Evaluating Pattern Set Mining Strategies in a
Constraint Programming Framework

Tias Guns, Siegfried Nijssen, and Luc De Raedt

Katholieke Universiteit Leuven
Celestijnenlaan 200A, B-3001 Leuven, Belgium
{Tias.Guns,Siegfried.Nijssen,Luc.DeRaedt}@cs.kuleuven.be

Abstract. The pattern mining community has shifted its attention from
local pattern mining to pattern set mining. The task of pattern set min-
ing is concerned with finding a set of patterns that satisfies a set of
constraints and often also scores best w.r.t. an optimisation criteria. Fur-
thermore, while in local pattern mining the constraints are imposed at
the level of individual patterns, in pattern set mining they are also con-
cerned with the overall set of patterns. A wide variety of different pattern
set mining techniques is available in literature. The key contribution of
this paper is that it studies, compares and evaluates such search strate-
gies for pattern set mining. The investigation employs concept-learning
as a benchmark for pattern set mining and employs a constraint pro-
gramming framework in which key components of pattern set mining are
formulated and implemented. The study leads to novel insights into the
strong and weak points of different pattern set mining strategies.

1 Introduction

In the pattern mining literature, the attention has shifted from local to global
pattern mining [1,10] or from individual patterns to pattern sets [5]. Local pattern
mining is traditionally formulated as the problem of computing Th(L, ¢, D) =
{m € L|¢(m,D) is true}, where D is a data set, L a language of patterns, and ¢
a constraint or predicate that has to be satisfied. Local pattern mining does not
take into account the relationships between patterns; the constraints are evalu-
ated locally, that is, on every pattern individually, and if the constraints are not
restrictive enough, too many patterns are found. On the other hand, in global
pattern mining or pattern set mining, one is interested in finding a small set of rel-
evant and non-redundant patterns. Pattern set mining can be formulated as the
problem of computing Th(L, ¢, ¢, D) = {II C Th(L,¢,D) | (I1,D) is true},
where 1 expresses constraints that have to be satisfied by the overall pattern
sets. In many cases a function f is used to evaluate pattern sets and one is then
only interested in finding the best pattern set I7, i.e. arg maxrern(z,p,up,0) f ().

Within the data mining and the machine learning literature numerous ap-
proaches exist that perform pattern set mining. These approaches employ a wide
variety of search strategies. In data mining, the step-wise strategy is common,

in which first all frequent patterns are computed; they are heuristically post-
processed to find a single compressed pattern set; examples are KRIMP [16]
and CBA [12]. In machine learning, the sequential covering strategy is popular,
which repeatedly and heuristically searches for a good pattern or rule and imme-
diately adds this pattern to the current pattern- (or rule-)set; examples are FOIL
[14] and CN2 [3]. Only a small number of techniques, such as [5,7,9], search for
pattern sets exhaustively, either in a step-wise or in a sequential covering setting.

The key contribution of this paper is that we study, evaluate and compare
these common search strategies for pattern set mining. As it is infeasible to
perform a detailed comparison on all pattern set mining tasks that have been
considered in the literature, we shall focus on one prototypical task for pattern
set mining: boolean concept-learning. In this task, the aim is to most accurately
describe a concept for which positive and negative examples are given.Within
this paper we choose to fix the optimisation measure used to accuracy; our focus
is on the exploration of a wide variety of search strategies for this measure, from
greedy to complete and from step-wise to one-step approaches.

To be able to obtain a fair and detailed comparison we choose to reformulate
the different strategies within the common framework of constraint program-
ming. This choice is motivated by [4,13], who have shown that constraint pro-
gramming is a very flexible and usable approach for tackling a wide variety of
local pattern mining tasks (such as closed frequent itemset mining and discrim-
inative or correlated itemset mining), and recent work [9]7] that has lifted these
techniques to finding k-pattern sets under constraints (sets containing exactly
k patterns). In [7], a global optimization approach to mining pattern sets has
been developed and has been shown to work for concept-learning, rule-learning,
redescription mining, conceptual clustering as well as tiling. In the present work,
we employ this constraint programming framework to compare different search
strategies for pattern set mining, focusing on one mining task in more detail.

This paper is organized as follows: in Section 2, we introduce the problem
of pattern set mining and its benchmark, concept-learning; in Section 3, we
formulate these problems in the framework of constraint programming and in-
troduce various search strategies for pattern set mining; in Section 4, we report
on experiments, and finally, in Section 5, we conclude.

2 Pattern Set Mining Task

The benchmark task on which we shall evaluate different pattern set mining
strategies is that of finding boolean concepts in the form of k-term DNF expres-
sions. This task is well-known in computational learning theory [8] and is closely
related to rule-learning systems such as FOIL [14] and CN2 [3]| and data mining
systems such as CBA [12] and KRIMP [16]. It is — as we shall now show — a
pattern set mining task of the form arg maxrern(z,,4,0) f (1)

In this setting, one is given a set of positive and negative examples, where
each example corresponds to a boolean variable assignment to the items in Z,
the set of possible items. Thus each example is an itemset I, C Z. Positive
examples will belong to the set of transactions 7, negatives ones to 7. The

pattern language is the set £ = 27. Hence each pattern corresponds to an itemset
I, € 7 and represents a conjunction of items. The task is then to learn a concept
description (a boolean formula) that covers all (or most) of the positive examples
and none (or only a few) of the negatives. This can be measured using the
accuracy measure, defined as:

accuracy(p, n) = p+(N-n)
" P+N

(1)
where p and n are the number of positive, respectively negative, examples cov-
ered, and P and N are the total number of positive, resp. negative, examples
present in the database. Concept descriptions are pattern sets, where each pat-
tern set corresponds to a disjunction of patterns (conjunctions). Following [7,15],
we shall focus on finding pattern sets that contain exactly k£ patterns. Thus the
pattern sets correspond to k-term DNF formulas. An example is considered cov-
ered by the pattern set if the example is a superset of at least one of the itemsets
in the pattern set.

Thus the task considered is an instance of the pattern set mining task
arg Maxern(z,p,p,0) f (1), where f is the accuracy, D =7 =T+t U7, and
L = 2%; ¢ can be instantiated to a minimum support constraint (requiring
that each pattern covers a certain number of examples), a minimum accuracy
constraint (requiring that each pattern is individually accurate), or to true, a
constraint which is always true and allows any pattern to be used which leads
to an accurate final set. ¢ states that |IT| = k.

Finding a good pattern set is often a hard task; many pattern set mining
tasks, such as the task of k-term DNF learning, are NP complete [8]. Hence,
there are no straightforward algorithms for solving such tasks in general, giving
rise to a wide variety of search algorithms. The pattern set mining techniques
they employ can be categorized along two dimensions.

Two-Step vs One-Step: in the two step approach, one first mines patterns
under local constraints to compute the set Th(L, ¢, D); afterwards, these pat-
terns are fed into another algorithm that computes arg maxzeru(z,p,v,0) f (1)
using post-processing. In the one step approach, this strict distinction be-
tween these two phases can not be made.

Exact vs Approximate: exact methods provide strong guarantees for find-
ing the optimal pattern set under the given constraints, while approximate
methods employ heuristics to find good though not necessarily optimal so-
lutions.

In the next section we will consider the instantiations of these settings for the case
of concept learning. However, first we will introduce the constraint programming
framework within which we will study these instantiations.

3 Constraint Programming Framework

Throughout the remainder of this paper we shall employ the constraint program-
ming framework of [4] for representing and solving pattern set mining problems.

This framework has been shown 1) to allow for the use of a wide range of con-
straints, 2) to work for both frequent and discriminative pattern mining [13], and
3) to be extendible towards the formulation of & pattern set mining, cf. [7,9].
These other papers provide detailed descriptions of the underlying constraint
programming algorithms and technology, including an analysis of the way in
which they explore the search tree and a performance analysis. On the other
hand, in the present paper — due to space restrictions — we need to focus on
the declarative specification of the constraint programming problems; we refer
to [4/13/7] for more details on the search strategy of such systems.

3.1 Constraint Programming Notation

Following [4], we assume that we are given a domain of items Z and transactions
7, and a binary matrix D. A key insight of the work of [4] is that constraint
based mining tasks can be formulated as constraint satisfaction problems over
the variables in m = (I,T), where a pattern 7 is represented using the vectors
I and T, with a boolean variable I; and T; for every item i € Z and every
transaction t € 7. A candidate solution to the constraint satisfaction problem is
then one assignment of the variables in m which corresponds to a single itemset.
For instance, the pattern represented by 7 = (< 1,0,1 >,< 1,1,0,0,1 >) has
items 1 and 3, and covers transactions 1, 2 and 5. Following [7], a pattern set
IT of size k simply consists of k such patterns: I = {my,...,m},Vp=1,... k:
mp = (I?,T?). We now discuss the different two-step and one-step pattern set
mining approaches.

3.2 Two-Step Pattern Set Mining

In two step pattern set mining approaches, one first searches for the set of local
patterns Th(L, ¢, D) that satisfy a set of constraints, and then post-processes
these to find the pattern sets in Th(L, ¢, v, D).

Step 1: Local Pattern Mining. Using the above notation one can formulate
many local pattern mining problems, such as frequent and discriminative pattern
mining. Indeed, consider the following constraints, introduced in [4/13]:

VieT :T; =1 HZIi(l—Dti) =0. (Coverage)
ieT
Viel: I, =1+« ZTt(l —Ds;) =0. (Closedness)

teT

VieZl:I;=1— ZTtDti >0. (Min. frequency)

teT
VieZ:I; =1 — accuracy(Z T Dy, Z T;Dsi) > 0. (Min. accuracy)
teT+ teT —

In these constraints, the coverage constraint links the items to the transactions:
it states that the transaction set 7' must be identical to the set of all transactions
that are covered by the itemset I. The closedness constraint removes redundancy

by ensuring that an itemset has no superset with the same frequency. It is a
well-known property that every non-closed pattern has an equally frequent and
accurate closed counterpart. The minimum frequency constraint ensures that
itemset I covers at least # transactions. It can more simply be formulated as
> ier Tt > 0. The above formulation is equivalent, but posted for each item
separately (observe that), c7 Tt Dy; counts the number of ¢ in column ¢ of binary
matrix D for which T3 = 1). This so-called reified formulation results in more
effective propagation; cf. [4]. Finally, to mine for all accurate patterns instead
of all frequent patterns, the minimum accuracy constraint can be used, which
ensures that itemsets have an accuracy of at least 6. The reified formulation
again results in more effective propagation [13].

To emulate the two step approaches that are common in data mining [12[16/1],
we shall employ two alternatives for the first step: 1) using frequent closed
patterns, which are found with the coverage, closedness and minimum fre-
quency constraints; 2) using accurate closed patterns, found with the cov-
erage, closedness and minimum accuracy constraints. Both of these approaches
preform the first step in an exact manner. They find the set of all local patterns
adhering to the constraints.

Step 2: Post-processing the Local Patterns. Once the local patterns have
been computed, the two step approach post-processes them in order to arrive at
the pattern set. We describe the two main approaches for this.

Post-processing by Sequential Covering (Approzimate). The most simple ap-
proach to the second step is to perform greedy sequential covering, in which
one iteratively selects the best local pattern from Th(L, ¢, D) and removes all of
the positive examples that it covers. This continues until the desired number of
patterns k£ has been reached or all positive examples are already covered. This
type of approach is most common in data mining systems. Whereas in the first
step the set Th(L, ¢, D) is computed exactly in these methods, the second step
is often an iterative loop in which patterns are selected greedily from this set.
Post-processing using Complete Search (Exact). Another possibility is to per-
form a new round of pattern mining as described in [5]. In this case, each pre-
viously found pattern in P = Th(L, », D) can be seen as an item r in a new
database; each new item identifies a pattern. One is looking for the set of pat-
tern identifiers P C P with the highest accuracy. In this case, the set is not a
conjunction of items, but a disjunction of patterns, meaning that a transaction
is covered if at least one of the patterns » € P covers it. This can be formulated
in constraint programming after a transformation of the data matrix D into a
matrix M where the rows correspond to the transactions in 7 and the columns
to the patterns in P. Moreover My, is 1 if and only if pattern r covers trans-
action ¢t and 0 otherwise. The solution set is now represented using II = (P, T),
where P is the vector representation of the pattern set, that is, P. = 1 iff r € P.
The formulation of post-processing using complete search is now:

VieT : Ty =1« Z P- My > 1. (Disj. Coverage)
repP

Vr € P: P, =1 — accuracy(Z Lir, Z Lir) >0 (Min. Accuracy)
teTt teT —

Z P. =k (Set Size)

reP

To obtain a reified formulation of the accuracy constraint we here use L. =
max(Ty, M) = My + (1 — My,)Ty The column for pattern r in this matrix
represents the transaction vector if the pattern r would be added to the set P.

The first constraint is the disjunctive coverage constraint. The second con-
straint is the minimum accuracy constraint, posted on each pattern separately
and taking the disjunctive coverage into account. Lastly, the set size constraint
limits the pattern set to size k.

This type of exact two-step approach is relatively new in data mining. Two
notable works are [11/5]. In these publications, it was proposed to post-process
a set of patterns by using a complete search over subsets of patterns. If an exact
pattern mining algorithm is used to compute the initial set of pattern in the first
step, this gives a method that is overall exact and offers strong guarantees on
the quality of the solution found.

3.3 Omne-Step Pattern Set Mining

This type of strategy, which is common in machine learning, searches for the
pattern set Th(L, ¢, 1, D) directly, that is, the computation of Th(L, ¢, 1, D)
and Th(L, ¢, D) is integrated or interleaved. This can remove the need to have
strong constraints with strict thresholds in ¢. There are two approaches to this:

Iterative Sequential Covering (Approximate). In the iterative sequential
covering approach that we investigate here, a beam search is employed (with
beam width b) to heuristically find the best pattern set. At each step during the
search a local pattern mining algorithm is used to find the top-b patterns (with
the highest accuracy) and uses these to compute new candidate pattern sets on
its beam, after which it prunes all but the best b pattern sets from its beam. This
setting is similar to 2-step sequential covering, only that here, at each iteration,
the most accurate pattern is mined for directly, instead of selecting it from a set
of previously mined patterns. Mining for the most accurate pattern can be done
in a constraint programming setting by doing branch-and-bound search over the
accuracy threshold 6. In the experimental section, we shall consider different
versions of the approach, corresponding to different sizes of the beam. When
b =1, one often talks about greedy sequential covering.

Examples of one-step greedy sequential covering methods are FOIL and CN2;
however, they use greedy algorithms to identify the local patterns instead of a
branch-and-bound pattern miner. In data mining, the use of branch-and-bound
pattern mining algorithms was recently studied for identifying top-b patterns;
see for instance [2].

Global Optimization (Exact). The last option is to specify the problem of
finding a pattern set of size k as a global optimization problem. This is possible
in a constraint programming framework, thanks to its generic handling of con-
straints, cf. [7]. The formulation, searching for k patterns m, = (I?,T?) directly,

is as follows:

Vpe{l,...,k}:VteT T < Y I’(1—Diy) =0, (Coverage) (2)
i€T
Vpe{l,... k}:Vi€Z:If &Y TP(1—Dy) =0, (Closed) (3)
teT
T <T? <...<TF (Canonical) (4)
VteT:By= |(Z TF) > 1|, (Disj.coverage) (5)
pe{l..k}
maximize accuracy(Z By, Z By). (Accurate) (6)
teT+ teT —

Each pattern has to cover the transactions (Eq.[2) and be closed (Eq.3). The
canonical form constraint in Eq. 4 enforces a fixed lexicographic ordering on the
itemsets, thereby avoiding to find equivalent but differently ordered pattern sets.
In Eq.[5] the variables B; are auxiliary variables representing whether transaction
t is covered by at least one pattern, corresponding to a disjunctive coverage.

The one-step global optimization approaches to pattern set mining are less
common; the authors are only aware of [7]9]. One could argue that some iterative
pattern mining strategies will find pattern sets that are optimal under certain
conditions. For instance, Tree? [2] can find a pattern set with minimal error on
supervised training data; however, it neither provides guarantees on the size of
the final pattern set nor provides guarantees under additional constraints.

4 Experiments

We now compare the different approaches to boolean concept learning that we
presented and answer the following two questions:

— Q1: Under what conditions do the different strategies perform well?
— Q2: What quality /runtime trade-offs do the strategies make?

To measure the quality of a pattern set, we evaluate its accuracy on the dataset.
This is an appropriate means of evaluation, as in the boolean concept learning
task we consider, the goal is to find a concise description of the training data,
rather than a hypothesis that generalizes to an underlying distribution.

The experiments were performed using the Gecode-based system proposed
by [4] and performed on PCs running Ubuntu 8.04 with Intel(R) Core(TM)2
Quad CPU Q9550 processors and 4GB of RAM. The datasets were taken from
the website accompanying this syste. The datasets were derived from the UCI
Machine Learning repository [6] by discretising numeric attributes into eight
equal-frequency bins. To obtain reasonably balanced class sizes we used the
majority class as the positive class . Experiments were run on many datasets,
but we here present the findings on 6 diverse datasets whose basic properties are
listed in the top 3 rows of Table
! http://dtai.cs.kuleuven.be/CPAIM/datasets/

http://dtai.cs.kuleuven.be/CP4IM/datasets/

Mushroom Vote Hepatitis German-credit Austr.-credit Kr-vs-kp

Transactions 8124 435 137 1000 653 3196
Ttems 119 48 68 112 125 73
Class distr. 52% 61% 81% 70% 55% 52%
Total patterns 221524 227032 3788342 25M+ 256M+ 25M+
Pattern poor/rich poor poor poor rich rich rich
frequency > 0.7 12 1 137 132 274 23992
frequency > 0.5 44 13 3351 2031 8237 369415
frequency > 0.3 293 627 93397 34883 257960 25M+
frequency > 0.1 3287 35771 1827264 2080153 24208803 25M+
accuracy > 0.7 197 193 361 2 11009 52573
accuracy > 0.6 757 1509 3459 262 492337 2261427
accuracy > 0.5 11673 9848 31581 6894 25M+ 25M+
accuracy > 0.4 221036 105579 221714 228975 25M+ 25M+

Table 1: Data properties and number of patterns found for different constraints and
thresholds. 25M+ denotes that more than 25 million patterns were found.

4.1 Two-Step Pattern Set Mining

The result of a two-step approach obviously depends on the quality of the pat-
terns found in the first step. We start by investigating the feasibility of this first
step, and then study the two-step methods as a whole.

Step 1: Local Pattern Mining. As indicated in Section 3.2 we employ two
alternatives: using frequent closed patterns and using accurate closed patterns.
Both methods rely on a threshold to influence the number of patterns found.
Table 1 lists the number of patterns found on a number of datasets, for the
two alternatives and with different thresholds. Out of practical considerations
we stopped the mining process when more than 25 million patterns were found.
Using this cut-off, we can distinguish pattern poor data (data having less than
25 million patterns when mining unconstrained) and pattern rich data. In the
case of pattern poor data, one can mine using very low or even no thresholds. In
the case of pattern rich data, however, one has to use a more stringent threshold
in order not be overwhelmed by patterns. Unfortunately, one has to mine with
different thresholds to discover how pattern poor or rich an unseen dataset is.

Step 2: Post-processing the Local Patterns. We now investigate how the
quality of the global pattern sets is influenced by the threshold used in the first
step, and how this compares to pattern sets found by 1-step methods that do
not have such thresholds.

Post-processing by Sequential Covering (Approzimate). This two-step approach
picks the best local pattern from the set of patterns computed in step one. As
such, the quality of the pattern set depends on whether the right patterns are
in the pre-computed pattern set. We use our generic framework to compare
two-step sequential covering to the one-step approach.

For pattern poor data for which the set of all patterns can be calculated, such
as the mushroom, vote and hepatitis dataset, using all patterns obviously results

Hepatitis dataset Hepatitis dataset
91.00% 100

- 1step — - v v

90.00% al v - 1step
freq 0.1 10 n . %l

89.00% acc 0.4 — ¥ freq 0.1

3 =freq 0.3 & > #racc 0.4

5 88.00% freq 0.5 g 1 ket »=freq 0.3

3 > p acc05 = <ifreq 0.5

© 87.00% acc08 5 »acc 0.6

.00% :‘accOJ o1 o = $ Eacc07

anoos - —— = . o
85.00% 0.01 sl el M
K=1 K=2 K=3 K=4 K=1 K=2 K=3 K=4

Fig. 1: Quality & runtime for approx. methods, pattern poor hepatitis dataset. In the
left figure, algorithms with identical outcome are grouped together.

Australian-credit dataset Australian-credit dataset
95.00% 10000
_ DY
1000 Q0" M
90.00% v % v
> > < S L. & istep = 1step
= freq 0.1 & 100 y ireq 01
% 85.00% ¥ acc 0.6 e — v acc 0.6
g #rfreq 0.3 E 10 #rfreq 0.3
8 . #=acc 0.7 € =acc 0.7
© 8000% <feq0s 2 -] <freq05
& < < < < < **ireq 0.7 % o > $ P weireq 0.7
75.00% yg v v v v 3¢ 04
70.00% 001
K=1 K=2 K=3 K=4 k=5 k=6 K=1 K=2 K=3 K=4 k=5 k=6

Fig. 2: Quality & runtime for approx. methods, pattern rich australian-credit dataset.

in the same pattern set as found by the one-step approach. Figure [l shows the
prototypical result for such data: low thresholds lead to good pattern sets, while
higher thresholds gradually worsen the solution. For this dataset, starting from
K=3, no better pattern set can be found. The same is true for the mushroom
dataset, while in the vote dataset the sequential covering method continues to
improve for higher K. Also note that in Figure [1] a better solution is found
when using patterns with accuracy greater than 40%, compared to patterns
with accuracy greater than 50%. This implies that a better pattern set can be
found containing a local pattern that has a low accuracy on the whole data.
This indicates that using accurate local patterns does not permit putting high
thresholds in the first step. With respect to question Q2, we can observe that
using a lower threshold comes at the cost of higher runtimes. However, for pattern
poor datasets such as the one in Figure[l] these times are still manageable. The
remarkable efficiency of the one-step sequential covering method is thanks to
recent advances in mining top-k discriminative patterns [13].

On pattern rich data such as the german-credit, australian-credit and kr-vs-
kp dataset, similar behaviour can be observed. The only difference is that one is
forced to use more stringent thresholds. Because of this, the pattern set found
by the one-step approach can usually not be found by the two-step approaches.
Figure 2] exemplifies this for the australian-credit dataset. Using a frequency
threshold of 0.1, the same pattern set as for the one-step method is found for
up to K=3, but not so for higher K. When using the highest thresholds, there is
a risk of finding significantly worse pattern sets. On the kr-vs-kp dataset, when
using high frequency thresholds significantly worse results were found as well,

Mushroom Vote Hepatitis German-cr. Austr.-cr. Kr-vs-kp

K sec K sec K sec K sec K sec K
all - - — - - -
freq. > 0.7| 6 0.2 onlylpat6 0.03 6 212 6 0.59 -
freq. > 0.5 6 22 6 001 2 2650 2 8163 6 14244 —
freq. > 0.3| 6 14 6 0.89 - - -
freq. > 0.1| 2 9477 1 1015 — - - -
acc. >0.7| 6 86 6 0.12 6 3.05 6 0.01 1 713 -
acc. > 0.6 |[*4 6714 5 14205 2 6696 6 104 - -
acc. > 0.5 | — 1 391 1 3169 1 696 - -
acc. > 04| — — - - - -

Table 2: Largest K (up to 6) and time to find it for the 2-step complete search method.
- indicates that step 1 was aborted because more than 25 million patterns were found, —
indicates that step 2 did not manage to finish within the timeout of 6 hours. * indicates
that no other method found a better pattern set.

while this was not the case for the accuracy threshold. With respect to Q2 we
have again observed that lower thresholds lead to higher runtimes for the two-
step approaches. Lowering the thresholds further to find even better pattern sets
would correspondingly come at the cost of even higher computation times.

Post-processing using Complete Search (FEzact). When post-processing a col-
lection of patterns using complete search, the size of that collection becomes
a determining factor for the success of the method. Table 2| shows the same
datasets and threshold values as in Table [1} here the entries show the largest
K for which a pattern set could be found, up to K=6, and the time it took. A
general trend is that in case many patterns are found in step 1, e.g. more than
100 000, the method is not able to find the optimal solution. With respect to
Q1, only for the mushroom dataset the method found a better pattern set than
any other method, when using all accurate patterns with threshold 0.4. For all
other sets it found however, one of the 1-step methods found a better solution.
Hence, although this method is exact in its second step, it depends on good
patterns from its first step. Unfortunately finding those usually requires using
low threshold values with corresponding disadvantages.

4.2 One-Step Pattern Set Mining

In this section we compare the different one-step approaches, who need no local
pattern constraints and thresholds. We investigate how feasible the one-step
exact approach is, as well as how close the greedy sequential covering method
brings us to this optimal solution, and whether beam search can close the gap
between the two.

When comparing the two-step sequential covering approach with the one-step
approach, we already remarked that the latter is very efficient, though it might
not find the optimal solution. The one-step exact method is guaranteed to find
the optimal solution, but has a much higher computational cost. Table 3 below
shows up to which K the exact method was able to find the optimal solution

Mushroom Vote Hepatitis German-credit Australian-credit Kr-vs-kp
K=2 K=4 K=3 K=2 K=2 K=3
Table 3: Largest K for which the optimal solution was found within 6 hours.

German-credit dataset German-credit dataset
76.00% 1000
n
75.00% - < 4 4
100 < P
3 74.00% — W pattset
o O < <t'beam 20
g 2 #=beam 15
5 % £ 10
® 73.00% 2 V2 v Y/ #=beam 10
& pattset S - V2 v V- beam 5
< beam 20 = greed
72.00% beam 15 greecy
4-beam 10 1 S o
71.00% beam 5 <c —— < < O —
- greedy
70.00% 0.1
K=1 K=2 K=3 K=4 K=5 K=6 K=1 K=2 K=3 K=4 K=5 K=6

Fig. 3: Quality & runtime for 1-step methods, german-credit dataset. In the left figure,
algorithms with identical outcome are grouped together.

within the 6 hours time out. Comparing these results to the two-step exact
approach in Table[2, we see that pattern sets can be found without constraints,
where the two-step approach failed even with constraints.

With respect to Q1 we observed that only for the kr-vs-kp dataset the greedy
method, and hence all beam searches with a larger beam, found the same pattern
sets as the exact method. For the mushroom and vote dataset, starting from
beam width 5, the optimal pattern set was found. For the german-credit and
australian-credit, a beam width of size 15 was necessary. The hepatitis dataset
was the only dataset for which the complete method was able to find a better
pattern set, in this case for K=3, within the timeout of 6 hours.

Figure [3 shows a representative figure, in this case for the german-credit
dataset: while the greedy method is not capable of finding the optimal pattern
set, larger beams successfully find the optimum. For K=6, beam sizes of 15 or
20 lead to a better pattern set than when using a lower beam size. The exact
method stands out as being the most time consuming. For beam search methods,
larger beams clearly lead to larger runtimes. The runtime only increases slightly
for increasing sizes of K because the beam search is used in a sequential covering
loop that shrinks the dataset at each iteration.

5 Conclusions

We compared several methods for finding pattern sets within a common con-
straint programming framework, where we focused on boolean concept learning
as a benchmark. We distinguished one step from two step approaches, as well
as exact from approximate ones. Each method has its strong and weak points,
but the one step approximate approaches, which iteratively mine for patterns,
provided the best trade-off between runtime and accuracy and do not depend
on a threshold; additionally, they can easily be improved using a beam search.
The exact approaches, perhaps unsurprisingly, do not scale well to larger and

pattern-rich datasets. A newly introduced approach for one-step exact pattern
set mining however has optimality guarantees and performs better than previ-
ously used two-step exact approaches. In future work our study can be extended
to consider other problem settings in pattern set mining, as well as other heuris-
tics and evaluation metrics; furthermore, even though we cast all settings in one
implementation framework in this paper, a more elaborate study could clarify
how this approach compares to the pattern set mining systems in the literature.

Acknowledgements. This work was supported by a Postdoc and project “Principles
of Patternset Mining” from the Research Foundation—Flanders, as well as a grant from
the Agency for Innovation by Science and Technology in Flanders (IWT-Vlaanderen).

References

1. Bringmann, B., Nijssen, S., Tatti, N., Vreeken, J., Zimmermann, A.: Mining sets
of patterns. In: Tutorial at ECMLPKDD 2010 (2010)

2. Bringmann, B., Zimmermann, A.: Tree? - decision trees for tree structured data.
In: Jorge, A., Torgo, L., Brazdil, P., Camacho, R., Gama, J. (eds.) PKDD. LNCS,
vol. 3721, pp. 46-58. Springer (2005)

3. Clark, P., Niblett, T.: The CN2 induction algorithm. Machine Learning 3, 261283
(1989)

4. De Raedt, L., Guns, T., Nijssen, S.: Constraint programming for itemset mining.
In: KDD. pp. 204-212. ACM (2008)

5. De Raedt, L., Zimmermann, A.: Constraint-based pattern set mining. In: SDM.
SIAM (2007)

6. Frank, A., Asuncion, A.. UCI machine learning repository (2010),
http://archive.ics.uci.edu/ml

7. Guns, T., Nijssen, S., De Raedt, L.: k-Pattern set mining under constraints.
CW Reports CW596, Department of Computer Science, K.U.Leuven (Oct 2010),
https://lirias.kuleuven.be/handle/123456789/278655

8. Kearns, M.J., Vazirani, U.V.: An introduction to computational learning theory.
MIT Press, Cambridge, MA, USA (1994)

9. Khiari, M., Boizumault, P., Crémilleux, B.: Constraint programming for mining
n-ary patterns. In: Proceedings of the 16th international conference on Principles
and practice of constraint programming. pp. 552-567. CP’10, Springer (2010)

10. Knobbe, A., Crémilleux, B., J. Firnkranz, M.S.: From local patterns to global
models: The lego approach to data mining. In: Firnkranz, J., Knobbe, A. (eds.)
Proceedings of LeGo 2008, an ECMLPKDD 2008 Workshop (2008)

11. Knobbe, A.J., Ho, E.K.Y.: Pattern teams. In: Firnkranz, J., Scheffer, T.,
Spiliopoulou, M. (eds.) PKDD. LNCS, vol. 4213, pp. 577-584. Springer (2006)

12. Liu, B., Hsu, W., Ma, Y.: Integrating classification and association rule mining.
In: KDD. pp. 80-86 (1998)

13. Nijssen, S., Guns, T., De Raedt, L.: Correlated itemset mining in ROC space: a
constraint programming approach. In: KDD. pp. 647-656. ACM (2009)

14. Quinlan, J.R.: Learning logical definitions from relations. Machine Learning 5,
239-266 (1990)

15. Riickert, U., De Raedt, L.: An experimental evaluation of simplicity in rule learn-
ing. Artif. Intell. 172(1), 19-28 (2008)

16. Siebes, A., Vreeken, J., van Leeuwen, M.: Item sets that compress. In: Ghosh, J.,
Lambert, D., Skillicorn, D.B., Srivastava, J. (eds.) SDM. pp. 395-406. SIAM (2006)

http://archive.ics.uci.edu/ml
https://lirias.kuleuven.be/handle/123456789/278655

	Evaluating Pattern Set Mining Strategies in a Constraint Programming Framework

