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ABSTRACT NOMENCLATURE
The behaviour of aerostatic bearings is strongly influenced m(1) characteristic value function
by the entrance flow effects nearby feeding sources. A basic u m mass flow rate
derstanding of these flow phenomena and accurate prediofion Mo entrance flow rate
their relevant parameters are therefore essential in theigte M eed feed flow rate
and optimisation process of any aerostatic bearing appitca Mriim film flow rate
The subject matter of this paper has for long been the topéx-of n(l) characteristic value function
tensive research. An overview of the different approachesd h gap height
in literature shows mostly methods based on empirical féamu ha exit gap height
with a validity limited to the experimental conditions thab- ho entrance gap height
duced them. _ _ p absolute pressure
The proposed solution method uses the technique of sepa- Pa ambient pressure
ration of variables to convert the boundary-layer equasiate- pr recess pressure
scribing the laminar channel flow into an initial value preioh. Ds supply pressure
This allows the exact calculation of the pressure profilenfigap Po pressure at entrance gap
entrance up to the attainment of viscous flow. Knowledge of Pt theoretical inlet pressure
the pressure distribution near the gap entrance togethén thie r radial distance from bearing centre
mass flow rate leads to the determination of an expedienficoef fa bearing outer radius
cient of discharge, allowing a more practical lumped parsene o entrance gap radius
formulation. _ _ _ u main flow average velocity
The results are compared with experimental data from vari- UV, W velocity components
ous sources and the agreement is found to be remarkably good, X,Y,Z space coordinates
indicating that a laminar flow model is adequate in charaister Ao entrance curtain surface
ing the entrance flow over a wide range of working parameters. B, pressure distribution function
Cq coefficient of discharge

Caorifice  Orifice coefficient of discharge
*Address all correspondence to this author.
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G velocity profile function cal Engineering of the KULeuven is presented as a background

H normalised gap height The research started in the early seventies and concehinite

[ velocity profile integral function tially on the development of design methods to improve aero-

Mo entrance Mach number static bearing characteristics as load-carrying capasiiffness

P normalised pressure and air consumption. Later on, bearing designs with a coever

R normalised radial distance gap geometry were explored as they yield far better pragserti

Re Reynolds number based on channel widthwhen compared to conventional uniform gap geometries. More

Re, reduced Reynolds number recent work focuses on air bearings with an active contiaten-

Ts fluid temperature at stagnation formable gap allowing the realisation of virtually infiniiff

Q velocity amplitude function bearings. Besides this, a considerable amount of research o

U,vV,w normalised velocity components ented towards the development of a design methodology to pre

XY, Z normalised space coordinates vent phenomena as pneumatic instabilities (hammeringpailg

Greek symbols reference concerning this is given in [1].

Y polytropic exponent The first section of this paper outlines the problem config-

K ratio of specific heats of a gas uration and its notation; thereafter, a brief overview dfiest

M dynamic viscosity solution methods for the stated problem is provided. Furthe

Y normalised conicity angle on, the method of separation of variables is applied to the la

p density inar boundary-layer equations describing narrow-chafipe,

Ne entrance number resulting in a begin value problem. This set of equations is

0 nozzle function then solved for different bearing configurations and fegdiys-

0 normalised density /po tems. Comparison of the results with experimentally oledin

O universal gas constant divided by data shows a good agreement. Finally, the formulation of an
molecular weight expedient coefficient of discharge leads to a lumped paemet

Subscripts formulation of the problem, suitable for practical beari®gign.

a ambient value

0 gap/channel entrance value

S stagnation value BEARING CONFIGURATION AND PROBLEM NOTA-

t theoretical value

INTRODUCTION

TION

Some typical aerostatic bearing configurations are shown in
Fig. 1. Nearby each feeding source, entrance flow effectsrocc
before the flow settles down to a viscous regime. A detail view

Interest in the problem of entrance flow in aerostatic bear- ¢ this entrance region and corresponding pressure ditiib
ings dates back to many decades ago. A basic understanding ofq (giverging) radial flow are shown in Fig. 2. When starting

the effects and a correct prediction of the relevant pararaétas from the supply side of the bearing, three different flow cegi
proven to be essential in the successful application ofsaatio are distinguished:

bearings. As no general formula exists to quantify the ecta
pressure (or mass flow), a range of mostly empirical methadsh (1) The feed flow region, in which the flow quickly accelerates
been developEd to allow the solution of the Complete flow prOb from Stagnation up to gap entranq@ P po),
lem. A comprehensive overview of these methods will be given (2) The (channel) entrance flow region, in which both inértia
later on. The value of the results produced by empirical azh and viscous forces are of equal importance, is characterise
is however always limited to the underlying experimentaidje by a typica| trough and Subsequent crest in the pressure
tions that produced them. curve (o — ...);

In a wider context, the stated problem of entrance flow (3) The fully developed flow region where viscous forces pre-
nearby feeding sources of fluid film bearings can be regarsed a vail. This region constitutes the greatest portion of a rarm

an example of a narrow-channel internal flow configuratiamsT bearing and extents up to gap exit where ambient conditions
broad class of flow phenomena is of both practical and theoret are present.(. — pa).

ical importance in fluid mechanics: flow intake devices, plan

ducts, radial diffusers etc. The solution method proposetis

paper is easily adaptable to describe the flow effects enemah the pressure curve of the viscous flow region back to gap en-

in these applications. trance. This pressure value is needed to determine thenentra
In order to situate the present work, a brief overview of head loss (both a gain/recovery ¢ po) and head lossx < po)

the air bearing research activities at the department ofislieic are observed in radial diverging flow). Assuming the flow to be

The theoretical inlet pressug is defined by extrapolating
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(a) journal bearing (b) thrust bearing (c) convergent pad

Figure 1. TYPICAL AEROSTATIC BEARING CONFIGURATIONS.

(a) flow configuration
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Figure 2. ENTRANCE REGION AND NOTATION.

fully viscous over the entire bearing area, results only ireg-

ligible error on the load carrying capacity. However, aeter
determination of this theoretical inlet pressixes still required

as a necessary and sufficient condition in solving the vistiow

problem.

SHORT OVERVIEW OF OTHER METHODS

Many attempts have been made to understand and quantify

the entrance effects encountered nearby feeding sourcesmf
static bearings. Only a brief overview of these attempts vl

given in this paper. A much more extensive discussion regard

this topic can be found in [2].

Afirst class of mostly empirical methods simplifies the prob-

lem to a lumped parameter formulation which relates the mass
flow rate m (or equivalentpy) to ps and p;. The main prob-
lem lies in determining the discharge or loss coefficienhese
formulations. The orifice/nozzle formula and Vohr’s coatéin
formula [3] are the most widely known examples of this first
class. Although a lot of experimental work has been carrigd o
to quantify the entrance loss coefficient of both methodts-sa
factory empirical formulas seem either complicated or ravg

a very limited validity. Another conclusion concerning skedwo
methods is that the experimentally obtained data is onlyraes

to be function of the Reynolds number and some other geomet-
rical parameters. The large scatter on the data points thet h
been related in this way, indicates that also the entrancehMa
number must be taken into account to obtain a good corralatio
A last comment concerning lumped parameter models points to
the fact that although practical to the bearing designerinno
formation about the actual flow development downstreamef th
feeding source is gained.

Other solution methods are based on the approximation of
the inertia term, momentum integral principles or serigsagx
sions. The results are in all cases approximative and foesom
methods hard to implement.

A last category holds the different numerical solutions
applied to the entrance problem. When utilising numerical
schemes, care must be taken to ensure convergence of the solu
tion process. This fact together with the large amount ofmatm
ing time, make these methods rather unhandy for practicat be
ing design. However, recent studies by Helene et al. [4]uBra
and Dzodzo [5], Renn and Hsiao [6] indicate their value far pu
pose of comparison and for handling turbulent flow condgion
non-axisymmetric geometries.

METHOD OF SEPARATION OF VARIABLES
From stagnation up to gap entrance

As stated above, the entire problem from stagnation to gap
exit consists of three different flow regimes. First, the flagy
celerates from stagnation (supply plenpgh up to gap entrance
(po)- It can be shown that the flow in this region is purely iner-
tial or inviscid. Further assumption of adiabatic expansamd
neglecting the time dependent terms, leads to the quasihste
Euler equation. As the actual pressure distribution intbigon
is of no interest in this work, a lumped parameter formulatio
relating conditions at supply side to gap entrance, is seffic

2K Ps _

My = 21T hg m\/ﬁq)(po) 1)

where,
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q)(ﬁo) _ FTOZ/K _ FTO(K+1)/K for 50 > FTC (2)

FTCZ/K _ —C(K+1)/K for 50 < 50
with,
— Po
=2 3

Po 0 3
_ 2 _
P = (i) )

Entrance flow

At gap entrance the flow transforms from a uniform velocity
distribution towards viscous flow with a parabolic disttiba. In
this second region, flow can be described by Prandtl's baynda
layer equations which are derived as a first order approimat
of the Navier-Stokes equations. This simplification is ijied
by the fact that the stated problem possesses two lengtesscal
being the transversal scale (film thickndgsand the in-plane
scale (radial distancg, andh < r. Further downstream and up
to gap exit, flow will settle down to fully developed viscousvil
with a parabolic velocity profile. In this third flow regiomartia
terms have only a limited effect. Omitting these inertiarter
leads to a second order approximation which is only applécab
in this last viscous region. This approximation forms theeese
of the well known Reynolds lubrication theory.

The proposed solution method focuses on this second flow
region described by the boundary-layer equations. Theriyade
ing theory of the method is given in [7]. It is worth mentiogin
that the basic idea of the solution method was stated by ®ing [
He started from an already truncated form of the equationaf m
tion and had to introduce further approximation to arriveato
solution. The below set of equations has been deduced in a com
pletely analytical way and is therefore an exact solutiothef
idea of Tang. For the case of axisymmetric radial compréssib
flow, separating the velocity into an amplitude functi@(R) and
profile functionG(R, 2):

U(RZ)=Q(RG(RZ) ®)
with velocity integral function,
1
= [ cdz ()
JO
4

allows the initial problem to be reformulated as:

_ 1
Y =trren™'
, _ —KMZQ
P = Hle% n(l) (7)
| =RrATO

where the primes denote the first derivative with resped®.to
Figure 3 clarifies the configuration and its notation. Theghei
function H, radial distanceR and density function] are nor-

malised with respect to the upstream gap entrance values:

H = h/h 8)
R=r/ro ©)
0 =p/po (10)

The reduced Reynolds numbRe, and entrance Mach number
M, are defined as:

_ Pololo

Re ™ (11)
Re = R%(%)Z (12)
Mo = — 0 (13)

v/KPo/Po

The velocity integral functiorl ranges from 1 to 0, with
I = 1 corresponding to a uniform velocity profile,= 2/3 to
a parabolic profile andl < 0.457 indicating the onset of reverse
flow. The characteristic value functiongl) andn(l) are tabu-
lated over the full range df with steps ofAl = 0.01. Interme-
diate values are obtained by cubic interpolation. Referdidt
explains in more detail how these functions are derived.

The problem has now been converted to an initial value
problem, which one can solve readily for a given geometrid flu
Reynolds numbeR€, and entrance Mach numb#t,. In our
case a Runge-Kutta method of the 4th order was applied. The
following discussion elaborates on the different boundanydi-
tions, flow conditions and solution procedure of the method.

Boundary condition on |

At gap entrance, the flow is assumed to have a uniform ve-
locity profile (I, = 1). This can be justified by the following rea-
soning. For small values df,/r,, the converging accelerating
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RADIAL FLOW NOTATION

Figure 3.

flow from stagnation to gap entrance resembles a plane sink flo
just upstream the entrance curtain. This means that thedlaoymn
layer thickness is gradually decreasing as the flow appesitie
gap entrance. Just before entering the gap, the thicknese of
boundary-layer is proportional to the inverse of the squeacs
of the Reynolds numbdRebased on the film thickness (Ref. [9],
p. 153). Typical values oReare in the order of 13) implying

a boundary-layer thickness to gap height ratio of less th@s 0
which corresponds to a valulg greater than 0.9. Taking into
account that velocity profiles values near unity are venyilaim
only little error will be introduced by this assumption.

For diverging flow, the integrated velocity profile func-
tion always undershoots its parabolic value and approaithes
asymptotically from below (Fig. 4). At high values of the re-
duced Reynolds numb&s,, this undershoot becomes more pro-
nounced. From a certain value drdrops below 0.457 and back-
flow occurs. Although back-flow does not directly implicate t
onset of permanent turbulence, since the flow may reattaeh fu
ther downstream. Nevertheless, some basic assumptiohg of t
solution method are undermined if large regions of back-Hosv
present.

Density function 0O in the gap

The polytropic equation of state for an ideal gas is given by:

0 =pYY (14)

in which for simplicity the isothermal expansion will be sup
posed ¥ = 1). Although this assumption leads to no significant

1.8
L~ ---Q
16} . .
14 |
N Q) >0 T
1.2} \
\
1f-—-—-—- Ao

0.8}
0.6 N

pressure

crest

______ . quasi-parabolic
0.4t pressure ~ - (1 —2/3)
trough - -
0.2 _
1 2 3 4 5 6 7 8 9 10
R=r/ro

Figure 4. TYPICAL QUALITATIVE SOLUTION INDICATING SOME
GENERAL TRENDS OF DIVERGING NARROW-CHANNEL FLOW.

error, one can solve the energy equation simultaneoushytiv
equations of motion (Eqn. 7) to asses the exact thermal bmirav
of the entrance flow.

Solution procedure

For a given problem specified by its geometry, the fluid's
physical properties and supply and ambient pressure vales
solution procedure is outlined in Fig. 5. An iterative prdaee
is required to obtain the correct value of the gap entranes-pr
sure p, which ensures ambient conditions at the gap exit. In
our case, the method of false position (regula falsi) wasl.use
Due to the nonlinearity of the problem, some care must bentake
while choosing the start valug. Although the velocity profile
only reaches the parabolic profile asymptotically, the dakion
time can be reduced by switching to an analytical soluti@s¢al
on the Reynolds equation) when the velocity integral florcti
comes close to/3.

For an axisymmetric geometry with a height distribution
given by:

H(R) =1+V(1-R), (15)

the Reynolds equation is written as (without hydrodynamic o
squeeze contribution):

1

dP?
H3

(RH R

)=0 (16)

Integration results in:
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GEOMETRY
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Figure 5. OUTLINE OF THE SOLUTION PROCEDURE

P2 =C;1By(R) +Cy, (17)

where, 6=1+V)

By(R) = (18)

1 R, (a+H)?>—(1+a)?H?
fg(log(fH( ) (2 ) )
a H 2H
Normalisation is performed with respect to ambieait ¢r gap
entrance conditionsof. Introducing entrance and ambient
boundary conditions defines the integration const@ntsndCs.

APPLICATION OF THE PROPOSED METHOD TO DIF-
FERENT FEEDING SYSTEMS

In this section the proposed solution method is applied to
bearing problems with different geometrical configurasi@md

data from other authors and with data obtained in our labllin a
following cases the working fluid concerns air. Before makin
the actual comparison it might be useful to point to some ggne
trends typical to the derived solutions (Fig. 4):

(1) Initially the flow is always accelerating, as in indicatiey
Q'(1) > 0, independent of the value of the reduced Reynolds
number and entrance Mach number;

The pressure curves always feature a characteristighro
followed by a crest. An increasing value of the reduced
Reynolds numbeRel makes this pressure trough more pro-
nounced. This depression has for long been explained by
the presence of a “vena contracta” caused by a separation
bubble just downstream of the feedhole. This study shows
that a pressure depression does not automatically invioéve t
occurrence of separation.

@)

Figure 6 reveals the different feeding systems on which the
proposed solution method has been applied. The simplest ge-
ometry is the inherent restrictor (a) with a uniform gap heig
characterised by the feedhole radigsand gap height value
h(r) = ho. The actual restriction occurs at the entrance curtain
area given by firgh,. If a feeding pocket (b) with radius, and
depthd, is provided (mostly for reasons of increased load carry-
ing capacity and/or stiffness, although deep feeding pisatan
introduce the phenomenon of “pneumatic hammering” duedo th
loss of damping), the first restriction takes place at thioeri A
second entrance effect happens when the flow enters thehigp, t
being comparable in a certain way to an inherently compedsat
feeding system withi, = r,. A last category holds the geome-
tries with a convergent gap height denoted by the coniciglean
a. These geometries provide superior bearing characteriat
increased load carrying capacity and stiffness.

Figure 7 compares with the experimental data points ob-
tained by Mori et al. [10] for the case of an inherently com-
pensated bearing with a uniform gap height. The agreement is
fair, especially regarding the high value of the reducedriRs
number and entrance Mach numbbt,(= 0.696, Re, = 2204
for the lowest of the two curves). The solution indicatesytes-
ence of back-flow in the region 1.5 mar < 3mm.

The next comparison is made against more recent data from
Belforte et al. [11]. The test bearing is also of the inhdyerg-
stricted type, but with a fairly small entrance radiys= 0.1 mm.
Figure 8 shows the derived solution for two different valoés
the entrance radius. The solution datarfpe= 0.1 mm (value as
been mentioned by the authors) yields only qualitative exgent
with their experimental data points. Good to excellent agrent
is however achieved for an entrance radius vajte 0.15 mm,
even in the region just downstream of the feedhole, as isshow
in detail by Fig. 9. Regarding the fact that only this geometr
features such a discrepancy, the cause is most likely asunac

feedings systems. Comparison has been made with expediment racy in the feedhole fabrication process, either a deviatiche
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% 10° = 3 x 10° Pa
3@ .
o mherent present solution
(@) 25b . restrictor: o h=29um
ro =0.5mm o h=54um
g Ll Lrezorm ] exp. data from ||
= Mon et aI [10]
> :
g 1.5}
(b) =
19 ..................................................................... F—
! 0'50 5 10 15 20 25 30
| . .
3 7ho\5 © radial distance [mm]
i

Figure 7. COMPARISON OF PRESSURE PROFILE FOR AN INHER-
ENTLY RESTRICTED AT HIGH MACH EN REYNOLDS NUMBER.
R€ = 57.6, Mo = 0.568 FOR h = 29um; Re, = 2204, M, =

Figure 6. NOTATION OF THE DIFFERENT FEEDING SYSTEMS:
0.696FOR h = 54um.

(a) INHERENT RESTRICTOR, (b) ORIFICE WITH FEEDING POCKET,
(c) CONVERGENT GAP.

<10P ps=6x 10° Pa
6 ;
diameter itself or a chamfer at the hole exit, both resulingn | | 7777 present sol. 1o = 0.1 mm)
increased entrance curtain area. Configurations combamia| 3 TS T present sol. o = 0.15 mm)
entrance radii and thin air gaps are more likely to suffemftbe o h=9um
above mentioned effect (as is indicated by all other corspas E o h=14um
having either larger en.trance radii or an |r.10.reaseld gaphbeig 5 4 exp. data from
Althou.gh the solutlon. method was orlgl'nally |.ntenc.ied to be s Belforte et al. [11]
applied to inherently restricted bearing configurationsan also B 3l B
handle feeding systems which incorporate a pocket/redess. "5’_ i

distinct approaches are outlined and compared with exgerm
tal data. The first approach is to be used on shallow feeding
pockets. When entering the bearing gap, the flow passes tiroug
two separate entrance curtains, each contributing to thieag!
flow pattern. A first restriction occurs at the curtain given b
21r4(ho + dp) after which the flow settles down in the feeding
recess. From this point, the flow undergoes a second (minor)
restriction characterised byr@,h,. Even further downstream,
viscous flow sets in up to ambient conditions at gap exit. To
model this flow pattern, it is sufficient to introduce a stefthia
gap height functiorn(r) atr = rp (a gradual step can prevent
numerical problems when integrating the begin value prople
The outlined approach is adopted to the geometry of Fig. 10,
demonstrating good agreement with measurements perfdsyned  and we have to refer to another solution. For this purposeea:f
Belforte et al. [11]. ing geometry with a deep recess is regarded as a combindtion o
For geometries with much deeper pockets, the entrance con-an orifice flow characterised Iy and a certain orifice discharge
ditions may be such that severe reverse flow takes place iethe  coefficientCy oritice followed by an entrance phenomenon at the
cess volume involving the onset of permanent turbulencéhiat curtain denoted by yh,. The orifice flow is assumed to loose
point the basic assumptions of the solution method aretédla  all its dynamic pressure before leaving the recess volume. A

2,.

10 12 14 16 18 20

8
radial distance [mm]

4 6

Figure 8. COMPARISON OF PRESSURE PROFILE FOR AN INHER-
ENTLY RESTRICTED BEARING (DETAIL VIEW PROVIDED IN FIG-
URE 9). Re = 27.1, My = 0.407 FOR h = 9um; Re€ = 86.9,
Mo = 0.627FOR h = 14um.
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T v | h=law
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Figure 9. DETAIL VIEW OF FIGURE 8.

«10° ps=5x 10°Pa
5 ' present solution
35 ........................................ exp_ data from
Belforte et al. [11
© 3
a,
(:,; 25 L orifice restrictor ............................................................
g with pocket:
s 2 1 h — llp,m ..........................................................
1.5H ro = 0.1 mm S JUUUPUU St \URUPOOTSORRRR
p =2mm : : : :
! 1 2 3 4 5 6 7 8

radial distance [mm]

Figure 10. COMPARISON OF PRESSURE PROFILE FOR AN ORIFICE
RESTRICTED BEARING WITH A SHALLOW FEEDING POCKET.

iterative solution strategy yields the value of the intediate re-
cess pressurp; by matching of both flow rates:

(19)

m = f(ps, pr’Cd,orifice>
' (20)

mp = f(prv pO)

< 10° ps = 6x 10° Pa
: ' present solution
5l o h=9um
0 A  h=11pm
'g_i‘ a] o h=14um
E exp. data from
§ Belforte et al. [11]
g O S SO R B ..........
s
2 .............................
N
o2 4 6 8 10 12 14 16 18 20

radial distance [mm]

Figure 11. COMPARISON OF PRESSURE PROFILE FOR AN ORIFICE
RESTRICTED BEARING WITH A FEEDING POCKET.

ps =5x 10° Pa

converging gag:
ro =0.4mm
ra=27.6mm

a = 0.32mrad

T
g, |
&
;:__) 3 ..................................................... ............
0 H
(%] H
o z
o :
2 presentsol. | i
A hy=13.4um
o hy=20.4um
14 o hy=25.7um 5
radial distance [mm]
Figure 12. COMPARISON OF PRESSURE PROFILE FOR AN INHER-

ENTLY RESTRICTED BEARING WITH CONVERGENT GAP HEIGHT.

entrance is gained through this method. The comparisondghou
therefore only be made for> rp,.

A last validation of the method involves bearing configura-

tions with a converging gap height. Figure 12 displays tha-co

Figure 11 shows the results obtained in this way. A discharge parison with measurements performed in our lab. Besides the

coefficientCy oritice = 0.6 is assumed for the orifice flow. No
information regarding the actual pressure distributioioteegap

good agreement, the superior pressure distribution cteaisic
tics of this bearing type are underlined.
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Conclusion and remarks
The method of separation of variables has been amply
demonstrated by means of different bearing configurations a

feeding systems. A fair to good agreement is observed over a

wide range of geometrical parameters (entrance ragdiasd gap
heighthy,) resulting in varying entrance flow conditions (reduced
Reynolds numbeR€, and M,). In a few cases some discrep-
ancy is noticed with experimental data. Besides being chuse
by inevitable measurement and fabrication errors, somsilpies
explanations are listed:

(1) Inthe case of small entrance radii and thin air gaps, any s
face imperfection (e.g. in the form of burrs, entrance chan-
nel chamfering...) affects the entrance curtain geometey t
great extent;

)

the channel flow to some extent;

®3)

comes more pronounced when asymmetry in the flow oc-
curs.

The above stated initial value problem (Egn. 7) relieshen
presence of axisymmetry in the entrance region. For practi-
cal bearing configurations, this condition is not always ful
filled. The imposed error is however small since the entrance
region of a well designed bearing only constitutes a small
part of the total bearing surface.

4)

FORMULATION OF A LUMPED PARAMETER MODEL

The above outlined and demonstrated method has proven its

value for application to various bearing geometries. It iddae
however more practical to deduce a lumped parameter emstranc
formulation which combined with the Reynolds equationuhss

in a fast and easy solution process for a wide variety of bear-
ing problems. The basic idea is to use the theoretical ecgran
pressurep; (defined by extrapolating the viscous solution back
to gap entrance) rather than the pressure at gap entpgracean
intermediate parameter. The error introduced in this wayeD-
ligible since the entrance flow constitutes only a smalltfcac

of the total bearing surface. In what follows, the definitafran
expedient coefficient of discharge will be derived.

The basis of the lumped parameter model is found in the
above mentioned nozzle/orifice formula. The difficulty ofsth
formula regards the determination (both empirical or te&oal)
of its loss coefficient. To arrive to a new formulation, letfiust
restate the ideal entrance flow formula (see Eqgn. 1 Wih=
211 5hg):

All pressure measurements are recorded by means of & smal
measuring hole connected through some tubing to a pressure
transducer. This measuring hole, albeit small, may change

. 2K ps Po
= — Pd(— 21
Mo = Aoy /- — i (ps) (21)
where we replac@, with p; while introducing the coefficient of
dischargeCy,
o = Caoy | oz —P_ () 22)
Mo = K1y om P
with,
—_ P
== 23
Po= (23)

The method assumes uniform pressure across the gap, and
therefore only predicts an averaged pressure value, while
measurements always indicate the wall pressure value. The
difference between averaged pressure and wall pressure be

The problem is now to ascertain if this presentation is vafid
if s0, to determine the form &4. From the previous analysis it

is known that:

Pr

o = f1(Re, Mo, geo (24)
% = f2(Mo) (25)

“geo” stands for de entrance gap geometrical propertigsuei-
form gap or convergent gap. Elimination pf yields:

b= = fa(Re;, Mo, geo (26)
S
which implies thaCy must be of the following form:
Ca = Ca(R&, Mo, ge9 (27)

Since p, has been eliminated, the problem arises to defige
andM, (which are directly or indirectly related fm,). So, a new

set of parameters has to be sought that replaces the previeas
Combining the definitions of the reduced Reynolds number and
entrance Mach number (Egns. 12 and 13) together with the feed
flow equation, creates the following relationship:

ReNAe = f4(Mo) (28)
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where the entrance numbAg depends on the supply pressure,
geometry of the problem and on its fluid properties:

_ o [0
Inserting this relation into Eqn. 26 makes clear that b¢hand
Mo must be of the form:
(R%a MO) = f5(/\97 ﬁ7geo) (30)
Finally, this gives the sought after expression@gr
Cd = fﬁ(/\ev ﬁvgeo) (31)

The question still remains if this function is single-value
over the entire range of its parameters. The only way to con-
clude about the uniqueness fifis to calculate the value @@y
for different entrance conditions. This is done by solvihg t
entrance problem for varying values @€, M) as is outlined
above. Extrapolating each solution back to gap entrancdtses
in a new combination ofp;,Cy). An example of the calculation
result for a bearing with a uniform gap height is shown in Eig}.
Below a certain value of;, the onset of turbulence prevents the
calculation of a coefficient of discharge. The asymptotitre
of the different curves appears to indicate a constant cofti
of discharge for pressure ratios below this point. The figlse
proves the uniqueness of the formulated discharge coeffifoe
each value of the entrance number

The original begin value problem describing narrow chan-
nel flow has now been converted into a more practical lumped
parameter formulation by introducing a coefficient of desgje
Cy. Tabulation of this coefficient into a lookup table faciléa
the bearing design to a great extent, as will be demonstiated
the following solution procedure (Fig. 14). Given the bagrje-
ometry, working conditions, fluid properties and bearingy
pressure, the total problem of finding the pressure digidhu
across the bearing gap is split into two subproblems whieh ar
coupled through the intermediate pressure valué&tarting with
an arbitrary valugy, the first subproblem concerns the solution
of the feed flow problem described by Eqn. 22. A second part
constitutes of solving the viscous film flow problem in thebea
ing gap described by the well known Reynolds equation. The
value of pi serves as a boundary condition at feeding sources.
Application of a discretisation scheme (finite differenoeour
case), then yields the static pressure distribution. Ie chsom-
pressible flow, this requires an iterative solution strateng.
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Figure 13. COEFFICIENT OF DISCHARGE AS A FUNCTION OF THE
EXTRAPOLATED INLET PRESSURE RATIO FOR A BEARING WITH
UNIFORM GAP HEIGHT.

a Newton-Raphson algorithm. Matching of the feed flow rate
Meeqg and the viscous film flow rates;, by means of e.g. the
method of false position (regula falsi) leads to the corvadtie

of the intermediate pressure leyglin a few iteration steps. This
matching has to be performed for each feeding source, ag-ecce
tric operation conditions result in distinct entrance gajghts
and therefore different solutions for the theoreticaltipiessure

p:. Convergence of the matching procedure shows to be some-
what difficult in case of closely spaced feeding sources due t
coupling that occurs between the different inlet boundarydi-
tions.

CONCLUSIONS

The preceding results demonstrate the effectiveness of the
proposed solution method in characterising the entraneedfo
fects encountered in aerostatic bearings over a wide rahge o
entrance parameters. This method takes into account beth th
Reynolds and Mach numbers at entrance, resulting in an accu-
rate and efficient solution, which can be expressed in terfims o
the bearing design parameters. It therefore proves itspatas
a valid alternative for the various solution methods fountiter-
ature, particularly when applying the derived lumped paat@amn
formulation. When compared to empirical solutions, the @nés
solution method relies on an underlying physical modeldadt
of being only the result of experimental data. The methodgso
to be valid over a wide range of entrance parameters whitg-exi
ing empirical formulas are hardly valid outside the expetial
conditions that produced them. Purely numerical solutiams
the other hand, are far less efficient and unhandy for pilctic
bearing design.
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Figure 14. SOLUTION PROCEDURE BY MATCHING OF FEED AND
FILM FLOW RATE.
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