Then

Pr(firstCol = true) =
1

10

Pr(firstCol = true | left = true) =
Pr(firstCol = true, left = true)

Pr(left = true)

=
1/10
3/10

=
1
3

Pr(firstCol = true | top = true) =
Pr(firstCol = true, top = true)

Pr(top = true)

=
1/20
1/2

=
1

10

♦

In some cases, knowing the value of a particular random variable is irrelevant
to the probability that another random value has a particular value, like for
Pr(firstCol | top) in the example. We say that the two random variables are
independent.

Two random variables x and y are independent if

Pr(x | y) = Pr(x)

or if either Pr(x) = 0 or Pr(y) = 0. When this is the case, we write

x ⊥⊥ y

We can extend the notion of independence by conditioning on a third random
variable.

Given a probability space (Ω, Pr), and random variables x, y, and z. The random
variables x and y are conditionally independent given z if,

Pr(x | y, z) = Pr(x | z)

or if either Pr(x | z) = 0 or Pr(y | z) = 0. We denote this as

x ⊥⊥ y | z
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Example 2.7. The example we used up to now assumed that we were trying
to predict the position of the shuttle for a specific, untrained, opponent. We
can extend our sample space with a set of players such that an elementary
event can be for example (2, 3, player1). For this sample space we still use the
random variables x and y with their previous meaning but we also can introduce
some extra random variables. The random variable male with sample space
{true, false} maps to true for a male player and to false for a female player. Four
other boolean random variables we are going to use are lefthanded indicating
whether the player is left handed, tall indicating whether the player is tall or
not, right which is true if the player places the shuttle on the right side, and
high which is true if the player places the shuttle on the top of our grid.

Assume that there is a larger percentage of male players left handed, that male
players are in general taller than female players, and that left handed players
have a tendency to direct the shuttle to the right side. When observing that
somebody is male we can use the previous assumptions that there is a higher
probability that he is left handed and therefore is more likely to play to the
right side. The observation that our opponent is male has an influence on the
probability distribution of the position of the shuttle: Pr(right) 6= Pr(right |
male), therefore right 6⊥⊥ male. However when we observe that somebody is left
handed, the additional observation that your opponent is male or not will not
influence the probability distribution of right anymore: Pr(right | lefthanded) =
Pr(right | lefthanded, male) and therefore right ⊥⊥ male | lefthanded. ♦

An application of conditional probability is to express a joint probability
distribution as a product of conditional probabilities. This expansion is
called the chain rule for random variables. Given a set of random variables
x1, x2, . . . , xn−1, xn defined on the sample space Ω, by applying the definition
of conditional probability, we can show that,

Pr(x1, x2, . . . , xn−1, xn) = Pr(x1 | x2, . . . , xn−1, xn) · · ·Pr(xn−1 | xn) · Pr(xn)

An important application of conditional probability is the rule of Bayes. Given
two random variables x and y, we have

Pr(x | y) =
Pr(y | x)Pr(x)

Pr(y)

This formula offers a method to reverse the direction of a conditional probability
and reason in the other direction. In the next section, we show how we can use
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the directionality of a conditional probability to reason about a set of conditional
probabilities. The rule of Bayes is used to reason about any variable in our world
while making abstraction from other variables no matter how the variables are
conditionally dependent on each other.

2.1.5 Bayesian network

When combining the chain rule and conditional independence, an interesting
observation can be made. Some conditional probabilities created by means of
the chain rule can be simplified using conditional independence. This means
that in such a case the joint probability distribution can be written down in a
simpler form.

Example 2.8. Continuing with Example 2.7, we can apply the chain rule using
the five random variables used in the model: male (m), lefthanded (l), tall (t), right
(r), and high (h). Suppose we know that the following independencies are true:

male ⊥⊥ right | lefthanded male ⊥⊥ high | tall, lefthanded

lefthanded ⊥⊥ tall | male high ⊥⊥ right | lefthanded

right ⊥⊥ tall | lefthanded

We can try different orderings in how we apply the chain rule. Suppose we take
the order m, t, l, h, r (abbreviating the random variables to their first letter)

Pr(m, t, l, h, r)

= Pr(m | t, l, h, r) · Pr(t | l, h, r) · Pr(l | h, r) · Pr(h | r) · Pr(r)

= Pr(m | t, l) · Pr(t | l, h) · Pr(l | h, r) · Pr(h | r) · Pr(r)

The first term of the multiplication Pr(m | t, l, h, r) can be simplified to Pr(m |
t, l) since we know m ⊥⊥ h | t, l and m ⊥⊥ r | l. A similar reasoning can be used
for the second term.
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Another ordering could be r, h, l, t, m:

Pr(r, h, l, t, m)

= Pr(r | h, l, t, m) · Pr(h | l, t, m) · Pr(l | t, m) · Pr(t | m) · Pr(m)

= Pr(r | l) · Pr(h | l, t) · Pr(l | m) · Pr(t | m) · Pr(m)

This second ordering results in a more compact form of the chain rule. A more
compact factorization has some computational advantages and makes it easier
to reason about the model since it reduces the number of related random
variables in a conditional probability. ♦

male

tall lefthanded

righthigh

male
false 0.5
true 0.5

male
leftHanded false true

false 0.92 0.9
true 0.08 0.1

tall
right false true
false 0.6 0.4
true 0.4 0.6

male
tall false true
false 0.8 0.6
true 0.2 0.4

lefthanded, tall
high false, false true, false false, true true, true
false 0.7 0.3 0.5 0.4
true 0.3 0.7 0.5 0.6

Figure 2.2: Bayesian network representing the probability where an opponent
hits the shuttle to based on some characteristics of the player.

This expansion of the joint probability distribution into conditional probability
distributions can be represented by a graph illustrating the conditional
dependencies. The vertices in the graph are the random variables in the joint
probability distribution, and the directed edges indicate by which random
variables a random variable is conditioned in the set of conditional probability
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distributions created by the expansion. Summarized this is:

Pr(x1, . . . , xn) =
n

∏
i=1

Pr(xi | Pa(xi))

with Pa(x) is the set of parents of x with respect to the graph.

Example 2.9. The more compact factorization in the previous example is
depicted in Fig. 2.2 by means of a graph theoretic interpretation. The conditional
probability distributions represented in the factorization are shown on the
sides of the graph. As a comparison, the Bayesian network of the less compact
factorization is shown in Fig. 2.3. ♦

male

tall lefthanded

righthigh

Figure 2.3: The same probability distribution represented by the Bayesian
network in Fig. 2.2 but with a factorization that results in a less compact set of
conditional probability distributions.

In fact, the graph representing the chain expansion is a directed acyclic graph
(DAG) and it satisfies the Markov condition:

Given a joint probability distribution Pr of the random variables in some set
V and a DAG G = (V, E) with V the set of nodes and E the set of edges. We
say that (G, Pr) satisfies the Markov condition if for each variable x ∈ V, {x} is
conditionally independent of the set of all its nondescendants given the set of
all its parents. A nondescendant is a random variable that not a descendent
with respect to the graph.ical representation Let Pa(x) express the parents of x
and Nd(x) the nondescendants of x, we can state

x ⊥⊥ Nd(x) | Pa(x)

By interpreting the Markov condition, we can reason about the joint probability
distribution by only looking at the graph.



PROBABILITY THEORY 23

2.1.6 Factors and variable elimination

Given a Bayesian network, a common inference task is the computation of the
posterior probability distribution over a set of random variables, possibly given
some evidence. Suppose we have the probability distribution Pr(x1, . . . , xn) and
we want to compute the posterior distribution over x1, . . . , xm with 1 ≤ m ≤ n:

Pr(x1, . . . , xm) = ∑
xm+1,...,xn

Pr(x1, . . . , xn) = ∑
xm+1,...,xn

n

∏
i=1

Pr(xi | Pa(xi))

This type of computation is an application of the generalized distributive law (Aji
and Mceliece 2000) and efficient algorithms for the special case of Bayesian
networks are Belief Propagation (Pearl 1988), Variable Elimination (VE) (Zhang
and Poole 1994; Dechter 1999; Bertelè and Brioschi 1972), and Arithmetic Circuits
(Darwiche 2003). In Chapter 6, we focus on the VE algorithm that uses factors
to represent the input problem instances, the results of intermediate local
computations and the final solution. Factors are used because they can represent
calculations with conditional probabilities in a compact and uniform way.

A factor on random variables x1, . . . , xn is a function from the Cartesian product
of the domains of the random variables onto the real numbers: dom(x1) ×
dom(x2)× . . .× dom(xn) → R. A conditional probability distribution maps
the possible value assignments of random variables to probabilities, which are
real numbers, and can therefore be represented by a factor. In the remainder
of the text can factors be considered as a general representation of different
types of probabilistic interactions like conditional probability distributions and
marginal probability distributions.

Example 2.10. Consider the Bayesian network in Figure 2.2. The probability
distribution of lefthanded given male can be represented with the following
factor:

Pr(lefthanded | male) = φ(lefthanded, male) =

male
lefthanded false true

false 0.8 0.6
true 0.2 0.4

♦

In the algorithms in this dissertation we make use of the following operators
on factors:
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• Setting variables to a specific value. Assigning a set of variables c specific
values ci ∈ dom(c), denoted as c = ci, results in a new factor as follows

φ2(y = yi) = φ1(y = yi, c = ci)

with y and c sets of variables, yi any set of values in the domain of y, and
ci the particular value assignment.

• The product of factors φ1 and φ2, written φ1 ⊗ φ2, is a factor on the union
of the variables in φ1 and φ2 and defined by

(φ1 ⊗ φ2)(x = xi, y = yj, z = zk)

= φ1(x = xi, y = yj) · φ2(y = yj, z = zk)

where y is the set of variables both in φ1 and φ2, x the variables only in
φ1, z those only in φ2, xi ∈ dom(x), yj ∈ dom(y), and zk ∈ dom(z).

• The sum of factors φ1 and φ2, written φ1 ⊗ φ2, is a factor on the union of
the variables in φ1 and φ2 and defined by

(φ1 ⊕ φ2)(x = xi, y = yj, z = zk)

= φ1(x = xi, y = yj) + φ2(y = yj, z = zk)

where y is the set of variables both in φ1 and φ2, x the variables only in
φ1, z those only in φ2, xi ∈ dom(x), yj ∈ dom(y), and zk ∈ dom(z).

• Summing out a random variable x from a factor φ, written ∑x φ is the factor
with variables y = {v | v variable in φ} − {x} such that(

∑
x

φ

)
(y) = ∑

vi∈dom(x)
φ(y ∧ x = vi)

Example 2.11. Using the probability distributions from the Bayesian network
in Figure 2.2. Given the factor

φ1(lefthanded, male) =

male
lefthanded false true

false 0.8 0.6
true 0.2 0.4
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setting male to true results in

φ1(lefthanded, male = true) =
lefthanded true

false 0.6
true 0.4

Multiplication of two factors φ1(lefthanded, male)⊗ φ2(male) results in a new
factor φ3:

male
lefthanded false true

false 0.8 0.6
true 0.2 0.4

⊗
male
false 0.5
true 0.5

=

male
lefthanded false true

false 0.4 0.3
true 0.1 0.2

And summing out variable male in factor φ3 results in:

∑
male

φ3(lefthanded, male) = ∑
male

male
lefthanded false true

false 0.4 0.3
true 0.1 0.2

=

lefthanded
false 0.7
true 0.3

♦

2.1.7 Barren nodes and D-separation

One of the advantages of Bayesian networks is that much of the knowledge is
captured in the graphical structure. Statements of conditional independence
(or irrelevance) can be verified based on the graph. Whether sets of nodes
are independent or not can be defined using d-separation (Pearl 1988) and its
deterministic generalization D-separation (Geiger, Verma, and Pearl 1990). The
original d-separation makes use of the concept of an active path. An active path
from a set of nodes a to a set of nodes b given a third set of nodes c is an
undirected path between i ∈ a and j ∈ b, such that every node with two
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incoming edges that are on the path is or has a descendent in c. c is said to
d-separate a from b if there is no active path from a to b given c. This condition
determines the irrelevancies between nodes in the network. The deterministic
generalization takes into account deterministic nodes where the value of the node
is functionally defined by the values of the parents. A node is functionally
defined by the values of the parents if for those values the value of the child
can have only one value, like in a function child = f (parents = values). For
D-separation, the definition of an active path is changed such that an active
path from a set of nodes a to a set of nodes b given a third set of nodes c is
an undirected path between i ∈ a and j ∈ b, such that every node with two
incoming edges that are on the path is or has a descendent in c and every other
node on the path is not functionally determined by c.

Another concept is that of a barren node. A node is barren if it is not part of the
query, it has not received evidence and its children are barren. A barren node
does not contribute to the probability of non-barren nodes, and therefore we
do not need to take it into account when calculating the marginal probability.

2.2 Logic

In this section we give a short introduction to some aspects of the language of
logic that we will be using. For a more detailed exposition see Dewdney (1993),
Huth and Ryan (2004), and Lloyd (1987) (for a more philosophical treatment
we also suggest Hofstadter (1979)).

2.2.1 Propositional logic

Where probability theory uses random variables, propositional logic has boolean
variables that can have one of only two possible values, true or false. To illustrate
the connection to random variables we can define a boolean variable x as a
function on the sample space Ω that assigns true or false to each element in Ω.
If it is clear from the context we shorten x = true and x = false to x and ¬x.

Where there are probability functions in probability theory, there are boolean
expressions in logic. A probability functions maps random variables to a real
value and a boolean expression maps boolean variables to a boolean value. A
set of boolean expressions together form a theory. If, for a particular assignment
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of values to the boolean variables all the boolean expression in the theory map
to true, we say the value assignment satisfies the theory.

Example 2.12. We, again, use the shuttle positions example. For every column
in the grid (see Figure 2.1) we can define a boolean variable xi expressing if the
shuttle appears in column i. Suppose we want to create a theory that enforces
that the shuttle is only played in the left half of the playing area (the grid).
In that case our theory should map all value assignments indicating that the
shuttle is on the left half to true and those on the right half to false. This situation
is summarized in the following table:

Ω x0 x1 . . . x5 x9 satisfied
(0,0) true false . . . false false true
. . . . . . . . . . . . . . . . . . . . .

(1,0) false true . . . false false true
. . . . . . . . . . . . . . . . . . . . .

(5,2) false false . . . true false false
. . . . . . . . . . . . . . . . . . . . .

(9,3) false false . . . false true false

♦

Propositional logic uses boolean functions that have a number of boolean input
variables, and for each possible combination of input values, such a function
has a boolean valued output. Some well known boolean functions are the
constant-functions true and false, the or-function (∨), the and-function (∧), the
implication-function (→), the equivalence-function (↔), and the not-function (¬).
Their definitions are given in Fig. 2.4 and are sufficient to define all possible
boolean functions since all n-ary boolean functions can be rewritten to this set
of 2-ary and 1-ary Boolean functions2. For example, x0 ∨ x1 ∨ x2 ∨ x3 ∨ x4 can
be rewritten as (((x0 ∨ x1) ∨ x2) ∨ x3) ∨ x4.

We are going to use boolean variables and boolean functions to create
expressions that make up a theory. A boolean expression is defined using a
set Σ (the alphabet) of symbols which denote the boolean variables, and true,
and false.

• If x ∈ Σ, then x is a boolean expression.
2The set of Boolean functions ¬ and ∧ is actually also a sufficient set to represent all other

Boolean functions and is a minimal sufficient set.
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x y ¬x x ∨ y x ∧ y x → y x ↔ y
false false true false false true true
true false false true false false false
false true true true false true false
true true false true true true true

Figure 2.4: The basic Boolean functions

• If a and b are boolean expressions, then so are a ∨ b, a ∧ b, a→ b, a↔ b,
and ¬a.

Two boolean expressions that, for every value assignment of the boolean
variables, evaluate to the same value are called equivalent. A well known example
of two such expressions are x∧ (y∨ z) and (x∧ y)∨ (x∧ z) and this equivalence
is called the distributivity of ∧ over ∨.

A theory can be defined with a boolean expression and if a set of assignments
to the boolean variables is such that the expression itself is true we say that that
the set of assignments satisfies the theory.

Finding the most compact, equivalent, logic expression for a theory is
advantageous with respect to computational effort to evaluate expressions
and to the intuitive meaning of a theory.

Example 2.13. The table above is summarized by means of an expression using
boolean variables and function in a theory as follows:

x0 ∨ x1 ∨ x2 ∨ x3 ∨ x4

This theory is satisfied for events where the shuttle is in one of the first five
columns, therefore the theory expresses that the shuttle has to be in at least one
of the first five columns. An equivalent theory is

(x0 ∧ ¬x1 ∧ ¬x2 ∧ . . . ∧ ¬x9) ∨ . . . ∨ (¬x0 ∧ x1 ∧ ¬x2 ∧ . . . ∧ ¬x9) ∨ . . .

Or in words, for every row that evaluates to true in the table, we add the
conjunction of the values to a disjunction. This representation is an exact
replication of the table in a logic expression and is clearly not as compact
as the previous expression. ♦
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2.2.2 First order logic

First order logic, also called predicate calculus, is a powerful language for
expressing mathematical ideas and thoughts. One can express a set of axioms in
first order logic and combined with the inference technique resolution (Robinson
1965) it is possible to derive new theorems from old theorems and axioms.

The language of first order logic can be defined inductively as was the case
with propositional logic. The basic building blocks of first-order formulas are
three types of individual symbols, together the alphabet: logic variables (or object
symbols), function symbols, and predicate symbols. We use the convention that
logic variables start with a uppercase letter and predicate symbols and function
symbols with a lowercase letter.

First, we define some building blocks for the language of first order logic. A
term is defined recursively as

1. A variable is a term.

2. If f /n is a function symbol and t1, t2, . . . , tn are terms, then function
f (t1, t2, . . . , tn) is a term.

An atom is of the form p(t1, t2, . . . , tn), where p/n is a predicate symbol and all
ti are terms. A first-order formula is recursively defined as

1. An atom is a formula.

2. true and false are formulas.

3. If φ and ψ are formulas, then so are φ ∨ ψ, φ ∧ ψ. φ→ ψ, φ↔ ψ, and ¬φ.

4. If φ is formula and V is a logic variable, then ∀V φ and ∃V φ are formulas.

A formula can be true or false depending on the value of the predicates. Whether
a predicate is true or false is not as simple as with propositional logic and we
need the concept of an interpretation. An interpretation I is a mapping of logic
variables to domain elements and maps each n-ary predicate with these domain
elements as arguments to true or false. Given an interpretation, a formula can
resolve to true or false. If an interpretation makes the formula true, we say that
the interpretation satisfies the formula. A formula is called satisfiable if it has at
least one interpretation for which it is true. It is called valid if it is true under all
possible interpretations.
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Example 2.14. We revisit the badminton example and express the constraint
that you can only play on the left half with a first-order formula. The positions
in the grid are represented by a 2-ary predicate pos/2 with as arguments the x
and y coordinates and a 2-ary predicate l/2 that is true if the first argument is
smaller than the second (assuming that there is an order on them). First-order
logic thus allows us to express the grid in a more abstract way since we do not
need to specify a boolean variable for every column. We use the 2-ary predicate
allowed/2 to say what positions are allowed in our setting and which not. Our
rule can now be expressed by the following formula:

∀X, Y allowed(X, Y)↔ l(X, 5) ∧ pos(X, Y)

For the badminton example we use a domain consisting of the numbers from 0
to 9 resulting in the predicates from pos(0, 0) to pos(9, 5), the predicates from
l(0, 0) to l(9, 9), and those from allowed(0, 0) to allowed(9, 9). Given is that
l/2 maps onto true if the first argument is smaller than the second and false
otherwise. Under these conditions the only interpretation that maps allowed/2
to true or false that satisfies the given formula is that all the left positions map
to true and the others to false. And this was the interpretation we intended with
the formula:

I = {allowed(X, Y) | 0 ≤ X ≤ 5, 0 ≤ Y ≤ 3} ∪ {l(X, Y) | X < Y}

By convention we include only the atoms that map to true and all missing atoms
map to false. ♦

We end this section with some terminology that is needed in this dissertation.
A ground formula is a formula that contains no logic variables. A literal is an
atom or its negation. The negation of an atom is called a negative literal and an
atom without negation is a positive literal. A clause is a formula consisting only
out of conjunction of literals. We call a variable free if it is not quantified as for
all or there exists.

2.2.3 Logic programming

Logic programming uses the language of first-order logic for computer
programming. It uses a subset of first-order logic where the domain is restricted
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to the Herbrand universe, i.e., the set of all ground terms that can be constructed
using the constants and function symbols in the alphabet, and only Horn
clauses, i.e., universally quantified clauses that have at most one positive
literal, are allowed. Where it differs with first-order logic is that it uses a
procedural interpretation for the implication operator. Best known of the logic
programming languages is Prolog (Colmerauer and Roussel 1993).

In general a distinction is made between two types of Horn clauses. Those that
have no negative literals are called facts and those that have negative literals are
called rules.

Example 2.15. First, we express in the badminton game where the shuttle can
appear if we say that it appears in the left half of the playing field. This is
equivalent to saying that it has to appear in one of the first five columns and
can be expressed with a Horn clause:

∀X, Y allowed(X, Y) ∨ ¬l(X, 5) ∨ ¬allX(X) ∨ ¬allY(Y)

Notice that we have added allX/1 and allY/1 predicates. This is necessary
since we are using the Herbrand universe as the domain for the logic variables
and this domain is constructed with the constants and functions available in
the theory. The above formula is usually written as the following rule:

allowed(X, Y)← l(X, 5), allX(X), allY(Y).

and can be read as follows: For all x and y, if x is smaller than 5, x is a position
on the x-axis, and y is a position on the y-axis, then the position in the grid on
position (x, y) is allowed. We complete the program by adding some facts to
the program:

allX(0). allY(0). l(0, 5).
allX(1). allY(1). l(1, 5).

. . . . . . . . .
allX(9). allY(5). l(4, 5).

♦

The procedural interpretation for implication is enforced by using SLD-
resolution (Van Emden and Kowalski 1976) as the inference method to find
interpretations for a set of clauses. Important for resolution is the concept
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of unification. Two atoms can be unified if there is a substitution for the
variables occurring in them that brings them into precisely the same form. For
example, the atoms p(a, f (X)) and p(X, Y) can be unified with a substitution
{X/a, Y/ f (a)} resulting in the unified atom p(a, f (a)).

The SLD-resolution is activated by asking a question to the system, like: is
position (2, 3) a position in the left half? The question is written as an assertion
for which the truth will be tested:

¬allowed(2, 3).

The inference encounters the clause where allowed(x, y) is the positive literal
and unifies it with the predicate in the question by replacing x with 2 and y
with 3. If such a unification is possible, the matching predicate is replaced with
the negative literals in the clause. This operation is called resolution. The new
question is now:

l(2, 3), allX(2), allY(3).

SLD-resolution looks at the predicates in the question from left to right and
encounters now l(2, 3). This predicate is the positive predicate in one of the
clauses and since this clause has no negative literals it is replaced with true
in the question. The same can be done for allX(2) and allY(3) resulting in a
conjunction of true constants meaning that our question is answered positive.
If SLD-resolution cannot find a clause to replace a predicate in the question,
it backtracks over the clauses it selected before to find other answers. If no
alternative choice for a previously selected clause is available, the system returns
false and the question is answered negative.

2.3 Summary

We now summarize the main concepts introduced in this chapter and their
relevance to the rest of this dissertation.

We introduced Bayesian networks as a compact representation of probability
distributions over a set of random variables. In Chapter 3 we show how we can
extend on this formalism by using concepts from logic. In Chapter 6 we will
explain how we can make this representation even more compact and reduce
the computational effort needed to do inference in a Bayesian network.
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We discussed how logic can be used as an expressive language to formulate
the rules governing a particular world. In Chapter 3, we use a formalism that
combines logic with probability theory to offer the advantages of both fields.
In Chapter 5 we show an algorithm that combines logic inference like SLD-
resolution with notions from probability theory to find a minimal requisite
theory necessary to answer a question.
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3

3.1 Introduction

There have been a plethora of language formalisms proposed in the PLL
community (Getoor and Taskar 2007; De Raedt and Kersting 2003). In this
dissertation we focus on directed probabilistic logic models and use CP-
logic as representation language (Vennekens 2007; Vennekens, Denecker,
and Bruynooghe 2009a). CP-logic has the advantage that it has solid formal
semantics that are based on probability distributions over the well-founded
models of certain logic programs. The language can be motivated and explained
in a completely self-contained way as a representation of probabilistic causal
laws in such a way that we can say precisely what a theory expresses in terms
that are also understandable by a non-logician.

3.1.1 Bibliographical note

CP-logic was first proposed as LPADs by Vennekens, Verbaeten, and Bruynooghe
(2004), it was later refined, given new semantics and renamed to CP-logic
(Vennekens 2007; Vennekens, Denecker, and Bruynooghe 2009a). To extend the

35
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knowledge representation efforts in the original paper to the machine laerning
setting we proposed some learning strategies in

H. Blockeel and W. Meert (2006). “Towards learning non-recursive LPADs
by transforming them into Bayesian networks”. In: Proceedings ofthe
15th International Conference on Inductive Logic Programming (ILP). (Bonn,
Germany, Aug. 10–13, 2005). Volume 3625. Lecture Notes in Computer
Science, pages 94–108

Because one of the learning strategies involved leveraging Bayesian network
learning techniques we focussed also on the connection between CP-logic and
Bayesian networks. This connection was later extended in the paper

W. Meert, J. Struyf, and H. Blockeel (2007). “Learning ground CP-logic
theories by means of Bayesian network techniques”. In: Proceedings ofthe
6th workshop on Multi-Relational Data Mining (MRDM). (Warsaw, Poland,
Sept. 17, 2007), pages 93–104

3.1.2 Structure of this chapter

In Section 3.2, we introduce CP-logic syntax and semantics in a non-formal way.
Later in Sections 3.3 and 3.4 we introduce the syntax and semantics formally.
The original LPAD semantics are introduced in Section 3.5 because of historical
reasons and because they offer us a connection to conditional probabilities and
Bayesian networks. Next we look a little bit closer into the connections with
Bayesian networks in Section 3.6 and logic programming in Section 3.7. We end
with a look into the aspects of time and loops in CP-logic in Sections 3.8 and
3.9.

3.2 A causal probabilistic logic

A key point for CP-logic is the observation that causality is inherently a dynamic
concept (Vennekens, Denecker, and Bruynooghe 2009a). When reasoning about
the badminton playing robot, we can formulate statements like “Recognizing the
shuttle causes the racket being repositioned”. Intuitively, this means that when
the visual system of the robot identifies the shuttle it sends this information to
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the controller, and if the information is received, the controller drives the mobile
part to the anticipated landing location. Thus, when the shuttle is recognized, it
initiates a sequence of events within the robot, and one of the possible outcomes
of this process is that the racket is repositioned. As it turns out, whenever we
discuss causality, we are, at least implicitly, doing so in the context of the
dynamic evolution of a domain. The causal statement itself leaves the details of
this process implicit and just asserts its existence: somehow recognition causes
repositioning.

The aim of CP-logic is to offer a formal language for modeling such causal
knowledge, that explicitly incorporates dynamic concepts, such as events and
processes, and whose semantics follows naturally from intuitions about these
concepts. The fundamental kind of information is why events occur and what
the effect of events will be. Concretely, a process starts in some initial state and,
through a sequence of possibly non-deterministic events, it probabilistically
progresses towards any of a number of possible final states. CP-logic makes
the distinction between properties that are endogenous (internal) to the process
and properties that are exogenous (external). The endogenous properties are
those that are affected by the process, while the extrogenous properties simply
describe the context in which it is taking place.

The formal semantics of CP-logic are given in Sections 3.4 and 3.5 but the
semantics adhere to the following four intuitive fundamental principles
(Vennekens, Denecker, and Bruynooghe 2009a):

• The principle of universal causation states that an endogenous property
can only be true if it has been caused by some event, i.e., all changes to
the endogenous state of the domain must happen as the consequence of
an event.

• The principle of sufficient causation states that if an event has a cause, then
it must eventually occur.

• The principle of independent causation states that every event affects the
state of the world in a probabilistically independent way, i.e., knowing the
outcome of one event does not give any information about the outcome
of a different event. This principle ensures the modularity and robustness
of the representation.

• The principle of temporal precedence states that, whenever a property φ

might cause an event E, then the part of the process that is involved in
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determining the truth of φ happens before the event E itself can happen.
This principle is motivated by the fundamental property of the physical
world that a cause must always preceed its effects. This principle ensures
that cyclic causal processes in a CP-theory happen in a consistent way.

These five principles only describe certain aspects of a probabilistic process,
but for any given CP-theory, all processes satisfying these principles generate
precisely the same probability distribution. This is interesting because, typically,
we are not really interested in the actual details of the evolution of a domain, but
only care about the probability of arriving at a certain end result. For instance,
we are not interested in the relays involved in sending the information from
the visual system to the controller, we only want to know the probability that
the controller actually receives the information. This shows why causality is
such an important concept, causal information is a compact and robust way of
specifying the behaviour of a non-deterministic process. For more background
on the relation between CP-logic and causality, see Vennekens, Bruynooghe,
and Denecker (2010).

3.3 Syntax

In this section, we define the language of CP-logic1. For simplicity, we assume
that we have a logical vocabulary Σ available such that any particular state of
our domain corresponds to a Herbrand interpretation of Σ, i.e., a set of ground
atoms.

A CP-theory is a set of CP-events or rules of the following form:

(h1 : α1) ∨ (h2 : α2) ∨ . . . ∨ (hn : αn)← b1, b2, . . . , bm.

with hi atoms and bi literals in the logical sense2, and αi causal probabilities;
αi ∈ [0, 1], ∑n

i=1 αi ≤ 1, n ≥ 1, and m ≥ 0. We call the set of all (hi : αi) the
head of the rule, and the conjunction of literals bi the body. We also refer to
the hi as consequences, and to the bi as conditions. If the head contains only

1CP-logic theories are equivalent to Logic Programs with Annotated Disjunctios (CP-theories)
(Vennekens 2007). The research about CP-theories has evolved into CP-logic and we use both terms
interchangeable.

2The CP-logic semantics allow arbitrary first-order formulas in the body of a rule. For simplicity
we restrict ourselves to a conjunction of literals. Since all formulas can be transformed in a disjunction
of conjunctions we do not loose generality.
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one atom h : 1, we may write it as h. We assume all variables to be universally
quantified and a variable appearing in the head should also appear in the body.
If ∑n

i=1 αi < 1, there is a probability that nothing is caused. This operation can
be made explicitly by introducing an anonymous atom in the head called nil with
probability 1−∑n

i=1 αi that is not used in any body.

Each of these rules may have several possible consequences in its head, and
each consequence hi has a causal probability αi assigned to it. If the body of the
rule is true, then the rule makes at most one of these consequences true; the
probability that the rule causes hi to become true is given by αi.

Example 3.1. Take a person, named John, who may go to the shop to buy dinner
and chooses to buy either spaghetti or steak. This can be formalized as follows:

shops(john) : 0.2.
bought(spaghetti) : 0.5∨ bought(steak) : 0.5← shops(john).

These rules express that John may go to the shop, and if he does, he buys either
spaghetti or steak for dinner, each with 50% chance. (The fact that John goes
shopping causes the availability of either spaghetti or steak, but not both.)

We can extend the example with John’s girlfriend Mary, who may also buy
dinner. We assume that she cannot contact John during the day and would like
to have dinner in the evening. She, however, buys either spaghetti or fish:

shops(mary) : 0.9.
bought(spaghetti) : 0.3∨ bought(fish) : 0.7← shops(mary).

This results in multiple rules in the CP-theory that may lead to the same
consequence: if John and Mary both buy dinner3, it is possible that they both
buy spaghetti. If they buy something different, they can choose what they will
have for dinner, because two meals have been bought. ♦

It is part of the semantics of CP-logic that each rule independently of all
other rules makes one of its head atoms true when triggered. CP-logic is
therefore particularly suitable for describing models that contain a number of
independent stochastic events or causal processes.

3It is also possible to model the situation where John and Mary decide in advance who goes
shopping in order to avoid this situation. To do so, the model can be changed to include the rule
(shops(john) : α1) ∨ (shops(mary) : α2)← . instead of the two separate rules for John and Mary.
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Causal Probabilities. It may be tempting to interpret the CP-theory param-
eters as the conditional probability of the head atom given the body, e.g.,
Pr(bought(spaghetti)|shops(mary)) = 0.3, but this is incorrect. The conditional
probability that spaghetti is bought, given that Mary bought dinner, is higher
than 0.3, because there is a second possible cause, namely that John bought
spaghetti.

For instance, with

shops(john) : 0.2.
shops(mary) : 0.9.

bought(spaghetti) : 0.5∨ bought(steak) : 0.5← shops(john).
bought(spaghetti) : 0.3∨ bought(fish) : 0.7← shops(mary).

we can say that Pr(bought(spaghetti)|shops(mary)) = 0.3 + 0.7 · 0.2 · 0.5 = 0.37.
Mary buys spaghetti with probability 0.3, but there is also a probability of
1− 0.3 = 0.7 that Mary does not buy spaghetti. In that case, it is possible that
John goes to the shop with probability 0.2, and buys spaghetti with probability
0.5. This is illustrated in Fig. 3.1.

There is also an alternative explanation for this behaviour. There are two
probable reasons why there will be spaghetti, John goes shopping and buys
spaghetti (p1 = 0.2 · 0.5 = 0.1), or Mary goes shopping and buys spaghetti
(p2 = 1 · 0.3 = 0.3). These two reasons combined give us three possible scenarios
for p1 and p2, namely, true-true, false-true, and true-false. Thus, we can say

Pr(bought(spaghetti)|shops(mary)) = p1 · p2 + (1− p1) · p2 + p1 · (1− p2)

= 0.1 · 0.3 + 0.9 · 0.3 + 0.1 · 0.7

= 0.3 + 0.1 · 0.7 = 0.37

which is the same formula as before. This method is actually applying a noisy-or
relation which we will discuss further in Chapter 4.

Thus, for head atoms that occur in multiple rules, the mathematical relationship
between the CP-theory parameters and conditional probabilities is somewhat
complex, but it is not unintuitive. The meaning of the probabilities in the
rules is quite simple: they reflect the probability that the body causes the
head to become true. This is different from the conditional probability
that the head is true given the body, and among the two, the former is
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{s(m), b(sp)}
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Figure 3.1: Representation of the causal process given that shops(mary) is
true towards all situations where bought(spaghetti) is true (indicated with a
rectangle). The {a0, . . . , an} represent an interpretation and the atoms that are
true in that interpretation. From left to right the CP-events on line 4, 1 and 3 of
the theory are applied to the current interpretation. The probability of a given
interpretation is the multiplication of the αi on the edges, which indicate which
head atom is chosen.

the more natural one to express. Indeed, the former is local knowledge: an
expert can estimate the probability that shops(mary) causes bought(spaghetti)
without considering any other possible causes for bought(spaghetti). To infer
Pr(bought(spaghetti)|shops(mary)), we need global knowledge: we need to know
all possible causes for bought(spaghetti), the probability of them occurring, and
how they interact with shops(mary).

The fact that CP-theory parameters are local makes it impossible to estimate
them directly from training data by simple counting, this in contrast to
the global conditional probabilities, which are present in the conditional
probability distributions of BNs. However, in Section 3.6, we show that CP-
theory parameters can be mapped to BN parameters by introducing unobserved
nodes. Such a BN can be learned from training data using BN learning methods
such as expectation maximization (EM) (Dempster, Laird, and Rubin 1977), as
we will see in Section 7.2.



42 CP-LOGIC

3.4 Process semantics

In this section, we give an intuitive explanation of the semantics of CP-logic.
A formal definition can be found in (Vennekens, Denecker, and Bruynooghe
2009a). The basic structure that is considered is a probability tree (Shafer 1996),
i.e., a finite tree in which each edge is labeled with a probability, such that the
labels of all edges leaving an internal node always sum up to one. Intuitively,
such a tree T represents a probabilistic process: each inner node n is a state
of the process representing an interpretation I(n) and can be mapped to a
CP-event e = E(n) in the theory. Together, the edges leaving a node represent
the outcome of the associated CP-event and cause a probabilistic transition to
one of its children states. The root is the initial state and the leaves are final
states. With PrT we define the probability distribution that a tree T defines
over its nodes. For each leaf l, PrT (l) is the product of labels of the edges that
lead to l.

We now outline how a probability tree T is build such that it corresponds to
the set of given CP-events in a CP-theory. We assume that the CP-events have
been grounded with respect to the Herbrand interpretation (and have a finite
grounding).

1. Start with a root ⊥, with Pr(⊥) = 1 and an interpretation I(⊥) = {∅}.

2. Associate with the current node n a CP-event e from the CP-events that
fulfill the following properties:

(a) The ground CP-event e is not yet associated with another node.
(b) The ground CP-event e has at least one atom in head(e) that is not in
I(n).

(c) All the literals in body(e) are true given the current interpretation
I(n).

(d) For all negative literals in body(e), all CP-events with those literals
in the head are associated with a node on the path to the root or
their body cannot become true in the current or a future state. In
other words, the precondition is in its final state, it is not only true
at this point but is guaranteed to remain true in all potential future
states. This step ensures that cyclic causal processes are handled
consistently. We first need to apply all possible causes for something
to happen before concluding something is not caused.
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3. For every (hi : αi) in head(e), create a childnode ci with I(ci) = I(n) ∪ hi
and Pr(ci) = Pr(n) · αi.

4. Go to step 2 for every childnode. If no event is found in step 2, stop.

Example 3.2. Consider a network where the edges have a probability attached
to them. We want to know what the probability is that we can get from one
node the another.

p(X, Y) : 1← e(X, Z), p(Z, Y).
p(X, Y) : 1← e(X, Y).
e(1, 2) : 0.5.
e(1, 3) : 0.5.
e(2, 3) : 0.5.
e(2, 4) : 0.5.
e(3, 2) : 0.5.

We deduce the probability distribution of the theory shown. To keep it compact,
we restrict the theory to groundings where Y = 4. With this grounding we
can calculate the probability of the query Pr(p(1, 4)). As is shown in Figure
3.2, we start with an empty interpretation and apply the events in the theory
until no event can be applied to any of the branches (in the example we limit
ourselves to those choices that can proof the query for simplicity). The leafs
are the possible worlds for this theory. The result for Pr(p(1, 4)) is the sum of all
interpretations where p(1, 4) is true. ♦

3.5 LPAD semantics

Next to the process semantics for CP-logic, we also introduce a second type
of semantics for CP-logic: the LPAD semantics (Vennekens, Verbaeten, and
Bruynooghe 2004). The LPAD and process semantics have been proven to be
equivalent (Vennekens 2007) and allow us to easily define some subclasses of
CP-logic. We build on the logic programming concepts that were introduced in
chapter 2.

The LPAD semantics of a CP-theory is defined using its grounding.We denote
the set of all ground CP-theories with PG . Given a CP-theory P, IP is the set
of all Herbrand interpretations of P.The Herbrand base of P is denoted HP.
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Figure 3.2: Graphical representation of inference for query p(1, 4) for Example
3.2. To save space we do not show complete states but the increment with respect
to the previous state.

1

2

e12

3
e13

e23 e32 4

e24

Figure 3.3: Graphical representation of Example 3.2

The semantics of a CP-theory is defined as a probability distribution on IP, as
follows.

Definition 3.1. Let P ∈ PG . An admissible probability distribution π on IP is
a mapping from IP to [0, 1] such that ∑I∈IP

π(I) = 1.

Definition 3.2. Let P ∈ PG . A selection σ is a function that selects one pair
(h : α) from each rule of P, i.e., σ : P→ (HP × [0, 1]) such that for each c ∈ P,
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σ(c) ∈ head(c). With σ(c) = h : α, we also write σatom = h and σprob = α. The
set of all selections σ is denoted by SP.

Definition 3.3. Let P ∈ PG and σ ∈ SP. The instance Pσ chosen by σ is defined
as Pσ = {σatom(c)← body(c) | c ∈ P}.

Definition 3.4. Let P ∈ PG and σ ∈ SP. The probability of σ is

Cσ = ∏
c∈P

σprob(c).

This definition of the probability of a selection implies that the selection of a
head atom in one rule is stochastically independent from the selection of head
atoms in all other rules.

The following definition defines the CP-theories to which we can give meaning:

Definition 3.5. A CP-theory P is sound iff for each σ ∈ SP, the well-founded
model of Pσ, denoted WFM(Pσ), is two-valued (an interpretation exists where
all atoms are either true or false).

Since we only consider two-valued well-founded models (Gelder, Ross,
and Schlipf 1991), we can represent the well-founded model as a single
interpretation. We will use this convention in the remainder of this chapter.

Given an interpretation I, we denote the set of all σ ∈ SP for which WFM(Pσ) =

I as S I
P.The semantics of a sound CP-theory is then defined as follows.

Definition 3.6. Let P ∈ PG be a sound CP-theory. For each of its interpretations
I ∈ IP, the probability π∗P(I) assigned by P to I is the sum of the probabilities
of all selections that lead to I, i.e.,

π∗P(I) = ∑
σ∈S I

P

Cσ.

Vennekens, Verbaeten, and Bruynooghe (2004) prove that if P is a sound CP-
theory in PG , then π∗P is an admissible probability distribution over IP. This
defines the semantics of any sound CP-theory.

We next recall the definition of the probability of a logic formula, again from
Vennekens et al.
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Definition 3.7. For any logic formula φ, the set of Herbrand models of φ is
denoted and defined as

Iφ
P = {I ∈ IP | I |= φ}.

Definition 3.8. Let P be a sound CP-theory inPG . The probability of φ according
to P, denoted π∗P(φ), is defined as

π∗P(φ) = ∑
I∈Iφ

P

π∗P(I).

We add the notion of conditional probability:

Definition 3.9. Let P be a sound CP-theory in PG . The conditional probability
of φ given ψ, according to P, is denoted and defined as

π∗P(φ|ψ) =
π∗P(φ ∧ ψ)

π∗P(ψ)

if π∗P(ψ) > 0 (and undefined otherwise).

When P is clear from the context, we will often denote π∗P(φ)as Pr(φ) and
π∗P(φ | ψ) as Pr(φ | ψ).

As said before, one should take care not to interpret αi as Pr(hi | B), the
conditional probability of hi given the body B. However, CP-theories generally
do have the property that Pr(hi | B) ≥ αi (Vennekens, Verbaeten, and
Bruynooghe 2004).

3.5.1 CP-logic subclasses

When we want to relate the causal probabilities in a CP-theory to conditional
probabilities it is useful to look at some specific types of CP-theories. When we
know that all causal probabilities in a CP-theory are conditional probabilities,
learning is simple as we can use frequency counting to learn the parameters.
In this section we identify when the probabilities in a CP-theory are also
conditional probabilities and when not.

A first type of theory are CP-theories with mutual exclusive bodies which we
call ME-compliant CP-theories and are defined as follows:
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Definition 3.10 (ME-compliant CP-theories). An ME-compliant CP-theory is a
CP-theory in which for each two rules H1 ← B1 and H2 ← B2 it holds that (a)
H1 and H2 do not share any atoms, or (b) B1 and B2 are mutually exclusive.

Under these conditions, it holds for each head atom with associated probability
hi : αi in a rule that Pr(hi | B) = αi with B the body of the rule. In general,
we call CP-theories fulfilling this property where the causal probability can be
expressed as a conditional probability COND-compliant.

Definition 3.11 (COND-compliant CP-theories). A COND-compliant CP-
theory is a CP-theory in which for each rule H ← B it holds that ∀(hi : αi) ∈
H : Pr(hi | B) = αi.

COND-compliance is important because conditional probabilities can easily be
estimated from data: if a CP-theory is COND-compliant, then its parameters
can be estimated equally easily. This property is exploited by Riguzzi to learn
the αi parameters of ME-compliant CP-theories from data (Riguzzi 2004).

Now we introduce a different subclass of CP-theories, which (as we shall
prove) also has the property that all parameters to be estimated are conditional
probabilities. We call this subclass 1-compliant CP-theories. The name refers to
the property that each head atom either occurs only in the head of a single rule,
or its annotation is 1 in all the heads where it occurs.

Definition 3.12 (1-compliant CP-theories). A 1-compliant CP-theory is a CP-
theory in which for each atom h that occurs in the head of a rule, it holds that
either h occurs in only one rule (i.e., it cannot be unified with any atom in the
head of any other rule), or it always occurs with an annotation of 1.

In the syntactic sense, our 1-compliant CP-theories are neither a subclass nor a
superclass of ME-compliant CP-theories. Riguzzi allows several rules to share
head atoms as long as their bodies are mutually exclusive, which is generally
not allowed in COND-compliant CP-theories. On the other hand, we allow rules
to share head atoms even if their bodies are not mutually exclusive, as long as
the probabilities of these atoms are one.

Riguzzi shows that ME-compliant CP-theories are COND-compliant. We now
show that 1-compliant CP-theories are COND-compliant.

Theorem 3.1. In a 1-compliant CP-theory, for each rule of the form h1 : α1 ∨ . . .∨ hn :
αn ← B, Pr(hi | B) = αi. That is, each αi can be interpreted as the conditional
probability that its atom is true, given that the rule body is true.
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Algorithm 1 Algorithm for transforming CP-theories into COND-compliant
CP-theories
function Transform(P: CP-theory) returns COND-compliant CP-theory

P′ := ∅
for each rule (hi1 : αi1 ∨ . . . ∨ hini : αini ← Bi) ∈ P:

let h′ij be hij with its predicate name p changed into pi

P′ := P′ ∪ {h′ij : αi1 ∨ . . . ∨ h′ini
: αini ← Bi}

P′ := P′ ∪⋃ni
j=1{hij ← h′ij}

return P′

Proof. According to the definition of a 1-compliant CP-theory, for each hi : αi in
a rule head with body B, it holds that either (a) hi does not occur in any other
rule heads, or (b) αi = 1.

Case (a): Pr(hi | B) = αi follows from Riguzzi’s proof of Theorem 1 (Riguzzi
2004). While the theorem states that for any rule, αi = Pr(hi | B) if all the rules
(in the whole CP-theory) sharing head atoms have mutually exclusive bodies,
the proof in fact just exploits the mutual exclusion property for the rule for
which the equality is proven. Case (a) implies this property.
Case (b): We know from the definition of CP-theories and their semantics that
αi ≤ Pr(hi | B) ≤ 1. If αi = 1, this implies Pr(hi | B) = αi.

3.5.2 Transforming CP-theories to 1-compliant CP-theories

We know that 1-compliant CP-theories have causal probabilities that are
conditional probabilities. It is known how to learn conditional probabilities from
a set of data (Chapter 7), therefore, 1-compliant theories have the advantage
that known methods can be used to learn the parameters. In this section we
show how to transform any CP-theory into a 1-compliant equivalent CP-theory.

Example 3.3. Consider the following CP-theory:

bought(spaghetti) : 0.5∨ bought(steak) : 0.5← shops(john).
bought(spaghetti) : 0.3∨ bought(fish) : 0.7← shops(mary).
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The i-th rule is transformed by just adding an index i to each atom in the head:

bought(spaghetti)1 : 0.5∨ bought(steak)1 : 0.5← shops(john).
bought(spaghetti)2 : 0.3∨ bought(fish)2 : 0.7← shops(mary).

and the following rules are added:

bought(spaghetti)← bought(spaghetti)1.
bought(steak)← bought(steak)1.

bought(spaghetti)← bought(spaghetti)2.
bought(fish)← bought(fish)2.

Note that if the two given CP-events make up the entire theory it is not necessary
to transform bought(steak) and bought(fish) since they appear in only one head.

♦

An algorithm for transforming CP-theories into 1-compliant CP-theories is
shown in Algorithm 1. The algorithm adds an index i to the predicate names
of all the head atoms of each rule ci, and adds rules stating that the original
(unindexed) version of the atom must be true if its indexed version is true.

Theorem 3.2. The transformation yields a 1-compliant CP-theory.

Proof. The resulting program consists of two types of rules: rules with indexed
atoms in the head (type 1 rules) and rules with original atoms in the head
(type 2 rules). A type 1 rule cannot share a head atom with any other rule: not
with a type 2 rule because it has only indexed atoms in the head (and type 2
rules contain only original atoms), and not with other type 1 rules because the
indexes differ. Only type 2 rules can therefore share head atoms, but they all
have a single head atom with annotation 1. Consequently, the conditions for
1-compliance are fulfilled.

We now prove that the transformation preserves the LPAD semantics of the
CP-theory, in the sense that any logic formula φ defined over the original
CP-theory has the same probability according to the transformed CP-theory.

Theorem 3.3. Let P ∈ PG be a sound CP-theory, and let P′ be the transformed version
of P. For each formula φ defined over P,

π∗P(φ) = π∗P′(φ).
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Proof. First, we expand the left hand side of the equation:

π∗P(φ) = ∑
I∈Iφ

P

∑
σ∈S I

P

∏
r∈P

σprob(r)

Define Sφ
P as the set of all selections σ for which WFM(Pσ) |= φ; that is, Sφ

P =⋃{S I
P|I |= φ}. We can then shorten the above expression to

π∗P(φ) = ∑
σ∈Sφ

P

∏
r∈P

σprob(r)

Similarly, for the right hand side we have

π∗P′(φ) = ∑
σ∈Sφ

P′

∏
r∈P′

σprob(r)

So we need to prove

∑
σ∈Sφ

P

∏
r∈P

σprob(r) = ∑
σ∈Sφ

P′

∏
r∈P′

σprob(r) (3.1)

We can define a one-to-one correspondence between SP and SP′ as follows. Let
σ ∈ SP and σ′ ∈ SP′ be such that

σ(P) =
{
(h1s1 : α1s1), . . . , (hmsm : αmsm)

}
σ′(P′) =

{
(h′1s1

: α1s1), . . . , (h′msm : αmsm)
}⋃
∪m

i=1 ∪
ni
j=1 {hij}

where m is the number of rules, ni is the number of head atoms in rule i and si ∈
[1, ni]. This is clearly a one-to-one correspondence because both σ and σ′ map
one-to-one to a vector (s1, s2, . . . , sm). Fig. 3.4 illustrates this correspondence
more graphically.

To prove Equation 3.1, it suffices to show that (1) this one-to-one-correspondence
carries over to Sφ

P and Sφ
P′ , that is, σ ∈ Sφ

P ⇔ σ′ ∈ Sφ
P′ , and (2) the probabilities

associated with corresponding selections are the same.

(1) We need to prove σ ∈ Sφ
P ⇒ σ′ ∈ Sφ

P′ and σ 6∈ Sφ
P ⇒ σ′ 6∈ Sφ

P′ . But since
σ 6∈ Sφ

P is equivalent to σ ∈ S¬φ
P (because we require 2-valued logic), it suffices
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to prove that the first implication holds for any formula φ.

So assume σ ∈ Sφ
P ; this implies there is an I such that σ ∈ S I

P and I |= φ. Now
define I′ = I ∪ {h′ij|hij ∈ σatom(P)}. We will prove that (1a) σ′ ∈ SI′

P′ and (1b)
I′ |= φ; from this follows σ′ ∈ Sφ

P′ .

(1a) σ′ is defined in such a way that Pσ contains hij ← Bi if and only if P′σ′
contains the clauses {hij ← h′ij, h′ij ← Bi}. Thus, whenever hij can be derived
in Pσ, it can be derived in P′σ′ , and vice versa. In addition, whenever hij can be
derived in Pσ, h′ij can be derived in P′σ′ . This proves that WFM(Pσ) = I if and
only if WFM(P′σ′) = I′, in other words, σ ∈ S I

P ⇔ σ′ ∈ SI′
P′ .

(1b) The formula φ refers only to original (non-indexed) predicates. Since I′,
restricted to non-indexed predicates, equals I, I′ |= φ if and only if I |= φ.

This proves the one-to-one correspondence between Sφ
P and Sφ

P′ .

(2) If we multiply all the σprob as defined by σ and σ′ we get:

∏
r∈P

σprob(r) = α1s1 . . . αmsm

∏
r∈P′

σ′prob(r) = α1s1 . . . αmsm . 1 . . . 1︸ ︷︷ ︸
∑m

i=1 ni times

Thus the probability of σ and σ′ is the same. This concludes the proof.

Corollary 3.1. Any CP-theory can be transformed into a equivalent 1-compliant, and
therefore COND-compliant, CP-theory.

Corollary 3.2. ME-compliant CP-theories can be transformed into equivalent 1-
compliant CP-theories.

3.6 Relating CP-logic to Bayesian networks

In a 1-compliant CP-theory, all the causal probabilities less than 1 are also
conditional probabilities. Since Bayesian networks are built upon the concept of
conditional independence it seems natural that there is a connection between
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a : 0.3∨ b : 0.4∨ c : 0.3← B1.
a : 0.1∨ d : 0.5∨ e : 0.1← B2.

d : 0.5∨ f : 0.5← B3.

a1 : 0.3∨ b1 : 0.4∨ c1 : 0.3← B1.
a2 : 0.1∨ d2 : 0.5∨ e2 : 0.1← B2.

d3 : 0.5∨ f3 : 0.5← B3.

a← a1.
a← a2.
b← b1.
c← c1.
d← d2.
d← d3.
e← e2.
f ← f3.

Figure 3.4: An illustration of the one-to-one correspondence between selections
in P and in P′. For the program P to the left, the 1-compliant version P′ is shown
to the right. For each selection σ for P there is precisely one selection σ′ for P′

according to the defined correspondence, and they have the properties that
the probabilities of σ and σ′ are equal and WFM(P′σ′) restricted to HP equals
WFM(Pσ).

Bayesian networks and 1-compliant CP-theories. In this section we look deeper
into the relation between Bayesian networks and CP-theories.

For now, we assume CP-theories to be non-recursive and have a finite Herbrand
universe. We explain the relationship by means of a method to transform a
CP-theory to a Bayesian network in such a way that the resulting Bayesian
network’s parameters are either the original parameters from the CP-theory
or 0 or 1. We will call the resulting Bayesian network an equivalent Bayesian
network (EBN). Infinite Herbrand universes can be related to dynamic Bayesian
networks and is discussed in Section 3.8. Recursive theories do not allow for
a direct mapping to BNs as they do not allow any cycles but we discuss a
transformation from recursive theories to non-recursive theories in Section 3.9.

First, the CP-theory needs to be grounded. From here on, when we refer to
the CP-theory, we mean the ground CP-theory. The CP-theory we start from
does not need to be 1-compliant, this transformation is part of the conversion
to a Bayesian network. Next, the following three steps construct the EBN of a
ground CP-theory.
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1. For every atom in the CP-theory, a Boolean random variable is created in
the EBN. This is a so-called atom variable and it is represented by an atom
node in the network.

2. For every rule in the CP-theory, a choice variable is created in the EBN. This
variable can take n+ 1 values, where n is the number of atoms in the head.
It is represented by a choice node in the network. Note that the choice nodes
are unobserved, they are artificial nodes that do not correspond to atoms
in the domain. These nodes are included instead of the indexed atoms
as explained before. When Ci = j, this means the j’th atom of rule i has
been selected. Ci = 0 will be used to denote that no listed head atom was
selected, which may be either because the rule body is false, or because
no atom was selected when de probabilities do not add up to one.

3. If an atom is in the head of a rule, an edge is created from its corresponding
choice node towards the atom’s node. If a literal is in the body of a rule,
an edge is created from the literal’s atom node towards the rule’s choice
node.
For positive body literals, we denote the edge to the choice node with
‘←’; for negative body literals, we use a dashed arrow ‘L99’. This notation
makes it possible to distinguish positive from negative body literals in
the EBN, and it ensures that there is a one to one mapping between
the EBN structure and the CP-theory rules. Having such a one to one
mapping between both structures is relevant for learning CP-theories
and will be discussed in Chapter 7. Both types of edges are regular BN
edges, the difference in meaning between positive and negative body
literals is encoded in the CPT of the choice node, as we will see in the next
paragraph.

For the CPTs we have the following two cases:

1. The CPT of a choice variable (e.g., Fig. 3.5, CPT for c3). Such a variable can
take n + 1 values with n the number of atoms in the head. The variable
takes the value i if the ith atom from the head is chosen by the probabilistic
process. It takes the value 0 if none of the head atoms is chosen (this can
only happen if the αi do not sum to one). If the body of the rule is true,
then the probability that the variable takes the value i 6= 0 is precisely the
causal probability αi given in the head of the rule. The probability that
it takes the value 0 is equal to 1− ∑n

i=1 αi. If the body is not true, then
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the probability that the choice variable takes the value 0 is 1.0 and all the
other values have probability 0.0. Formally,

Pr(Ci = j | all parents true) = αj, for all j > 0

Pr(Ci = 0 | all parents true) = 1−∑j αj

Pr(Ci = 0 | not all parents true) = 1

Pr(Ci = j | not all parents true) = 0, for all j > 0

The exact column of the CPT that corresponds to ‘the body is true’ will
depend on which body literals are positive and which are negative (as
indicated with ‘←’ or ‘L99’ in the EBN). For example, if shops(john) would
be negated in the example theory, then the two columns of the CPT for c3
would be swapped.

2. The CPT of an atom variable (e.g., Fig. 3.5, CPT for bought(spaghetti)) is
structured differently. It essentially represents a deterministic OR function
of the different rules having the atom in the head. More specifically, if one
of the choice variables representing a rule with the given atom in position
i of its head takes the value i, then the atom variable will be true with
probability 1.0. In all other cases it will be false, also with probability 1.0.
This is because the second part of our CP-theory is essentially a standard
logic program. Formally, we can represent the CPD as follows:

Pr(hi = true | all parents false) = 0

Pr(hi = true | at least one parent true) = 1

Example 3.4. We repeat the CP-theory in Example 3.3 and extend it to the full
shopping example we have used before:

shops(john) : 0.2.
shops(mary) : 0.9.

bought(spaghetti) : 0.5∨ bought(steak) : 0.5← shops(john).
bought(spaghetti) : 0.3∨ bought(fish) : 0.7← shops(mary).
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This theory can be transformed into a 1-compliant form using the algorithm in
Section 3.6. The resulting CP-theory is

bought(spaghetti)1 : 0.5∨ bought(steak)1 : 0.5← shops(john).
bought(spaghetti)2 : 0.3∨ bought(fish)2 : 0.7← shops(mary).

shops(john)3 : 0.2.
shops(mary)4 : 0.9.

bought(spaghetti) : 1.0← bought(spaghetti)1.
bought(steak) : 1.0← bought(steak)1.

bought(spaghetti) : 1.0← bought(spaghetti)2.
bought(fish) : 1.0← bought(fish)2.
shops(john) : 1.0← shops(john)3.

shops(mary) : 1.0← shops(mary)4.

This 1-compliant CP-theory can be represented with an equivalent Bayesian
net using the algorithm in Section 3.5.2 and the result is shown in Fig.3.5. ♦

Example 3.5. Consider the following CP-theory:

a : 0.5∨ b : 0.5← c.
b : 0.2∨ c : 0.8← d.

After transformation to a 1-compliant CP-theory this becomes:

a1 : 0.5∨ b1 : 0.5← c.
b2 : 0.2∨ c2 : 0.8← d.

a← a1.
b← b1.
b← b2.
c← c2.

The equivalent Bayesian network is shown in Fig. 3.6.

The algorithm to produce a Bayesian net from a 1-compliant CP-theory is shown
in Algorithm 2.

Thus, given a CP-theory with certain parameters, it can be transformed into a
Bayesian network with a specific structure, consisting of two kinds of variables:
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bought(steak)

c3

shops(john)

c1

bought(spaghetti) bought(fish)

c4

shops(mary)

c2

c1
0 0.8
1 0.2

c1
shops(john) 0 1

t 0 1
f 1 0

shops(john)
c3 t f
0 0 1
1 0.5 0
2 0.5 0

c3,c4
bought(spaghetti) 0,0 0,1 0,2 1,0 1,1 1,2 2,0 2,1 2,2

t 0 1 0 1 1 1 0 1 0
f 1 0 1 0 0 0 1 0 1

Figure 3.5: The equivalent Bayesian network (EBN) for the CP-theory
representing the ‘shopping example’. The CP-theory parameters appear in the
CPTs of the choice nodes ci. The CPT for the bought(spaghetti) node represents
the deterministic relationship c3 = 1∨ c4 = 1.

atom variables and choice variables. The CPD’s for the atom variables have a
fixed structure that is independent of the probabilities in the CP-theory; they
always express a logical or. The CPD’s for the choice variables have a fixed
structure and contain only 0’s, 1’s, and the CP-theory probabilities αij.

Since we can convert a CP-theory to a specific type of BN, we have two different
representations for the same CP-theory. To differentiate between them we will
name them. All the possible CP-theories expressed in the CP-logic syntax
and semantics will be called the CP-logic space. The EBNs resulting from the
conversion are part of what we will call the Bayesian network space. So, this is
the space of all the possible BNs that are equivalent to a valid CP-theory.

The transformation to a Bayesian network shown here introduces some
redundant nodes in the network. It is possible to optimize this transformation to
obtain a smaller Bayesian network that is equivalent to the original one. These
optimizations include (1) avoiding the creation of choice nodes with only one
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d

c2

c

c1

ba

d
t 0.0
f 1.0

d
c2 t f
0 0.0 1.0
1 0.2 0.0
2 0.8 0.0

c1, c2

b ∗, 1 2, ∗ 0, 0 0, 2 1, 0 1, 2
t 1 1 0 0 0 0
f 0 0 1 1 1 1

c2

c 0 1 2
t 0.0 0.0 1.0
f 1.0 1.0 0.0

c
c1 t f
0 0.0 1.0
1 0.5 0.0
2 0.5 0.0

c1
a 0 1 2
t 0.0 1.0 0.0
f 1.0 0.0 1.0

Figure 3.6: Bayesian net corresponding to the CP-theory given in Example 3.5.
Since there is no CP-event causing d, it will be false with probability 1.

child and (2) merge choice nodes for CP-events with mutual exclusive bodies.
These optimizations are explained in more detail in Chapter 6.

3.7 Relating CP-logic to logic programming

When looking at the LPAD semantics for CP-logic, it is clear that there is a
relation to logic programming. A CP-theory represents a set of logic programs,
each resulting in a single interpretation and with a probability associated with
it. When using the LPAD semantics, a CP-theory can be seen as a probabilistic
extension of logic programming that is based on disjunctive logic programs
(Lobo, Minker, and Rajasekar 1992). This is a natural choice, because disjunctions
express a kind of uncertainty. The idea behind the LPAD semantics was
to quantify this uncertainty by annotating the disjuncts in the head with a
probability.
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Algorithm 2 Algorithm for transforming non-recursive COND-compliant CP-
theories into Bayesian networks. By convention, hij refers to original atoms in
this description, and h′ij to indexed atoms.

function BN(P: 1-compliant CP-theory) returns a Bayesian net
N := ∅ // nodes of the BN
E := ∅ // edges of the BN
for each rule (h′i1 : αi1 ∨ . . . ∨ h′ini

: αini ← bi1, . . . , bimi ) ∈ P:
N := N ∪ {Ci} ∪

⋃
j{bij}

E := E ∪⋃j{(bij, Ci)}
associate with Ci a CPD as follows:

P(Ci = j|all parents true) = αij, for all j > 0
P(Ci = 0|all parents true) = 1−∑j αij
P(Ci = 0|not all parents true) = 1
P(Ci = j|not all parents true) = 0, for all j > 0

for each clause (hij ← h′ij) ∈ P:
N := N ∪ {hij}
E := E ∪⋃j{(Ci, hij)}

for each l ∈ N that is not a Ci:
associate with l a CPD as follows:

C :=
∨

ij:(l←h′ij)∈P Ci = j
P(l = true|C) = 1
P(l = f alse|C) = 0
P(l = true|¬C) = 0
P(l = f alse|¬C) = 1

return (N, E, CPD)

3.8 Time in CP-logic

Since the CP-logic semantics describe a process, the concept of time is implicitly
present in a theory. Often, we do not care about the exact order of events with
respect to time and are only interested in the final states. But for some problems
it is necessary to explicitly encode time. For example, when forecasting patient
conditions we explicitly refer to observations from previous days.

The first type of time representation, implicit, is similar to how time is
represented in, for example, causal Bayesian networks. The second type is
more typical of logic-based languages but is also used in, for example, dynamic
Bayesian networks. Both styles are useful and natural ways of reasoning about
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causal events. CP-logic allows both types of representation, even together in
the same theory.

Example 3.6. The shopping example (Ex. 3.1) uses an implicit representation of
time. We do not need to encode who goes shopping when since it is irrelevant.
Now, suppose we want to add the knowledge that John does not like spaghetti
two days in a row. In that case we can alter the theory to explicitely encode time
information that John uses to decide what to buy. To save space, we represent
bought by b and shops by s.

s(john, T) : 0.2.
s(mary, T) : 0.9.

b(spaghetti, T) : 0.5∨ b(steak, T) : 0.5← s(john, T),¬b(spaghetti, T − 1).
b(steak, T) : 1.0← s(john, T), b(spaghetti, T − 1).

b(spaghetti, T) : 0.3∨ b(fish, T) : 0.7← s(mary, T).

The buying process of the two people is still implicitely timed, but the shopping
behaviour with respect to the previous day is now explicitely timed. ♦

CP-logic with an explicit time step can be seen as a dynamic BN. A special case
of a dynamic BN is an HMM which represents a sequence of states and the state
can only be indirectly observed. In the case of an HMM, the set of CP-events
defining the state at a particular time step based on the previous time step can
be represented by a finite state diagram like in the unobserved nodes in an
HMM.

3.9 Probabilistic loops

A CP-theory is called cyclic if it contains at least two events that depend on each
other. Transforming such a theory using the method from Section 3.6 yields a
network with a directed cycle which is not allowed in a Bayesian network. For
such theories the CP-logic semantics differ too much from those of Bayesian
networks.
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Example 3.7. Consider the following theory:

a : 0.5.
b : 0.5.
a : 0.5← b.
b : 0.5← a.

The third event depends on b to cause a and the fourth event depends on a to
cause b. They depend on each other to cause the atoms in their heads. CP-logic
uses the concept of temporal precedence to handle such cycles, resulting in a
finite and consistent probability distribution over the final states (see Figure 3.7).
Bayesian networks have no such concept as temporal precedence, therefore the

{}

{}

{}

0.5

{b}

{b}

0.5

{a, b}

0.5

0.5

0.5

{a}

{a}

{a}

0.5

{a, b}

0.5

0.5

{a, b}

0.5

0.5

Figure 3.7: Graphical representation of the process semantics for Example 3.7.

method mentioned before cannot be applied naievely to create an equivalent
Bayesian network. ♦

However, for every cyclic CP-theory (using a finite Herbrand universe) it is
possible to convert the theory to an equivalent acyclic one. An example for a
loop of size 2 is given in Vennekens (2007) where it is proposed to insert artificial
predicates to break the cycles and generalized for only a limited set of larger
cycles. Here we extend this reasoning to arbitrary cycles of arbitrary size.

A cyclic theory is transformed into an acyclic one by unfolding the cycles
(also called probabilistic loops) in the theory. If the theory contains multiple
interacting cycles we speak about a strongly connected component and every
possible path in the component needs to be unfolded. In general we can
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transform the strongly connected component of size n into an n by n set of
nodes interconnected such that this grid represents all possible paths in the
strongly connected component.

Concretely, a strongly connected component of size n can be transformed as
follows:

1. For a predicate p(args) in the strongly connected component add n− 1
artificial predicates pi(args) with 0 ≤ i < n.

2. Replace all occurrences of p(args) in the head of events not in the strongly
connected component with p0(args).

3. Replace all events where at least one predicate in the strongly connected
component appears in the head and one in the body with n− 1 events.
All the predicates that are in the head and in the strongly connected
component are replaced with a predicate pi+1(args) and all predicates in
the body and strongly connected component with a predicate pi(args).

4. The artificial predicates are connected such that if one of the artificial
prediactes is caused, the original predicate is also caused. This is done by
introducing events p(args) : 1.0← pi(args).

The resulting structure can be simplified further for those atoms that appear in
the strongly connected component but are only caused by other atoms in the
component. For such an atom p(args) there will be no event where p0(args) is
in the head and this atom will always be false and can be removed again. This
reasoning can be applied iteratively on all atoms in the grid.

Once an acyclic theory has been found, conversions to Bayesians networks are
again possible to perform inference.

Example 3.8. Given the following cyclic theory

a : α← c.
b : β← a.
c : γ← b.

a : 0.5.
b : 0.5.
c : 0.5.
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The algorithm above transform this into

a : 1.0← a0.
a : 1.0← a1.

b : 1.0← b0.
b : 1.0← b1.

c : 1.0← c0.
c : 1.0← c1.

a : α← c1.
b : β← a1.
c : γ← b1.

a1 : α← c0.
b1 : β← a0.
c1 : γ← b0.

a0 : 0.5.
b0 : 0.5.
c0 : 0.5.

The equivalent Bayesian network is shown in Figure 3.8. ♦

c c c

a b cc c

c

c c c

a0 b0 c0

a1 b1 c1

a b c

c

c

c

c

c

c

c

c

c

c

c

c

(a) (b)

Figure 3.8: Equivalent Bayesian network of the theory in Example 3.8 obtained
after (a) naievely applying the transformation, and (b) first unfolding the cyclic
theory to an acyclic on. To make the figure more clear we anotated all choice
nodes with c but these are all diferent random variables representing the
different CP-events in the theory.
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3.10 Implementations

Up to now, CP-logic inference has been implemented into three systems:
Corporal, ProbLog and cplint.

Corporal Corporal is the system implemented for the experiments performed
in this dissertation. It is based on the transformation introduced in Sec. 3.6
from CP-logic to Bayesian networks and utilizes specialized Bayesian network
inference techniques that are introduced in Chapter 6. As indicated before,
the transformation to a Bayesian network starts from a ground CP-theory. The
Corporal system will not naively ground the entire system but uses the more
intelligent approach explained in Chapter 5.

ProbLog The ProbLog system (De Raedt, Kimmig, and Toivonen 2007;
Kimmig et al. 2008) is a powerful low-level language to express probabilistic
logic models and can be used as an inference engine for most existing
probabilistic logic languages. The language is a probabilistic extension to
Prolog and the inference engine is based on BDD manipulations and dynamic
programming. CP-logic can be translated to the ProbLog language (De Raedt
et al. 2008) and a CP-logic pre-processing script is available in the ProbLog
distribution.4 ProbLog is further discussed in Sections 4.7 and 6.2.1.

Cplint Inspired by ProbLog, Riguzzi (2007) proposed “cplint”5, which is a
CP-theory inference system that makes use of BDDs in a similar way as ProbLog
but it uses a different encoding for the BDDs. In Section 6.2.1 we discuss cplint.

3.11 Conclusions

In this chapter we gave an introduction to the CP-logic formalism, a language in
the field of probabilistic logic learning. We introduced an algorithm to convert
CP-theories to Bayesian networks without losing the original structure. Such a
transformation allows us to leverage Bayesian network inference and learning
methods and use them for CP-logic.

4http://dtai.cs.kuleuven.be/problog/
5http://www.ing.unife.it/software/cplint/

http://dtai.cs.kuleuven.be/problog/
http://www.ing.unife.it/software/cplint/
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The transformation to Bayesian networks forces us to remove cycles in a CP-
theory in order to create acyclic CP-theories as Bayesian networks cannot contain
directed cycles. This problem is more general and also shows in other PLL
formalisms like ProbLog. Such probabilistic loops cannot be handled as loops
in a logic program or cycles in a Bayesian network (where they are not allowed).

Since CP-logic is more fine-grained than Bayesian networks, the structure of
the equivalent Bayesian network cannot express the structure of the CP-theory
on the same level. This is handled in the structure of the factors. As it turns
out, this is not always the most efficient approach and some optimizations are
described in Chapters 5 and 6.
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4

4.1 Introduction

In this chapter we compare CP-logic to other probabilistic logic formalisms. CP-
logic is closely related to other probabilistic logic formalisms that also originate
from logic, such as Independent Choice Logic (ICL) (Poole 1997), Programming in
Statistical Modelling (PRISM) (Sato and Kameya 2008) and ProbLog (De Raedt,
Kimmig, and Toivonen 2007). On the other hand, because we can translate
a grounded CP-theory to a Bayesian network, CP-logic is also related to the
Knowledge Based Model Construction (KBMC) approach (Breese, Goldman, and
Wellman 1994). Given a specific query, these languages instantiate from the
logical representation a propositional model and then perform inference.
Examples of this approach are Bayesian Logic Programs (BLP) (Kersting and
De Raedt 2008), Logical Bayesian Networks (LBN) (Fierens et al. 2004) and
Probabilistic Relational Models (PRM) (Friedman, Goldszmidt, and Wyner 1999).
All these formalisms can be categorized as directed probabilistic logic formalisms.
Probabilistic logics that are less related to CP-logic include Stochastic Logic
Programs (SLP) (Muggleton 2000) and Markov Logic Networks (MLN) (Richardson
and Domingos 2006).

65



66 RELATED FORMALISMS

4.1.1 Bibliographical note

The comparison between CP-logic and Bayesian networks and Bayesian logic
programs were presented in

W. Meert, J. Struyf, and H. Blockeel (2008b). “Learning ground CP-
logic theories by leveraging Bayesian network learning techniques.” In:
Fundamenta Informaticae 89(1), pages 131–160

A more practical comparison between some of the probabilistic logic models
can be found in Bruynooghe et al. (2009) for which the author is a co-author.
CHRiSM (see Section 4.6) is introduced by J. Sneyers in (Sneyers, Meert, and
Vennekens 2009) and (Sneyers et al. 2010b) and for both papers the author is a
co-author.

4.1.2 Structure of this chapter

In the following, we first offer some more insight in the relation between
Bayesian networks and CP-logic in Section 4.2, then we compare CP-logic to
some of the most related probabilistic logic formalisms: ICL (Section 4.4), PRISM
(Section 4.5), CHRiSM (Section 4.6), ProbLog (Section 4.7) and BLPs (Section 4.8).

4.2 Bayesian networks

We first offer some insight in how the difference in language bias of CP-logic
and Bayesian networks results in different representations and interpretations.
In this section we assume ground CP-theories and do not consider the use
of logic variables. In the next section more insight is given in the use of logic
variables.

This section compares the EBN networks introduced in Section 3.6 to regular
BNs defined over the original atoms, that is, networks with precisely one
Boolean node for each atom in the domain, no additional (unobserved) nodes,
and with the conditional probability distributions represented with tables
(CPTs). Given that BNs can represent any probability distribution, they can also
represent any CP-theory (remember, a BN can directly be directly encoded as a
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CP-theory). However, as we will see shortly in the comparison, some simple
CP-theories can be represented with simple networks (with a small number
of edges and known CPT structures, such as noisy-OR), while other, equally
simple, CP-theories can only be represented with fully connected networks.
We start by looking at the most simple BN structure that is equivalent to a
CP-theory, and then gradually consider more complex ones.

This comparison extends an earlier theoretical comparison by Vennekens
(Vennekens, Denecker, and Bruynooghe 2009b). We start by comparing CP-
theories to BNs with noisy-OR nodes (Pearl 1988; Vomlel 2006; Heckerman and
Brees 1994). Noisy-OR nodes appear in BNs when there is a set of independent
and noisy causes for a given variable. We show that BNs with noisy-OR nodes
are not sufficient to model CP-theories in a compact way. That is, representing
CP-theories with regular BNs may require close to fully connected networks,
unless artificial unobserved nodes are introduced in the network. Precisely such
nodes are created by Blockeel and Meert’s transformation; these nodes model
the non-determinism in the outcome of the event.

4.2.1 CP-Theories Representing Noisy-OR

Noisy-OR nodes are well known in the field of BNs (Pearl 1988). We first briefly
explain the semantics for the general case of causal independence models of
which noisy-OR is a special case and after that we show that they model the
same probability distribution as the most simple CP-theories.

The global structure of a causal-independence model is given in Figure 4.1
and expresses the idea that causes b1, . . . , bn influence a given common effect h
through intermediate variable c1, . . . , cn and a Boolean function b, the interaction
function (Lucas 2005). The influence of each cause bi on the common effect h is
independent of the other causes bj, j 6= i. The function b represents in which
way he intermediate effects ci, and indirectly also bi, interact to yield the final
effect h.

The factorization of the BN given in Figure 4.1 can be denoted as:

Pr(h | b1, . . . , bn) = ∑
c1,...,cn

Pr(h | c1, . . . , cn)Pr(c1, . . . , cn | b1, . . . , bn)

We see that the causes only influence the common effect when Pr(h |
c1, . . . , cn) = 1. This is a functional dependency since this corresponds to
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the Boolean function b where b(c1, . . . , cn) = h. We know that the causes are
independent of each other, thus

Pr(c1, . . . , cn | b1, . . . , bn) =
n

∏
i=1

Pr(ci | bi)

and we can simplify the original formula to

Pr(h | b1, . . . , bn) = ∑
b(c1=v1,...,cn=vn)=h

n

∏
i=1

Pr(ci = vi | bi)

The size of the Boolean formula b is exponential in the number of its arguments,
thus the previous equation is not guaranteed to be computationally tractable. An
important subclass of causal independence models, however, are those whose
deterministic function b is decomposable. In that case, the Boolean function can
be defined in terms of separate functions gi(ci, ci+1) introducing symmetry we
can exploit. Typically, examples of decomposable causal independence models
are the noiys-OR and noisy-MAX models, where the function gi represents a
logical OR and MAX, respectively.

h

c1 . . . cn

b1 . . . bn

b

Figure 4.1: Causal independence model.

We focus on noisy-OR causal independence models as they are implicitly present
in CP-logic. It is also possible to represent a noisy-OR model without the
intermediate nodes by simply marginalizing them out. Noisy-OR can then
be represented with a BN node as shown in Fig. 4.2.a. Its conditional probability
distribution takes the following form (Neapolitan 2003):
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x

y1 . . . yn y1, y2
x true, true true, false false, true false, false

true 1 − ᾱ1ᾱ2 α1 α2 0.0
false ᾱ1ᾱ2 ᾱ1 ᾱ2 1.0

a. BN with noisy-or node x b. CPT for a noisy-or node with two inputs (ᾱi = 1 − αi)

Figure 4.2: A BN representing the noisy-OR relationship.

Pr(x = true | y1, . . . , yn) = 1− ∏
i:(yi=T)

(1− αi) (4.1)

Fig. 4.2.b shows this distribution represented as a table.

With the above definition of noisy-OR, x can only become true if one of the
causes yi is true. In practice, there may also be unknown causes for x. These can
either be modelled by adding an unobserved node to the network and making
this one of the causes for x (lumping together the effect of the unknown causes).
Alternatively, one can also modify the definition of noisy-OR and include an
additional parameter β representing the unknown causes. The distribution then
becomes:

Pr(x = true | y1, . . . , yn) = 1− (1− β) · ∏
i:(yi=T)

(1− αi) (4.2)

A noisy-OR node x with inputs yi represents exactly the same probability
distribution as the CP-theory consisting of the rules x : αi ← yi (Fig. 4.3.a). This
can be seen most easily by looking at the EBN of the theory, which is shown in
Fig. 4.3.b. The EBN matches the definition of noisy-OR given above: the choice
nodes ci of the EBN represent the noisy versions of the inputs yi, and the CPT
for node x represents exactly the deterministic OR of these noisy inputs.

Because the CP-theory of Fig. 4.3.a is equivalent to a noisy-OR node, it can
also be represented, without the choice nodes, as the regular BN shown in
Fig. 4.2. More generally, any non-recursive ground CP-theory consisting of
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x : α1 ← y1.

x : α2 ← y2.

x

c1 c2

y1 y2

y1
c1 true false
0 ᾱ1 1
1 α1 0

y2
c2 true false
0 ᾱ2 1
1 α2 0

c1,c2
x 0,0 0,1 1,0 1,1

true 0 1 1 1
false 1 0 0 0

a. CP-theory b. EBN c. CPTs for the EBN (ᾱi = 1− αi)

Figure 4.3: A CP-theory representing noisy-OR together with its EBN and
CPTs. The choice nodes ci represent the noisy versions of the inputs yi, and
the node x represents the deterministic OR. This EBN is equivalent with the
noisy-OR in Fig. 4.3, as can be seen by marginalizing out the choice nodes :
Pr(x|y1, y2) = ∑c1,c2

Pr(x|c1, c2) · Pr(c1|y1) · Pr(c2|y2).

rules with precisely one atom in the head and at most one atom in the body can
be represented as a BN consisting of only noisy-OR nodes. These may include
an unknown cause as in Eq. 4.2 to account for rules with empty bodies. This
network has precisely one edge xj ← yi for each CP-theory rule xj : αi,j ← yi.
The connection between the rules in a CP-theory and noisy-OR is not only
present in CP-logic but already appeared in rule-based expert systems before
they became popular in BNs (Lucas 2001).

Assume that the CP-theory has the structure defined in the previous paragraph,
then we know the corresponding structure for the BN and for its conditional
probability distributions. We now briefly discuss learning the parameters of
such a network. For theories with a large number of causes for a given atom,
parameter learning with techniques only taking conditional independence into
account (thus, estimating CPT entries by means of counting) is intractable.
Indeed, represented as a table, the conditional probability distribution of a
noisy-OR node with n inputs has 2 · 2n table entries (Fig. 4.2.b), and learning
all these entries from training data is infeasible for large values of n. Therefore,
we need techniques that explicitly take the special format of the conditional
probability distributions into account. We discuss such a parameter learning
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technique for CP-theories in Section 7.2.

Some known BN learning algorithms have special support for noisy-OR nodes.
These algorithms represent the noisy-OR conditional probability distribution
implicitly as in Eq. 4.1. This avoids representing and learning exponentially large
CPTs because Eq. 4.1 contains only one parameter for each cause. An example of
an algorithm in this category is the noisy-OR classifier (Vomlel 2006; Heckerman
and Brees 1994), which consists of precisely one noisy-OR node for the class
with one input node for each descriptive attribute. The noisy-OR classifier has
been shown to perform well in tasks with a large number of attributes. It follows
trivially from the above discussion that the noisy-OR classifier can be compactly
represented as a CP-theory. Therefore, CP-theories can also be used in such
classification tasks. Training the classifier then corresponds to learning the
CP-theory parameters.

While noisy-OR can be represented as a CP-theory, the opposite does not
generally hold, as we will see next.

4.2.2 CP-Theories with Multiple Literals in the Rule Bodies

When multiple literals occur in the body of a rule, it is no longer possible to
represent the theory as a BN with only noisy-OR nodes. One either has to add
additional nodes to represent the deterministic AND between the literals in
the body, or one has to combine the noisy-OR and AND function in one CPT.
Fig. 4.4 illustrates both options. Note that combining noisy-OR and AND results
in a redundant CPT: many entries have the same value. The addition of separate
AND nodes is necessary to avoid this redundancy.

4.2.3 CP-Theories with Multiple Atoms in the Rule Heads

The BN conversion becomes more difficult when there are multiple atoms in the
head of a rule. Take for example the rule in Fig. 4.5.a. This rule causes precisely
one of the atoms in the head to become true (assuming α + β + γ = 1), that
is, the head atoms are mutually exclusive. Modelling such a relationship in a
BN, without any additional nodes, requires a fully connected network, which
is shown in Fig. 4.5.b. In the particular factorization shown in the figure, z
depends on both x and y because it can only become true if x and y are false. It
is not possible to represent mutual exclusivity with fewer edges, and in general,
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x : α← q, y.

x : β← z. x

q y z

x

q y z

∧

q, y, z
x t, t, t t, t, f t, f , t f , t, t f , f , t t, f , f f , t, f f , f , f
t 1− (1− α)(1− β) α β β β 0 0 0
f (1− α)(1− β) 1− α 1− β 1− β 1− β 1 1 1

a. CP-theory. b. Corresponding BN. c. Alternative BN with AND node.

d. CPT for node x in (b)

Figure 4.4: CP-theory with multiple literals in the body of a rule and
corresponding BNs.

rules with multiple atoms in the head will always result in fully connected
sub-networks.

EBNs, on the other hand, avoid these fully connected sub-networks by
introducing choice nodes: the choice variable encodes exactly which of the head
atoms is selected by the probabilistic process. This trivially ensures mutual
exclusiveness because the choice variable cannot have more than one value at a
given time. To summarize, to represent a CP-theory, it is not sufficient that the
BN has noisy-OR and deterministic AND nodes because it also has to express
the mutual exclusiveness of the head atoms; additional nodes are needed for
this.

The fact that CP-logic offers an elegant way of encoding mutually exclusive
consequences is an important point. Not only does it allow for a more intuitive
representation, it also does this with fewer parameters than a regular BN
without unobserved nodes. Because such relationships are easily representable
in CP-logic, it will also be more easy to learn them, as we will show later.
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x : α ∨ y : β ∨ z : γ← .

x

y z

x
true α

false 1− α

x
y true false

true 0 β
1−α

false 1 1− β
1−α

x, y
z true, true true, false false, true false, false

true 0 0 0 γ
1−α−β

false 1 1 1 1− γ
1−α−β

a. CP-theory. b. Corresponding BN.

c. CPT for x.
d. CPT for y.

e. CPT for z.

Figure 4.5: CP-theory with multiple atoms in the head of a rule and
corresponding BN.

4.2.4 Multiple literals in head and shared across events

Example 4.1. We repeat the CP-theory from Example 3.1 representing a
shopping situation. This theory is used as a running example in this section.
The equivalent Bayesian network is depicted in Figure 4.6.

shops(john) : 0.2.
shops(mary) : 0.9.

bought(spaghetti) : 0.5∨ bought(steak) : 0.5← shops(john).
bought(spaghetti) : 0.3∨ bought(fish) : 0.7← shops(mary).

♦

The CP-theory of the shopping example presented in Example 4.1 contains
multiple causes for the same atom as well as multiple atoms in the head of
a rule. Therefore, it is necessary to combine the noisy-OR and the mutual
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bought(steak)

c3

shops(john)

c1

bought(spaghetti) bought(fish)

c4

shops(mary)

c2

Figure 4.6: The equivalent Bayesian network for the shopping theory in
Example 4.1.

exclusivity relationships explained before. This leads to redundancy unless
additional nodes are introduced in the network. Fig. 4.7 shows the resulting
BN if no additional nodes are introduced, which is almost fully connected.

This representation is clearly less intuitive than the CP-theory. Even though the
act that John goes shopping does not cause the buying of fish, there is a direct
edge from shops(john) towards bought(fish). This is because a BN is designed to
represent correlations whereas CP-theories are designed to represent causal
interactions. If one observes that bought(spaghetti) is true, bought(steak) is false
and shops(mary) is true, then shops(john) and bought(fish) are not independent1
and an edge between them is necessary because all other paths are d-separated.

We conclude that in such cases the model represented as a CP-theory is (a) more
intuitive, because there are only edges between elements that actually have
a causal relation, and (b) more efficient, since in the BN model, we also need
parameters to quantify Pr(bought(fish)|shops(john), ...), which are not needed
in the CP-theory.

4.2.5 Summary

In this section, we considered representing CP-theories as regular BNs, without
any additional nodes besides the domain atoms. Below we summarize the main
conclusions.

1This can be illustrated as follows: if shops(john) is not true, the spaghetti has been bought by
Mary and if shops(john) is true, he must have bought spaghetti and there is a possibility that Mary
has bought fish.
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sp

s(j) s(m)

st f i

Noisy-or causes
Mutual exclusive disjuncts
Knowing its causing rule

Figure 4.7: BN representation of the CP-theory from the shopping example.
Edges are necessary for three different reasons: (a) connecting the head atoms
in a rule with the body literals (noisy-OR), (b) connecting the head atoms of a
rule (mutual exclusive disjuncts) and (c) connecting the head atoms of a rule
with the body literals of another rule to know which rule caused which atom.

CP-theories with rules with at most one atom in the head can be represented
with a regular BN with precisely one edge for each rule with a non-empty body.
The structure of the conditional probability distributions of such networks is
either noisy-OR (Section 4.2.1) or a combination of noisy-OR and deterministic
AND (Section 4.2.2). Learning the parameters of this type of BN is intractable,
unless dedicated techniques are used that take the special structure of the
distributions into account. Such algorithms are known for simple networks
with noisy-OR nodes (Heckerman and Brees 1994).

CP-theories with multiple atoms in the rule heads cannot be compactly
represented with a regular BN over the domain atoms; the resulting networks
tend to have many connections, which leads to large CPTs with much
redundancy (Section 4.2.3). To avoid this, additional nodes are required that
encode which head atom is selected. This is a function of the choice nodes in
the EBN. More precisely, the choice nodes encode both the deterministic AND
of the body literals and the mutual exclusivity of the head atoms.

From the two above observations it follows that regular BNs over the domain
atoms in combination with traditional parameter learning techniques are not
suitable in domains where the target theory satisfies the assumptions made by
CP-theories. Either the resulting network will poorly approximate the target
theory, or it will be overly complex, which undermines interpretability and
makes parameter learning intractable. We conclude that the introduction of the
choice nodes in the EBN is crucial to efficiently represent a CP-theory as a BN.
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4.3 Knowledge Based Model Construction

Breese (1992) was among the first to note that the fixed models used in
probabilistic graphical models like Bayesian networks have some disadvantages
and a more dynamic concept of models is necessary. By using a representation
that implicitly encodes an enormous number of possible model structures, some
of which quite large, he initiated the combination of probability theory and
relations.

Based on a particular query and information state at run time, he constructs a
belief network that is custom-tailored, and that can be used in a probabilistic
inference algorithm. The advantages of such an approach are that, first, general
patterns can be stored in a database and assembled to apply to specific instances.
For this we can use deductive reasoning techniques like SLD-resolution. Second,
probabilistic reasoning can be reduced by using information about the context.
Knowledge that is not relevant to the current query because it is blocked by
evidence can be left out of the probabilistic reasoning phase. Third, a decision-
theoretic model can be used to exclude parts of the model because of limited
relevance.

Breese proposes a language that consists of three types of statements: (1) facts
and rules represented with universally quantified Horn clauses to express the
relations, (2) alternative outcomes to express possible worlds, and (3) probability
distributions to quantify the probability of a possible world.

A Horn clause is a formula of the form

h← b1 ∧ b2 ∧ . . . ∧ bn

where h and bi are positive atoms and read as “h if b1 and b2 . . . ”. These rules
express the deterministic part of the model. The uncertain part is represented in
terms of disjunctions, we know a or b or c has occurred but are uncertain about
the individual truth values of the components. Combinations of realizations
of these possibilities define possible world states (i.e., the sample space in
probability theory). It is typical for probabilistic models to need the notion
of mutual exclusive choices, i.e., the case where exactly one outcome out
of a set of possible outcomes is true. Breese offers a shorthand for such
situations with the concept of alternative outcome expressions. For example
bought({spaghetti, fish, nothing}, mary) tells us that Mary buys either spaghetti,
fish, or nothing. The choices in the example are quantified by an expression
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representing a probabilistic dependency:

h | b1 ∧ b2 ∧ . . . ∧ bn = Pr(ωh | ωb1 ∧ . . . ∧ωbn)

where h is an alternative outcome expression, each bi is an atomic formula
(possibly an alternative outcome expression), ωh is the set of possible alternative
outcomes, and Pr is a conditional probability distribution over the alternative
outcomes of h given the alternative outcomes for b1, . . . , bn. We can quantify
the buying habit of Mary as follows:

bought({spaghetti, fish, nothing}, mary) | shops({false, true}, mary)

= Pr(ωbought | ωshops)

=

shops(false,mary) shops(true,mary)
bought(spaghetti,mary) 0.0 0.5

bought(fish,mary) 0.0 0.5
bought(nothing,mary) 1.0 0.0

The representation Breese uses contains the powerful idea of combining first
order deterministic relations and probabilistic statements. The structure he uses:
a database with rules, possible outcomes of a variable and a quantification over
these possible outcomes is the basis of many other formalisms that build further
on this representation. The inference, however, is limited in several aspects.
First there is no concept of combining functions. When multiple probabilistic
dependencies unify with a particular subgoal a heuristic is used to select one.
Second, there is no notion of logic concepts like negation or optimizations
like tabling. Third, the probabilistic dependencies can only be expressed as
simple conditional probabilities, there is not yet any notion of contextual
independence. Fourth, recursive Horn clauses that result in directed cycles
in the Bayesian network are not allowed. The probabilistic logic formalisms
discussed in the following sections (and CP-logic) have been proposed to deal
with these shortcomings.

With respect to CP-logic, the deterministic rules can be seen as a CP-event with
one head atom and probability 1. The probabilistic statements are represented
with one CP-event for every combination of the possible outcomes of all
the variables. It is not possible to express every possible CP-theory in the
representation of Breese without first reducing the theory to a Bayesian network.
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Figure 4.8: An overview of the network construction process as introduced in
Breese (1992)

4.4 ICL

CP-logic is most closely related to the Independent Choice Logic (ICL) (Poole 1997),
which uses a similar language. ICL is a probabilistic extension of abductive logic
programming that extends the earlier formalism of Probabilistic Horn Abduction
(Poole 1993).

An ICL theory consists of a logical and a probabilistic part. The logical part
is an acyclic logic program, and the probabilistic part is a set of rules of the
following form (in CP-logic syntax):

(h1 : α1) ∨ (h2 : α2) ∨ . . . ∨ (hn : αn)← .

Each atom hi may appear only once in the probabilistic part and only in the
clause bodies of the logical part of the theory. This ensures that probabilities
are associated to exactly one atom.

The syntax of ICL can be seen as a subset of the syntax of CP-logic, in which
the CP-events are either deterministic or have an empty body (and for which
the constraint on the hi holds). Also the semantics of both logics coincide for
this subset, so every ICL theory can be read as a CP-theory. Therefore, the
methods proposed in this dissertation may also be applicable to learn (ground)
ICL theories by constraining the refinement operator used by the search so
that it only generates syntactically valid ICL theories (see Chapter 7). To our
knowledge, no learning methods have been published specifically for learning
ICL theories.

Vennekens et al. (Vennekens 2007) shows that every acyclic CP-theory can also
be transformed into an ICL theory by introducing one additional atom for each
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head atom of the CP-theory. Trying to directly learn such theories would be
difficult because the learning algorithm would need to automatically introduce
these atoms (which would correspond to invented predicates (Muggleton
and Buntine 1988)). Therefore, an ICL learning method would not be directly
applicable to learn CP-theories.

4.5 PRISM

PRISM (Sato and Kameya 2008) is similar to ICL, it also extends Prolog with a
probabilistic part. For this, PRISM uses the probabilistic built-in multi valued
random switch (msw) which is identical to the probabilistic part in ICL. A multi
valued switch assigns a set of ground terms as the range of a discrete random
variable. For every switch there is a probability distribution over the possible
values (the range) a random variable can take.

A PRISM program thus consists out of two parts, R and F. R is a set of definite
clauses whose head is not appearing in an msw atom. F is a set of msw atoms
together with a base distribution PrF defining probabilities (parameters) of msw
atoms in F. The combination of both, DB = R∪ F, defines a probability measure
PrDB(·) over the set of Herbrand interpretations (distribution semantics).

Example 4.2. We can represent the choices John makes in the shopping with
the following PRISM program:

values(shopsjohn,[john,nil]).

values(productsjohnbuys,[spaghetti,steak]).

shops(Who) :- msw(shopsjohn,Who).

bought(Product) :- msw(productsjohnbuys,Product), shops(john).

♦

4.6 CHRiSM

Constraint Handling Rules (CHR) (Sneyers et al. 2010a; Frühwirth 2009) is a
formalism that extends high-level languages with multi-headed rules. CHR has
its roots in constraint solving but has evolved to a general purpose programming
language. CHR is a language extension which is implemented on top of an
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existing programming language. For example, several CHR(Prolog) systems
are available.

A CHR program consists of rules for simplification, propagation and simp-
agation (a combination of simplification and propagation) of conjunctions
of constraints. The current set of constraints is kept in a multi-set: the CHR
constraint store. Thus, CHR rules are constraint handling rules that refine the
store of CHR terms according to some given constraints.

Example 4.3. Consider the following simplification rule which expresses that
if a value is both smaller or equal and larger or equal than another value, they
are the same value:

X <= Y , Y <= X <=> X=Y.

If the store contains the constraints X <= Y and Y <= X (where the logic variables
X and Y can be unified with any constant) then they are removed from the store
and replace with the new constraint X=Y. ♦

CHRiSM (Sneyers, Meert, and Vennekens 2009; Sneyers et al. 2010b) extends
CHR with probabilities by building on PRISM as the host language. A CHRiSM
program consists of a sequence of CHRiSM rules of the following form:

P ?? Hk \ Hr <=> G | B.

where P is a probability expression, Hk is a conjunction of constraints that
are matched and kept in the store, Hr is a conjunction of constraints that are
matched and removed from the store, G is a guard condition (a Prolog goal to
be satisfied), and B is the body of the rule. Such a rule means that, whenever
this rule could in principle be applied to resolve a CHR term, this will only
happen with probability P. If Hk is empty, the rule is called a simplification rule
and the backslash is omitted; if Hr is empty, the rule is called a propagation rule
and it is written as “P ?? Hk ==> G | B”. If both Hk and Hr are non-empty, the
rule is called simpagation rule. The guard is optional. The body B is recursively
defined as a conjunction of CHRiSM constraints and Prolog goals. It is also
allowed to replace the body with a CP-logic like disjunct expressing a mutual
exclusive choice. In that case the body is represented as “p1 : h1;...;pn : hn”
with pi the probabilities and hi atoms and the probability in the beginning of
the rule is dropped.
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CHRiSM is useful for high-level rapid prototyping of complex statistical models
by means of “chance rules”. CHR has some advantages over Prolog, including
complexity-wise completeness and the expressivity of multi-headed rules. It is
expected that CHRiSM has the same advantages over plain PRISM.

Example 4.4. The following CHRiSM program implements the shopping
example used before in Example 4.1. First, with only spaghetti to show the
simple syntax:

go <=> shops(john), shops(mary).

0.5 ?? shops(john) <=> spaghetti.

0.3 ?? shops(mary) <=> spaghetti.

spaghetti, spaghetti <=> spaghetti.

We can add the last rule to express that we do not care about the number of
times spaghetti is bought. This could be useful since CHRiSM keeps track of
individual instantiations of an atom.

To extend the example to include also steak and fish we can use a CP-logic like
disjunct in the body:

go <=> shops(john), shops(mary).

shops(john) <=> 0.5:spaghetti; 0.5:steak.

shops(mary) <=> 0.3:spaghetti; 0.7:fish.

spaghetti, spaghetti <=> spaghetti.

♦

We explain, informally, the semantics by giving the transformation from CP-
logic to CHRiSM. Consider a CP-logic rule (or CP-event) r:

(h1 : α1) ∨ · · · ∨ (hn : αn)← φ

with the hi propositions, the αi probabilities (with ∑ αi = 1) and φ a formula.
Such a rule expresses that if the formula φ is satisfied, a random event will take
place, which causes one of the hi; each αi represents the probabilities that the
associated hi is the atom that is in fact caused.

We can translate such a rule to CHRiSM by introducing some new symbols. We
introduce a symbol br to denote that the body φ of this rule r is satisfied, and
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for each hi in its head, we introduce a symbol chi
r to represent that hi is the atom

caused by r. For all the symbols s that we now have, we also introduce a symbol
not_s to represent its negation. We can then translate the above CP-logic rule
as:

br ==> α1:c
h1
r ; ... ; αn:c

hn
r

and

not_br ==> not_ch1
r ,... , not_chn

r .

In CP-logic, each rule can “fire” at most once. To avoid that the multiset
semantics of CHR would give a different result, we add br\ br <=> true to the
top of the CHRiSM program.

To relate the c
hi
r and not_c

hj
r , we use: chi

r ==> not_c
hj
r , for all i 6= j.

The semantics of CP-logic has a non-monotonic aspect, which stems from its use
of “negation-as-failure” as in the well-founded semantics for logic programs.
This can be captured in CHRiSM by expressing that a atom h is true if and only
if it is caused by at least one rule ri:

ch
r1
==> h
...

ch
rn ==> h

not_ch
r1
,... , not_ch

rn ==> not_h.

Here, r1, . . . , rn are all the rules that have h in their head.

All that remains is to define the br and not_br in such a way that they correctly
correspond to the truth of the bodies of the rules r. This requires us to encode
the logical connectives in CHR. If we push negation down to the atom level, we
can simply replace each ¬h with not_h.

4.7 ProbLog

ProbLog (De Raedt, Kimmig, and Toivonen 2007) is an extension of Prolog with
probabilities. Like in PRISM, a program consists of a probabilistic part and a
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logic part. The probabilistic part consists out of probabilistic facts that attach a
probability to an atom. The logic part is a regular Prolog program without cuts.
The probabilistic facts can only be used in the bodies of the Prolog rules in the
logic part.

The language is similar to that of PRISM but PRISM avoids programs where
inference is computational expensive by limiting the allowed programs to a
specific subclass where all bodies are mutual exclusive. ProbLog on the other
hand is designed with not only semantics but also with inference in mind.
ProbLog allows bodies that are not mutual exclusive. This makes that different
proofs for a query possibly share common subproofs and inference is not
anymore straightforward and the inclusion-exclusion property needs to be
taken into account. ProbLog uses an underlying transformation to BDDs to
solve the disjoint-sum problem.

The main goal of ProbLog is to be an underlying, powerful, low-level language
for probabilistic logic learning. Most probabilistic logic languages can be
transformed into ProbLog and so can CP-logic (De Raedt et al. 2008).

ProbLog is based on the distribution semantics (Sato 1995) and uses a
transformation to a binary decision diagram (BDD) to perform inference
efficiently. ProbLog’s inference engine works as follows. Given a query, it first
computes all proofs of the query and collects these in a DNF formula. Next, it
converts this formula to a BDD. Relying on this BDD representation, ProbLog
then computes the query’s probability in one bottom-up pass through the BDD
(using dynamic programming).

Example 4.5. The shopping example (see Example 3.1) can be modelled with
ProbLog as follows:

% Probabilistic facts

0.2::f_john_shops.

0.9::f_mary_shops.

0.5::f_john_buys_sp.

0.3::f_mary_buys_sp.

% Prolog rules

shops(john) :- f_john_shops.

shops(mary) :- f_mary_shops.

bought(spaghetti) :- shops(john), f_john_buys_sp.

bought(steak) :- shops(john), problog_not(f_john_buys_sp).

bought(spaghetti) :- shops(mary), f_mary_buys_sp.
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bought(fish) :- shops(mary), problog_not(f_mary_buys_sp).

The meta-predicate problog_not is true when the probabilistic fact it has as
argument is false. ♦

4.8 Bayesian Logic Programs

Bayesian Logic Programs (BLPs) (Kersting and De Raedt 2008) are one of
the formalisms that are based on the Knowledge Based Model Construction
(KBMC) (Breese, Goldman, and Wellman 1994) approach. They lift propositional
Bayesian networks to the first-order case.

A BLP consists of a set of rules of the following form:

h1 | b1, . . . , bn.

with hi and bi atoms. Each rule has a conditional probability distribution (CPD)
associated to it. For each predicate symbol, the BLP also defines a domain and
a so-called combining rule.

The user must define a domain, which can be discrete or continuous, for each
predicate symbol in the BLP. This then becomes the domain for all nodes in the
BN that are built on this predicate symbol. This is a major difference with the
equivalent BN of a CP-theory, in which all atom nodes need to be Boolean. In
the following, we will therefore assume Boolean domains.

Given a query, the BLP is grounded and converted to a BN, and the answer
to the query is then computed by applying BN inference techniques. The BN
is created as follows. For each atom in the ground BLP, one node is created
in the BN. For each clause in the ground BLP, all body atoms become parents
of the head atom in the BN. The CPDs for the BN nodes are computed from
the CPDs associated to the BLP clauses by applying the combining rules. This
is necessary because multiple clauses in the ground BLP may have the same
head atom. The combining rule then converts this multi-set of CPDs into one
single CPD. Several authors propose techniques for learning BLPs (and similar
formalisms) with combining rules, e.g., Kersting et al. (Kersting and De Raedt
2008), Natarajan et al. (Natarajan et al. 2006) and Jaeger (Jaeger 2007).
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Because of BLP’s strong roots in Bayesian networks, most of the results of the
comparison between CP-theories and BNs from the previous section carry
over to BLPs. BLPs may have more parameters that need to be learned, and
CP-theories with multiple atoms in the rule heads cannot be compactly and
intuitively represented with BLPs, unless additional predicates are introduced
to represent the choice nodes. That is, the learning of such BLPs would require
a type of predicate invention (Muggleton and Buntine 1988). A number of issues
with BLPs have led to Logical Bayesian networks (Fierens et al. 2004; Fierens et al.
2006). The issues pointed out in this section are valid for both languages and
therefore we only consider BLPs.

Example: Noisy-OR. BLPs can express noisy-OR structures elegantly by using
the noisy-OR combining rule. This makes BLPs modular and compact. The
representation is almost equal to the way this is expressed in CP-logic, as is
illustrated in Fig. 4.9. For BLPs, however, it is important to specify the 1 and 0
parameter values in the CPTs; in CP-logic, these are implicit. This difference
indicates that, even though the rules in both formalisms may look similar, there
is a difference in semantics. We elaborate further on this difference in the next
example.

Example: Multiple literals in the rule bodies. Suppose that we have a CP-
theory in which one CP-event has multiple literals in the body (see Figure 4.4):

x : α← q, y.
x : β← z.

We could represent this theory as the following BLP:

x | q, y.
x | z.

with noisy-OR as combining rule for predicate x. This, however, would require a
CPT with dom(q) · dom(y) = 2 · 2 = 4 parameters for the first clause compared
to one parameter in CP-logic. This can be avoided by introducing a new
predicate a, and by using the noisy-OR combining rule for x and the AND
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combining rule for a, as is assumed in the following BLP:

x | a. a | q.
x | z. a | y.

Although the CPTs are now small, an extra predicate needs to be added. Adding
new predicates during learning, is not trivial and is further investigated in
Chapter 7.

Example: Multiple atoms in the rule head. When we try to express the
knowledge represented by a CP-event with multiple head atoms (see Figure 4.5)
with a BLP, we encounter the same problem as for BNs (although the BLP may
have fewer parameters because of the combining rules). Just like in the BN of
Fig. 4.7, it is necessary to add extra (confusing) dependencies when representing
the CP-event as a BLP.

x | y1
x | y2

(a) BLP: Structure.

x y1 ¬y1
t α1 0
f ᾱ1 1

x y2 ¬y2
t α2 0
f ᾱ2 1

(b) BLP: CPDs (with ᾱ = 1− α).

x : α1 ← y1
x : α2 ← y2

(c) CP-theory.

Figure 4.9: A BLP with a noisy-OR combining rule and the equivalent CP-theory,
both with the same parameters (the combining rule specification is not shown).

4.9 Relational Bayesian networks

Relational Bayesian Networks (RBNs) (Jaeger 1997) combine a relational
representation with Bayesian networks. The random variables in the Bayesian
network are predicate symbols and the states of these random variables are
the possible interpretations of the symbols over an arbitrary, finite domain.
An RBN can be compiled into a network that is similar to that generated by
a BLP. The nodes correspond to domain atoms instead of predicate symbols.
RBNs are modelled with the underlying Bayesian network in mind and have
similar difficulties, e.g., cyclic relations are difficult to express. Because RBNs
are a relational lifting of Bayesian networks like BLPs are, the conclusions
from Section 4.8 carry over and we do not discuss RBNs in depth. For a more
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detailed comparison between RBNs and CP-logic, see Vennekens, Denecker,
and Bruynooghe (2009a).

4.10 Other

In this section, we give an overview of some other probabilistic logic formalisms.

CPT-L (Thon, Landwehr, and De Raedt 2008) is based on and a subset of CP-
logic. Its main goal is to make the implicit notion of time in a CP-theory explicit
(see Section 3.8). Inference and learning for this subset of CP-logic can be
done efficiently and makes CPT-L therefore suited for dynamic domains like a
relational stochastic process.

Stochastic Logic Programs (Muggleton 2000) are a probabilistic extension of Prolog
like ProbLog but probabilities are now attached to the selection of clauses in
Prolog’s SLD-resolution algorithm. This can be seen as a first-order version of
stochastic context free grammars. It is difficult to relate stochastic logic programs
to CP-logic because they represent a different type of probability that can be
associated with first order logics. This difference is formalized in Halpern
(1990) and introduces two types of probabilistic structures. A structure of type
I represents the degree of belief of an agent, e.g., Bayesian networks and CP-logic.
A structure of type II represents statistical knowledge like, e.g., the probability
that a randomly chosen object has some property. Stochastic logic programs
represent this second type.

Less related are MLNs (Richardson and Domingos 2006), they cannot be
categorized as directed probabilistic logic models but are rather undirected
probabilistic logic models. The statements in an MLN have no implicit sense of
direction attached to them like in, e.g., CP-logic, Bayesian networks. An MLN
consists out of first-order logic formulas that have weight attached to them.
An MLN can be transformed into a Markov random field that can be used to
perform inference.

4.11 Conclusions

In this chapter, we have given an overview of some of the many probabilistic
(logic) languages. Because of the large number of formalisms, it is difficult to
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describe them all. Therefore, we summarize this chapter by given an overview
of features where probabilistic logic languages typically differ.

• What happens if you add multiple rules defining the same ground atom
(thus in the head of rules in a logic programs)? Such a situation is present
in the spaghetti example where two different CP-events can cause the
buying of spaghetti. This is for example also the case when there is a
logic variable that only appears in the body of a CP-event and CP-logic
handles such a situation implicitly with a noisy-or. The same is true for
PRISM and ProbLog. BLPs, LBNs and RBNs demand the model to specify
a method to combine multiple rules (a so-called combining rule), this can
be for example noisy-or, noisy-and, or others. KBMC on the other hand
cannot deal with this situation.

• Is negation of atoms allowed, and how is it handled? CP-logic allows
negation by means of the temporal precedence property. Other languages
such as ProbLog use the closed world assumption.

• Is recursion allowed? Or otherwise stated, are cycles allowed? CP-logic
allows cycles and thus any type of recursion. The formalisms based on
Bayesian networks like KBMC, BLPs, LBNs, RBNs only allow theories that
can be stratified since these result in acyclic Bayesian networks. PRISM and
ProbLog allow all types of recursion but are not well-defined when the
recursion causes an infinite proof. The cycles, however, can be broken by
means of tabling and this method turns out to be similar to the unfolding
of cycles in CP-logic2.

• Expresses the formalism directed or undirected probabilistic dependen-
cies (or a mixture)? CP-logic and the methods described in detail in this
chapter are all directed since they have a notion of head and body (or
children and parents). MLNs on the other hand are the prototypical
undirected probabilistic logic formalism. Like for the probabilistic models,
directed models deal with probabilities directly and undirected with
weights.

• What do the probabilistic parameters express? In a Bayesian network
the parameters are conditional probabilities but for CP-logic they are
causal probabilities. All the formalisms based on Bayesian networks use
conditional probabilities. PRISM and ProbLog uses yet another type

2Based on private communication about unpublished work with the developers of ProbLog.
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of parameters since they represent independent probabilities that are
distributed over the logic (non-probabilistic) atoms.





First-order Bayes-ball

5

5.1 Introduction

Inference is a bottleneck in probabilistic logic learning, affecting also the cost
of learning these models from data. Many attempts have been made to make
inference more efficient in these formalisms, including lifted inference methods
which try to exploit the symmetries present in the first-order probabilistic model
(Poole 2003; Salvo Braz, Amir, and Roth 2005; Milch et al. 2008; Singla and
Domingos 2008; Kisynski 2010). In this chapter, we make use of the first-order
structure to identify random variables (ir)relevant to the inference task at hand.
To answer a specific probabilistic query, there is a minimum set of random
variables which are required to be included in the computations. This set is
called the minimal requisite network (MRN) (Shachter 1999). Inference becomes
more efficient by restricting computations to the MRN.

An added benefit of the MRN is that it allows us to reason about the model on
a local level. Since the MRN represents a submodel containing all the variables
that influence the query, we can reason about the interactions in the model
while ignoring a possibly large part of the model that does not influence the
query.

91
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Bayes-ball (Shachter 1999) is an efficient algorithm that finds the MRN for
inference in (propositional) Bayesian networks. The naive way of applying
Bayes-ball to a probabilistic logic model is to ground the entire model and apply
Bayes-ball on the resulting propositional network. This can be computationally
expensive or impossible because the grounded network is in general large for
real world models, and its construction can be a significant part of the total
inference cost.

Another way to compute the MRN for a probabilistic logic model consists of
two steps: In the first step, all logic programming proofs for the query and
for all evidence atoms are computed (e.g., using SLD resolution (Kersting and
De Raedt 2000)), and a network is built using all ground events that are used
therein. In the second step, the MRN is computed by applying Bayes-ball to
this network. The second step is necessary since some atoms encountered in
certain proofs of an evidence atom may be D-separated (Shachter 1999) from the
query. This method has the disadvantage that it initially computes a Bayesian
network that may be larger than the MRN. Breese (1992) proposed a method
that combines SLD resolution with searching for evidence like in Bayes-ball.
This method is not directly applicable for CP-logic because the formalism used
by Breese is much more restricted than CP-logic (see Section 4.3).

None of the mentioned methods take full advantage of the first-order
representation of the probabilistic logic model. First-order probabilistic models
introduce many random variables which are essentially identical with respect
to inference, and hence also share the same status of relevance for a specific
probabilistic query. We propose a first-order version of the Bayes-ball algorithm
called first-order Bayes-ball (FOBB) that exploits these symmetries to efficiently
compute the MRN for probabilistic logic inference. FOBB works directly at
the first-order level while building the MRN; there is no need to build the
ground network in the beginning. This algorithm treats indistinguishable
random variables as one first-order atom and can process them in one single
step (performing identical operations only once).

Another advantage of FOBB is in the first-order representation of the MRN. This
is valuable for lifted inference algorithms, which are designed specifically to
make use of the first-order representation. The existing methods for computing
the MRN all produce a ground MRN which does not preserve the first-order
structure of the original model and hence destroys the possibility of using lifted
inference. FOBB, on the other hand, produces a first-order MRN for each query.
This network can be used by lifted inference algorithms and can also make lifted
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inference more efficient by removing unnecessary but costly operations on the
irrelevant parts of the model (such as shattering (Milch et al. 2008; Kisynski
and Poole 2009a)). To the best of our knowledge the issue of relevance has not
been addressed in the lifted inference settings before.

Although we illustrate FOBB for CP-logic, FOBB is a general method that applies
to several directed probabilistic logic formalisms such as ProbLog (De Raedt,
Kimmig, and Toivonen 2007), BLPs (Kersting and De Raedt 2007) and ICL (Poole
1997).

5.1.1 Bibliographical note

We first introduced the concept of First-Order Bayes Ball for CP-logic in the
following paper

N. Taghipour et al. (2009). “First-order Bayes-ball for CP-logic”. In:
Proceedings ofthe International Workshop on Statistical Relational Learning
(SRL). (Leuven, Belgium, July 2–4, 2009), pages 1–3.

The author, together with N. Taghipour, devised the FOBB algorithm for CP-
logic but N. Taghipour was the main responsable for the text (the paper has
shared first authorship). We later refined the algorithm and made it more
general to be applicable to all directed probabilistic logic models. This work
was presented in

W. Meert, N. Taghipour, and H. Blockeel (2010). “First-order Bayes-ball”.
In: Proceedings ofthe 21th European Conference on Machine Learning (ECML).
(Barcelona, Spain, Sept. 20–23, 2010). Volume 6322. Lecture Notes in
Computer Science, pages 369–384.

Both the author and N. Taghipour were involved with implementation,
experiments and text, but the author was the main contributor for the
implementation and the experiments, and N. Taghipour was the main
contributor for the text (again shared first authorship).
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5.1.2 Structure of this chapter

In Section 5.2 we review the Bayes-ball algorithm. Section 5.3 introduces the
FOBB algorithm. Experiments are presented in Section 5.5. Section 5.6 contains
the conclusions.

5.2 Preliminaries

5.2.1 Bayes-Ball

Bayes-ball (Shachter 1999) identifies the MRN of a Bayesian network for a given
set of query and evidence nodes. It is based on the analogy of bouncing balls
that travel over the edges of the Bayesian network (Fig. 5.1). In this analogy a
visit from node a to b is compared to passing a ball from a to b. The balls start at
the query nodes (each query node receives a ball). Upon reaching each node, a
ball may pass through, bounce back and/or be blocked. The action chosen depends
on the direction from which it came and on whether the node is probabilistically
or deterministically dependent on its parents (based on D-separation). When
a ball is to be passed to multiple nodes, it means that a visit to each of those
nodes is put in a schedule. At each step a visit is selected from the schedule
and processed.

The rules by which the balls moves through the network can be summarized as
follows:

(a) An unobserved probabilistic node passes balls from parents on, that is,
if such a node receives the ball from a parent it passes the ball to all its
children. When such a node receives the ball from a child, it passes the ball
to both all its parents and children (including the node the ball came from).

(b) A unobserved deterministic node always passes balls through, that is, it
passes the ball coming from parents to children and vice versa.

(c) An observed node bounces balls back from parents, that is, upon receiving
the ball from a parent, such a node passes the ball to all its parents.
However, an observed node blocks balls from children, that is, the ball is
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not passed on anymore from this node.

Nodes are marked at each visit of a ball, depending on the type of action
performed on the ball: when the ball is passed from a node to its parents
(children), the node receives a mark on top (bottom). These marks help the
algorithm avoid repeating the same action, and guarantee the termination of
the algorithm. Having a mark on top (bottom) indicates that there is no need
to visit the parents (children) anymore. In the end, these marks indicate the
relevance of each node: the MRN consists of all the nodes marked on the top
together with the set of evidence atoms visited during the algorithm.

Probabilistic node

Deterministic node

Observed node

Bayes-ball movements

1

2

2

1

1

2
1

1

2

2

1

Figure 5.1: Different actions performed on the Bayes-ball depending on the type
of the node and direction from which the ball comes. The numbers indicate the
sequence of actions.

5.2.2 CP-logic with types and constraints

The basic FOBB algorithm we are presenting is meant for a typed version of CP-
logic: CP-logict. Extending FOBB for regular CP-logic is discussed in Section 5.4.
In CP-logict each predicate p takes on values from a specific Range(p), which
contains the possible states of the random variables represented by this
predicate (in this thesis, we only consider predicates with range {true, false}).
Moreover, each argument of a predicate takes values of a specific type. A typed
CP-theory is extended with domain declarations defining the set of constants of
each type, and functor declarations assigning a type to each argument of each
predicate.

A typed CP-theory captures the structure of the probabilistic model through a
set of typed CP-events. A typed CP-event ci is an expression of the form:
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(ci) ∀X1, . . . , Xl : C; h1 : p1 ∨ . . . ∨ hm : pm ← b1, . . . , bn

with h1, . . . , hm atoms and b1, . . . , bn literals with logic variables X1, . . . , Xl as
arguments. Each logic variable Xi is implicitly assigned to a domain, considering
the functor declarations. The constraint C restricts all possible groundings of
X1, . . . , Xn to a subset of the Cartesian product of their respective domains. We
define head(ci) =

⋃
i hi and body(ci) =

⋃
i bi. A typed CP-events specifies that

for each substitution θ = {X1/t1, . . . , Xn/tn} that grounds the event and is in
accordance with C, the random variables h1θ, . . . hmθ depend on b1θ, . . . , bnθ.

5.2.3 Parameterized Bayesian networks

To illustrate FOBB we represent intermediate steps graphically as a parameterized
Bayesian network (PBN) (Poole 2003). Parameterized Bayesian networks are an
extension of Bayesian networks to incorperate logic variables. Just like we can
transform a ground CP-theory to a Bayesian network (see Section 3.6), we can
transform a non-ground CP-theory to a parameterized Bayesian network. In
such a model, random variables of a Bayesian network are represented by
(ground) atoms, and definite clauses are used to capture the structure of the
network. In this way, a first-order atom represents a class of random variables,
and a first-order clause represents repeating structures in the Bayesian network.
An example PBN is presented in Fig. 5.3.

Similar as to CP-logict, each predicate p takes on values from a specific
range Range(p), which contains the possible states of the random variables
represented by this predicate. Moreover, each argument of a predicate takes
values of a specific type. A PBN includes domain declarations defining the set of
constants of each type, and functor declarations assigning a type to each argument
of each predicate.

A PBN also consists of a theory, which captures the structure of the probabilistic
model through a set of Bayesian clauses. A Bayesian clause bc is an expression of
the form: 1

(bc) ∀X1, . . . , Xn : C; h|b1, . . . , bn

1We use a slightly different version of Poole’s PBN (Poole 2003): here each rule is associated
with an entire CPD, instead of declaring the probability of one specific combination of values for a
node and its parents. This idea is introduced in BLPs (Kersting and De Raedt 2007), from which we
also borrow the term Bayesian clause.
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with h, b1, . . . , bn first-order atoms with logic variables X1, . . . , Xn as arguments.
Each logic variable Xi is implicitly assigned to a domain, considering the functor
declarations. The constraint C restricts all possible groundings of X1, . . . , Xn
to a subset of the Cartesian product of their respective domains. We define
head(bc) = h and body(bc) =

⋃
i bi. A Bayesian clause specifies that for

each substitution θ = {X1/t1, . . . , Xn/tn} that grounds the clause and is in
accordance with C, the random variable hθ depends on b1θ, . . . , bnθ.

Each Bayesian clause is associated with a conditional probability distribution
(CPD) P(h|b1, . . . , bn), which specifies the same distribution P(hθ|b1θ, . . . , bnθ)

for every ground instance of the clause. If a ground atom appears in the head
of more than one ground clause, then a combining rule is used to obtain the
desired probability distribution from the CPDs associated to those clauses. Each
predicate has an associated combining rule.

Where a Bayesian network represents a factorization into factors, a parameter-
ized Bayesian network is a factorization into parfactors (Poole 2003). Parfactors
are a data structure used in first-order probabilistic models to perform inference
analogous to factors during inference in belief networks (Kisynski 2010). They
represent the conditional probability distributions in directed first-order models
and intermediate computation results during lifted inference (and can also be
potentials in undirected first-order models). A parfactor consists of a set of
first-order atoms (representing the random variables), a set of constraints on
the logic variables in the atoms, and a factor from the Cartesian product of
ranges of the predicates to the reals.

5.2.4 Equivalent Bayesian Network

Like normal CP-theories, a typed CP-theory can be transformed to a (parame-
terized) Bayesian network. This transformation to what we called an equivalent
Bayesian network (EBN) is explained in Section 3.6. We recall the transformation
briefly. The EBN is a regular Bayesian network, but we consider it as a bipartite
graph containing two types of nodes: atom nodes and choice nodes (see Fig. 5.2.b).

Atom nodes correspond to the random variables; there is an atom node in the
EBN for each atom in the grounding of the theory.

Choice nodes explicitly capture the factorization declared by the CP-event.
For each CP-event ci and each grounding substitution θ complying with the
constraint C of ci, there is a choice node corresponding to ciθ in the EBN. We
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denote choice nodes by atoms too. Each CP-event ci is associated to an n-ary
predicate ci, with n = |Var(ci)| (we use the same name since it is clear from the
context whether we mean the CP-event or the predicate). This predicate has
the same domain as head(ci). The choice node corresponding to ground event
ciθ can be represented by the atom ciθ.

There are edges between choice nodes and atom nodes, but no edges between
nodes of the same type. The edges of the network can be fully described with
this rule: Each choice node ciθ, corresponding to a ground CP-event ciθ, has as
parents all the atoms in body(ciθ), and is the parent of the atoms head(ciθ).

Domains
Num = {1, . . . , 100}

Functor Declarations
q(Num)

r(Num, Num)

s(Num, Num)

t(Num)

u(Num)

Theory
(c1) ∀X, Y; r(X, Y) : p1 ← s(X, Y).
(c2) ∀X, Y; q(X) : p2 ← r(X, Y).
(c3) ∀X, Y; u(X, Y) : p3 ← q(X), t(Y).

(c4) ∀X, Y : {X = 1}; s(X, Y) : p4.
(c5) ∀X; t(X) : p5.

c4(1, 1) . . . c4(1, 100)

s(1, 1) . . . s(1, 100)

c1(1, 1) . . . c1(1, 100)

r(1, 1) . . . r(1, 100)

c2(1, 1) . . . c2(1, 100)

c5(1) . . . c5(100) (q(1)

t(1) . . . t(100)

c3(1, 1) . . . c3(1, 100)

u(1) . . . u(100)

a b

Figure 5.2: (a) Typed CP-theory (b) Equivalent Bayesian network having the
same probability distribution as the theory. Bayes-ball can be used on such a
Bayesian network to find the MRN given a query and evidence.

5.3 First-Order Bayes-Ball

FOBB is based on the same principles as Bayes-ball, building upon the
transformability of a probabilistic logic model to an EBN. Its main advantage
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is the possibility to perform some steps at the first-order level. That is, several
nodes can be represented by what we call a first-order node, and be visited in
one single step. After a definition of first-order nodes and related operations on
such nodes, we show the main features of the algorithm through an example;
this is followed by a more detailed description.

Definition 5.1. (Constraint) Having logic variables X = {X1, X2, . . . , Xn}, with
D(Xi) the associated domain of Xi, a constraint C on X is a relation on X,
indicating a subset of the Cartesian product D(X) = ×iD(Xi).

Definition 5.2. (First-order node) A first order node F is a pair (p, C), where
p = a(X1, . . . , Xn) is a first-order atom, and C is a constraint on logic variables
X = {X1, X2, . . . , Xn}. Each first-order node F = (p, C) represents the set of
ground random variables pθ, where Xθ ∈ C. We denote the set of (ground)
random variables represented by F as RV(F ).

For two first-order nodes F1 = (p, C1) and F2 = (p, C2), we define:

1. F1 ⊆ F2 iff RV(F1) ⊆ RV(F2) iff C1 ⊆ C2.

2. F1∆F2 = F ′ iff F ′ = (p, C1∆C2), for ∆ ∈ {∩,∪, \}.

Note that, as we have defined constraints as relations on Xi (which are sets), we
use set operators ⊆,∩,∪, \. Intuitively, when constraints are seen as conditions,
these operators correspond to implication, conjuction, disjunction and “and
not”.

Definition 5.3. (Splitting) The result of splitting a first-order node F = (p, C)
is a set of first-order nodes {F1, . . . ,Fn}, where each Fi = (p, Ci), and such
that

⋃
i Ci = C and ∀i, j 6= i : Ci ∩ Cj = ∅.

FOBB also uses the operation of projection on constraints:

Definition 5.4. (Projection) Let C be a constraint on logic variables X. Projection
of C on a subset of its variables Y ⊆ X is given by the constraint πY(C) = {y =

(y1, . . . , y|Y|)|∃y ∈ C, and y is an extension of y}.

There is no restriction on how to represent and store the constraints. The choice
of representation, however, affects the efficiency of the algorithm. For example,
storing them as ground tuples would cancel the advantages of FOBB over
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Bayes-ball. For the implementation we opted to store constraints as decision trees
with set membership tests in the nodes. This representation is different from
that used in (Poole 2003) for PBNs and other work about lifted inference, where
a constraint is a set of (in)equalities involving logic variables and constants. One
such conjunction is equivalent to one branch in our decision tree.

5.3.1 Overview

FOBB computes the MRN for a probabilistic query P(q|e) on the probabilistic
logic model M. It is assumed that the query atoms q are ground and that the
theory T of M has a finite grounding. The outer structure of FOBB closely
resembles the original Bayes-ball (see (Shachter 1999)), the main differences
are that it works with first-order nodes instead of ground nodes, and that it
uses the given first-order probabilistic logic model to compute the parents and
children of a first-order node.

c2(X, Y)

c2(X, Y) r(X, Y) r(X, Y) r(X, Y) r(X, Y) r(X, Y)

q(X) c2(X, Y) c2(X, Y) c2(X, Y)

q(X) q(X) q(X)

X ∈ {1}

X ∈ {1}

X ∈ {1}

X ∈ {1}

X ∈ {1}

X ∈ {1}

X ∈ {1}

(X, Y) ∈ {(1, 1), (1, 2)} (X, Y) ∈ {(1, 3), . . . , (1, 100)}

X ∈ {1}

X ∈ {1}

(X, Y) ∈ {(1, 1), (1, 2)}

(X, Y) ∈ {(1, 3), . . . , (1, 100)}

1 2

1

2 2

1

2 2

1

3

(a) (b) (c)

Figure 5.3: Illustration of the FOBB algorithm as explained in Sec. 5.3.1. (a) A
ball is passed on from a node to its ancestors. (b) When not all ground nodes
represented by a first-order node respond identically to the ball, the node is
split up. In this case, part of the nodes represented by the first-order node are
observed and do not pass on the ball. (c) The first-order node that represents
the ground nodes that are not observed and do not yet have top mark passes
on the ball to its ancestors.

We use an example to illustrate FOBB and compare it with the original
Bayes-ball: Suppose we need to compute P(q|e) where q = {q(1)} and
e = {r(1, 1), r(1, 2), u(1, 1), . . . , u(1, 10)}, given the theory in Fig. 5.2.

Similar to Bayes-ball, FOBB schedules the nodes which are to be visited. Instead
of scheduling ground nodes to visit, FOBB schedules first-order nodes. Each
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entry in the schedule is represented by a tuple 〈F , direction〉, containing a first-
order node F , and the direction of the visit ( f romChild or f romParent). This
entry stands for a visit to each node in RV(F ), in Bayes-ball. In the beginning,
FOBB starts by scheduling the query: 〈(q(X), {X=1}), fromChild〉 stating the
ball comes from a child such that the parents are visited first. Next, FOBB
retrieves this tuple from the schedule and computes its parents by matching
(q(X), {X=1}) to the heads of events of T. In this case, only CP-event c2
matches, so FOBB schedules the choice node 〈(c2(X, Y), {X=1}), fromChild〉.
The constraint {X=1}makes sure that only the subset of c2(X, Y) that are the
parents of the query, are included. We will elaborate on this later. Note that the
scheduled first-order node actually represents multiple nodes in the EBN (due
to the free variable Y). This is shown in the first step in Fig. 5.3.

When a subset F ′ of the nodes in F interact differently with the rest of the
network (e.g. they are observed variables), we need to separate them from
other nodes in F . We call this operation splitting, following Poole (Poole 2003).
Continuing our example, when F = (r(X, Y), {X=1}) receives the ball (from
child (c2(X, Y), {X=1})) it contains nodes r(1, 1),r(1, 2) which are evidence
while the rest of the nodes are not observed. Hence, the algorithm splits
the original first-order node F into F¬e = (r(X, Y), {X = 1, Y /∈ {1, 2}}),
consisting of unobserved nodes, and Fe = (r(X, Y), {X = 1, Y ∈ {1, 2}}),
consisting of the evidence. Now, when F¬e receives the ball it passes the ball to
its parents and children, while Fe, which contains only observed nodes, blocks
the ball. The splitting operation will be defined in detail later.

Passing the ball to the children involves similar operations as sending the ball
to parents. For example, to find children of (q(X), {X = 1}), we need to find
events which have this atom in their body. We see it only appears in the body
of event c3, and so its children would be (c3(X, Y), {X = 1}).

Bayes-ball assigns top and/or bottom marks to the nodes it visits. FOBB also
keeps track of marks, but here these are marks for first-order nodes. It stores
the marks as pairs 〈F , M〉 in a mark table, with F being a first-order node, and
M a set of marks. For example, the initial marks for the query atom and for
c1(X, Y) are stored as 〈(q(X), {X = 1}), {top}〉 and 〈(c1(X, Y), {X=1}), {top}〉,
showing these two first-order nodes have passed the ball to their respective
parents.

During the execution of the algorithm, it is possible that we have to split an
atom in the marks table. This happens when a subset of the nodes presented by
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a first-order node need to be assigned additional marks. In our example, F1 =

(c3(X, Y), {X = 1}) passes the ball to its children resulting in 〈F1, {bottom}〉
being registered in the marks table. Later when the ball is passed up from
(u(X, Y), {X = 1, Y ∈ {1, . . . , 10}}) to F ′1 = (c3(X, Y), {X = 1, Y ∈
{1, . . . , 10}}) this node should in turn pass the ball up and receive a mark
on top. For this reason we need to first split F1, keeping 〈F1 \ F ′1, {bottom}〉
from the original first-order node and adding 〈F ′1, {top, bottom}〉 to the marks
table, for the subset which passes the ball up.

When FOBB terminates, all the first-order choice nodes marked with top, together
with the visited evidence atoms constitute the MRN.

5.3.2 The Algorithm

The FOBB algorithm uses the same set of rules as Bayes-ball to send balls
through the network, visiting the possibly relevant nodes. The main difference
is that the balls are not passed between nodes as we know them from Bayesian
networks but between first-order nodes that aggregate multiple ground nodes in
one higher level node. This way FOBB can perform multiple identical operations
on RV(F ) in one single step instead of performing |RV(F )| equivalent steps
in Bayes-ball.

FOBB schedules visits to a group of ground nodes aggregated in a first-order
node, searches for parents and children of such a first-order node and assigns
marks to first-order nodes. The aim is to keep the nodes as aggregated as
possible, but when a subset of the nodes behave differently it is necessary
to split the first-order node and treat those subsets separately. The splitting
happens when needed during the execution of the algorithm. Next, we illustrate
how the operations in FOBB differ from those in Bayes-ball (see also Fig. 5.4:

Initialization
In the initialization of the algorithm, all the query atoms are added to the
schedule as if they were visited from child. This makes that the parents of the
query atoms are first visited and since a ball should bounce back on at least
one of the ancestors and be propagated back to the query atoms, the children
of the query atoms are also visited. For this we need to represent the query
nodes as first-order nodes. This is done by the GetFONode method that takes
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Algorithm 3 FOBB(M, q, e)
Input: M: probabilistic logic model, q: set of ground query atoms, e: set of
ground evidence atoms
Output: R: requisite network, eR: requisite evidence

S← ∅, eR ← ∅
for each q ∈ q do
Q = GetFONode(q); S← S ∪ 〈Q, fromChild〉

while S 6= ∅ do
pick and remove a visit 〈F , direction〉 from S
(Fe,F¬e)← SplitOnEvidence(F , e)
if Fe 6= ∅ then

eR ← eR ∪ Fe
if direction = fromChild∧ F¬e 6= ∅ then // Backward chaining

(F top
¬e ,F¬top

¬e )← SplitOnMark(F¬e,top)
AddMark(F¬top

¬e ,top)
for each PA ∈ GetParents(F¬top

¬e ,M) do
S← S ∪ 〈PA, fromChild〉

(F btm
¬e ,F¬btm

¬e )← SplitOnMark(F¬e, bottom)
if ¬Functional(F )∧F¬btm

¬e 6= ∅ then
AddMark(F¬btm

¬e ,bottom)
for each CH ∈ GetChildren(F¬btm

¬e ,M) do
S← S ∪ 〈CH, fromParent〉

if direction = fromParent then // Forward chaining
if Fe 6= ∅ then

eR ← eR ∪ Fe
(F top

e ,F¬top
e )← SplitOnMark(Fe, top)

AddMark(F¬top
e , top)

for each PA ∈ GetParents(F¬top
e ,M) do

S← S ∪ 〈PA, fromChild〉
if F¬e 6= ∅ then

(F btm
¬e ,F¬btm

¬e )← SplitOnMark(F¬e, bottom)
AddMark(F¬btm

¬e ,bottom)
for each CH ∈ GetChildren(F¬btm

¬e , M) do
S← S ∪ 〈CH, fromParent〉

R← {R| HasMark(R,top)}
return (R, eR)

as input a ground atom q(a1, . . . , an) and outputs a first-order node (p, C) with
p = q(X1, . . . , Xn) and C = {Xi = ai}.
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Scheduling visits
Where Bayes-ball has a schedule with pairs of nodes and directions to keep
track of scheduled visits, FOBB utilizes a schedule containing pairs of first-order
nodes and directions. An entry in the schedule containing first-order node F
stands for a set of visits to the ground nodes in RV(F ). When a ground node
in Bayes-ball receives a ball it will respond according to the rules in Sec. 5.2.1.
In FOBB, however, it is possible that not all ground nodes represented by F
pass the ball in the same way. This happens when some of the nodes are part of
the evidence, or when not all the nodes have the same marks. In this case the
first-order node F is split into new first-order nodes representing subsets of
the ground nodes in F that pass the ball identically.

For example, if F receives a ball from one of its children, those ground nodes
in RV(F ) that are part of the evidence and those that already have a top mark
do not need to pass the ball to their parents, while the other ones do.

In Alg. 3 two methods are used to split up a first-order node. First, SplitOnEv-
idence uses the evidence to split up first-order node F into Fe (containing all
the evidence nodes in F ), and F¬e (containing non-evidence nodes of F ). All
evidence atoms of predicate p can be represented as a first-order node (p, Ce),
then Fe = (p, C ∩ Ce) and F¬e = (p, C \ Ce). After F is split on evidence, first
Fe receives the ball (and is added to the set of visited evidence atoms), and
then F¬e.

Second, the obtained first-order node F¬e is split further by SplitOnMark.
To split F = (p, C) on mark m, we need to consult the marks table and find
entries 〈(p, Ci), Mi〉, such that m ∈ Mi. Using the found entries, FOBB splits F
into first-order node Fm =

⋃
i Fi =

⋃
i(p, C ∩ Ci), which has the mark m, and

F¬m = F \ Fm, which does not have the mark m.

After a first-order node is split into subsets which perform the same action to
the ball, each subset can pass the ball to its parents/children.

Passing the Ball to Parents and Children
Like in Bayes-ball, passing a ball from a node to its parents or children is
done by following the outgoing or incoming links and scheduling a visit to
the found nodes. However, since FOBB does not construct the fully grounded
Bayesian network, the PBN must be used to find the parents and children of each
first-order node. This is done differently for atom and choice nodes, considering
the transformation of PBNs to their EBN.
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The parents of each ground atom node a ∈ RV(F ) in the EBN are those choice
nodes corresponding to the ground events which have a in their head. Thus,
to find the parents of a first-order atom node F = (p, C), we first find the set
of events {e1, . . . , ek}, such that there is a (renaming) substitution θi where
head(ei) = pθi. Each ei can be represented by a first-order choice node Bi =

(e′i , Ci) where e′i is the atom associated to events ei and each Ci is the constraint
defined on the variables of ei in the PBN. Then, the parents of first-order node
F in the EBN can be represented as first-order nodes PAi = (e′i , C′i), where
each C′i restricts RV(PAi) to those which are parent of a node in RV(F ). Each
constraint C′i is equivalent to the relation acquired from the natural join Ci on C
of relations Ci and C (with the variables of C renamed according to substitution
θi). This way, all the groundings of an event ei that have an atom a ∈ RV(F) in
their head are captured by the first-order node PAi. Finding the children of an
atom node is similar, only there the connected events are those which have a in
their body.

When F = (e′, C) is a choice node, its parents are found by considering the body
of the event e in the theory, to which e′ is associated. Let body(e) = {b1, . . . , bn}
and Ce be the constraint associated to e in the theory. Then, the parents of F ,
are first-order nodes Bi = (bi, Ci), where Ci restricts RV(Bi) to those which are
parents of a node in RV(F ). Each Ci = πXi (C ∩ Ce) is the relation acquired
from projecting C ∩ Ce on variables Xi = Var(bi). Similarly, for finding the
children the head of the event e is considered instead of the body.

Having computed the parents PAi (using GetParents), in the end an entry
〈PAi, f romchild〉 is registered in the schedule, for each PAi 6= ∅, to pass
the ball to parents of F . Similarly, to pass the ball to children an entry
〈CHi, f romParent)〉 is added to the schedule for the computed children CHi
(using GetChildren).

Assigning Marks
After passing the ball to the parents (children) of F , FOBB needs to mark F
on top (bottom). This can be naively done by adding 〈F , {top}〉 to the marks
table. In this way, however, the marks table might include overlapping entries,
that is, there might be a 〈F ′, M′〉 in the marks were RV(F ) ∩ RV(F ′) 6= ∅. In
this case, M′ contains only the bottom mark, since F is split on the top mark
when retrieved from the schedule, guaranteeing that no subset of it has the
top mark. Hence, the subset F ∩F ′ should now have both the top and bottom
marks, and should be grouped together. In general, when assigning a mark m
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to F = (p, C), if there is an overlapping mark µ = 〈F ′ = (p, C′), M′〉 then we
need to split the marks: First, µ is removed from the marks table, and then the
marks µ1 = 〈F ∩ F ′, M′ ∪ {m}〉, µ2 = 〈F \ F ′, {m}〉, and µ3 = 〈F ′ \ F , M′〉
are assigned instead. (Assigning these marks might result in further splits.) In
this manner all the marks 〈(p, Ci), Mi〉 form a partition on all the groundings
of p which have been visited, such that all the nodes in each Fi = (p, Ci) have
exactly the same marks.

Probabilistic node

Deterministic node

Observed node

Irrelevant node

Bayes-ball trajectory

c1 : q(x) : 0.2← s(x, y).

c2 : r(x, y) : 0.6← q(x), t(y).

c3 : s(1, 2) : 0.5.

c4 : s(1, 3) : 0.9.

c5 : t(1) : 0.1.

c6 : t(2) : 0.3.

q(1)

c1(1, 2) c1(1, 3)

s(1, 2) s(1, 3)

c3 c4

c2(1, 1) c2(1, 2)

r(1, 1) r(1, 2)

t(1) t(2)

c5 c6

a. CP-theory b. EBN

Figure 5.4: Illustration of how the Bayes ball moves through the network.

5.4 Extensions

In this section we propose some extensions to the core FOBB algorithm.
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5.4.1 Extension for Implicit Domains

The semantics of many probabilistic logic languages, such as BLPs (Kersting
and De Raedt 2007) and CP-logic (Meert, Struyf, and Blockeel 2008b), declare
an implicit domain for their logic variables. Although FOBB requires explicit
domains, it can be extended to deduce the domains dynamically. Formally,
we want to restrict the random variables to the least Herbrand model of the
corresponding logic program. Intuitively, the set of ground nodes represented
by a probabilistic logic model M are those which have a proof in M. To comply
with these semantics, FOBB too needs to identify which random variables have
a proof.

Most formalisms use some form of backward-chaining, such as SLD resolution,
to find the least Herbrand model. The same idea can be adopted in FOBB. Note
that Bayes-ball (and FOBB) effectively forms the backward-chains for each node
from which the ball is passed to its parents and then its ancestors. Hence, FOBB
is searching for proofs in a similar way to SLD resolution. The backward-chain
ends whenever a root node or an evidence node receives the ball from a child. At
this point we know whether this node has a proof. By chaining this information
forward through the network, the nodes which have a proof can be identified.

In practice an extra mark, called a proof mark, is used to indicate what nodes have
been proven. The MRN is then constituted by those nodes that have not only
the top mark but also the proof mark. Also, the schedule has to give preference
to those balls that have been passed on from proved parents.

5.4.2 The closed world assumption as evidence

A common concept in logic programming is the closed world assumption: what is
missing from our knowledge base is assumed to be false. CP-logic also follows
this principle since from a causal point of view nothing can happen without
a reason. This means that if an atom in the body of a CP-event is in no head
of another CP-event, it has to be false. If the atom is in the body as a positive
literal, this means that the body is always false, a negative literal is true and
can be ignored.

When FOBB is looking for a parent of an atom node and it cannot find a parent,
this means that this atom will always be false. Therefore, we can consider the
fact that this atom is false as part of the evidence. This knowledge, deduced
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during the execution of FOBB, can be used to prune the network (see next
section).

5.4.3 Propagating evidence

A functional node that is not observed can be effectively observed if its parents are
observed (Shachter 1999). Since a functional node is deterministically defined
by its parents, knowing the values of its parent means also knowing the value
of the node itself. The set of evidence can thus be extended iteratively with
extra evidence in the case of functional nodes.

In some cases, knowing the values of some of the parents can be enough to
propagate this evidence. Take for example a functional node expressing an
and-function. If we observe that one of the parents is false, we know that this
and-node also takes the value false. In the case of CP-events we know that this
event will not cause any atom to be true if one of the literals in the body is false.

More formally, if the nodes E are observed, a node f is said to be functionally
determined by E if either f ∈ E or f is a deterministic function of E. The set
of nodes functionally determined by E, FE, can be described by the recursive
equation

FE ← E ∪ {i is functional : Pa(i) ⊆ FE}

5.4.4 Shattering

Most lifted inference methods perform a pre-processing step called shattering
(Milch et al. 2008). Given a set of parfactors P, the shattering operation performs
all the splits and expansions necessary to ensure that for any two parameterized
random variables present in parfactors in P, the sets of random variables
represented by these two parameterized random variables are either identical
or disjoint. Shattering a set of parfactors results in a set of constraints over
the logic variables for every atom that is shared across parfactors. For lifted
inference this ensures that lifted inference operators like the ones in Milch et al.
(2008) are applicable.

Shattering has as added bonus that the shattered parfactors can be represented
in a graphical way that is easy to interpret. The set of parfactors can be
represented by a graph where the nodes are the atoms (with logic variables)
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and an edge between two nodes means that there is an edge between all the
groundings of this pair of nodes. Such a graphical representation is useful in a
diagnostics application like the badminton playing robot (see Section 1.2.2).

Shattering can be integrated with the FOBB algorithm in an iterative way. When
visiting the parents or children of a first-order node, we add an additional
check to see if the constraints on the subset of logic variables that are in both
first-order nodes are identical. If this is not the case, we split the constraints on
both first-order nodes and add them again to the queue to propagate this split.
This extra check ensures that the resulting theory FOBB gives is also shattered.

Example 5.1. Consider the following CP-theory with type dom(X) = [0, 9]:

(c1)∀X ; {X ∈ [0, 4]} : t(X) : 0.5.

(c2)∀X ; s(X) : 0.5← t(X).

(c3)∀X ; r : 0.5← s(X).

When applying FOBB for Pr(r), FOBB will return that in this case all CP-events
are requisite and therefore the MRN is the entire theory. We can now use
the transformation to an equivalent Bayesian network to visualize the MRN
(see Figure 5.5.a). This representation has the disadvantage that it loses the
compactness of the first-order representation. We can naively represent the
first-order MRN by means of a graphical model (see Figure 5.5.b) but the
semantic meaning then becomes unintuitive and ambiguous. The meaning
of the edge between the top nodes is not clear since both nodes represent a
different number of ground nodes and it is not clear which nodes are connected.
This problem is solved by shattering after which the MRN can be represented
by a parameterized Bayesian network (see Figure 5.5.c). We see that some of
the root nodes are atom nodes without a parent representing the CP-event
causing the atom. According to the CP-logic semantics, such an atom is false
and remains false. We can consider this as evidence and propagate this evidence
as explained in Section 5.4.3. This simplifies the network further resulting in
the parameterized Bayesian network in Figure 5.5.d.

♦

The FOBB algorithm (see Algorithm 3) is extended as follows to incorporate
shattering:
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c1(0) . . . c1(4)

t(0) . . . t(4) t(5) . . . t(9)

c2(0) . . . c2(4) c2(5) . . . c2(9)

s(0) . . . s(4) s(5) . . . s(9)

c3(0) . . . c3(4) c3(5) . . . c3(9)

r

c1(X[0,4])

t(X)

c2(X)

s(X)

c3(X)

r

c1(X[0,4])

t(X[0,4]) t(X[5,9])

c2(X[0,4]) c2(X[5,9])

s(X[0,4]) s(X[5,9])

c3(X[0,4]) c3(X[5,9])

r

c1(X[0,4])

t(X[0,4])

c2(X[0,4])

s(X[0,4])

c3(X[0,4])

r

a b

c d

Figure 5.5: Graphical representations of the MRN of the CP-theory given in
Example 5.1 for the query Pr(r). The graphical obtained is (a) a Bayesian network
representing the EBN, (b) a network visualizing the first-order MRN but without
an intuitive semantic meaning, (c) a parameterized Bayesian network obtained
after shattering the first-order MRN, and (d) a parameterized Bayesian network
after shattering the first-order MRN and removing the nodes for which evidence
can be propagated that the node is false.

• Calls to functions SplitOnMark and AddMark now also split a first-
order node when the constraints are different even thought the marks are
already set.
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• If a first-order node is split because a difference in constraints, this splitting
is propagated to already visited parents and children. This ensures that
parents and children have the same constraints on their common logic
variables.

5.5 Experiments

In our experiments, we investigated how the size of the domain of logic
variables affects the search for the MRN, and how this MRN affects inference
for probabilistic logic models. All experiments are performed on an Intel
Pentium D CPU 2.80GHz processor with 1GB of memory available. FOBB
itself is implemented in C++.

As a first experiment, we take the theory shown in Fig. 5.2 and compute the
conditional probability of the atom q(1) while varying the size of the domain
Num. One third of the ground nodes is chosen at random and considered as
observed. For the inference, while any Bayesian network inference could be
applied, we used an implementation in C++ performing variable elimination
with the optimization proposed in (Díez and Galán 2003) to obtain linear
inference for noisy-or nodes. Five approaches were used to obtain a Bayesian
network from the original theory: (a) ground the entire network based on the
domains; (b) ground the entire network and use Bayes-ball to limit the resulting
equivalent Bayesian network to the MRN; (c) ground the network by means of
SLD resolution (using Prolog and setting the query and evidence as goals); (d)
ground by means of SLD resolution and use Bayes-ball to find the MRN; and
(e) use FOBB to find the MRN directly from the theory and ground the MRN.
For methods (a) and (b) the theory shown in Fig. 5.2 was transformed first to
a ground theory and afterwards compiled to an equivalent Bayesian network.
Methods (c) and (d) required to first ground the facts (events with empty body)
according to the domains.

Fig. 5.7 shows the results of the first experiment. The bottom graph shows
that FOBB is magnitudes faster in finding the (grounded) MRN than any of
the other methods. The top graph shows that the complexity of performing
inference grows faster than that of grounding. As a consequence, for large
networks the approach used to find the MRN became of less importance in
the total inference time. These results, however, confirm the importance of
restricting the network to the MRN: The two methods that do not restrict the
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network, full grounding and SLD resolution, could not handle even the smaller
networks and ran out of memory. This result motivates investigating the effect
of restricting computations to the MRN in lifted inference, for which no method
like Bayes-ball has been proposed to date. We applied FOBB to such a case in
our second experiment.

In the second experiment we used the theory shown in Fig. 5.6. This theory is an
extension of the theory used in (Kisynski and Poole 2009b) to benchmark lifted
inference methods. This theory represents that whether a player in a soccer
tournament is substituted during the tournament depends on whether he gets
injured. The probability of an injury depends on the physical condition of the
player. We compute the conditional probability of substitution(1) given that six
teams participate, while varying the number of players in a team. For four of
the teams there is evidence that some player has been injured.

For the results in Fig. 5.8 we used the same strategy as for the previous
experiment. In addition to propositional inference we also used the lifted
inference technique C-FOVE (Milch et al. 2008) available in BLOG2 (Java) to
calculate the conditional probability of the query. The factors are created based
on the optimizations mentioned in (Kisynski and Poole 2009b).

The soccer model is very symmetric and inference is therefore efficient. The
results in Fig. 5.8 show that the complexity of grounding and inference are both
linear. In this case the efficiency of grounding has a noticeable influence on the
total inference time.

For this model, a lifted inference method can make abstraction of the domain
size for performing probabilistic inference, and can therefore calculate the
marginal probability of the query in constant time. This is shown in Fig. 5.9.
FOBB allows us to find the MRN in a form that can be interpreted by a
lifted inference method. With this combination, we can thus not only make
abstraction of the domain size but also ignore non-requisite parts of the first-
order probabilistic model. FOBB can have a greater influence on the inference
when applied to more comprehensive models, since it is possible to have non-
requisite parts of arbitrary complexity. Such an effect can be observed, for
example, when the model contains an extra team that uses a more complex
combining rule for sub than noisy-or. This causes inference to be exponential
on the non-requisite parts. These unnecessary computations are avoided when
using FOBB, as shown in Fig. 5.10.

2http://people.csail.mit.edu/milch/blog/

http://people.csail.mit.edu/milch/blog/
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Domains
Player = {1, . . . , 11}
Team = {1, . . . , 6}

Functor Declarations
shape(Player, Team)

inj(Player, Team)

sub(Player, Team)

sub(Team)

sub

Theory
(c1) ∀P, T; shape(P, T) : p1.
(c2) ∀P, T; inj(P, T) : p2 ←
shape(P, T).
(c3) ∀P, T; sub(T) : p3 ←
inj(P, T).
(c4) ∀P; sub : p4 ← sub(T).

c1(Player, Team)

shape(Player, Team)

c2(Player, Team)

inj(Player, Team)

c3(Player, Team)

sub(Team)

c4(Team)

sub

a b

Figure 5.6: (a) First-order model and (b) its equivalent belief network. The scopes
of logic variables are indicated by the rectangles (plates).

5.6 Conclusions

In this work, we presented a first-order version of Bayes-ball called FOBB, which
finds the minimum relevant network for a given set of query and evidence atoms.
The advantages of using FOBB are twofold; first, it is more efficient to find the
ground network needed to calculate the probability of the query than current
methods. Second, the resulting relevant network is first-order, permitting it
to be used as input for lifted inference methods which have shown to offer
magnitudes of gain in speed and memory. FOBB resembles the approach by
Singla and Domingos (2008) in aggregating ground nodes as one unit and
building a lifted network; major differences are that FOBB is meant for directed
graphs instead of undirected graphs, that it is dependent on the query and,
that it is not a compilation technique.

In general, empirical evaluations of lifted inference algorithms are done using
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Figure 5.7: Performance on the model in example in Fig. 5.2. The top graph
shows the combined time needed to ground the theory and perform inference,
the bottom graph shows only the time need for grounding.

simple first-order probabilistic models. FOBB is a valuable companion to
existing lifted inference methods like the one proposed in (Kisynski and Poole
2009b) to handle more comprehensive and real-life models instead of these
simple models.
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Figure 5.8: Performance on the soccer example using propositional inference.
The top graph shows the combined time needed to ground the theory and
perform inference, the bottom graph shows only the time need for grounding.
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Figure 5.9: Performance on the soccer example using lifted inference.
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Figure 5.10: Performance on the soccer example using lifted inference with a
more complex interaction than noisy-or for one extra team.



Contextual Variable
Elimination with Overlapping

Contexts

6

6.1 Introduction

In this chapter we build further upon Bayesian networks (BN) (Pearl 1988) as
an inference method for PLL. The BN defines the variables’ joint probability
distribution, which is compactly represented as a product of factors. This
product includes for each variable one factor, which is typically encoded as
a table that represents the conditional probability distribution (CPD) of the
variable given its parents in the BN. BN inference (computing the conditional
probability of a query variable given certain evidence) can be performed by
summing out all non-query non-evidence variables from the factorization. This
is essentially what the variable elimination (VE) algorithm (Zhang and Poole
1996) does.

A large number of the formalisms used for PLL can be converted into BNs
(e.g., CP-logic, ProbLog, ICL, PRISM, BLP, see Chap. 3). For these formalisms,
only exploiting the notion of independence does not yield the most efficient
representation possible. The CPDs resulting from the conversion exhibit a
particular internal structure, which we will call local structure. For example, a
CPD may be given as a decision tree (Ramon et al. 2008), may express that the
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different conditions influence the variable independently (noisy-or or noisy-
max) (Cozman 2004), or may impose constraints on the range of a variable in a
certain context (Meert, Struyf, and Blockeel 2008b). In these cases, a table based
representation contains redundancies; an alternative representation that avoids
these redundancies can yield more efficient inference.

Several methods have been proposed to exploit local structure. For instance,
the contextual variable elimination (CVE) algorithm (Poole and Zhang 2003)
uses a more compact representation if some of the CPDs can be represented
by a decision trees or in general exhibit contextual independence. This reduces
the tree-width of the network, thus allowing for more efficient inference. CVE
is a generalization of probability trees and a comparison is made in (Poole and
Zhang 2003). Another example is multiplicative factorization (MF) (Díez and
Galán 2003) which can exploit local structures like independent causation (e.g.
noisy-or/and). CVE and MF each exploit one particular type of structure, but
cannot handle the other. CVE relies on contexts being mutually-exclusive and
exhaustive (we will call this the MEE-restriction), which makes it unsuitable to
combine it with MF. This is explained in more detail in Sec. 6.2.3.

There are also methods that utilize a preprocessing phase to compile the
belief network into a different structure, which is optimized for answering
multiple queries and allows efficient inference with particular types of local
structure. Some known methods are the Arithmetic Circuits (AC) of (Chavira
and Darwiche 2007) and the AND/OR-trees of (Mateescu and Dechter 2008). In
PLL, for each query a new network is built (every time requiring a compilation),
therefore, we need to take into account both the compilation time and the
inference time. This makes that there is a trade-off between the time spend in
optimizing a secondary structure and the inference phase itself.

The main contribution of this chapter is that we show how in CVE the
MEE-restriction can be lifted. This leads to a new method, CVE-OC: CVE
with overlapping constraints. Lifting the MEE-restriction has two important
consequences: (a) contexts can be encoded more compactly, with increased
efficiency as a result, and (b) factorizations like MF can also be handled, which
means that CVE-OC can exploit all structures that CVE and MF can exploit.
An additional contribution, is that CVE-OC handles constraints on the range
of multi-valued variables. This is an extension of CVE for which no concrete
method had been presented before.
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6.1.1 Bibliographical Note

After realizing that inference for PLL posed some challenges we performed a
comparison between known inference systems for CP-logic and some simple
Bayesian network inference techniques. This work was first published at ILP
2009.

W. Meert, J. Struyf, and H. Blockeel (2009a). “CP-logic theory inference
with contextual variable elimination and comparison to BDD based
inference methods”. In: Proceedings ofthe 19th International Conference on
Inductive Logic Programming (ILP). (Leuven, Belgium, July 1–4, 2009).
Volume 5989. Lecture Notes in Computer Science, pages 96–109.

The comparison showed that although contextual variable elimination could
efficiently deal with determinism and contextual independence, the presence
of causal independence in the Bayesian network caused inefficient inference.
We investigated Bayesian network inference techniques that are able to handle
causal independence techniques and proposed a new technique to combine all
the previous at PGM 2010.

W. Meert, J. Struyf, and H. Blockeel (2010a). “Contextual variable
elimination with overlapping contexts”. In: Proceedings ofthe 5th European
workshop on Probabilistic Graphical Models (PGM10). (Helsinki, Finland,
Sept. 13–15, 2010), pages 193–210

6.1.2 Structure of this Chapter

This chapter is organized as follows. We start by providing background on
CVE and MF. After this we present CVE-OC, this chapter’s main contribution.
Next, we discuss its usefulness in the context of statistical relational learning.
We present an experimental evaluation in that context, and finally present our
conclusions. For a reader not familiar with CVE, it is recommended to read
Poole and Zhang (2003).
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6.2 Existing inference techniques for CP-logic

Since CP-logic was introduced, several inference methods have been proposed
for (a subset of) CP-logic. The efficiency of these methods is crucial for
developing fast parameter and structure learning algorithms (Meert, Struyf,
and Blockeel 2008b). In this section, we give an overview of some inference
techniques for CP-logic and for equivalent Bayesian networks. Detailed
descriptions about these methods can be found in the referenced papers.

Example 6.1. We will use the following CP-theory as a running example:

shops(john) : 0.2. (c1)

shops(mary) : 0.9. (c2)

(spaghetti : 0.5) ∨ (steak : 0.5)← shops(john). (c3)

(spaghetti : 0.3) ∨ (fish : 0.7)← shops(mary). (c4)

This CP-theory models the situation that John and his partner Mary may
independently decide to go out to buy food for dinner. ♦

6.2.1 BDD-based approaches

ProbLog. ProbLog (Kimmig et al. 2008) is a probabilistic logic programming
language that can serve as a target language to which other probabilistic logic
modeling languages can be compiled. In particular, acyclic CP-theories without
negation1 can be translated into ProbLog as explained in Section 4.7.

ProbLog’s inference engine works as follows. Given a query, it first computes all
proofs of the query and collects these in a DNF formula. Next, it converts
this formula to a binary decision diagram (BDD). Relying on this BDD
representation, ProbLog then computes the query’s probability in one bottom-
up pass through the BDD (using dynamic programming).

cplint. Inspired by ProbLog, Riguzzi (2007) proposes cplint, which is a CP-
theory inference system that makes use of BDDs in a similar way as ProbLog.
There are two differences with the transformation to ProbLog. First, cplint uses
a different encoding to represent which head atom is caused by a CP-event.

1Recently, support for negation has been added to ProbLog (Kimmig 2010)



EXISTING INFERENCE TECHNIQUES FOR CP-LOGIC 121

Second, cplint supports negation. When it encounters a negative body literal
¬a in a proof, it computes all proofs of a and includes the negation of the DNF
resulting from all these proofs into the original DNF (note that this process is
recursive).

6.2.2 Variable elimination

In Chap. 3 we presented a transformation that can transform any acyclic CP-
theory with a finite Herbrand universe to an equivalent Bayesian network
(EBN). Based on this transformation, CP-theory inference can be performed by
applying the transformation on the given theory and then running a Bayesian
network (BN) inference algorithm, such as variable elimination (VE), on the
resulting EBN.

The shopping CP-theory can be transformed to an EBN which in fact is a set of
factors. A CP-theory may contain more structural information than a BN, and
this structural information has to be encoded numerically in the factors of the
EBN. This can result in factors with redundant information (a factor may have
many identical columns) and cause suboptimal inference. This effect can be
seen in the top-left factor of Fig. 6.2.a, which represents that spaghetti is true if
John or Mary buys spaghetti. This factor has many identical columns.

6.2.3 Contextual variable elimination (CVE)

To address the problem of redundant information in the factors, we propose to
use contextual variable elimination (CVE) (Poole and Zhang 2003), which is an
extension to VE that exploits contextual independence to speed up inference
by representing the joint probability distribution as a set of confactors instead of
factors. Confactors can be more compact than factors because they explicitly
encode structural information by means of so-called contexts.

Contextual variable elimination algorithm. CVE makes use of a more specific
form of conditional independence known as contextual independence (Boutilier
et al. 1996; Poole and Zhang 2003).

Definition 6.1 (Contextual Independence). Assume that x, y, z and c are sets
of variables. x and y are contextually independent given z and context c = vc,
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Figure 6.1: (a) Belief network with local structure; on top the graphical model,
then the decision tree for node D and the definition of noisy-or for node O,
and at the bottom the domains for the variables; (b) CPD for D represented
as a table like in VE; (c) CPD for D represented by confactors for use in CVE;
(d) CPD for D represented by confactors for CVE-OC; (e) CPD for O; (f) CPD
for O factorized with MF for use in VE; (g) CPD for noisy-or represented by
confactors for CVE-OC after MF.
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with vc ∈ dom(c), iff

Pr(x|y = vy ∧ z = vz ∧ c = vc) = Pr(x|z = vz ∧ c = vc)

for all vy ∈ dom(y) and vz ∈ dom(z) such that Pr(y = vy ∧ z = vz ∧ c =

vc) > 0. We also say that x is contextually independent of y given z and context
c = vc (if we drop c = vc, we say x is conditionally independent from y given
z).

VE (Zhang and Poole 1996) represents the joint distribution as a product of
factors, in which each factor is a conditional probability table. CVE (Poole and
Zhang 2003) factorizes the joint distribution further by replacing each factor
by a set of contextual factors or confactors. A confactor ri consists of two parts: a
context and a table:

〈v1 = v1,i ∧ . . . ∧ vk−1 = vk−1,i︸ ︷︷ ︸
context

, factori(vk, . . . , vm)︸ ︷︷ ︸
table

〉

The context is a conjunction of variable-value tests (vj = vj,i), which indicates
the condition under which the table is applicable (if the context is “true” the
table is always applicable). The context is used to split up factors into confactors
based on Def. 6.1. The table stores probabilities for all value assignments of a
set of zero or more variables (vk, . . . , vm).

The set of confactors that together represent the CPD of a variable v (the
confactors for v) is mutually-exclusive and exhaustive (MEE). This means that
for each possible value assignment for a variable V and its parents pa(v),
there is precisely one confactor of which the table includes the parameter
Pr(v = vi | pa(v) = vpa). These conditions ensure that confactors for the same
variable do not overlap, therefore, the set of all confactors for a variable is
identical to the original factor.

Fig. 6.1.c shows a confactor representation of a BN for which the CPD for d can
be represented by a decision tree. This CPD can be compactly represented as
a set of confactors of which each context is the conjunction of variable-value
tests on a path from the decision tree root to one of its leaves. (As a note, the
converse is not true; a decision tree cannot always represent confactors equally
compactly.)

We describe CVE at a high level (the complete algorithm can be found in (Poole
and Zhang 2003)). Similar to VE, CVE eliminates the non-query, non-evidence
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variables one by one from the joint distribution. To eliminate a variable e, it
relies on four basic operations:

1. 〈c, t1〉 ⊗ 〈c, t2〉 ≡ 〈c, t1 ⊗ t2〉, multiplying two confactors with identical
contexts c.

2. ∑e〈c, t〉 ≡ 〈c, ∑E t〉, summing out a variable e that appears in the table of
a confactor.

3. ∑e (〈c ∧ e = e1, t1〉, . . . , 〈c ∧ e = ek, tk〉) ≡ 〈c, ∑ ti〉, summing out a vari-
able e, with domain e1, . . . , ek, that appears in the contexts.

4. 〈c, t〉 ≡ 〈c ∧ x = x1, t(x = x1)〉, . . . , 〈c ∧ x = xk, t(x = xk)〉, splitting a
factor; t(x = xi) is table t but elements for which x 6= xi are removed.

The first three operations are only possible if the contexts are identical (indicated
with c) except for the variable to eliminate (e). To make the contexts identical,
CVE uses the fourth operator (splitting). Given two confactors, repeated
splitting can be used to create two confactors with identical contexts. The
order in which these operators are applied is chosen heuristically by the CVE
algorithm. Splitting creates extra confactors, and therefore the heuristic is such
that it avoids this operation as much as possible.

Confactors can represent CPDs more compactly than tables, but, as the previous
discussion illustrates, at the cost of more complicated basic operations.

Equivalent Bayesian network with confactors. We repeat briefly the trans-
formation explained in Section 3.6 for the example given before (see Fig. 6.2.b).
This time however, we create confactors instead of factors:

1. For every CP-event, create a variable (called a choice) whose value indicates
which head atom is chosen (e.g., c4 indicates the fourth CP-event’s choice).
The probability distribution for this variable is represented by multiple
confactors. The context of one confactor represents the case that the body
is true. The other confactors constitute the case that the body is false, and
make the set of confactors complete and mutually exclusive.
For example, the first confactor for c4 (Fig. 6.2, right) represents the case
that the body shops(mary) is true and the event chooses to make one of
the head atoms true (c4 = 1 for spaghetti, c4 = 2 for fish). The other c4
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confactor corresponds to the case that shops(mary) is false; in that case no
head atom is caused (c4 = 0).

2. For every atom in the theory, create a Boolean variable. The probability
distribution of this variable is factorized in multiple confactors that
together encode an OR-function (by means of the contexts). If at least
one of the events where the atom is in the head has selected the atom, it
becomes true; otherwise, it will be false.
For example, the confactors for spaghetti represent an OR-function. The
first confactor states that if choice node c3 selects spaghetti it will be true
with probability 1. If c3 has not selected spaghetti, it can be choice node
c4 that selects spaghetti. This is represented by the second confactor. The
last confactor expresses that if none of both parent choice nodes select
spaghetti it will be false.

The transformation above can be extended to improve inference efficiency. For
example, we represent CP-events that have the same atoms in the head and
mutually exclusive bodies by a single choice variable. Also, a factor is not split
up if the resulting confactors are not more compact (in terms of the number of
parameters) than the original factor (e.g., c4 is not split into two confactors like
in Fig. 6.2, but kept as a single factor). Once the set of confactors representing
the CP-theory is constructed, we use the CVE algorithm (Poole and Zhang 2003)
to perform CP-theory inference.

6.2.4 Results

We evaluate the inference methods on the task of inferring the marginal distri-
bution of one designated variable in four CP-theories of varying complexity.
We always select the variable with the highest inference cost and do not include
any evidence (i.e., we consider the most difficult case).

Theory 1: Growing heads. The first theory is called “growing heads” and is
made up from events using atom ai. There are two types of events. The first
states that for every atom ai there is an event causing it with probability 50%
without a reason. The second one says that if an atom ai is true, it causes one of
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Figure 6.2: Factor and confactor representation for node spaghetti (left) and C4
(right)

the atoms aj with j < i with equal probability. The theory for size 4 is

a0 : 0.5.
a0 : 1.0← a1.
a1 : 0.5.

a0 : 0.5∨ a1 : 0.5← a2.
a2 : 0.5.

a0 : 0.33∨ a1 : 0.33∨ a2 : 0.33← a3.
a3 : 0.5.

This theory expresses mainly noisy-or relations between the atoms. For example,
atom a0 can be caused for no reason, by a1, a2, or a3.

Theory 2: Growing bodies. The second theory, named “growing bodies”,
has for every atom ai in the theory a set of CP-events that can cause it and
whose bodies together make up a decision tree. For an atom ai there are events
ai ← ¬ak, . . . ,¬kl , kl+1 with i < k. Thus, the theory for size 4, consisting of both
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types of events is

a0 : 0.5← a1.
a0 : 0.5← ¬a1, a2.
a0 : 0.5← ¬a1,¬a2, a3.
a1 : 0.5← a2.
a1 : 0.5← ¬a2, a3.
a2 : 0.5← a3.
a3 : 0.5.

Theory 3: Blood type. The third theory is taken from Kersting and De Raedt
(2007) and expresses the probability distribution over the possible blood types
a person has given his ancestors. In this theory most atoms appear in the
bodies of multiple events. For this reason some way of tabling is useful to
avoid calculating the probability of a particular atom again for every event. The
parameter indicates how far back we take ancestors into account. An extract of
a theory looks as follows (with pc the father chromosome, mc the mothers, and
bt the bloodtype):

pc(p, a) : 0.3∨ pc(p, b) : 0.3∨ pc(p, null) : 0.4.
mc(p, a) : 0.3∨mc(p, b) : 0.3∨mc(p, null) : 0.4.
bt(p, a) : 0.9∨ bt(p, b) : 0.03∨ bt(p, ab) : 0.03∨ bt(p, null) : 0.04

← pc(p, a), mc(p, a).
bt(p, a) : 0.03∨ bt(p, b) : 0.03∨ bt(p, ab) : 0.9∨ bt(p, null) : 0.04

← pc(p, b), mc(p, a).

Theory 4: UWCSE. The fourth theory is learned from the UWCSE dataset and
is not as well-structured as the artificial examples before. The theory contains
disjuncts in the head as well as decision trees in the bodies of multiple events.

For theory (a), the BDD based inference methods (cplint and ProbLog) are
faster than CVE and VE for large problem instances. CVE and VE are slower
partly because they compute the probability that a variable is true, but also for
the probability that it is false (separately). It is well known that for Noisy-and,
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Figure 6.3: Experimental results (including example EBNs for small theories).

which occurs in the ProbLog program that theory (a) is transformed into2, it is
more efficient to only compute the probability PT that its outcome is true and
to calculate the probability that it is false as 1− PT . An advantage of the BDD
based methods is that they only compute the probability that an atom is true.

For theories (b)-(d), CVE and VE outperform the BDD based methods. For
theory (b) and (d), this is partly due to the complexity of cplint’s method for
handling negation. A second reason for the inferior performance of the BDD
methods is the following: if the same atom is encountered multiple times in the
proofs, then the DNF formula will contain an identical subexpression for each
occurrence, and computing all these subexpressions will require repeatedly
proving the same goal. Some of these redundant computations can be avoided
by ‘tabling’ proofs (Riguzzi 2010; Mantadelis and Janssens 2009). The results
for tabling are not included because the ProbLog implementation originally
did not support tabling. Graphs (b) and (d) have no results for ProbLog since
the ProbLog originally did not support negation.

2Noisy-or and noisy-and can all be generalized to the same noisy-max structure. Therefore,
ProbLog can handle any of these structures in an efficient way.
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CVE outperforms VE for large problem instances on theories (a), (b), and (d).
This is due to the compact representation with confactors instead of factors. VE
runs out of memory after size 10 in (a) and size 2 in (d).

6.3 Multiplicative factorization of noisy-max

We repeat Figure 6.1.e as Figure 6.4.e to show how noisy-or can be represented
in terms of a table that is used by VE. Noisy-or is a causal indepence structure
in a Bayesian network where the inputs independently cause the output. Noisy-
or is thus a decomposable dependence relation (Lucas 2005). The tabular
representation has the disadvantage that, while the inputs independently cause
the output, this independence is not reflected in the factorization. Confactors
do not offer a solution for this type of local structure, so another technique
should be used.
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Figure 6.4: Repetition of Figure 6.1.e,f,g

Díez and Galán (2003) propose a state-of-the-art multiplicative3 factorization
(MF) for a factor representing noisy-or (and its generalization noisy-max). In
this new set of factors, each factor only involves one of the inputs. In general,
this leads to faster inference with VE. It is not necessary for this chapter to
understand the MF method into depth, but important to note is that this
method uses multiple factors to represent the CPD for a variable (for example

3The term ‘multiplicative’ is used because the summation that is typical for noisy-or is
transformed into a multiplication causing further factorization.
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o′ in Figure 6.4.f). Because of the MEE-restriction, these two factors cannot be
represented by confactors. In the following we will propose an extension of the
CVE algorithm that keeps the advantages but extends it such that methods like
multiplicative factorization can be mixed with CVE.

6.4 CVE with overlapping contexts

Our main contribution is the CVE-OC algorithm. The CVE-OC algorithm
removes the restrictions on the confactors imposed by the CVE algorithm.

First, CVE expects that the confactors for a variable V are MEE. This condition
ensures that the parameters in the confactors are identical to those in V’s original
conditional probability table. It is also a pre-condition for the algorithm that
CVE uses to combine confactors while eliminating a variable (the absorption
algorithm). As mentioned in the introduction, this pre-condition has certain
disadvantages (e.g., it is incompatible with MF (Díez and Galán 2003), and
it may make expressing logical constraints more complicated). Therefore, we
improve the algorithm so that the pre-condition is no longer necessary. As
a result, a parameter in the original table is not guaranteed to be equal to a
parameter in a single confactor (like in CVE) but is equal to the multiplication of
different parameters found in different confactors with non-mutually-exclusive
contexts. As a consequence the absorption algorithm can no longer be used
and we need a new technique to decide which confactors to combine when.

Second, the equality tests in the contexts can be replaced with set membership
tests. This allows for a more compact representation in domains with multi-
valued variables. This representation was already proposed by Poole and
Zhang (Poole and Zhang 2003), but not supported in their algorithm and
implementation as it requires one to extend the splitting operation.

A confactor ri now has the following form:

〈v1 ∈ v1,i ∧ . . . ∧ vk ∈ vk,i ∧ . . . ∧ vn ∈ vn,i , factori(vk, . . . , vn, . . . , vm)〉

The context is a conjunction of set membership tests (vj ∈ vj,i, vj,i ⊆ dom(vj),
with 1 ≤ j ≤ n), which indicates the condition under which the table is
applicable. The table stores parameters for given value assignments for a set of
zero or more variables (vk . . . vm). Note that a variable can now appear both in
the context and in the table.
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The interpretation of a set of confactors with overlapping contexts for a variable
v can be given in terms of the multiplication of their parameters. Given a
value assignment for a variable and its parents, it is now possible that multiple
confactors for v have contexts that are applicable and each of these confactors
has a parameter in its table that is consistent with the value assignment. The
product of these parameters is equal to the parameter in the original table
representing the CPD. If the set is not exhaustive, we assume that the value
assignments not covered by a context correspond to parameters that are equal
to 1.0, which are irrelevant in a multiplication.

Based on the above modifications, we can convert the CPDs in Fig. 6.1.c and
6.1.f into the more compact representation in Fig. 6.1.d and 6.1.g, which is the
input to CVE-OC. This shows three new uses of confactors: (a) it is possible to
use set membership to express value ranges of a variable (e.g., the conditions
on A2); (b) noisy-or can be represented more efficiently by using MF (possibly
combined with set membership in case of multi-valued variables); (c) logical
constraints can be more compactly expressed and will be exploited during
variable elimination.

6.4.1 The CVE-OC algorithm

Recall from the explanation of CVE that its core operations are not only
multiplication and sum-out, but also compatibility checking and splitting. As
explained in Poole and Zhang (2003), compatibility checking and splitting must
be performed very often and may therefore be computationally expensive.

Since CVE-OC allows overlapping contexts, it cannot use heuristics based
on mutual exclusivity like in the CVE algorithm to reduce the number of
compatibility checks. Moreover, the use of set membership tests requires even
more types of splitting. To improve the efficiency of compatibility checking and
splitting we propose a temporary tree-based index structure to represent the
set Re of all confactors that contain the variable e that is being eliminated.

Fig. 6.5 shows an example of this index structure. Each internal node contains a
variable that appears in a context of a confactor in Re and the outgoing edges
of the node are labeled with subsets of the variable’s domain. The leaf nodes
contain the tables.

Before explaining the index construction procedure, we define the rank of a
variable. Each variable is given a different rank. rank(e) = 0, and the ranks of
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the other variables are positive and increase monotonically with the number
of confactors they appear in (ties are broken at random). The index will have
the property that variables with a higher rank occur higher up in the tree. By
placing frequent occurring variables close to the root the tree can be more
compact since these variables appear in more branches and branches represent
contexts.
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Figure 6.5: (a) Tree index structure used by CVE-OC to eliminate a2, after adding
the confactors from Fig. 6.1.d. (b) The tree structure after adding the confactors
shown in (c) to (a).

To construct the index, CVE-OC starts with a tree that consists of a single leaf
that contains a table t = 1.0. Then it absorbs all confactors from Re one by one
into the tree. In the end, the tree will contain for any context a correct CPD.
To absorb a confactor r = 〈c, t〉, it moves the confactor down the tree. When
it encounters an internal node containing variable n, one of the following five
cases may occur (CVE-OC acts according to the first case that applies).

1. c’s top-ranked variable v has a higher rank than rank(n), i.e., v should
appear above n in the tree. Let v ∈ vv be the term about v in the context c.
CVE-OC then replaces node n by a new node labeled v with two outgoing
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edges: one labeled vv, and one labeled with its complement (dom(v)− vv).
The original subtree rooted at n is duplicated and becomes both the left
and right subtree of the new node v. CVE-OC removes variable v from
r’s context c and sorts the resulting confactor down both subtrees.

2. n appears in r’s context, i.e., (n ∈ vn) ∈ c. If one of the outgoing edges
from n is labeled vn, then CVE-OC sorts r down that branch. If not, then
it must perform the splitting operation. To this end, it processes all n’s
outgoing edges in turn. For a given edge i, if its label vn,i is disjoint
from vn, the corresponding subtree is incompatible with r and no further
computation is required. Otherwise, vn,i must be split. CVE-OC removes
the edge labeled nvn,i from n and replaces it with two new edges, one
labeled vn,i

+ = vn,i ∩ vn and one labeled vn,i
− = vn,i − vn. The original

subtree rooted at vn,i is duplicated below these two new edges. Next,
CVE-OC removes n from r’s context and projects its table on the condition
n ∈ vn,i

+. Then it sorts the resulting confactor down edge vn,i
+.

3. n appears in r’s table. Let vn,1, . . . , vn,k be the labels of n’s outgoing edges.
CVE-OC sorts r down the tree via each vn,i after projecting r’s table on
the condition n ∈ vn,i.

4. r represents a logical constraint (t = 0) and c = ∅. The context is empty,
and the table consists of the single value 0, hence applying the confactor
means multiplication by 0. In this case, CVE-OC replaces node n by a new
leaf and initializes the table in that leaf to zero. We call this step pruning
the tree based on a constraint.

5. If n does neither appear in the context c nor in the table t, then the confactor
〈c, t〉 is sorted down all edges of the internal node.

If r reaches a leaf, which stores a table tl , then the following happens. If tl = 0,
then the value remains 0 (multiplication by 0) and no further computation is
required (this leaf represents a constraint). If tl 6= 0, then there are two cases:
either c = ∅ or c 6= ∅. In the former case, CVE-OC replaces the table in the leaf
by the factor multiplication of tl and t. In the latter case, it must introduce a
new node for the top ranked variable in c into the tree. This is done in precisely
the same way as in step one above.

After all confactors in Re are absorbed into the index, CVE-OC can sum-out the
variable e. This is done in two steps. In the first step, e is summed out from all
the tables in the leaves of the index. The next step applies to all internal nodes
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that are labeled with e. Because rank(e) = 0, all children of such nodes are
leaves. To sum-out e, a node that contains e is simply replaced by a leaf with a
table equal to the factor sum of the tables in e’s children.

After e is eliminated, the tree is converted back into a set of confactors, by
creating one confactor for every leaf. Together with the confactors not in Re,
these form the set of confactors for the following elimination step. Note that
we cannot reuse the same index for eliminating a different variable because
the index is specific to the variable that is being eliminated. Also, converting
all confactors into one single tree is to be avoided as a tree is in general not
the most compact representation for a set of confactors. Therefore, we include
as few confactors as possible in the tree (by means of the variable ordering),
and we only use the tree to make compatibility checking and splitting more
straightforward.

6.5 Experiments

We evaluate the inference methods on the task of inferring the marginal
distribution of one designated variable in four types of BNs of varying
complexity. We again select the variable with the highest inference cost
and do not include any evidence (i.e., we consider the most difficult case).
The software and BNs are available online (dtai.cs.kuleuven.be/corporal).
We compare five algorithm/input combinations: VE, VE with multiplicative
factorization (VE+MF), CVE∈, CVE-OC, and CVE-OC with multiplicative
factorization (CVE-OC+MF). CVE∈ is our own C++ implementation of CVE;
it is the second algorithm described in (Poole and Zhang 2003) (which uses
absorption), extended with set membership tests (so we can accurately assess
the contribution of the overlapping confactors). CVE-OC uses exactly the
same input (confactors) as CVE∈; CVE-OC+MF has additional confactors for
noisy-or/and structures. We use the minimum deficiency elimination ordering
(Bertelè and Brioschi 1972), which is a simple greedy heuristic that performs well
for VE. Fig. 6.6 presents the results. Additionally, we have added in the graphs
results obtained using the ACE system (Chavira and Darwiche 2007), which is
a representative and state-of-the-art compilation-based approach. Version 2.0 is
used, with default settings. The input consists of conditional probability tables
except for noisy-or/and nodes which are encoded using the noisy-max syntax.

The BNs in (a) and (b) are constructed from artificial CP-logic theories (more
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details were given in Section 6.2.4). The BNs in (a) only include interconnected
noisy-or and noisy-and nodes with a linearly increasing number of parents. VE
runs out of memory when the number of noisy-or nodes is larger than 8, while
CVE can handle larger BNs because of its compact confactor representation.
VE+MF and CVE-OC+MF are much faster than the other methods because they
efficiently factorize the noisy-or nodes. For experimental comparison of MF with
other methods for noisy-or networks we refer to (Díez and Galán 2003; Savicky
and Vomlel 2007). The ACE system also exploits the presence of noisy-or/and
nodes but is a factor 100 slower because of the compilation where it optimizes
for all variables. After crossing the curves for non-MF methods, the ACE-
curve stops because the tables used as input become too large to generate. The
network in (b) contains many CPDs structured as decision trees with a linearly
increasing number of parents. CVE and CVE-OC are well suited to handle such
a representation and are therefore faster than VE (MF has no influence). The
ACE system seems to be unable to fully exploit the interconnected decision
tree structures in the CPDs and is also slower because it tries to optimize the
structure for all variables.

The BNs in (c) are constructed from a CP-theory that was learned from the
UW-CSE dataset 4. The UW-CSE BNs include all structures also included in (a)
and (b). For such networks CVE-OC+MF excels as it can efficiently represent all
these structures. The other methods run out of memory because they cannot
represent one of the local structures efficiently. The noisy-or/and nodes are
no problem for the ACE system and when the decision tree structures do not
interact too heavily it can handle them efficiently. The curve for CVE-OC+MF
fluctuates because the heuristic used for the elimination ordering is agnostic
about local structure when combining different structures. A heuristic that
takes local structure better into account would be an interesting future research
topic.

The networks in (d) are the randomized networks used in Fig. 11 of (Poole
and Zhang 2003) and created with the original Java code available from the
author. This experiment compares CVE∈ with the new CVE-OC algorithm on
the same data as Poole and Zhang used. This shows that CVE-OC, although
more generally applicable, is about as fast as CVE∈ even when there are no
additional structures to be exploited.

4http://alchemy.cs.washington.edu/data/uw-cse/

http://alchemy.cs.washington.edu/data/uw-cse/
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Figure 6.6: Inference times for networks originating from CP-theories and
random networks. The horizontal axis of (a)-(c) indicates BN complexity.

6.6 Conclusions

We have applied CVE as an inference method for CP-logic and compared it to
other CP-logic inference methods that are based on BDDs. Depending on the
theory, CVE may be faster than the current BDD based methods. CVE performed
poorly on local structures like noisy-or which occur often in probabilistic logic
models. Therefore, we improved the CVE algorithm to also cope with such
structures.

We presented the algorithm CVE-OC (CVE with overlapping contexts), which
extends contextual variable elimination (CVE). The introduction of overlapping
contexts is a simple but powerful step. From the representation point of view,
it offers an elegant combination of deterministic and probabilistic knowledge.
From the computational point of view, the need for equality testing is reduced,
invalid combinations of values are pruned, and the loosened restrictions allow
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for better optimizations. CVE-OC generalizes over both CVE and MF, and
provide optimization opportunities beyond the union of what those methods
offer.

The experiments show that CVE-OC, while more generally applicable, can
handle input for CVE without any loss in efficiency. Because of its generality,
the input for CVE-OC can be more compact than for CVE and other known
optimization methods for VE can be integrated. For example, the integration
of MF is shown to be faster and more compact than only VE, CVE or MF. The
ACE systems has an overhead because of the compilation optimizes more than
necessary (e.g., for all possible queries). This makes the ACE system slower for
small theories, but for larger theories the time for inference becomes larger than
that of the compilation and inference becomes the main issue for efficiency. For
the UWCSE experiment (Figure 6.6.c) ACE and CVE-OC+MF perform equally
well. For the growing bodies theories, ACE has difficulties as the number of
decision trees increases. Since ACE does not allow to input decision trees directly,
it needs to detect these local structures itself and this turns out to be difficult
causing ACE to run slower than CVE-OC+MF.





Learning

7

7.1 Introduction

This chapter investigates the learning of CP-theories from training data. It makes
the following two contributions: (a) it proposes a new method for learning
CP-theories, and (b) it presents a theoretical and experimental comparison
between CP-theory and BN learning.

The first contribution of this chapter is SEM-CP-Logic, an algorithm for learning
CP-theories. SEM-CP-Logic uses BN learning techniques to learn a BN that is
equivalent to a CP-theory and then applies the inverse transformation to obtain
the resulting CP-theory. More specifically, it is a modified version of Friedman’s
structural EM algorithm (SEM) (Friedman 1997) for learning BNs. This idea
of using greedy structure search combined with a parameter learning method
has also been used for learning other probabilistic logics, including Bayesian
Logic Programs (Kersting and De Raedt 2008) and Markov Logic Networks
(Richardson and Domingos 2006). The differences are that SEM-CP-Logic uses
a parameter learning method that is specialized to learn CP-theory parameters,
and that it modifies the structure search such that any BN encountered during
the search corresponds to a valid CP-theory. To this end, SEM-CP-Logic uses a

139
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refinement operator that is specific to CP-theories.

The second contribution is a comparison between CP-theory and BN learning.
We already compared CP-theories and BNs at a theoretical level in Chapter 4.2.
With this theoretical comparison in mind, we present experiments comparing
CP-theory and BN structure and parameter learning in a controlled artificial
domain. BNs may need to learn more complex structures with more parameters,
which is detrimental to the interpretability of the resulting model and to the
efficiency of the learning. This is supported by our evaluation, which shows
that CP-theory learning requires less training data compared to BN learning in
such cases. Next to these controlled experiments, we illustrate the applicability
of SEM-CP-logic by testing it on an application in medical research targeting
the Human Immunodeficiency Virus (HIV).

7.1.1 Bibliographical note

Riguzzi (2004)1 presented a method that was able to learn a subset of CP-logic.
This subset was later extended to any non-recursive CP-theory with a finite
Herbrand universe by introducing a transformation from CP-theories to BNs in

H. Blockeel and W. Meert (2006). “Towards learning non-recursive LPADs
by transforming them into Bayesian networks”. In: Proceedings ofthe
15th International Conference on Inductive Logic Programming (ILP). (Bonn,
Germany, Aug. 10–13, 2005). Volume 3625. Lecture Notes in Computer
Science, pages 94–108

In this paper, we mainly focused on the transformation itself and only briefly
discussed how a CP-theory learning algorithm can be constructed based on this
transformation. This work was extended with a concrete approach to learning
propositional CP-logic theories in two follow-up papers on which this chapter
is mainly based:

W. Meert, J. Struyf, and H. Blockeel (2007). “Learning ground CP-logic
theories by means of Bayesian network techniques”. In: Proceedings ofthe
6th workshop on Multi-Relational Data Mining (MRDM). (Warsaw, Poland,
Sept. 17, 2007), pages 93–104

1Note that CP-logic theories are equivalent to Logic Programs with Annotated Disjunctions
(LPADs) (Vennekens, Verbaeten, and Bruynooghe 2004). The research about LPADs has evolved
into CP-logic.
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W. Meert, J. Struyf, and H. Blockeel (2008b). “Learning ground CP-
logic theories by leveraging Bayesian network learning techniques.” In:
Fundamenta Informaticae 89(1), pages 131–160

7.1.2 Structure of this chapter

In Chapter 7.2 we introduce a method to learn the parameters of a CP-theory.
In Chapter 7.3 we then focus on the learning of the structure. Given these
two components we apply structure learning for CP-logic on artificial and real
datasets and compare the results with structure learning for Bayesian networks
in Chapter 7.4.

7.2 Parameter learning

Once a given CP-theory is transformed into its EBN, we can use known BN
parameter learning methods to learn the parameters of this network and the
CP-theory parameters can then be trivially extracted from the learned CPTs.

Note that the parameter learning algorithm does not need to learn values for
all the parameters in the CPTs of the EBN. Most parameters are fixed to certain
values (either 0.0 or 1.0) by the transformation (Section 3.6). If the parameter
learning algorithm would change these values, then the network would no
longer be equivalent to the given CP-theory. Therefore, only the CP-theory
parameters, which appear in the CPTs of the choice nodes, need to be learned.
Thus, the CPTs contain two types of parameters: the parameters in the original
CP-theory and the parameters that are set to 0.0 or 1.0 to encode the extra
structure in a CP-theory.

Each training example only assigns values to the atom nodes. The choice nodes
are unobserved. We therefore use expectation maximization (EM) (Dempster,
Laird, and Rubin 1977; Baum et al. 1970), which is especially designed to handle
unobserved nodes, to learn the CP-theory parameters in the choice nodes. An
additional advantage of using EM is that this also allows for missing values in
the training data.

To force the CPTs to have ones and zeros in the right positions after learning, it
suffices to initialize these parameters to 0.0 or 1.0. The Bayesian update rule in
the expectation step of the EM algorithm can only update values strictly between
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0.0 and 1.0: if the prior probability is set to 0.0 or 1.0 then the posterior probability
will also be 0.0 or 1.0. Hence, the standard EM parameter learning algorithm
learns the correct parameters for our CP-theory after proper initialization. We
initialize the CP-theory parameters to 1/(n + 1), with n the number of head
atoms. The particular parameter learning algorithm that we use is the one
implemented in the Open Bayes toolbox (Gaitanis 2007).

7.2.1 Complexity

In this section, we motivate why we chose to use a general BN parameter
learning method and discuss the complexity of CP-theory parameter learning.

Since noisy-OR is a popular combining rule in other probabilistic logic
formalisms, such as BLPs, parameter learning for noisy-OR as a combining rule
has already been studied. For example, Jaeger (2007) and Natarajan et al. (2006)
propose specific methods to learn noisy-OR parameters that are based on EM or
gradient descent and Vomlel (2006) proves convergence of noisy-or parameter
learning for EM. These particular methods are not directly applicable to CP-
logic. Here, the situation is more complex because of the mutually exclusive
consequences (we illustrate this below with an example). This makes the use
of gradient descent not straightforward, and for this reason we chose to use
an EM algorithm to learn the parameters. Because the inference formulas that
appear in the expectation step are complex and depend heavily on the structure
of the CP-theory (as we will show below), we have not yet investigated possible
optimizations, and resort to a general EM algorithm for BN parameter learning
(Gaitanis 2007).

We illustrate the complexity of the inference that occurs during CP-theory
parameter learning with the example shown in Fig. 7.1.a. This network has a
specific structure; we do not consider the general case, but it illustrates some
of the issues with inference. In the given structure, every choice node ci has at
most one common consequence xi with another rule, and the causes yi are not
related.

Suppose that we want to learn the parameters for the CP-event represented by
choice node c2, given a data set D containing N data points di in which all atom
nodes have particular values assigned. That is,

D = {di | 0 ≤ i < N} = {{xdi
0 , . . . , xdi

3 , ydi
0 , . . . , ydi

3 } | 0 ≤ i < N} . (7.1)
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(a) EBN structure.

C CC

C

C

(b) Inference example where the Markov
blanket contains a cycle.

Figure 7.1: Illustration of the inference during parameter learning (the gray
nodes are the observed atom nodes, and the double circled choice node is the
query node).

To estimate the missing values of c2, we need to perform inference for every
data point. This means that we have to calculate the probability Pr(c2|y2, di),
which is proportional to Pr(c2, y2|di). To do so, it is sufficient to know the
partial network shown in Fig. 7.1.a because that includes the Markov blanket
(Neapolitan 2003). The inference formula for this case can be found by applying
the rules of probability theory, and is the following:
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Pr(c2, y2 | di) =
1
Z
· Pr(y2 | ydi

2 ) (7.2)

· ∑
c0,c1

Pr(xdi
1 | c0, c1, c2) · Pr(xdi

0 | c0) · Pr(c0 | ydi
0 ) · Pr(c1 | ydi

1 )

· ∑
c3

Pr(xdi
2 | c2, c3) · Pr(xdi

3 | c3) · Pr(c3 | ydi
3 )

· Pr(c2 | ydi
2 )

Because the xi variables are observed in the data, ci nodes that influence the
same variable xi are dependent. This results in a chain of dependencies between
choice nodes that share consequences. In Eq. 7.2, it can be seen that to calculate
Pr(c2, y2|di), we also need to take c0, c1 and c3 into account. This leads to the
multiplication of summations; if a consequence is shared with multiple choice
nodes, we need to sum over all the possible combinations of the values for
those choice nodes. This results in a complexity that increases exponentially
with the number of choice nodes that share a common consequence. A similar
effect occurs in the case of noisy-OR nodes and optimizations that have been
proposed in that context, such as by Vomlel (2006), are also applicable for this
special case.

The example in Fig. 7.1.a only considers a specific CP-theory. In general, the
structure of a CP-theory may lead to more complex dependencies between the
choice nodes because of the shared consequences. This leads to more complex
inference. For example, in Fig 7.1.b, the Markov blanket contains a non-directed
cycle, which makes inference harder (Neapolitan 2003). Therefore, we do not
try to infer specific inference formulas for CP-theory parameter learning, but
apply a general BN inference procedure instead (Gaitanis 2007).

Such a general inference procedure can be further optimized by exploiting the
specific structure of the CPTs that appear in the EBN of a CP-theory. The CPTs
of the atom nodes, which only contain the values 0.0 and 1.0, do not describe
a true probability distribution but a functional dependency: for a given input,
there is only one possible output and this output is a deterministic function
of the input. Because the EBN contains many such functional dependencies,
optimizations such as CVE-OC (see Chapter 6) prove to be useful in such cases.
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As pointed out above, we use the BN inference algorithm implemented in the
Open Bayes toolbox (Gaitanis 2007), which does not include such optimizations.
With this implementation, CP-logic parameter learning is 50 (in Shop1, see
Section 7.4.1) to 1000 (in Shop2) times slower than computing the parameters of
the corresponding fully observed (and almost fully connected) BN. In the latter
experiment, the total execution time of the CP-theory parameter learning was
about one minute for a data set with 1000 examples on a 2.6GHz Intel Core 2
Duo processor with 2GB RAM.

7.3 Structure learning

Besides learning the parameters, we also need to learn the structure of the
CP-theory. This involves a search over possible CP-theories.

7.3.1 Structural EM and the BIC Score

The learning algorithm that we propose is based on structural EM (SEM), which
was introduced by Friedman (Friedman 1997) to learn the structure of a BN in
the presence of unobserved nodes or missing values. SEM performs a greedy
hill-climbing search through the space of possible network structures and
finds the network that (locally) maximizes a given evaluation score, such as
the Bayesian Information Criterion (BIC) (Neapolitan 2003). This section briefly
describes SEM and the BIC score and the next sections adapt these to learn
CP-theories.

The greedy search implemented by SEM (Algorithm 4.a) starts from an initial
network, which is either a network without any edges or a network with a
random edge structure. In each main loop iteration it computes all possible
refinements of the current network and then selects the refinement that
maximizes the evaluation score. A refinement is obtained either by adding
a new edge to the current network, or by deleting one of the edges from the
current network. The algorithm ends and returns the current network if no
refinement improves the score. To avoid local maxima, the search algorithm
can be restarted from different random networks and the result is then the best
network found during the different runs.
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Algorithm 4 (a) SEM learns the structure of a BN from a given data set D. (b)
A similar algorithm can be used to learn the structure of a CP-theory. The main
difference is that the initial network represents a valid CP-theory and that the
refinement operator ‘Refinements-CP-Theory’ only generates networks that are
valid CP-theories.

procedure SEM(D)

1: i := 0
2: BNi := initial BN
3: repeat
4: i := i + 1
5: R := Refinements(BNi−1)
6: R′ := Update-params(R, D)
7: BNi := argmaxbn∈R′ Eval(bn, D)
8: until Eval(BNi, D) < Eval(BNi−1, D) + ε
9: return BNi−1

procedure SEM-CP-logic(D)
1: i := 0
2: BNi := BN(initial CP-theory)
3: repeat
4: i := i + 1
5: R := Refinements-CP-Theory(BNi−1)
6: R′ := Update-params(R, D)
7: BNi := argmaxbn∈R′ Eval(bn, D)
8: until Eval(BNi, D) < Eval(BNi−1, D) + ε
9: return CP-theory(BNi−1)

The evaluation score is usually based on the likelihood of the data given
the network structure and the parameters in the CPTs. Therefore, in order
to evaluate a given candidate structure, its parameters must be learned first.
Recall from Section 7.2 that parameter learning in the presence of unobserved
nodes is implemented as an EM algorithm. This computationally expensive
EM run must be repeated for each candidate network. The strength of the SEM
algorithm is that it avoids this repeated parameter learning by making the
parameter learning incremental: to learn the parameters for a given refinement
it copies the parameter values from the original network and only relearns the
parameters of the modified part. Details of this optimization can be found in
(Friedman 1997).
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A frequently used evaluation score for BN structure learning is the Bayesian
Information Criterion (BIC) (Neapolitan 2003), which is defined as

BIC = ln(L) − d
2
· ln(N) , (7.3)

where L is the likelihood of the data given the network (and learned parameters),
d the number of free parameters in the CPTs of the network, and N the number
of training examples.

BIC trades off the fit to the data (the likelihood) versus the complexity of the
network. That is, it biases the search to simple network structures, or, when
applied to CP-theory learning, to simple CP-theories. Given that the syntax
of CP-logic allows for a compact representation of causal processes, we can
apply Occam’s Razor and assume that, among different CP-theories with equal
likelihood, the smallest theory is the one that correctly represents the structure
of the causal process that generated the data (this assumption is also made
by Pearl (Pearl 2000)). BIC’s bias for small theories will therefore result in a
bias in favor of discovering the correct causal structure. Note that this is only a
heuristic; it does not guarantee to produce the correct structure. In fact, Pearl
(Pearl 2000) has shown that for some causal processes it is impossible to discover
the correct causal structure from a data set.

7.3.2 Structure Search for CP-Theories

Algorithm 4.b shows how we modify the greedy search of SEM to learn CP-
theories. The search still occurs in BN space, but the SEM-CP-logic algorithm
ensures that each network encountered during the search represents a valid
CP-theory. This requires the following three modifications:

1. The initialization is such that the initial BN represents a valid CP-theory.
In particular, SEM-CP-logic starts from the CP-theory that has one rule for
each atom in the domain with the atom in the head and an empty body.
This ensures that each atom has a cause (atoms without a cause cannot
appear in the data). The corresponding BN is shown in Fig. 7.2.b on the
left. Another possibility would be to repeatedly start from random initial
CP-theories. We here use the former strategy because it is computationally
more efficient and proved to be sufficient in our experiments.
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2. The refinement operator only generates refinements that represent valid
CP-theories. We discuss the refinement operator that we use to this end
in detail in Section 7.3.3.

3. SEM-CP-logic initializes the parameters of the networks as described in
Section 7.2 before starting the EM part of the algorithm. This ensures that
the CPTs of the atom and choice nodes have the required structure.

We also modify the BIC score. We do not set d to the total number of parameters
in the CPTs of the EBN because most of these parameters are fixed by the
transformation. Instead, we set d to the number of edges in the EBN. Note that
the number of edges is equal to the number of CP-theory parameters plus the
number of conditions in the rule bodies. One can argue that this is the true
number of parameters of the model.

7.3.3 Refinement Operator

The refinement operator that we propose is similar to that of SEM in the sense
that it also adds edges to or removes edges from the current network. In addition,
it also needs to be able to introduce new choice nodes to create new rules. It also
takes the following constraints on the structure of the network into account to
ensure that it represents a valid CP-theory (see Section 3.5.2 for the equivalent
Bayesian network representing a CP-theory):

• Each node is either an atom node or a choice node (as defined previously).

• Each edge is annotated to be either positive or negative (representing a
negated body atom). They are both regular edges in a Bayesian network,
but this extra knowledge is used for learning.

• Edges are only allowed between an atom node and a choice node.

• Negative edges go from an atom node to a choice node.

• Each atom node has at least one incoming edge.

• The CPTs are structured as described in Section 3.5.2.

Algorithm 5 shows the resulting refinement operator. It performs five basic
actions: delete a literal from a rule, add an atom to a rule head, add a literal to
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Algorithm 5 The CP-logic refinement operator. The structure of a CP-theory
is represented as a BN (A, C, E), with A the atom nodes, C the choice nodes,
and E the directed edges. An edge to a negative body atom is indicated with a
dotted arrow ‘L99’.

procedure Refinements-CP-Theory(BN)

1: (A, C, E) := BN; R := ∅
2: for each edge e ∈ E do
3: R := R ∪ {DeleteEdge(e, A, C, E)}
4: for each atom node a1 ∈ A do
5: for each choice node c ∈ C do
6: R := R ∪ {(A, C, E ∪ {a1 ← c})} // Add atom to rule head
7: R := R ∪ {(A, C, E ∪ {c← a1})} // Add pos. atom to rule body
8: R := R ∪ {(A, C, E ∪ {c L99 a1})} // Add neg. atom to rule body
9: (c′, E′) = CloneRule(c, E) // Clone rule and negate condition

10: R := R ∪ {(A, C ∪ {c′}, E′ ∪ {c← a1, c′ L99 a1})}
11: for each atom node a2 ∈ A do
12: Create four new choice nodes c1, . . . , c4
13: // New rule with pos. body atom
14: R := R ∪ {(A, C ∪ {c1}, E ∪ {a1 ← c1, c1 ← a2})}
15: // New rule with neg. body atom
16: R := R ∪ {(A, C ∪ {c2}, E ∪ {a1 ← c2, c2 L99 a2})}
17: R := R ∪ {(A, C ∪ {c3, c4},
18: E ∪ {a1 ← c3, c3 ← a2, a1 ← c4, c4 L99 a2})}
19: for each choice node c ∈ C do
20: R := R ∪ {InvertRule(c, A, C, E)}
21: return R

a rule body, create a new rule, and invert a rule. In the following we describe
these actions in more detail.

Delete a Literal from a Rule

Deleting an edge either corresponds to deleting an atom from a rule head or
to deleting a literal from a rule body. It is implemented by removing the edge
between the corresponding atom node and choice node. If the choice node has
no outgoing edges left after removing the edge, the choice node itself is also
deleted. The refinement operator never removes the last incoming edge of an
atom node.
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Fig. 7.2.a illustrates this operation. The first step in the figure shows how a rule
can be eliminated by removing a choice node and its edges. The second step
removes a literal from the body of a rule by deleting an incoming edge of the
choice node that represents the rule.

Add a Literal to a Rule

Adding an edge between a choice node and an atom node corresponds to adding
a literal to the corresponding rule of the CP-theory. To add an atom to the head
of a rule, an edge is created departing from the choice node representing that
rule to the atom node representing the added atom. Adding a literal to the body
of a rule is accomplished by adding an edge from the literal’s atom node to the
choice node. The new edge can be either a positive edge (represented with ‘←’),
or it can be a negative edge (represented with ‘L99’) if the new body atom is
negated.

The first step of Fig. 7.2.b adds the literal x to the body of the second rule. The
equivalent step in BN space is adding an edge from the atom node representing
x to the choice node representing the second rule.

Adding a literal to the body of a rule may result in a CP-theory with likelihood
zero. Before we discuss how this can be avoided, we first explain in more detail
why it happens. An atom in a CP-theory can only become true if it has a cause
to become true, i.e., if the body of a rule where the atom appears in the head is
true. Suppose that a given atom is only present in the head of one rule. This
is true for all atoms in the CP-theory on the left of Fig. 7.2.b. Let us focus on
the second rule y : α2. Atom y can become true independent of the other atoms
(because the rule’s body is always true). After adding a literal to the rule body
(x after step 1), the head can only become true if the body x is true. Suppose
that in the target theory, y can also be true if x is false (y has multiple causes).
The current theory will then have zero likelihood, because the data will contain
cases where y is true and x false. The new body of the rule constrains the head
too much. On the other hand, we may want to have a relation between x and y
with x being one of the possible causes for y.

To check if the new body is a cause of the head, but not the only one, we perform
a trivial lookahead step: we generate a refinement that is identical to the previous
one, but includes in addition a copy of the given rule with the newly added atom
negated (Line 10 of Fig. 5). Copying the rule is implemented by the CloneRule
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Figure 7.2: Examples of the refinement operator. The dotted arrow represents a
rule where that particular atom is negated in the body of the rule.

function in Algorithm 5, which creates a copy of the given choice node and of
the edges in which it participates. The new rule with the negated condition
covers the causes not yet discovered, be it in a rudimentary way. In a subsequent
step, the algorithm can find another cause for the head and add this to the rule
body with the negated atom. It can then optionally remove this negated atom
later on. Adding the copy of the rule with the negated body is illustrated in
step 2 of Fig. 7.2.b. Note that the algorithm considers step 1 and step 2 together
as one single refinement.

Although the refinement generated by the lookahead step is equivalent to the
original rule from a logical point of view, this is not the case if we consider the
attached probabilities. Take for example these two theories:

1 2
y : α← . y : β1 ← x

y : β2 ← ¬x

Seen as purely logic theories, both are equivalent: whatever the truth value of
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x is, y will be true. However, from a probabilistic point of view, both theories
are different and may have a different likelihood. Suppose that we have a data
set where if x is true, there is a high probability that y is also true, but when
x is false, this probability is much lower. (We assume that there is also a rule
x : γ ← . that can make x true.) To calculate the likelihood we multiply the
probabilities of examples. Since we know that there are more examples where
x and y are true than there are examples where only y is true, we want the first
kind to have a high probability and the second kind to have a low probability.
This diversification is not possible in the first theory, but is possible in the
second one. Therefore, in this case, the likelihood of the second theory will be
better than that of the first one.

Create a New Rule

To be able to create CP-theories with more rules than atoms in the domain,
the refinement operator needs to be able to create new rules. The new rules
represent simple causes with one atom in the head and one literal in the body.
The refinement operator considers creating such a rule for each pair of atoms. In
addition to adding a single rule, it also considers adding two rules at once: one
with a positive body atom and one with the body atom negated. The rationale
behind this lookahead step is the same as the one for adding cloned rules with
the added condition negated.

Invert a Rule

Inverting a rule corresponds to switching the direction of the causation. It is
sometimes possible that the algorithm initially learns the relationship between
atoms with the wrong direction of causation. Because the algorithm builds
further upon already learned networks, the incorrect direction of causation
may persist when subsequent relationships are added. And, although the initial
relationship by coincidence had a good likelihood, the following steps may be
suboptimal. The ‘invert rule’ operator can detect such situations and reverse
them.

The direction of causation goes from the body towards the head. To invert this
direction we must somehow switch head and body. Consequently, the edges of
the corresponding choice node have to be inverted. It is, however, not possible
to just invert all the edges. Only inverting the edges would turn the disjunction
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in the head of the rule into a conjunction, which would result in a low likelihood
since a disjunction was learned from the training data and not a conjunction.
Therefore, if a rule has multiple head atoms, it is necessary to split the rule into
a different rule for every atom in the rule head. This way the head atoms stay
in a disjunction and are not converted into a conjunction. Fig. 7.2.c illustrates
this operation. Similar reasoning applies to rules with multiple conditions in
the body.

7.3.4 Complexity

In this section, we compare the number of refinements generated by SEM and
SEM-CP-logic, and discuss the computational cost of both approaches. The
input to both methods is the training data and the set of atoms.

SEM generates, during each iteration, precisely |A|2 refinements, with A the set
of atom nodes: for each pair of atoms it either generates a refinement by adding
a new edge between the nodes representing the atoms or by removing the
edge if it already existed in the network. Note that SEM does not automatically
introduce new unobserved nodes.

SEM-CP-logic generates |E| + 4 · |A| · |C| + 3 · |A|2 + |C| refinements, with
E the set of edges, A the set of atom nodes, and C the set of choice nodes.
This is strictly more than for the SEM algorithm. Moreover, the number of
generated refinements may grow as more edges and choice nodes are added to
the network. Ignoring the ‘invert rule’ operation, the number of edges added by
a given refinement step is at most 4 and the number of choice nodes added is
at most 2, that is, in refinement step i, |E| = O(i), and |C| = O(i). So, the total
number of refinements generated during m iterations is of the order ∑m

i=1 O(i ·
|A|+ |A|2) = O(m2|A|+ m|A|2). For SEM this is m|A|2. Therefore, the total
number of refinements that SEM-CP-logic generates grows quadratically in the
number of iterations, while it only grows linearly in the case of SEM (unless
one specifies an upper-bound on the number of rules).

Note that comparing the number of refinement steps as a function of the number
of iterations does not provide all information required to infer the induction
time of both approaches. There are two reasons for this.

1. Evaluating a random refinement has a different computational cost in
both methods. SEM-CP-logic runs the costly EM algorithm to learn the
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parameters (Section 7.2.1), while this is not necessary in the plain BN case
(the parameters can be learned by simple counting if there are no missing
values and all domain atoms are observed). On the other hand, the number
of parameters in the BNs generated by SEM grows exponentially with the
number of edges, while the number of learned parameters grows only
linearly with the number of edges in the CP-logic case.

2. The number of iterations required to learn a particular theory may be
different in both cases. For example, to represent a CP-theory rule with
many head atoms (Section 4.2.3), the BN constructed by SEM will be fully
connected, requiring many iterations, while the corresponding CP-theory
can be modeled with a fairly simple network with only one choice node
and a limited number of edges.

It follows from the above observations that, depending on the problem at
hand, either SEM or SEM-CP-logic may be the most efficient method. However,
given that the number of parameters of the BN that SEM needs to learn may
grow exponentially with the size of the CP-theory, it is not difficult to find
cases where SEM-CP-logic will be much faster than SEM. (This requires that
SEM-CP-logic does not explicitly store the CPTs of the EBN, which may also
grow exponentially with the size of the CP-theory. This is explained in more
detail in Chapter 6)

7.4 Experiments

The goal of our experiments is to test if SEM-CP-logic is able to learn CP-
theories from training data. We present two sets of experiments: (a) experiments
in a controlled artificial domain, where the target theory is a CP-theory
(Section 7.4.1), and (b) experiments in a real world application where the goal
is to discover causal relations between the occurrence of mutations in HIV
(Section 7.4.2).

7.4.1 Experiments in an Artificial Domain

In this experiment we test how much training data is required to accurately
learn a CP-theory with SEM-CP-logic. We also compare the resulting CP-theory
to a regular BN learned with SEM from the same training data. We hypothesize
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that, in this case, SEM will need more training data than SEM-CP-logic to learn
a given theory because, as we saw in Section 4.2, it needs to learn exponentially
more parameters and a more complex network structure to be able to represent
the same theory.

Experimental Setup

We use the following software implementations. SEM-CP-logic is implemented
on top of the Open Bayes toolbox (Gaitanis 2007) for the Python programming
language. We use the SEM algorithm from the Structure Learning Package
(Leray and Francois 2004), which is an extension of the Bayesian Network
Toolbox (Murphy 2007) for Matlab.

We run two sets of experiments, one set with a simple and a second set with
a more complex CP-theory as target theory. Both theories are based on the
shopping example (Section 4.2.4). The first theory Shop1 is precisely the theory
of Fig. 3.5. It has 5 atoms, 4 rules, 6 parameters, and each rule has at most 2 head
atoms. The second theory Shop2 is a more complex version of the shopping
example with 8 atoms, 8 rules, 13 parameters, and at most 3 head atoms in a
given rule.

We construct the training and test data by sampling interpretations from the
target theory (Shop1 or Shop2). The test set is fixed and consists of 1000 examples
for Shop1 and 2000 examples for Shop2. In each trial, we sample a training set of
the given size. The learning algorithm trains on this sample, and the resulting
models (CP-theory or BN) are tested on the fixed test set. As evaluation measure
we use the log likelihood, which is defined as follows:

L(D|BN) =
N

∑
i=1

log Pr(di|BN) , (7.4)

with D the set of N data points di ∈ D, and BN the structure and parameters
of the BN or EBN.

We report, for each method and training set size, the test set log likelihood
averaged over 10 trials, together with the 90% confidence interval for the average,
and the minimum and maximum likelihood obtained over the different trails.

When a model assigns probability zero to a particular test example, the log
likelihood for that example is log(0) = −∞, and as a consequence, also the total
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test set log likelihood will be −∞. This makes it difficult to compare different
models. Therefore, we add a penalty of −700 to the log likelihood for each
example with probability 0 (instead of −∞). The value −700 is also used by the
SEM software (Murphy 2007) that we use to learn BNs.

Shopping Example: Structure Learning
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Figure 7.3: Comparing structure learning of CP-theories and BNs for target
theory Shop1. (a) SEM optimizes BIC score. (b) SEM optimizes log likelihood.

Fig. 7.3.a presents the results for target Shop1. Let us first focus on the CP-theory
results. For a small number of training examples, there is a large variation in the
test set log likelihood, but given more training data, the test set log likelihood
converges to the test set log likelihood of the target theory (-603). This shows that
SEM-CP-logic is able to accurately learn the target theory given a reasonable
amount of training data.

The large variation in test set log likelihood for small training sets can be
explained as follows. Causality imposes a strong connection between the atoms’
truth values in the data set. When an incorrect causal relationship is inferred
from the training data, this may result in a theory that assigns zero likelihood
to some of the test examples, yielding a very low test set log likelihood (because
of the penalty mentioned above). Suppose that in a given training set atom
y is only true when x is true. This may cause SEM-CP-logic to learn the rule
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y : α← x. If the target theory contains alternative causes for y, which are not
sufficiently represented in the training data, then the test set may contain cases
where y is true and x is false. Such a case is not covered by the learned theory,
which will assign a likelihood of zero to it. BNs suffer to a lesser extent from
this problem because the SEM algorithm starts from a non-zero prior over the
CPT elements. This guarantees that the learned conditional probabilities are
always non-zero.

For training sets with more than 100 examples, the average test set log likelihood
of the BNs is worse than that of the CP-theories. This is because BNs have
difficulties to represent the causal structure present in the target theory. As
shown in Section 4.2.4, representing the Shop1 target requires an almost fully
connected BN. Given that the BIC score used by SEM prefers networks with a
small number of edges, SEM is unable to learn the required structure in most
cases. We tried increasing the training set size to 1500 examples, but this did
not improve test set log likelihood.

Fig. 7.3.b shows the same results, but now SEM’s evaluation score is set to the
training set log likelihood instead of the BIC score. So, it no longer includes
a penalty for the complexity of the BN. With this modification, the BNs are
able to approximate the target theory. However, the learned BNs are almost
always fully connected (for the > 100 example training sets, the BN is fully
connected in all of the trails). Hence, the BNs are much less interpretable than
the CP-theories, and do not indicate the causal structure of the problem.

Shopping Example: Parameter Learning

Shop1’s target theory is relatively simple, and without BIC’s network complexity
penalty, SEM had no difficulty to accurately learn the probability distribution
from the given training data. Assuming a fully connected network, it had to learn
25 − 1 = 31 parameters compared to 6 for SEM-CP-logic. Shop2’s target theory
is more complex. Now there are 28 − 1 = 255 parameters in a fully connected
BN, which is much more than the 13 parameters in the target CP-theory. We
therefore hypothesize that more training data are needed for SEM than for
SEM-CP-logic to accurately learn Shop2 when there are more parameters in the
theory.

Fig. 7.4 presents parameter learning results for Shop2. We show results for the
CP-theory, and for two different BN structures: one is a fully connected BN, and
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Figure 7.4: Comparing parameter learning for CP-theories and BNs for target
theory Shop2.

the other is a BN structure that was learned by SEM using the BIC score on a
training set consisting of 500 examples.

Since the learned BN has fewer parameters than the fully connected BN, EM can
learn its parameters more accurately from small training sets (< 50 examples).
However, given more training data, the log likelihood of the learned BN
converges to a sub-optimal value. Because of its overly simple structure, the
learned BN cannot represent the probability distribution of the target theory.

Both the CP-theory and the fully connected BN can represent the target theory.
This can be seen from their log likelihood values, which converge to the same
value. However, because the CP-theory has much fewer parameters than the
fully connected BN, CP-theory parameter learning requires much less training
data. (It requires about 200 examples to converge; the log likelihood of the fully
connected BN is still below that of the CP-theory after 1000 training examples.)

In this case structure learning will also be unable to learn the target theory
exactly. Thus making it even more difficult to learn the structure of Shop2 than
that of Shop1.
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7.4.2 Discovering Causal Relations Between HIV Mutations

To test SEM-CP-logic in a real world application we apply it in the context
of medical research targeting the Human Immunodeficiency Virus (HIV). In
particular, we are interested in using SEM-CP-logic to discover causal relations
between the occurrence of mutations in the virus. Before doing so, we briefly
introduce the application domain and the data set that we use.

Multiple drugs have been developed that inhibit the replication of HIV, but in
spite of that, current therapies are of limited success. A major reason why the
drugs fail is the virus’ ability to escape from drug pressure by developing drug
resistance. This escape mechanism is based on HIV’s high rates of replication
and mutation, that is, the presence of the drugs oppresses certain mutations
but the ratios will turn around since those mutations in the genetic material of
the virus that are not oppressed take over the population. These mutations may
in turn replicate into other mutations that improve the virus’ fitness. Note that
CP-logic is particularly suited to this application domain because of its implicit
causality: the fact that one mutation is present, may cause a particular other
mutation to become the majority population. It is interesting to model these
causal relations between mutations to gain more insight in HIV, and ultimately
to find better drug combinations for HIV therapy.

We use the data set from Beerenwinkel et al. (Beerenwinkel et al. 2005). This
data set records mutations in HIV’s reverse transcriptase gene in patients that
are treated with the drug zidovudine. It contains 364 samples. No resistance
associated mutations other than six classical zidovudine mutations are present
in the data set. Each of these mutations is denoted with a CP-theory atom:
41L, 67N, 70R, 210W, 215F/Y, and 219E/Q. These atoms indicate the location
where the mutation occurred (e.g., 41) and the amino acid to which the position
mutated (e.g., ‘L’ for Leucine).

The CP-theory resulting from running SEM-CP-logic on this data set is shown
in Fig. 7.5.a and Fig. 7.5.b shows the corresponding EBN. Medical literature
states that 41L, 215F/Y and 210W tend to occur together, and that 70R and
219E/Q tend to occur together as well. This can also be seen from the CP-theory.

Beerenwinkel et al. (Beerenwinkel et al. 2005) have applied their ‘Mtreemix’
software to this data set. Mtreemix builds a probabilistic model that consists
of a mixture of so-called mutagenic trees (Fig. 7.5.c). Each node of such a tree
is a mutation and the edges represent hypothesized causal relations between
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Figure 7.5: CP-theory, corresponding EBN, and mutagenic tree describing the
HIV mutation pathway in patients treated with the drug zidovudine.

the mutations ratios. We have compared the likelihood of Mtreemix’s output
with two trees in the mixture (one degenerate tree modeling external causes for
the mutations, and the tree from Fig. 7.5.c) to that of our CP-theory. Mtreemix
obtained a log likelihood of -994.5, while the CP-theory has a log likelihood of -
986.5. This shows that SEM-CP-logic is able to model the probability distribution
of this causal process at least as accurately as the state-of-the-art.

Mixtures of mutagenic trees are more difficult to interpret than CP-theories. We
therefore compare our CP-theory to the single mutagenic tree from Fig. 7.5.c.
The CP-event 67N ← 219E/Q is also present in the mutagenic tree. The tree
also contains the relation that 41L causes 210W, but then as a direct relation
between the two mutations. The relations 70R← 219E/Q and 215F/Y← 41L
are also present in the tree, but with the direction of causation reversed.

Given the structure of the causal process in this application, it is impossible
to deduce the correct causal direction of the relations from a cross-sectional
data set (i.e., the data is from different patients and measured at unknown time
points) (Pearl 2000). As a result, one has to rely on heuristics. Unfortunately,
also domain experts do not know the correct direction of causation in this
application (only correlations are known), so we do not have a ground truth to
compare the heuristics to.
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SEM-CP-logic and Mtreemix use different heuristics and may therefore end
up with a different direction of causation. SEM-CP-logic assumes that the
most compact theory is the correct causal theory (the one with the highest BIC
score), while Mtreemix uses the relative number of occurrences of the mutations
to decide on the direction of causation (Beerenwinkel et al. 2005). Because
SEM-CP-logic’s compactness heuristic is the BIC score, it cannot distinguish
between theories with the same size and likelihood. This occurs, for example,
for the theories (x : α1) ← y and (y : α2) ← x if both theories, in addition
to the rule, also include external causes for x and y. This also applies to the
direction of causation in the rules in Fig. 7.5: a theory with the direction of
causation reversed in one of the rules would have the same size and likelihood
(but different parameter values). To distinguish between such theories, an
additional heuristic is required. Such a heuristic could, for example, extend
BIC’s bias for few external causes, in such a way that it prefers theories with
extreme probabilities for the external causes (either close to 1.0 or close to 0.0).

7.5 Conclusions

In this chapter, we compared learning Causal Probabilistic Logic (CP-logic)
theories to learning Bayesian networks (BNs). Our first contribution is such a
comparison at a theoretical level. In particular, we have shown that CP-theories
in which the rules have precisely one head atom can be represented by a BN
with one edge for each CP-theory rule with a non-empty body. The conditional
probability distributions of the nodes in this BN correspond to a combination
of noisy-OR and deterministic AND. CP-theories with rules with multiple
head atoms, on the other hand, cannot be compactly represented by a BN over
the domain atoms. Here, a compact representation is only possible after the
introduction of unobserved nodes in the BN.

By relying on a transformation from CP-theories to BNs, it becomes possible
to adapt known BN learning techniques to learn CP-theories. Adapting these
techniques is the second contribution of this chapter. In particular, based on
Friedman’s structural EM (SEM) algorithm, we proposed SEM-CP-logic, an
algorithm for learning CP-theories from training data. The main advantage of
this transformation based approach is that it becomes possible to rely on the
large amount of the research available on learning BNs (Heckerman and Brees
1994; Neapolitan 2003) and to reuse this in the context of CP-logic.
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We have compared SEM-CP-logic to the SEM algorithm for learning the
structure of BNs. Experiments in an artificial domain show that CP-theories
better approximate the target theory than BNs if it contains causal relations. SEM
needs to learn more edges and more parameters in the CPTs of the BNs than
SEM-CP-logic to be able to approximate the target theory; this is detrimental to
the efficiency of the learning and to the interpretability of the resulting model.
Moreover, CP-theories explicitate the causal relations, which BNs do not.

To test the applicability of SEM-CP-logic, we have used it to discover causal
relations between mutations in the HIV. SEM-CP-logic is able to model the
probability distribution of this causal process as accurately as a state-of-the-art
method (Mtreemix). Because both methods use heuristics to infer the direction
of causation, this direction is sometimes different in the theories found by
SEM-CP-logic and Mtreemix. Further research is required to assess which
heuristic works best.



Conclusion

8

In this chapter, the main contributions and conclusions are summarized. Some
directions for future work are also provided.

8.1 Summary of contributions and conclusions

The goal of this dissertation was to improve the inference algorithms for directed
probabilistic logic models and improve probabilistic logic learning. The contributions
can be summarized as follows:

• Any work on (directed) probabilistic logic models requires a particular
formalism to represent the model. In this dissertation we used CP-logic
and related this formalism to a variety of other known languages in the
field of probabilistic logical learning and subfields. Our work on CP-logic
can be seen as an extension to the original CP-logic research located in the
field of knowledge representation (Vennekens 2007). In this dissertation
we extend the knowledge about CP-logic (and directed PLMs in general)
to the field of machine learning by giving insights in inference, parameter
learning, and structure learning.
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CP-logic’s main ambition is to be intuitive, modular and compact from a
knowledge representation point of view. The syntax and semantics are
as simple as possible to make it easy to learn the language. On the other
hand, this makes that the CP-logic syntax is not as extensive as some of
the other formalisms that focus on versatility and have numerous syntax
constructs to express special structures compactly.

• We have presented first-order Bayes ball, an algorithm that finds the
minimum requisite part of a CP-theory necessary to calculate the
probability of a query given some evidence. Because it reasons on the first-
order level, it finds the ground CP-theory needed for inference faster than
current methods. But more importantly, the resulting requisite CP-theory
can be first order, permitting it to be used as input to lifted inference
methods. Such methods capitalize the symmetries present in probabilistic
logic models to improve the efficiency of inference. The disadvantage of
lifted inference methods is that the operations they perform are more
expensive since they also need to detect the type of symmetry. By limiting
the CP-theory to the requisite part we can avoid doing unnecessary
operations and speed up lifted inference. Also since it is not possible
to compile first order theories for lifted inference like the junction tree for
probabilistic models, it makes sense to perform a query based pruning
first with first-order Bayes ball. This is also shown in the experiments
where inference was performed on some theories already known in the
lifted inference literature and where inference was performed by inference
after grounding as well as by lifted inference.
An additional advantage of first-order Bayes ball is the connection to first-
order graphical presentations like parametrized (equivalent) Bayesian
networks. This makes it easier to inspect the model and reason about
effects propagate through the model. The fact that the structure of such a
graph is meaningful without looking at the parameters is thanks to the
semantics of CP-logic. If one would like to extend CP-logic with meta
predicates such as forall, first-order Bayes ball will need to be extended.

• Inference for CP-logic and PLMs is a mixture between probabilistic
and logic inference. This requires for specialized algorithms to cope
with different types of structures. The contextual variable elimination with
overlapping contexts method extends probabilistic inference such that it
better handles (partly) deterministic relations between variables. Such
relations appear for example in contextual and causal independence
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structures, two types that appear frequently in probabilistic logic models.
Contextual variable elimination with overlapping contexts allows for a
more compact formalization of the models which results in a reduction of
the computational cost. Experiments show that our approach outperforms
the original contextual variable elimination and variable elimination on
multiple problems.
An important reason to use confactors for CP-logic inference is that
they allow us to directly encode the structures present in the CP-theory
into confactors. Also more advanced encodings like the multiplicative
factorization for causal independence structures are now supported
resulting in an optimal encoding. An important aspect of inference
in probabilistic models is the order in which variables are handled.
For contextual variable elimination and variable elimination in general
this is the elimination ordering. Advanced heuristics exists for variable
elimination but for contextual variable elimination it is not yet clear
how the contexts can be used optimally to decide on the ordering. For
contextual variable elimination with overlapping contexts there is an
extra issue in that even more general confactors are allowed. For example,
when multiplicative ordering is used this has particular influence on the
elimination ordering.

• The last contribution is in learning (ground) CP-theories. We proposed
an adaptation of the Structural EM algorithm for Bayesian networks
called SEM-CP-logic. This new approach makes use of the two-way
transformation from a CP-theory to an equivalent Bayesian network.
The refinement operators are modified such that the method searches
heuristically over possible CP-theories instead of Bayesian networks.
Experiments in a controlled artificial domain show that for learning CP-
theories, learning with SEM-CP-logic requires fewer training data than
Bayesian network learning
Situations where there are causal processes at work can be represented
more compactly with a CP-theory than with a Bayesian network. This
language bias is used to learn a model of HIV mutations where the
interactions can be considered to be causal. Experiments show that this
heuristic delivers results that are comparable to current methods used in
HIV research.
Structure learning is a challenging task for probabilistic models as well as
logic models. Combing both fields results in a more expressive language
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which leads to a larger search space for structural learning. Structure
learning for probabilistic logic models is therefore still a difficult task.
As an example, the refinement operators used in SEM-CP-logic are
more specific than those used for Bayesian networks. Since this method
learns ground theories, an extra operator is needed to introduce logic
variables into the CP-events in order to fully exploit the expressiveness of
probabilistic logic models.

8.2 Future work

Combining probability theory and logic has proven to be a useful but highly
non-trivial. Although there were some earlier ideas, the field of probabilistic
logic learning (or statistical relational learning) formed itself in the nineties
and is still growing. By now, we are getting past the initial discovery phase of
the field and hitting upon the more fundamental issues. More importantly, the
research is more focussed on particular techniques and not anymore on the
formalism itself. By looking at the underlying principles it is possible to discover
methods that apply to multiple formalisms and also to better understand the
relationship betweens formalisms (Jaeger, Kersting, and De Raedt 2006). In this
dissertation, we investigated some of these issues but, of course, many are still
open.

8.2.1 Probabilistic loops

In Chapter 3, we briefly touched upon probabilistic loops in a directed
probabilistic logic model. Logic programming and CP-logic allow for such loops
and have semantics for them. Performing inference, however, is in general not
efficient. Transforming the CP-theory to a Bayesian network does not solve the
problem since directed loops are not allowed. We proposed a transformation
to a loop free CP-theory, but this transformation is naive and the resulting
theory is often more complex than needed causing less efficient inference. More
research is necessary to find efficient inference algorithms that know how to
handle directed cycles.

Probabilistic loops are specific to the field of directed probabilistic logic models
as it does not appear as such in probability theory or logic. They are closely
related to recursive loops in logic programming where loops are handled
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through caching. This solution, however, is not applicable because of the
interactions with probabilities.

8.2.2 Lifted inference

The concept of lifted inference is to perform inference in such a way that possible
optimizations from both probability theory and logic theory are taken into
account. Results up to now have shown that it is not always possible to simply
take the available optimizations from one field and apply them to the field of
probabilistic logic learning. These new types of interactions demand new types
of optimizations.

The initial approaches to lifted inference (Poole 2003; Salvo Braz, Amir, and
Roth 2005; Milch et al. 2008) showed that inference efficiency can be improved
by orders of magnitude, but they also hint towards a complicated set of
operations necessary to perform lifted inference. Since then, numerous people
have contributed insights into aspects of the problem but in general lifted
inference methods can only deal with specific models and is not yet usable for
real world problems.

With FOBB we presented a valuable companion to existing lifted inference
methods to handle more comprehensive and real-life models. A more thorough
investigation however is necessary to see how the shattering step in FOBB
compares to the shattering in lifted inference algorithms like C-FOVE. Another
interesting future step would be caching the outcome of FOBB. Can the requisite
part of a theory for a particular query and certain observations be used for
another query with other observations? Some initial attempts in this direction
have been made for MLNs but there are still some open questions (Aniruddh
and Domingos 2010).

8.2.3 Learning

We proposed an algorithm to learn ground CP-theories from data. The next
step from this point is to extend the operators such that they also introduce
first-order predicates. An ideal starting point would be to combine with the
relational extension of the FOIL algorithm, ProbFoil (De Raedt and Thon 2010).
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A completely different direction would be to focus on the causal aspects of
CP-logic also for learning. The heuristic method used is based on the natural
bias of CP-logic towards logic processes. A more thorough method could be to
use the causal theory of (Pearl 2000) to devise a constraints based method for
CP-logic based on the IC*-algorithm. From a knowledge representation view
this is already being investigated by Vennekens, Bruynooghe, and Denecker
(2010).

8.2.4 Continuous variables

Although CP-logic can handle multi-valued variables in the first-order setting,
it is not clear how to cope with continuous variables. This is in general true for
SRL and in lesser degree for Bayesian networks. Therefore, an interesting further
path is to investigate how to deal with continuous variables in SRL which is
already gaining attention (Gutmann, Jaeger, and De Raedt 2010). This is not
only interesting from a research point of view but also for practical applications
where continuous variables are a common feature.

8.2.5 Inhibitory events

CP-logic natively supports a noisy-OR like behaviour, where different causes
enforce the common consequence. Often, however, there is a need for something
like inhibitory events similar to inhibitory connections in neural networks.
Basically they decrease the activity of the target, which for CP-logic means
that if the body of such an event is true, it lessens the probability that the
consequence is true. Although we can model such an inhibitory effect in CP-
logic, the abundance of such events in, for example, diagnostics applications,
make that it would be advantageous to support this type of event by means of
a syntax construct.

The independence of events offers great flexibility but makes it sometimes
slightly more difficult to express particular situations where an inhibitory event
would fit. For example, if there is already a general rule modeled that declares
that cars can break and we want to add a rule for a specific brand of cars, it
overrules the general rule to make it less likely. Simply adding a specific rule
will enlarge the probability of breaking because the probabilities of the general
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rule and the specific one are combined.

broken(Car) : 0.3.
broken(Car) : 0.2← isParticularBrand(Car).

In case the specific rules needs to express a higher probability of breaking,
the probability of the specific rule can be adjusted such that the combination
represents the real probability. But if it is lower, the modularity is lost since it is
necessary to overrule the general rule and adjust it such that the specific case is
excluded. For example,

broken(Car) : 0.3← ¬isParticularBrand(Car).
broken(Car) : 0.2← isParticularBrand(Car).

The question is whether the CP-logic syntax or semantics can be extended in an
intuitive way such that inhibitory events can be handled as modularly as regular
events. The modularity of the CP-events can be linked to the decomposability
of noisy-or and is categorized as an positive qualitative influence by Lucas (2005).
Inhibitory events as discussed here can be seen as negative qualitative influences
since there is always a general rule that also applies. In that case, a modular
approach seems to be possible (for example by negating the causal probability).
More research, however, is necessary to see if an inhibitory event is indeed
monotonic in behaviour and thus not an ambiguous qualitative influence in which
could be a hint that there is no guaranteed efficient inference method.
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