
Chapter 1

A Theory of Inductive Query
Answering

Luc De Raedt, Manfred Jaeger, Sau Dan Lee, and Heikki Mannila

Abstract We introduce the Boolean inductive query evaluation prob-
lem, which is concerned with answering inductive queries that are arbitrary
Boolean expressions over monotonic and anti-monotonic predicates. Boolean
inductive queries can be used to address many problems in data mining and
machine learning, such as local pattern mining and concept-learning, and
actually provides a unifying view on many machine learning and data min-
ing tasks. Secondly, we develop a decomposition theory for inductive query
evaluation in which a Boolean query Q is reformulated into k sub-queries
Qi = QA∧QM that are the conjunction of a monotonic and an anti-monotonic
predicate. The solution to each sub-query can be represented using a version
space. We investigate how the number of version spaces k needed to answer
the query can be minimized and define this as the dimension of the solution
space and query. Thirdly, we generalize the notion of version spaces to cover
Boolean queries, so that the solution sets form a closed Boolean-algebraic
space under the usual set operations. The effects of these set operations on
the dimension of the involved queries are studied.
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1.1 Introduction

Many data mining and learning problems address the problem of finding a
set of patterns, concepts or rules that satisfy a set of constraints. Formally,
this can be described as the task of finding the set of patterns or concepts
Th(Q,D,L) = {ϕ ∈ L | Q(ϕ,D)} i.e., those patterns and concepts ϕ satisfy-
ing query Q on a data set D. Here L is the language in which the patterns
or concepts are expressed, and Q is a predicate or constraint that determines
whether a pattern or concept ϕ is a solution to the data mining task or not
[20]. This framework allows us to view the predicate or the constraint Q as
an inductive query [7]. It is then the task of machine learning or data mining
system to efficiently generate the answers to the query. This view of mining
and learning as a declarative querying process is also appealing as the basis
for a theory of mining and learning. Such a theory would be analogous to
traditional database querying in the sense that one could study properties
of different pattern languages L, different types of queries (and query lan-
guages), as well as different types of data. Such a theory could also serve as
a sound basis for developing algorithms that solve inductive queries.

It is precisely such a theory that we introduce in this chapter. More specifi-
cally, we study inductive queries that are Boolean expressions over monotonic
and anti-monotonic predicates. An example query could ask for molecular
fragments that have frequency at least 30 percent in the active molecules or
frequency at most 5 percent in the inactive ones [15]. This type of Boolean
inductive query is amongst the most general type of inductive query that
has been considered so far in the data mining and the machine learning lit-
erature. Indeed, most approaches to constraint based data mining use either
single constraints (such as minimum frequency), e.g., [2], a conjunction of
monotonic constraints, e.g., [24, 10], or a conjunction of monotonic and anti-
monotonic constraints, e.g., [8, 15]. However, [9] has studied a specific type
of Boolean constraints in the context of association rules and itemsets. It
should also be noted that even these simpler types of queries have proven to
be useful across several applications, which in turn explains the popularity
of constraint based mining in the literature. Inductive querying also allows
one to address the typical kind of concept-learning problems that have been
studied within computational learning theory [14] including the use of queries
for concept-learning [3]. Indeed, from this perspective, there will be a con-
straint with regard to every positive and negative instance (or alternatively
some constraints at the level of the overall dataset), and also the answers
to queries to oracle (membership, equivalence, etc.) can be formulated as
constraints.

Our theory of Boolean inductive queries is first of all concerned with char-
acterizing the solution space Th(Q,D,L) using notions of convex sets (or
version spaces [12, 13, 22]) and border representations [20]. This type of rep-
resentations have a long history in the fields of machine learning [12, 13, 22]
and data mining [20, 5]. Indeed, within the field of data mining it has been re-
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alized that the space of solutions w.r.t. a monotone constraint is completely
characterized by its set (or border) of maximally specific elements [20, 5].
This property is also exploited by some effective data mining tools, such as
Bayardo’s MaxMiner [5], which output this border set. Border sets have an
even longer history in the field of machine learning, where Mitchell recog-
nized as early as 1977 that the space of solutions to a concept-learning task
could be represented by two borders, the so-called S and G-set (where S rep-
resents the set of maximally specific elements in the solution space and G
the set of maximally general ones). These data mining and machine learning
viewpoints on border sets have been unified by [8, 15], who introduced the
level-wise version space algorithm that computes the S and G set w.r.t. a
conjunction of monotonic and anti-monotonic constraints.

In the present chapter, we build on these results to develop a decom-
position approach to solving arbitrary Boolean queries over monotonic and
anti-monotonic predicates. More specifically, we investigate how to decom-
pose arbitrary queries Q into a set of sub-queries Qk such that Th(Q,D,L) =
⋃

i Th(Qi,D,L), and each Th(Qi,D,L) can be represented using a single ver-
sion space. This way we obtain a query plan, in that to obtain the answer to
the overall query Q all of the sub-queries Qi need to be answered. As these
Qi yield version spaces, they can be computed by existing algorithms such
as the level-wise version space algorithm of [8]. A key technical contribution
is that we also introduce a canonical decomposition in which the number of
needed subqueries k is minimal.

This motivates us also to extend the notion of version spaces into general-
ized version spaces (GVSes) [18] to encapsulate solution sets to such general
queries. It is interesting that GVSes form an algebraic space that is closed
under the usual set operations: union, intersection and complementation. We
prove some theorems that characterize the effect on the dimensions of such
operation. Because GVSes are closed under these operations, the concept of
GVSes gives us the flexibility to rewrite queries in various forms, find the
solutions of subqueries separately, and eventually combine the solutions to
obtain the solution of the original query. This opens up many opportunites
for query optimization.

This chapter is organized as follows. In Section 1.2, we define the inductive
query evaluation problem and illustrate it on the pattern domains of strings
and itemsets. We model the solution sets with GVSes, which are introduced
in Section 1.3. In Section 1.4, we introduce a decomposition approach to
reformulate the original query in simpler sub-queries. Finally, we give our
conclusions in Section 1.6.
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1.2 Boolean Inductive Queries

We begin with describing more accurately the notions of patterns and pattern
languages, as we use them in this chapter. We always assume that datasets
consist of a list of data items from a set U , called the domain or the universe
of the dataset.

A pattern or concept φ for U is some formal expression that defines a subset
φe of U . When u ∈ φe we say that φmatches or covers u. A pattern language L
for U is a formal language of patterns. The terminology used here is applicable
to both concept-learning and pattern mining. In concept-learning, U would
be the space of examples, 2U the set of possible concepts (throughout, we
use 2X to denote the powerset of X), and L the set of concept-descriptions.
However, for simplicity we shall throughout the chapter largely employ the
terminology of pattern mining. It is, however, important to keep in mind that
it also applies to concept-learning and other machine learning tasks.

Example 1.2.1 Let I = {i1, . . . , in} be a finite set of possible items, and
UI = 2I be the universe of itemsets over I. The traditional pattern language
for this domain is LI = UI . A pattern φ ∈ LI covers the set φe := {H ⊆ I |
φ ⊆ H}.

Instead of using LI one might also consider more restrictive languages,
e.g., the sublanguage LI,k ⊆ LI that contains the patterns in LI of size at
most k.

Alternatively, one can also use more expressive languages, the maximally
expressive one being the language 2UI of all subsets of the universe, or as is
common in machine learning the language of conjunctive concepts, LI , which
consists of all conjunctions of literals over I, that is, items or their negation.
This language can be represented using itemsets that may contain items from
I = I ∪ {¬i|i ∈ I}. It is easy to see that the basic definitions for itemsets
carry over for this language provided that the universe of itemsets is UI . �

Example 1.2.2 Let Σ be a finite alphabet and UΣ = Σ∗ the universe of
all strings over Σ. We will denote the empty string with ǫ. The traditional
pattern language in this domain is LΣ = UΣ . A pattern φ ∈ LΣ covers the
set φe = {σ ∈ Σ∗ | φ ⊑ σ}, where φ ⊑ σ denotes that φ is a substring of σ.

�

One pattern φ for U is more general than a pattern ψ for U , written φ � ψ,
if and only if φe ⊇ ψe. For two itemset patterns φ, ψ ∈ LI , for instance, we
have φ � ψ iff φ ⊆ ψ. For two conjunctive concepts φ, ψ ∈ LC , for instance,
we have φ � ψ iff φ |= ψ. For two string patterns φ, ψ ∈ LΣ we have φ � ψ

iff φ ⊑ ψ. A pattern language L′ is more expressive than a pattern language
L, written L′ � L, iff for every φ ∈ L there exists φ′ ∈ L′ with φe = φ′e.

A pattern predicate defines a primitive property of a pattern, often relative
to some data set D (a set of examples). For any given pattern or concept, a
pattern predicate evaluates to either true or false. Pattern predicates are the
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basic building blocks for building inductive queries. We will be mostly inter-
ested in monotonic and anti-monotonic predicates. A predicate p is mono-
tonic, if p(φ) and ψ � φ implies p(ψ), i.e., p is closed under generalizations of
concepts. Similarly, anti-monotonic predicates are defined by closure under
specializations.

1.2.1 Predicates

We now introduce a number of pattern predicates that will be used for il-
lustrative purposes throughout this chapter. Throughout the section we will
introduce predicates that have been inspired by a data mining setting, in
particular by the system MolFea [15], as well as several predicates that are
motivated from a machine learning perspective, especially, by Angluin’s work
on learning concepts from queries [3].

Pattern predicates can be more or less general in that they may be applied
to patterns from arbitrary languages L, only a restricted class of languages,
or perhaps only are defined for a single language. Our first predicate can be
applied to arbitrary languages:

• minimum frequency(p,n,D) evaluates to true iff p is a pattern that occurs
in database D with frequency at least n ∈ N. The frequency f(φ,D) of
a pattern φ in a database D is the (absolute) number of data items in
D covered by φ. Analogously, the predicate maximum frequency(p, n,D) is
defined. minimum frequency is a monotonic, maximum frequency an anti-
monotonic predicate.

These predicates are often used in data mining, for instance, when min-
ing for frequent itemsets, but they can also be used in the typical concept-
learning setting, which corresponds to imposing the constraints minimum
frequency(p,|P |,P ) ∧ maximum frequency(p,0,N) where P is the set of posi-
tive instances and N the set of negative ones, that is, all positive examples
should be covered and none of the negatives ones.

A special case of these frequency related predicates is the predicate

• covers(p, u) ≡ minimum frequency(p, 1, {u}), which expresses that the pat-
tern (or concept) p covers the example u. covers is monotonic.

This predicate is often used in a concept-learning setting. Indeed, the result
of a membership query (in Angluin’s terminology) is a positive or negative
example and the resulting constraint corresponds to the predicate covers or
its negation.

The next predicate is defined in terms of some fixed pattern ψ from a
language L. It can be applied to other patterns for U .
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• is more general(p,ψ) is a monotonic predicate that evaluates to true iff p

is a pattern for U with p � ψ. Dual to the is more general predicate one
defines the anti-monotonic is more specific predicate.

The is more general(p,ψ) predicate only becomes specific to the language
L for the fixed universe U through its parameter ψ. By choice of other param-
eters, the predicate is more general becomes applicable to any other pattern
language L′. This type of predicate has been used in a data mining context
to restrict the patterns of interest [15] to specify that patterns should be sub-
or superstrings of a particular pattern. In a concept learning context, these
predicates are useful in the context of learning from queries [3]. This is a
framework in which the learner may pose queries to an oracle. The answers
to these queries then result in constraints on the concept. There are several
types of queries that are considered in this framework and that are related
to the is more general and the is more specific predicates:

• a subset, respectively superset query [3], determines whether a particular
concept must cover a subset, respectively a superset, of the positive exam-
ples or not. The answers to these queries directly correspond to constraints
using the predicates is more specific and is more general.

• an equivalence query determines whether a particular concept-description
φ is equivalent to the target concept or not. This can be represented using
the predicate equivalent(c, φ), which can be defined as follows:

equivalent(c, φ) ≡ is more general(c, φ) ∧ is more specific(c, φ)

• a disjointness query determines whether or not a particular concept φ
overlaps with the target concept c, that is, whether there are elements in
the universe which are covered by both φ and c. This can be represented
using the anti-monotonic predicate disjoint(c, φ), which evaluates to true
iff ce∩φe = ∅. It can be defined in terms of generality in case the language
of concepts L is closed under complement:

disjoint(c, φ) ≡ is more specific(c,¬φ)

• an exhaustiveness query determines whether a particular concept φ to-
gether with the target concept c covers the whole universe; this can be
written using the monotonic predicate exhausts(c, φ), which evaluates to
true iff ce ∪ φe = U . It can be defined in terms of generality in case the
language of concepts L is closed under complement:

exhausts(c, φ) ≡ is more general(c,¬φ)

The next pattern predicate is applicable to patterns from many different
languages L. It is required, however, that on L the length of a pattern is
defined.
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• length at most(p,n) evaluates to true for p ∈ L iff p has length at most n.
Analogously the length at least(p,n) predicate is defined.

We apply the length at most-predicate mostly to string patterns, where
the length of a pattern is defined in the obvious way (but note that e.g., for
itemset patterns φ ∈ LI one can also naturally define the length of φ as the
cardinality of φ, and then apply the length at most-predicate).

1.2.2 Illustrations of Inductive Querying

Let us now also look into the use of these predicates for solving a number of
machine learning and data mining problems. First, we look into association
rule mining, for which we introduce a pattern predicate that is applicable
only to itemset patterns φ ∈ LI for some fixed I. The dependence on I
again comes through the use of a parameter, here some fixed element ij ∈ I.

• association(p,ij,D) evaluates to true for p ∈ LI iff p ⇒ ij is a valid as-
sociation rule in D, i.e., for all data items d ∈ D: if p ⊆ d then ij ∈ d.
association is anti-monotonic.

The predicate association—as defined above—allows only valid association
rules, i.e., association rules that have a confidence of 100%. It could also
be applied to string patterns. Then the condition would be that p ⇒ i is
valid iff for all strings d ∈ D : if d ∈ φp then d ∈ φpi, where pi denotes the
concatenation of the string p and the character i.

Secondly, let us investigate the use of constraints in clustering, where must-
link and cannot-link constraints have been used in machine learning. We can
phrase a clustering problem as a concept learning task in our framework
by interpreting a clustering of a set of objects O as a binary relation cl ⊂
O × O, where cl(o, o′) means that o and o′ are in the same cluster. Thus,
with U = O × O, a clustering is just a pattern in our general sense (one
may use any suitable pattern language that provides a unique representation
for clusterings). According to our general notion of generality of patterns,
a clustering c is more general than another clustering c′ if ce ⊇ c′e, i.e., if
more pairs of objects belong to the same cluster in c as in c′, which, in turn,
means that c can be obtained from c′ by merging of clusters. Furthermore,
the most specific generalizations of c are just the clusterings obtained by
merging two clusters of c, whereas the most general specializations are the
clusterings obtained by splitting one cluster of c into two.

We can now express as a concept learning task the problem of retrieving
all possible clusterings that satisfy certain constraints.

The first two kinds of useful constraints represent generally desirable prop-
erties of clusterings:
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• clusters atmost(cl, k) evaluates to true if the clustering cl consists of at
most k clusters. This predicate is monotonic.

• within cluster distance atmost(cl, r) evaluates to true if no two objects with
distance > r are in the same cluster. This predicate is anti-monotonic.

Specific constraints as used in constraint based clustering are now:

• must link(cl, o1, o2), which evaluates to true when the two objects oi are in
the same cluster (monotonic).

• must not link(cl, o1, o2), which evaluates to true when the two objects oi

are in different clusters (anti-monotonic)

Using these predicates, we could for a given dataset retrieve with the query

clusters atmost(cl, 5) ∧ within cluster distance atmost(cl, 0.5)∧
must link(cl, o1, o2)

all possible clusterings of at most 5 clusters, such that no clusters contain
points farther apart than 0.5 (in the underlying metric used for the dataset),
and such that the two designated objects o1, o2 are in the same cluster.

Finally, machine learning has also devoted quite some attention to multi-
instance learning. In multi-instance learning examples consist of a set of pos-
sible instances and an example is considered covered by a concept, whenever
the concept covers at least one of the instances in the set. One way of for-
malizing multi-instance learning within our framework is to adapt the notion
of coverage to have this meaning. Alternatively, a multi-instance learning
example could be represented using the predicate minimum-frequency(c,1,e)
where c is the target concept and e is the example, represented here as a set
of its instances. A negative example then corresponds to the negation of this
expression or requiring that maximum-frequency(c,0,e) holds.

1.2.3 A General Framework

In all the preceding examples the pattern predicates have the form
pred(p,params) or pred(p,D,params), where params is a tuple of parameter
values, D is a data set and p is a pattern variable.

We also speak a bit loosely of pred alone as a pattern predicate, and
mean by that the collection of all pattern predicates obtained for different
parameter values params.

We say that pred(p,D,params) is a monotonic predicate, if for all pattern
languages L to which pred(p,D,params) can be applied, and all φ, ψ ∈ L:

φ � ψ ⇒ pred(ψ,D, params) → pred(φ,D, params)

We also say that pred is monotonic, if pred(p,D,params) is monotonic for all
possible parameter values params, and all datasets D. Analogously, we define
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anti-monotonicity of a predicate by the condition

φ � ψ ⇒ pred(φ,D, params) → pred(ψ,D, params).

A pattern predicate pred(p,D,params) that can be applied to the patterns
from a language L defines the solution set

Th(pred(p,D, params),L) = {φ ∈ L | pred(φ,D, params) = true}.

Furthermore, for monotonic predicates m(. . .) these sets will be monotone,
i.e., for all φ � ψ ∈ L : ψ ∈ Th(m(. . .),L) → φ ∈ Th(m(. . .),L). Similarly,
anti-monotonic predicates define anti-monotone solution sets.

is more general(p, ψ) is more general(p, µ)

�

µ

ψ

L L′

U

Fig. 1.1 Pattern languages and pattern predicates

Figure 1.1 illustrates the definitions given so far. It gives a schematic rep-
resentation of a universe U and two pattern languages L,L′ for U . The �
relation between patterns is represented by lines connecting immediate neigh-
bors in the � relation, with the more general patterns being above the more
specific ones. For two patterns from L and one pattern from L′ the sub-
sets of the universe covered by the patterns are indicated. For the pattern
ψ ∈ L and µ ∈ L′ the figure shows the interpretation of the pattern pred-
icates is more general(p, ψ), respectively is more general(p, µ) by filled nodes
corresponding to patterns for which these predicates are true.
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Example 1.2.3 Consider the string data set D = {abc, abd, cd, d, cd}. Here
we have pattern frequencies f(abc, D) = 1, f(cd, D) = 2, f(c, D) =
3, f(d, D) = 4, f(abcd, D) = 0. And trivially, f(ǫ,D) = |D| = 5.
Thus, the following predicates evaluate to true: minimum frequency(c, 2, D),
minimum frequency(cd, 2, D), maximum frequency(abc, 2, D).

The pattern predicate m := minimum frequency(p, 2, D) defines Th(m,LΣ)
= {ǫ, a, b, c, d, ab, cd}, and the predicate a := maximum frequency(p, 2, D) de-
fines the infinite set Th(a,LΣ) = LΣ \ {ǫ, c, d}. �

The definition of Th(pred(p, D, params),L) is extended in the natural way
to a definition of the solution set Th(Q,L) for Boolean combinations Q of
pattern predicates: Th(¬Q,L) := L\Th(Q,L), Th(Q1∨Q2,L) := Th(Q1,L)∪
Th(Q2,L). The predicates that appear in Q may reference one or more data
sets D1, . . . , Dn. To emphasize the different data sets that the solution set of
a query depends on, we also write Th(Q,D1, . . . , Dn,L) or Th(Q,D,L) for
Th(Q,L).

Example 1.2.4 Let D1, D2 be two datasets over the domain of itemsets UI .
Let i ∈ I, and consider the query

Q = association(p, i,D1) ∧ minimum frequency(p, 10, D1)
∧¬association(p, i,D2).

The solution Th(Q,D1, D2,LI) consists of all p ∈ LI = 2I for which p⇒ i

is a valid association rule with support at least 10 in D1, but p ⇒ i is not a
valid association rule in D2. �

We are interested in computing solution sets Th(Q,D,L) for Boolean
queries Q that are constructed from monotonic and anti-monotonic pattern
predicates. As anti-monotonic predicates are negations of monotonic pred-
icates, we can, in fact, restrict our attention to monotonic predicates. We
can thus formally define the Boolean inductive query evaluation problem ad-
dressed in this chapter.

Given

• a language L of patterns,
• a set of monotonic predicates M = {m1(p,D1, params1), . . . ,

mn(p,Dn, paramsn)},
• a query Q that is a Boolean expression over the predicates in M,

Find

the set of patterns Th(Q,D1, . . . , Dn,L), i.e., the solution set of the query
Q in the language L with respect to the data sets D1, . . . , Dn. Moreover,
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the representation of the the solution set should be optimized with regard to
understandability and representation size.

1.3 Generalized Version Spaces

We next investigate the structure of solution sets Th(Q,D,L) based on the
classic notion of version spaces [22][12].

Definition 1.3.1 Let L be a pattern language, and I ⊆ L. If for all φ, φ′, ψ ∈
L it holds that φ � ψ � φ′ and φ, φ′ ∈ I implies ψ ∈ I, then I is called a
version space (or a convex set). The set of all version spaces for L is denoted
VS1(L).

A generalized version space (GVS) is any finite union of version spaces.
The set of all generalized version spaces for L is denoted by VSZ(L).

The dimension of a generalized version space I is the minimal k, such that
I is the union of k version spaces.

Version spaces are particularly useful when they can be represented by
boundary sets, i.e., by the sets G(Q,D,L) of their maximally general ele-
ments, and S(Q,D,L) of their most specific elements. Generalized version
spaces can then be represented simply by pairs of boundary sets for their
convex components. Our theoretical results do not require boundary repre-
sentations for convex sets. However, in most cases our techniques will be
more useful for pattern languages in which convexity implies boundary rep-
resentability. This is guaranteed for finite languages [12].

Definition 1.3.2 The dimension of a query Q is the dimension of the gen-
eralized version space Th(Q,D,L).

Example 1.3.3 Let Σ = {a, b} and LΣ as in Example 1.2.2. Let

Q = length at most(p, 1) ∨ (is more specific(p, ab) ∧ is more general(p, ab)).

When evaluated over LΣ , the first disjunct of Q gives the solution {ǫ, a, b},
the second {ab}, so that Th(Q,LΣ) = {ǫ, a, b, ab}, which is convex in LΣ .
Thus, dim(Q) = 1 (as Q does not reference any datasets, the maximization
over D in the definition of dimension here is vacuous).

Th(Q,LΣ) can be represented by S(Q,LΣ) = {ab} and G(Q,LΣ) = {ǫ}.
�

With the following definitions and theorem we provide an alternative char-
acterization of dimension k sets.

Definition 1.3.4 Let I ⊆ L. Call a chain φ1 � φ2 � · · · � φ2k−1 ⊆ L an
alternating chain (of length k) for I if φi ∈ I for all odd i, and φi 6∈ I for all
even i.
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Definition 1.3.5 Let I ⊆ L. We define two operators on I,

I− = {φ ∈ I | ∃ψ ∈ L \ I, φ′ ∈ I : φ � ψ � φ′}
I+ = I \ I−.

Thus, I− is constructed from I by removing all elements that only appear as
the maximal element in alternating chains for I. I+ is the set of such removed
elements. Note that since I− ⊂ I by definition, we have I = I+ ∪ I− and
I+ ∩ I− = ∅.

Theorem 1.3.6 Let I be a generalized version space. Then dim(I) is equal
to the maximal k for which there exists in L an alternating chain of length k
for I.

Proof: By induction on k: if I only has alternating chains of length 1, then
I ∈ VS1 and dim(I) = 1 by definition. Assume, then, that k ≥ 2 is the length
of the longest alternating chain for I. As there are chains of length ≥ 2, both
I− and I+ are nonempty.

It is clear from the definition of I− that I− has alternating L-chains of
length k − 1, but not of length k. By induction hypothesis, thus dim(I−) =
k − 1. The set I+, on the other hand, has dimension 1. It follows that
dim(I = I+ ∪ I−) is at most k. That dim(I) is at least k directly follows
from the existence of an alternating chain φ1 � φ2,� · · · � φ2k−1 for I, be-
cause φ1, φ3, . . . , φ2k−1 must belong to distinct components in every partition
of I into convex components. �

The operator I+ allows us to define a canonical decomposition of a general-
ized version space. For this, let I be a generalized version space of dimension
k. Define

I0 = I+

Ii = (I \ I0 ∪ · · · ∪ Ii−1)
+ (1 ≤ i ≤ k)

The version spaces Ii then are convex, disjoint, and I = ∪k
i=1Ii.

Our results so far relate to the structure of a fixed generalized version
space. Next, we investigate the behavior of GVSs under set-theoretic op-
erations. Hirsh [13] has shown that VS1 is closed under intersections, but
not under unions. Our following results show that VSZ is closed under all
set-theoretic operations, and that one obtains simple bounds on growth in
dimension under such operations.

Theorem 1.3.7 Let V ∈ VSZ(L). Then L\V ∈ VSZ(L), and dim(V )− 1 ≤
dim(L \ V ) ≤ dim(V ) + 1.

Proof: Any alternating chain of length k for L \ V defines an alternating
chain of length k − 1 for L. It follows that dim(L \ V ) ≤ dim(V ) + 1. By a
symmetrical argument dim(V ) ≤ dim(L \ V ) + 1. �
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By definition, generalized version spaces are closed under finite unions, and
dim(V ∪W ) ≤ dim(V )+dim(W ). Combining this with the dimension bound
for complements, we obtain dim(V ∩W ) = dim((V c ∪ W c)c) ≤ dim(V ) +
dim(W ) + 3. However, a somewhat tighter bound can be given:

Theorem 1.3.8 Let V,W ∈ VSZ(L). Then dim(V ∩ W ) ≤ dim(V ) +
dim(W ) − 1.

Proof: Let φ1 � φ2,� · · · � φ2k−1 be an alternating chain for V ∩W . Let
IV := {i ∈ 1, . . . k − 1 | φ2i 6∈ V }, and IW := {i ∈ 1, . . . k − 1 | φ2i 6∈ W}.
Then IV ∪ IW = {1, . . . , k − 1}. Deleting from the original alternating chain
all φ2i, φ2i−1 with i 6∈ IV gives an alternating chain of length |IV |+ 1 for V .
Thus, |IV | ≤ dim(V ) − 1. Similarly, |IW | ≤ dim(W ) − 1. The theorem now
follows with |IV | + |IW | ≥ k − 1. �

1.4 Query Decomposition

In the previous section we have studied the structure of the solution sets
Th(Q,D,L). We now turn to the question of how to develop strategies for
the computation of solutions so that, first, the computations for complex
Boolean queries can be reduced to computations of simple version spaces us-
ing standard level-wise algorithms, and second, the solutions obtained have a
parsimonious representation in terms of the number of their convex compo-
nents, and/or the total size of the boundaries needed to describe the convex
components.

A first approach to solving a Boolean query Q using level-wise algorithms
is to transform Q into disjunctive normal form (DNF). Each disjunct then
will be a conjunction of monotonic or anti-monotonic predicates, and thus
define a convex solution set. The solution to the query then is simply the
union of the solutions of the disjuncts. This approach, however, will often
not lead to a parsimonious representation: the number of disjuncts in Q’s
DNF can far exceed the dimension of Q, so that the solution is not minimal
in terms of the number of convex components. The solutions of the different
disjunctions also may have a substantial overlap, which can lead to a greatly
enlarged size of a boundary representation.

In this section we introduce two alternative techniques for decomposing a
Boolean query into one-dimensional sub-queries. The first approach is based
on user-defined query plans which can improve the efficiency by a reduction to
simple and easy to evaluate convex sub-queries. The second approach, which
we call the canonical decomposition, is fully automated and guaranteed to
lead to solutions given by convex components that are minimal in number,
and non-overlapping.
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1.4.1 Query plans

The solution set Th(Q,D,L) can be constructed incrementally from basic
convex components using algebraic union, intersection and complementation
operations. Using Theorems 1.3.7 and 1.3.8 one can bound the number of
convex components needed to represent the final solution. For any given
query, usually multiple such incremental computations are possible. A query
plan in the sense of the following definition represents a particular solution
strategy.

Definition 1.4.1 A query plan is a Boolean formula with some of its sub-
queries marked using the symbol

︸︷︷︸
. Furthermore, all marked subqueries

are the conjunction of a monotonic and an anti-monotonic subquery.

Example 1.4.2 Consider the query

Q1 = (a1 ∨ a2) ∧ (m1 ∨ m2).

Since this is a conjunction of a monotonic and an anti-monotonic part, it can
be solved directly, and (a1 ∨ a2) ∧ (m1 ∨ m2)

︸ ︷︷ ︸
is the corresponding query plan.

A transformation of Q1 into DNF gives

(a1 ∧ m1) ∨ (a1 ∧ m2) ∨ (a2 ∧ m1) ∨ (a2 ∧ m2),

for which (a1 ∧ m1)
︸ ︷︷ ︸

∨ (a1 ∧ m2)
︸ ︷︷ ︸

∨ (a2 ∧ m1)
︸ ︷︷ ︸

∨ (a2 ∧ m2)
︸ ︷︷ ︸

is the only feasible

query plan, which now requires four calls to the basic inductive query solver.
�

For any inductive query Q, we can rewrite it in many different forms. One
can thus construct a variety of different query plans by annotating queries
that are logically equivalent to Q. The question then arises as to which query
plan is optimal, in the sense that the resources (i.e., memory and cpu-time)
needed for computing its solution set are as small as possible. A general
approach to this problem would involve the use of cost estimates that for each
call to a conjunctive solver and operation. One example of a cost function for
a call to a conjunctive solver could be Expected Number of Scans of Data ×
Size of Data Set. Another one could be the Expected Number of Covers Tests.
In this chapter, we have studied the query optimization problem under the
assumption that each call to a conjunctive solver has unit cost and that the
only set operation allowed is union. Under this assumption, decomposing a
query Q into k subqueries of the form Qa,i ∧Qm,i (with Qa,i anti-monotonic
and Qm,i monotonic) and dim(Q) = k is an optimal strategy. We will leave
open the challenging question as to which cost-estimates to use in practice.
However, what should be clear is that given such cost-estimates, one could
optimize inductive queries by constructing all possible query plans and then
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selecting the best one. This is effectively an optimization problem, not unlike
the query optimization problem in relational databases.

The optimization problem becomes even more interesting in the light of
interactive querying sessions [4], which should be quite common when working
with inductive databases. In such sessions, one typically submits a rough
query to get some insight in the domain, and when the results of this query
are available, the user studies the results and refines the query. This often
goes through a few iterations until the desired results are obtained.

1.4.2 Canonical Decomposition

As in the simple DNF decomposition approach, Q will be decomposed into
k sub-queries Qi such that Q is equivalent to Q1 ∨ · · · ∨Qk, and each Qi is
convex. Furthermore, the Qi will be mutually exclusive.

We develop this technique in two stages: in the first stage we do not take
the concrete pattern language L into account, and determine Qi such that
Th(Q,D,L) = ∪Th(Qi,D,L) for all L to which the predicates in Q can
be applied. This step only uses the monotonicity of the predicates and the
Boolean structure of Q. In a second step we refine the approach in order to
utilize structural properties of L that can reduce the number of components
Qi needed to represent Th(Q,D,L).

Applied to the query from Example 1.3.3, for instance, the first step will
result in a decomposition ofQ into two components (essentially corresponding
to the two disjuncts of Q), which yields a bound of 2 for the dimension of
Th(Q,D,L) for all L. The second step then is able to use properties of LΣ

in order to find the tighter bound 1 for the dimension of Th(Q,LΣ).
The idea for both stages of the decomposition is to first evaluate Q in a

reduced pattern language L′, so that the desired partition ∨Qi can be derived
from the structure of Th(Q,L′). The solution set Th(Q,L′) does not depend
on the datasets D that Q references, and the complexity of its computation
only depends on the size of Q, but not on the size of any datasets.

In the following we always assume that Q is a query that contains n dis-
tinct predicates m1, . . . ,mn, and that the mi are monotonic for all pattern lan-
guages L for which Q can be evaluated (recall that we replace anti-monotonic
predicates by negated monotonic ones).

Definition 1.4.3 Let M(Q) = {m1, . . . ,mn}, LM(Q) = 2M(Q), and for µ ∈
LM(Q):

µe := {M ⊆ M(Q) |M ⊆ µ}.

The predicates mi are interpreted over LM(Q) as

Th(mi,LM(Q)) := {µ ∈ LM(Q) | mi ∈ µ}.
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Thus, the definitions of LM(Q) and µe are similar to the ones for itemsets
with M(Q) the set of possible items (cf. Example 1.2.1). Alternatively, each
µ ∈ LM(Q) can be viewed as an interpretation for the propositional variables
M(Q) (see also Section 1.5). However, the inclusion condition in the definition
of µe here is the converse of the inclusion condition in Example 1.2.1. In
particular, here, µ′ � µ iff µ′ ⊇ µ. The predicates mi are interpreted with
respect to LM(Q) like the predicates is more general(p, {mi}). By the general
definition, with Th(mi,LM(Q)) (1 ≤ i ≤ k) also Th(Q,LM(Q)) is defined.

Theorem 1.4.4 Let L be a pattern language for which the predicates mi in
Q are monotone. The dimension of Th(Q,D,L) is less than or equal to the
dimension of Th(Q,LM(Q)).

Proof: Let L be given and D be any dataset. Define a mapping

hD : L → LM(Q)

φ 7→ {m ∈ M(Q) | φ ∈ Th(m,D,L)}
(1.1)

First we observe that hD is order preserving:

φ � ψ ⇒ hD(φ) � hD(ψ). (1.2)

This follows from the monotonicity of the predicates m, because φ � ψ and
ψ ∈ Th(m,D,L) implies φ ∈ Th(m,D,L), so that hD(φ) is a superset of
hD(ψ), which, in the pattern language LM(Q) just means hD(φ) � hD(ψ).

Secondly, we observe that hD preserves solution sets:

φ ∈ Th(Q,D,L) ⇔ hD(φ) ∈ Th(Q,LM(Q)). (1.3)

To see (1.3) one first verifies that for i = 1, . . . , n:

φ ∈ Th(mi,D,L) ⇔ mi ∈ hD(φ) ⇔ hD(φ) ∈ Th(mi,LM(Q)).

Then (1.3) follows by induction on the structure of queries Q constructed
from the mi.

Now suppose that φ1 � · · · � φ2k−1 ⊆ L is an alternating chain of length
k for Th(Q,D,L). From (1.2) it follows that hD(φ1) � · · · � hD(φ2k−1) ⊆
LM(Q), and from (1.3) it follows that this is an alternating chain of length k
for Th(Q,LM(Q)). From Theorem 1.3.6 it now follows that the dimension of
Th(Q,D,L) is at most the dimension of Th(Q,LM(Q)). �

Example 1.4.5 Let Σ = {a, b, . . . , z}. Let

m1 = not-is more specific(p, ab)
m2 = not-is more specific(p, cb)
m3 = not-length at least(p, 4)
m4 = minimum frequency(p, 3, D)
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These predicates are monotonic when interpreted in the natural way over
pattern languages for the string domain. The first three predicates are the
(monotonic) negations of the (anti-monotonic) standard predicates intro-
duced in Section 1.2 (note that e.g., not-is more specific is distinct from is
more general). Let

Q = ¬m1 ∧ ¬m2 ∧ (¬m3 ∨ m4). (1.4)

Figure 1.2 (a) shows LM(Q) for this query. The solution set Th(Q,LM(Q)) is
{∅, {m4}, {m3,m4}}, which is of dimension 2, because ∅ � {m3} � {m3,m4}
is a (maximal) alternating chain of length 2. �

(a) (b)

m1 m2
m3 m4

m1 m2
m3 m4

m1
m2
m3

m1
m2
m3

m1
m2
m4

m1
m2
m4

m1
m3
m4

m1
m3
m4

m2
m3
m4

m2
m3
m4

m1
m2

m1
m2

m1
m3

m1
m3

m1
m4

m1
m4

m2
m3

m2
m3

m2
m4

m2
m4

m3
m4

m1m1 m2m2 m3 m4m4

∅∅

Fig. 1.2 Pattern languages LM(Q) and LM(Q),L

Given Q we can construct LM(Q) and Th(Q,LM(Q)) in time O(2n). We
can then partition Th(Q,LM(Q)) into a minimal number of convex compo-
nents I1, . . . , Ik by iteratively removing from Th(Q,LM(Q)) elements that are
maximal in alternating chains. More precisely, let:

R0 := Th(Q,LM(Q))
Ii+1 := R+

i

Ri+1 := R−
i

(1.5)

for i = 1, 2, . . . , k. The Ih are defined by their sets of maximal and minimal
elements, G(Ih) and S(Ih), and define queries Qh with the desired properties:

Theorem 1.4.6 Let Th(Q,LM(Q)) = I1 ∪ · · · ∪ Ik with convex Ih.
Given an element µ from LM(Q) define

QM,µ =
∧

m∈µ

m and QA,µ =
∧

m6∈µ

¬m
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For h = 1, . . . , k let

Qh,M =
∨

µ∈S(Ih)

QM,µ and Qh,A =
∨

µ∈G(Ih)

QA,µ.

Finally, let Qh = Qh,M ∧Qh,A.
Then Th(Qh,D,L) is convex for all L and D, and Th(Q,D,L) =

Th(∨k
h=1Qh,D,L) = ∪k

h=1Th(Qh,D,L).

Proof: The Qh are constructed so that

Th(Qh,LM(Q)) = Ih (h = 1, . . . , k).

Using the embedding hD from the proof of Theorem 1.4.4 we then obtain for
φ ∈ L:

φ ∈ Th(Q,D,L) ⇔ hD(φ) ∈ Th(Q,LM(Q))
⇔ hD(φ) ∈ Th(∨k

h=1Qh,LM(Q))
⇔ φ ∈ Th(∨k

h=1Qh,D,L)
⇔ φ ∈ ∪k

h=1Th(Qh,D,L)

�

Example 1.4.7 (continued from Example 1.4.5) Using (1.5) we obtain the
partition of Th(Q,LM(Q))

I1 = {{m4}, {m3,m4}}, I2 = {∅},

so that
G(I1) = {{m3,m4}} S(I1) = {{m4}}
G(I2) = {∅} S(I2) = {∅}.

These boundary sets define the queries

Q1 = (¬m1 ∧ ¬m2) ∧ m4

Q2 = (¬m1 ∧ ¬m2 ∧ ¬m3 ∧ ¬m4)

When we view Q,Q1, Q2 as propositional formulas over propositional vari-
ables m1, . . . ,m4, we see that Q↔ Q1 ∨Q2 is a valid logical equivalence. In
fact, one can interpret the whole decomposition procedure we here developed
as a method for computing a certain normal form for propositional formulas.
We investigate this perspective further in Section 1.5. �

Example 1.4.8 (continued from Example 1.4.2) Introducing m̃1 = ¬a1,
m̃2 = ¬a2, we can express query Q1 from Example 1.4.2 using monotone
predicates only as

Q̃1 = (¬m̃1 ∨ ¬m̃2) ∧ (m1 ∨ m2)

The boundary sets of the single convex component I of Q̃1 are
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G(I) = {{m̃1,m1,m2}, {m̃2,m1,m2}} S(I) = {{m1}, {m2}}.

The query construction of Theorem 1.4.6 yields the sub-queries QA = ¬m̃1 ∨
¬m̃2 and QM = m1 ∨m2, i.e., the same decomposition as given by the query
plan in Example 1.4.2.

Now consider the query

Q′ = m1 ∨ (m2 ∧ ¬m3).

This query has dimension two, and can be solved, for example, using the
query plan m1

︸︷︷︸
∨ (m2 ∧ ¬m3)
︸ ︷︷ ︸

.

The canonical decomposition gives the following boundary sets for two
convex components:

G(I1) = {{m1,m2,m3}} S(I1) = {{m1}}
G(I2) = {{m2}} S(I2) = {{m2}},

which leads to the sub-queries

Q′
1 = m1, Q′

2 = ¬m1 ∧ ¬m3 ∧ m2.

Thus, the we obtain a different solution strategy than from the simple query
plan, and the solution will be expressed as two disjoint convex components,
whereas the query plan would return overlapping convex components. �

When we evaluate the query Q from Example 1.4.5 for LΣ , we find that
Th(Q,D,LΣ) actually has dimension 1. The basic reason for this is that in
LΣ there does not exist any pattern that satisfies ¬m1∧¬m2∧m3∧¬m4, i.e.,
that corresponds to the pattern {m3} ∈ LM(Q) that is the only “witness” for
the non-convexity of Th(Q,LM(Q)). To distinguish patterns in LM(Q) that
we need not take into account when working with a pattern language L, we
introduce the concept of L-admissibility:

Definition 1.4.9 Let L be a pattern language. A pattern µ ∈ LM(Q) is
called L-admissible if there exists φ ∈ L and datasets D such that µ = hD(φ),
where hD is as defined by (1.1). Let LM(Q),L ⊆ LM(Q) be the language of
L-admissible patterns from LM(Q). As before, we define

Th(mi,LM(Q),L) = {µ ∈ LM(Q),L | mi ∈ µ}.

An alternative characterization of admissibility is that µ is L-admissible
if there exists D such that

Th(
∧

mi∈µ

mi ∧
∧

mj 6∈µ

¬mj ,D,L) 6= ∅.

Theorem 1.4.10 Let L and Q be as in Theorem 1.4.4. The dimension of
Th(Q,D,L) is less than or equal to the dimension of Th(Q,LM(Q),L).
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Proof: The proof is as for Theorem 1.4.4, by replacing LM(Q) with LM(Q),L

throughout. We only need to note that according to the definition of admis-
sibility, the mapping hD defined by (1.1) actually maps L into LM(Q),L, so
that hD still is well-defined. �

Example 1.4.11 (continued from Example 1.4.7) Consider the language
LΣ . Of the patterns in LM(Q) two are not LΣ-admissible: as
is more specific(p, ab) ∧ is more specific(p, cb) implies length at least(p, 4), we
have that Th(¬m1 ∧ ¬m2 ∧ m3 ∧ m4,D,LΣ) = Th(¬m1 ∧ ¬m2 ∧ m3 ∧
¬m4,D,LΣ) = ∅ for all D, so that the two patterns {m3} and {m3,m4}
from LM(Q) are not LΣ-admissible.

Figure 1.2 (b) shows LM(Q),LΣ
. Now Th(Q,LM(Q),LΣ

) = {∅, {m4}} has
dimension 1, so that by Theorem 1.4.10 Th(Q,D,LΣ) also has dimension 1.

With Theorem 1.4.6 we obtain the query

Q1 = ¬m1 ∧ ¬m2 ∧ ¬m3

with Th(Q,D,LΣ) = Th(Q1,D,LΣ).
�

Table 1.1 The schema of the Query Decomposition Approach

Input:

• Query Q that is a Boolean combination of monotone predicates: M(Q) = {m1, . . . ,mn}
• datasets D
• pattern language L

Step 1: Construct LM(Q),L: for each µ ⊆ M(Q) decide whether µ is L-admissible.

Step 2: Construct Th(Q,LM(Q),L): for each µ ∈ LM(Q),L decide

whether µ ∈ Th(Q,LM(Q),L).

Step 3: Determine convex components: compute partition Th(Q,LM(Q),L) = I1 ∪ · · · ∪ Ik
into a minimal number of convex components.

Step 4: Decompose Q: compute queries Q1, . . . , Qk.
Step 5: For i = 1, . . . , k determine Th(Qi,D,L) by computing the boundaries G(Qi,D,L)

and S(Qi,D,L).

Table 1.1 summarizes the decomposition approach to inductive query eval-
uation as derived from Theorems 1.4.10 and 1.4.6. A simplified procedure
based on Theorems 1.4.4 and 1.4.6 can be used simply by omitting the first
step.

Assuming that L-admissibility is decidable in time exponential in the size
s of the query (for the pattern languages and pattern predicates we have
considered so far this will be the case), we obtain that steps 1–4 can be
performed naively in timeO(2s). This exponential complexity in s we consider
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uncritical, as the size of the query will typically be very small in comparison
to the size of D, i.e., s ≪ |D|, so that the time critical step is step 5, which
is the only step that requires inspection of D.

Theorem 1.4.10 is stronger than Theorem 1.4.4 in the sense that for given
L it yields better bounds for the dimension of Th(Q,D,L). However, The-
orem 1.4.4 is stronger than Theorem 1.4.10 in that it provides a uniform
bound for all pattern languages for which the mi are monotone. For this
reason, the computation of Th(Q,D,L) using the simpler approach given by
Theorems 1.4.4 and 1.4.6 can also be of interest in the case where we work
in the context of a fixed language L, because the solutions computed under
this approach are more robust in the following sense: suppose we have com-
puted Th(Q,D,L) using the decomposition provided by Theorems 1.4.4 and
1.4.6, i.e., by the algorithm shown in Table 1.1 omitting step 1. This gives us
a representation of Th(Q,D,L) by boundary sets G(Qh,D,L), S(Qh,D,L).
If we now consider any refinement L′ � L, then our boundary sets still de-
fine valid solutions of Q in L′, i.e., for all ψ ∈ L′, if φ � ψ � φ′ for some
φ ∈ S(Qh,D,L), φ′ ∈ G(Qh,D,L), then ψ ∈ Th(Q,D,L′) (however, the old
boundary may not completely define Th(Q,D,L′), as the maximal/minimal
solutions of Qh in L need not be maximal/minimal in L′). A similar preser-
vation property does not hold when we compute Th(Q,D,L) according to
Theorem 1.4.10.

1.5 Normal forms

In this section we analyze some aspects of our query decomposition approach
from a propositional logic perspective. Central to this investigation is the
following concept of certain syntactic normal forms of propositional formulas.

Definition 1.5.1 LetQ be a propositional formula in propositional variables
m1, . . . ,mn. We say that Q belongs to the class Θ1 if Q is logically equivalent
to a formula of the form

(
h∨

i=1

Mi

)

∧





k∨

j=1

Aj



 , (1.6)

where Mi’s are conjunctions of positive atoms and Aj ’s are conjunctions of
negative atoms. We say that Q belongs to the class Θk if Q is equivalent to
the disjunction of k formulas from Θ1.

The formulas Qh defined in Theorem 1.4.6 are in the class Θ1 when read
as propositional formulas in m1, . . . ,mn, and were constructed so as to de-
fine convex sets. The following theorem provides a general statement on the
relation between the Θk-normal form of a query and its dimension. As such,
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every formula belongs to some Θk, as can easily be seen from the disjunctive
normal forms.

Theorem 1.5.2 Let Q be a query containing pattern predicates m1, . . . ,mn.
The following are equivalent:

(i) When interpreted as a Boolean formula over propositional variables
m1, . . . ,mn, Q belongs to Θk.

(ii) The dimension of Q with respect to any pattern language L for which
m1, . . . ,mn are monotone is at most k.

Proof: (i)⇒(ii): We may assume that Q is written in Θk-normal form, i.e.,
as a disjunction of k subformulas of the form (1.6). As both unions and
intersections of monotone sets are monotone, we obtain that the left conjunct
of (1.6) defines a monotone subset of L (provided the mi define monotone
sets in L). Similarly, the right conjunct defines an anti-monotone set. Their
conjunction, then, defines a convex set, and the disjunction of k formulas
(1.6) defines a union of k convex sets.

(ii)⇒(i): This follows from the proofs of Theorems 1.4.4 and 1.4.6: let
L = LM(Q). We can view LM(Q) as the set of all truth assignments to the
variables mi by letting for µ ∈ LM(Q):

µ : mi 7→

{
true mi ∈ µ

false mi 6∈ µ

Then for all µ and all Boolean formulas Q̃ in m1, . . . ,mn:

µ ∈ Th(Q̃,LM(Q)) ⇔ µ : Q̃ 7→ true.

Therefore

µ : Q 7→ true ⇔ µ ∈ Th(Q,LM(Q))

⇔ µ ∈ ∪k
h=1Th(Qh,LM(Q))

⇔ µ : ∨k
h=1Qh 7→ true

�

In the light of Theorem 1.5.2 we can interpret the decomposition procedure
described by Theorems 1.4.4 and 1.4.6 as a Boolean transformation of Q
into Θk-normal form. This transformation takes a rather greedy approach
by explicitly constructing the exponentially many possible truth assignments
to the propositional variables in Q. It might seem possible to find a more
efficient transformation based on purely syntactic manipulations of Q. The
following result shows that this is unlikely to succeed.

Theorem 1.5.3 The problem of deciding whether a given propositional for-
mula Q belongs to Θ1 is co-NP complete.
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Proof: The class Θ1 is in co-NP: let Q be a formula in variables m1, . . . ,mn.
From Theorems 1.4.4 and 1.5.2 we know that Q 6∈ Θ1 iff the dimension of
Th(Q,LM(Q)) is at least 2. This, in turn, is equivalent to the existence of
an alternating chain of length 2 for Th(Q,LM(Q)). The existence of such a
chain can be determined in nondeterministic polynomial time by guessing
three elements µ1, µ2, µ3 ∈ LM(Q), and checking whether µ1 � µ2 � µ3 and
µ1, µ3 ∈ Th(Q,LM(Q)) and µ2 6∈ Th(Q,LM(Q)).

To show co-NP hardness we reduce the satisfiability problem to the com-
plement of Θ1. For this let F be a propositional formula in propositional
variables m1, . . . ,mk. Define

Q := (F ∧ ¬x1 ∧ ¬y1) ∨ (m1 ∧ m2 ∧ · · · ∧ mk ∧ x1 ∧ y1),

(where x1, y1 are new propositional variables). Then Th(Q,LM(Q)) has di-
mension ≥ 2 (i.e., Q 6∈ Θ1) iff F is satisfiable: If F is not satisfiable, then
(F ∧ ¬x1 ∧ ¬y1) is not satisfiable. So, Q can only be satisfied when all vari-
ables mi, x1, y1 are true. Consequently, Th(Q,LM(Q)) has only one element,
namely {m1, . . . ,mk, x1, y1} and dim(Th(Q,LM(Q))) = 1. On the other hand,
if F is satisfiable, then Th(Q,LM(Q)) contains a set φ ⊆ {m1, . . . ,mk}, and
then φ ⊆ φ ∪ {x1} ⊆ {m1, . . . ,mk, x1, y1} is an alternating chain of length 2,
because φ ∪ {x1} 6∈ Th(Q,LM(Q)).

�

The sub-queries to which the original query Q is reduced not only are
known to have convex solution sets Th(Qh,D,L), they also are of a spe-
cial syntactic form Qh = Qh,M ∧ Qh,A, where Qh,M defines a monotone set
Th(Qh,M ,D,L), and Qh,A defines an anti-monotone set Th(Qh,A,D,L). This
factorization of Qh facilitates the computation of the border sets G(Qh,D,L)
and S(Qh,D,L), for which the level wise version space algorithm [8, 15] can
be used.

1.6 Conclusions

We have described an approach to inductive querying, which generalizes both
the pattern discovery problem in data mining and the concept-learning prob-
lem in machine learning. The method is based on the decomposition of the
answer set to a collection of components defined by monotonic and anti-
monotonic predicates. Each of the components is a convex set or version
space, the borders of which can be computed using, for instance, the level
wise version space algorithm or—for the pattern domain of strings—using the
VSTmine algorithm [17], which employs a data structure called the version
space tree.
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The work presented is related to several research streams within data min-
ing and machine learning. In machine learning, there has been an interest in
version spaces ever since Tom Mitchell’s seminal Ph.D. thesis [21]. The key
complaint about standard version spaces was for a long time that it only
allowed one to cope with essentially conjuctive concept-learning, that is, the
induced concepts or patterns need to be conjuctive (which holds also for item
sets). There has been quite some work in the machine learning literature on
accomodating also disjunctive concepts (as is required in a general rule- or
concept-learning setting), for instance, [26, 27]. While such disjunctive ver-
sion space techniques sometimes also work with multiple borders set and
version spaces, the way that this is realized differs from our approach. In-
deed, in a disjunctive version space, a single solution consists of a disjunction
of patterns, of which each pattern must belong to a single version space in
the traditional sense. This differs from our approach in which each member
of a single version space is a solution in itself. Algebraic properties of version
spaces have also been investigated in the machine learning literature by, for
instance, Haym Hirsh [11] who has investigated the properties of set the-
oretic operations on version spaces, and [16] who have developed a special
version space algebra to represent functions, and used it for programming by
demonstration.

In data mining, the structure on the search space was already exploited
by early algorithms for finding frequent itemsets and association rules [1]
leading soon to the concept of border sets [20]. Whereas initially the focus
was on the use of the most specific borders, this was soon extended towards
using also the most general borders to cope with multiple data sets, with con-
junctive inductive queries or emerging patterns [8, 19]. The resulting version
space structure was further analyzed by, for instance, Bucila et al. [6] for the
case of itemsets. Each of these developments has resulted in new algorithms
and techniques for finding solutions to increasingly complex inductive queries.
The contribution of our work is that it has generalized this line of ideas in ac-
comodating also non-convex solution sets, that is, generalized version spaces.
It also allows one to cope with arbitrary Boolean inductive queries. Finally,
as already mentioned in the introduction, the present paper also attempts to
bridge the gap between the machine learning and data mining perspective
both at the task level – through the introduction of Boolean inductive query-
ing – and at the representation level – through the introduction of generalized
version spaces to represent solution sets.

The results we have presented in this chapter are by no means complete, a
lot of open problems and questions remain. A first and perhaps most impor-
tant question is as to an experimental evaluation of the approach. Although
some initial results in this direction have been presented in [17, 25, 18], the
results are not yet conclusive and a deeper and more thorough evaluation is
needed. A second question is concerned with further extending the frame-
work to cope with other primitives, which are neither monotonic nor anti-
monotonic. A typical example of such primitives are the questions that ask
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for the top-k patterns w.r.t. a particular optimization function such as χ2.
This is known as correlated pattern mining [23]. A third question is how to
perform a more quantitative query optimization, which would estimate the
resources needed to execute particular query plan.

Although there are many remaining questions, the authors hope that the
introduced framework provides a sound theory for studying these open ques-
tions.
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