

Effect of methoxy-esters distribution pattern on the rheological properties of pectin-calcium gels: Toward understanding pectin structure-function relations Doungla E. Ngouémazong¹, Thomas Duvetter¹, Ilse Fraeye¹, Ann Van Loey¹, Paula Moldenaers², Marc Hendrickx¹

¹Laboratory of Food Technology and Leuven Food Science and Nutrition Research Centre (LFoRCe), Department of Microbial and Molecular Systems (M²S), Katholieke Universiteit Leuven (K.U.Leuven); Kasteelpark Arenberg 22 box 2457, 3001 Leuven, Belgium. ² Division of Applied Rheology and Polymer Technology, K.U.Leuven, Willem de Croylaan 46, box 2423, 3001

RESULTS AND DISCUSSION

- **Rheological characterisation of PDP-calcium gels (R = 2.0)**
- Effect of pattern of methoxylation on gel strength (G')
- Structural characterization of partially demethoxylated pectins (PDPs)
- **Effect of demethoxylation on DB**_{abs}

 \succ Each de-esterification method resulted in \neq relation between DM and DB_{abs} indicating \neq methoxy-ester distribution pattern.

 \longrightarrow Occurrence of \neq number and/or size of NMG blocks at similar DM.

> C-pectins (completely random distribution of NMG) residues/blocks) revealed an exponential relation (approximated by 3rd order polynomial) between DM and DB_{abs}.

 \succ As the distribution pattern of NMG became more blocky, the relation gradually shifted toward linearity.

> Actually, a linear relation is theorized between DM and DB_{abs} of ideally (theoretical) blocky pectins, where virtually, all NMG are released by endo-PG as mono-, di- or tri- GalA (implying total NMG released \approx total NMG residues of pectin), thereby resulting in $DB_{abs} \approx 100\%$ -DM.

Effect of demethoxylation on proportions of mono-, di- and tri-GalA released

■ P-pectins ◆ F-pectins ▲ C-pectins

In gel networks, high G' related to high number of crosslink points (junction zones (JZ) for pectin-Ca²⁺ gels) per polymer chain.

> In C- and F-PDP gels, a two step increase of G' was observed with increasing DB_{abs}. The initial pronounced increase (DB_{abs} < critical DB_{abs}) was mostly related to increase in number of JZ (mainly increase in umber of NMG blocks per PDP chain) at early de-esterification while the slow increasing step was mostly attributed to an increase in the size of the JZ (mainly increase in size of NMG blocks later during de-esterification).

 \longrightarrow PDPs with DB_{abs} < critical DB_{abs} generate gels predominantly characterized by high number of shorter JZ, while PDPs with $DB_{abs} \ge critical DB_{abs}$ yield networks consisting of few but longer JZ.

→ In C- and F-pectin gels, high G' is either related to high number of JZ or/and longer JZ per pectin chain

 \geq P-PDP gels showed a more gradual increase of G' with increasing DB_{abs}. This indicates that the mechanism inducing an increase in G' is rather similar in these gels. In P-pectin gels, increase in G' was related not only to the increase in the number / size of JZ per chains (DB_{abs} < critical Db_{abs}) but also to the number of Ca^{2+} dimerized pectin chains in the network.

PDPs with DB_{abs} < critical DB_{abs} generate gels predominantly characterized by shorter JZ and few Ca²⁺dimerized chains, while PDPs with $DB_{abs} \ge critical DB_{abs}$ yield networks consisting of longer JZ and more Ca²⁺dimerized chains

In P-pectin gels, high G' is either related to high number or/and larger size of JZ per pectin chain or/and high number of Ca²⁺ dimerized chains in the network.

Effect of degree and pattern of methoxylation on G'

 \succ A combined effect of degree and pattern of methoxylation revealed C-, F- and P-pectin gels having quite comparable strength at rather similar DM.

PDPs displayed \neq proportions of mono-, di- and tri-GalA at early stages of de-esterification. \succ

From a certain critical DB_{abs} value (~20%, ~30%, and ~30%) corresponding to DM values of ~35%, ~40% and ~60% in C-, F- and P-pectins respectively, all PDPs showed similar proportions of mono-di-tri-GalA, with tri-GalA higher in proportion than the rest. This suggested the occurrence of large NMG blocks in these PDPs

From critical DB_{abs}, all PDPs show some similarities in distribution of NMG blocks over the entire polymer

> At similar DM, PDPs carry NMG blocks but while P-PDPs have larger blocks on few chains, many (if not all) F- and C-PDP chains carry shorter and shortest NMG blocks respectively.

 \longrightarrow The large size of JZ seems to fully compensate for the presence of few Ca²⁺ dimerized pectin chains in P-pectin gel networks, so that the net effect of all parameters (number & size of JZ per chain and number of dimerized chains) becomes rather comparable at similar DM.

CONCLUSION

Increase in the number of NMG blocks per PDP chain, thus increase in the number of junction zones per chain in corresponding Ca²⁺ gels, results in an increase of gel strength.

Increase in the size of NMG blocks per PDP chain, thus increase in the size of junction zones in corresponding Ca²⁺ gels, equally results in an increase of gel strength.

> Increase in the number of demethoxylated chains, thus increase in the number of dimerized chains in the corresponding Ca²⁺ gel also results in an increase of gel strength.

In concentrated pectin-Ca²⁺ gels saturated with Ca²⁺, DM (rather than PM) plays a major role in controlling gel strength.

REFERENCES

• Daas, P.; Voragen, A. G. J.; Schols, H. (2000). *Carbohydrate Research*, 326 (2), 120-129.

• Doungla N.E., Vandebril, S., Duvetter T., Van Loey A., Moldenaers P., Hendrickx, P. (2009). Quick and reliable method of preparation of strong homogeneous calcium-pectin gels. Proceedings 5th ISFRS, 734-735.

• Fraeye, I.; Doungla, N.E.; Duvetter, T.; Moldenaers, P.; Van Loey, A.; Hendrickx, M. (2009). Food Hydrocolloids, 23 (8), 2069-2077.

ACKNOWLEDGMENT

This research has been supported by the Research Council of K.U.Leuven