Positioning system of a metrological AFM: design considerations

> AFM workshop LNE, Trappes

Jan Piot K.U.Leuven – Division PMA

- General layout metrological AFM
- Layout of the positioning system
- Fine positioning unit
- Sample holder
- Coarse approach mechanism
- Conclusions

Project goal

- Calibration device for traceable measurements
- Designed for FPS Economy, SMEs, Self-employed and Energy
- Specifications:
 - ✓ 1 nm accuracy
 - \checkmark stroke of 100 μm x 100 μm x 100 μm
 - \checkmark calibration nanogrids
 - ✓ direct measurements

General design considerations

General design considerations

- General layout metrological AFM
- Layout of the positioning system
- Fine positioning unit
- Sample holder
- Coarse approach mechanism
- Conclusions

Layout of the positioning system

Layout of the positioning system

- Invar sample holder
- No strict requirements on coarse positioning table (between mirrors)
- Compact low mass coarse XY-table
- Abbe point maintained
- Alignment maintained
- Compensation of alignment errors after approach

Layout of the positioning system

- General layout metrological AFM
- Layout of the positioning system
- Fine positioning unit
- Sample holder
- Coarse approach mechanism
- Conclusions

Fine positioning unit: nanostage

Compromises

- > Serial versus parallel?
 - Bandwidth
 - Parasitic rotation
- ➤ Material?
 - CTE
 - Thermal conductivity
 - Costs
 - Mass
 - Kinematic design

Error source	Uncertain	Uncertainty [nm]	
	X, Y	Z	
Machine frame			
Abbe error	0.30	0.10	
Cosine error	0.05	0.05	
Mirror tilt error	0.26	0.15	
Mirror orthogonality	0.24	0.24	
Thermal drift	1.00	1.00	
Interferometers			
Refractive index change	0.48	0.48	
Laser wavelength accuracy	0.01	0.01	
Laser wavelength stability	0.06	0.06	
Mirror flatness	0.63	0.63	
Polarisation error	0.40	0.40	
Thermal drift	1.00	1.00	
Optical system resolution	0.15	0.15	
AFM-probe			
AFM resolution	0.60	0.05	
Positioning stage			
Stage resolution	0.20	0.20	
Result	1.85	1.72	

Material choice and kinematic mount

More mass on kinematic mount

Lower resonance frequency

Specifications

- ➤ Parasitic rotations: 3 µrad
- Resolution: 0.2 nm
- ➤ Aluminium
- ➤ Low profile
- ≻ Stiffness: 1 N/µm

- General layout metrological AFM
- Layout of the positioning system
- Fine positioning unit
- Sample holder
- Coarse approach mechanism
- Conclusions

PMA

Properties

- Invar (part metrology loop)
- Coarse XY no influence on alignment
- ➤ Mass : 0.65 kg
- Compromise: stage resonance versus component stiffness

Compromise: nanostage resonance versus component stiffness

High mass for design tolerances

Low mass for high resonance

- General layout metrological AFM
- Layout of the positioning system
- Fine positioning unit
- Sample holder
- Coarse approach mechanism
- Conclusions

Functions

- Approach sample to probe tip
- Align sample to frame
- Requirements
 - Mechanical stability
 - Thermal stability
 - Safe approach
 - Sufficient alignment possibilities

Specifications		
Mechanical	 automated approach 1.3 μm resolution 1 mm stroke 	
Thermal	 no heat production during scan fast thermal settling time 	
Alignment	 alignment accuracy of 45 arcseconds in X- and Y-directions alignment accuracy of 25 arcseconds in X- and Y-directions rotation range of 0.4 degrees 	
Robustness	 safe approach 	
Material	 aluminium (rigid connection to base) 	

Considerations

- Kinematic design (stiffness!)
- Alignment possibilities (stiffness!)
- Careful design of rods

- Positioning system: ordering components
- Fine positioning unit
 - Parasitic rotations
 - Material choice
- Sample holder
 - Component stiffness
 - Nanostage resonance frequency
- Sample approach mechanism
 - Resonance frequency
 - Kinematic mounting, stroke

