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ABSTRACT
The behaviour of aerostatic bearings is strongly influenced

by the entrance flow effects nearby feeding sources. A basic un-
derstanding of these flow phenomena and accurate predictionof
their relevant parameters are therefore essential in the design
and optimisation process of any aerostatic bearing application.
The subject matter of this paper has for long been the topic ofex-
tensive research. An overview of the different approaches found
in literature shows mostly methods based on empirical formulas
with a validity limited to the experimental conditions thatpro-
duced them.

The proposed solution method uses the technique of sepa-
ration of variables to convert the boundary-layer equations de-
scribing the laminar channel flow into an initial value problem.
This allows the exact calculation of the pressure profile from gap
entrance up to the attainment of viscous flow. Knowledge of
the pressure distribution near the gap entrance together with the
mass flow rate leads to the determination of an expedient coeffi-
cient of discharge, allowing a more practical lumped parameter
formulation.

The results are compared with experimental data from vari-
ous sources and the agreement is found to be remarkably good,
indicating that a laminar flow model is adequate in characteris-
ing the entrance flow over a wide range of working parameters.

∗Address all correspondence to this author.

NOMENCLATURE

m(I) characteristic value function
ṁ mass flow rate
ṁo entrance flow rate
ṁf eed feed flow rate
ṁf ilm film flow rate
n(I) characteristic value function
h gap height
ha exit gap height
ho entrance gap height
p absolute pressure
pa ambient pressure
pr recess pressure
ps supply pressure
po pressure at entrance gap
pt theoretical inlet pressure
r radial distance from bearing centre
ra bearing outer radius
ro entrance gap radius
ū main flow average velocity
u,v,w velocity components
x,y,z space coordinates
Ao entrance curtain surface
Bν pressure distribution function
Cd coefficient of discharge
Cd,ori f ice orifice coefficient of discharge
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G velocity profile function
H normalised gap height
I velocity profile integral function
Mo entrance Mach number
P normalised pressure
R normalised radial distance
Reo Reynolds number based on channel width
Re∗o reduced Reynolds number
Ts fluid temperature at stagnation
Q velocity amplitude function
U,V,W normalised velocity components
X,Y,Z normalised space coordinates
Greek symbols
γ polytropic exponent
κ ratio of specific heats of a gas
µ dynamic viscosity
ν normalised conicity angle
ρ density
Λe entrance number
Φ nozzle function
℘ normalised density =ρ/ρo

ℜ universal gas constant divided by
molecular weight

Subscripts
a ambient value
o gap/channel entrance value
s stagnation value
t theoretical value

INTRODUCTION
Interest in the problem of entrance flow in aerostatic bear-

ings dates back to many decades ago. A basic understanding of
the effects and a correct prediction of the relevant parameters has
proven to be essential in the successful application of aerostatic
bearings. As no general formula exists to quantify the entrance
pressure (or mass flow), a range of mostly empirical methods has
been developed to allow the solution of the complete flow prob-
lem. A comprehensive overview of these methods will be given
later on. The value of the results produced by empirical methods
is however always limited to the underlying experimental condi-
tions that produced them.

In a wider context, the stated problem of entrance flow
nearby feeding sources of fluid film bearings can be regarded as
an example of a narrow-channel internal flow configuration. This
broad class of flow phenomena is of both practical and theoret-
ical importance in fluid mechanics: flow intake devices, plane
ducts, radial diffusers etc. The solution method proposed in this
paper is easily adaptable to describe the flow effects encountered
in these applications.

In order to situate the present work, a brief overview of
the air bearing research activities at the department of Mechani-

cal Engineering of the KULeuven is presented as a background.
The research started in the early seventies and concentrated ini-
tially on the development of design methods to improve aero-
static bearing characteristics as load-carrying capacity, stiffness
and air consumption. Later on, bearing designs with a convergent
gap geometry were explored as they yield far better properties
when compared to conventional uniform gap geometries. More
recent work focuses on air bearings with an active controlled con-
formable gap allowing the realisation of virtually infinitestiff
bearings. Besides this, a considerable amount of research ori-
ented towards the development of a design methodology to pre-
vent phenomena as pneumatic instabilities (hammering). A good
reference concerning this is given in [1].

The first section of this paper outlines the problem config-
uration and its notation; thereafter, a brief overview of other
solution methods for the stated problem is provided. Further
on, the method of separation of variables is applied to the lam-
inar boundary-layer equations describing narrow-channelflow,
resulting in a begin value problem. This set of equations is
then solved for different bearing configurations and feeding sys-
tems. Comparison of the results with experimentally obtained
data shows a good agreement. Finally, the formulation of an
expedient coefficient of discharge leads to a lumped parameter
formulation of the problem, suitable for practical bearingdesign.

BEARING CONFIGURATION AND PROBLEM NOTA-
TION

Some typical aerostatic bearing configurations are shown in
Fig. 1. Nearby each feeding source, entrance flow effects occur
before the flow settles down to a viscous regime. A detail view
of this entrance region and corresponding pressure distribution
for (diverging) radial flow are shown in Fig. 2. When starting
from the supply side of the bearing, three different flow regions
are distinguished:

(1) The feed flow region, in which the flow quickly accelerates
from stagnation up to gap entrance (ps → po);

(2) The (channel) entrance flow region, in which both inertial
and viscous forces are of equal importance, is characterised
by a typical trough and subsequent crest in the pressure
curve (po → ...);

(3) The fully developed flow region where viscous forces pre-
vail. This region constitutes the greatest portion of a normal
bearing and extents up to gap exit where ambient conditions
are present (... → pa).

The theoretical inlet pressurept is defined by extrapolating
the pressure curve of the viscous flow region back to gap en-
trance. This pressure value is needed to determine the entrance
head loss (both a gain/recovery (pt > po) and head loss (pt < po)
are observed in radial diverging flow). Assuming the flow to be
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(a) journal bearing (b) thrust bearing (c) convergent pad

(NOT TO SCALE)

Figure 1. TYPICAL AEROSTATIC BEARING CONFIGURATIONS.

(a) flow configuration

(b) pressure distribution
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Figure 2. ENTRANCE REGION AND NOTATION.

fully viscous over the entire bearing area, results only in aneg-
ligible error on the load carrying capacity. However, accurate
determination of this theoretical inlet pressurept is still required
as a necessary and sufficient condition in solving the viscous flow
problem.

SHORT OVERVIEW OF OTHER METHODS
Many attempts have been made to understand and quantify

the entrance effects encountered nearby feeding sources ofaero-
static bearings. Only a brief overview of these attempts will be
given in this paper. A much more extensive discussion regarding
this topic can be found in [2].

A first class of mostly empirical methods simplifies the prob-

lem to a lumped parameter formulation which relates the mass
flow rate ṁ (or equivalentpo) to ps and pt . The main prob-
lem lies in determining the discharge or loss coefficient of these
formulations. The orifice/nozzle formula and Vohr’s correlation
formula [3] are the most widely known examples of this first
class. Although a lot of experimental work has been carried out
to quantify the entrance loss coefficient of both methods, satis-
factory empirical formulas seem either complicated or haveonly
a very limited validity. Another conclusion concerning these two
methods is that the experimentally obtained data is only assumed
to be function of the Reynolds number and some other geomet-
rical parameters. The large scatter on the data points that have
been related in this way, indicates that also the entrance Mach
number must be taken into account to obtain a good correlation.
A last comment concerning lumped parameter models points to
the fact that although practical to the bearing designer, noin-
formation about the actual flow development downstream of the
feeding source is gained.

Other solution methods are based on the approximation of
the inertia term, momentum integral principles or series expan-
sions. The results are in all cases approximative and for some
methods hard to implement.

A last category holds the different numerical solutions
applied to the entrance problem. When utilising numerical
schemes, care must be taken to ensure convergence of the solu-
tion process. This fact together with the large amount of comput-
ing time, make these methods rather unhandy for practical bear-
ing design. However, recent studies by Helene et al. [4], Braun
and Dzodzo [5], Renn and Hsiao [6] indicate their value for pur-
pose of comparison and for handling turbulent flow conditions or
non-axisymmetric geometries.

METHOD OF SEPARATION OF VARIABLES
From stagnation up to gap entrance

As stated above, the entire problem from stagnation to gap
exit consists of three different flow regimes. First, the flowac-
celerates from stagnation (supply plenumps) up to gap entrance
(po). It can be shown that the flow in this region is purely iner-
tial or inviscid. Further assumption of adiabatic expansion and
neglecting the time dependent terms, leads to the quasi-steady
Euler equation. As the actual pressure distribution in thisregion
is of no interest in this work, a lumped parameter formulation
relating conditions at supply side to gap entrance, is sufficient:

ṁo = 2πroho

√

2κ
κ−1

ps√
ℜTs

Φ(p̄o) (1)

where,
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Φ(p̄o) =







√

p̄2/κ
o − p̄ (κ+1)/κ

o for p̄o ≥ p̄c
√

p̄2/κ
c − p̄ (κ+1)/κ

c for p̄o ≤ p̄c

(2)

with,

p̄o =
po

ps
(3)

p̄c = (
2

κ+1
)κ/(κ−1) (4)

Entrance flow
At gap entrance the flow transforms from a uniform velocity

distribution towards viscous flow with a parabolic distribution. In
this second region, flow can be described by Prandtl’s boundary-
layer equations which are derived as a first order approximation
of the Navier-Stokes equations. This simplification is justified
by the fact that the stated problem possesses two length scales,
being the transversal scale (film thicknessh) and the in-plane
scale (radial distancer), andh≪ r. Further downstream and up
to gap exit, flow will settle down to fully developed viscous flow
with a parabolic velocity profile. In this third flow region, inertia
terms have only a limited effect. Omitting these inertia terms
leads to a second order approximation which is only applicable
in this last viscous region. This approximation forms the essence
of the well known Reynolds lubrication theory.

The proposed solution method focuses on this second flow
region described by the boundary-layer equations. The underly-
ing theory of the method is given in [7]. It is worth mentioning
that the basic idea of the solution method was stated by Tang [8].
He started from an already truncated form of the equation of mo-
tion and had to introduce further approximation to arrive toa
solution. The below set of equations has been deduced in a com-
pletely analytical way and is therefore an exact solution ofthe
idea of Tang. For the case of axisymmetric radial compressible
flow, separating the velocity into an amplitude functionQ(R) and
profile functionG(R,Z):

U(R,Z) = Q(R)G(R,Z) (5)

with velocity integral function,

I =
∫ 1

0
GdZ (6)

allows the initial problem to be reformulated as:























Q′ = 1
H2Re∗o℘

m(I)

P′ =
−κM2

oQ
H2Re∗o

n(I)

I = 1
RH℘Q

(7)

where the primes denote the first derivative with respect toR.
Figure 3 clarifies the configuration and its notation. The height
function H, radial distanceR and density function℘ are nor-
malised with respect to the upstream gap entrance values:

H = h/ho (8)

R = r/ro (9)

℘ = ρ/ρo (10)

The reduced Reynolds numberRe∗o and entrance Mach number
Mo are defined as:

Reo =
ρoūoro

µo
(11)

Re∗o = Reo(
ho

ro
)2 (12)

Mo =
ūo

√

κpo/ρo
(13)

The velocity integral functionI ranges from 1 to 0, with
I = 1 corresponding to a uniform velocity profile,I = 2/3 to
a parabolic profile andI ≤ 0.457 indicating the onset of reverse
flow. The characteristic value functionsm(I) andn(I) are tabu-
lated over the full range ofI with steps of∆I = 0.01. Interme-
diate values are obtained by cubic interpolation. Reference [7]
explains in more detail how these functions are derived.

The problem has now been converted to an initial value
problem, which one can solve readily for a given geometry, fluid,
Reynolds numberRe∗o and entrance Mach numberMo. In our
case a Runge-Kutta method of the 4th order was applied. The
following discussion elaborates on the different boundarycondi-
tions, flow conditions and solution procedure of the method.

Boundary condition on I
At gap entrance, the flow is assumed to have a uniform ve-

locity profile (Io = 1). This can be justified by the following rea-
soning. For small values ofho/ro, the converging accelerating

4 Copyright c© 2008 by ASME



r
ro

0

0

z

u
w

h(r)ho

Figure 3. RADIAL FLOW NOTATION

flow from stagnation to gap entrance resembles a plane sink flow
just upstream the entrance curtain. This means that the boundary-
layer thickness is gradually decreasing as the flow approaches the
gap entrance. Just before entering the gap, the thickness ofthe
boundary-layer is proportional to the inverse of the squareroot
of the Reynolds numberRebased on the film thickness (Ref. [9],
p. 153). Typical values ofReare in the order of 103, implying
a boundary-layer thickness to gap height ratio of less than 0.05
which corresponds to a valueIo greater than 0.9. Taking into
account that velocity profiles values near unity are very similar,
only little error will be introduced by this assumption.

For diverging flow, the integrated velocity profile func-
tion always undershoots its parabolic value and approachesit
asymptotically from below (Fig. 4). At high values of the re-
duced Reynolds numberRe∗o, this undershoot becomes more pro-
nounced. From a certain value on,I drops below 0.457 and back-
flow occurs. Although back-flow does not directly implicate the
onset of permanent turbulence, since the flow may reattach fur-
ther downstream. Nevertheless, some basic assumptions of the
solution method are undermined if large regions of back-floware
present.

Density function ℘ in the gap
The polytropic equation of state for an ideal gas is given by:

℘= P1/γ (14)

in which for simplicity the isothermal expansion will be sup-
posed (γ = 1). Although this assumption leads to no significant
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Figure 4. TYPICAL QUALITATIVE SOLUTION INDICATING SOME

GENERAL TRENDS OF DIVERGING NARROW-CHANNEL FLOW.

error, one can solve the energy equation simultaneously with the
equations of motion (Eqn. 7) to asses the exact thermal behaviour
of the entrance flow.

Solution procedure
For a given problem specified by its geometry, the fluid’s

physical properties and supply and ambient pressure values, the
solution procedure is outlined in Fig. 5. An iterative procedure
is required to obtain the correct value of the gap entrance pres-
sure po which ensures ambient conditions at the gap exit. In
our case, the method of false position (regula falsi) was used.
Due to the nonlinearity of the problem, some care must be taken
while choosing the start valuep∗o. Although the velocity profile
only reaches the parabolic profile asymptotically, the calculation
time can be reduced by switching to an analytical solution (based
on the Reynolds equation) when the velocity integral function
comes close to 2/3.

For an axisymmetric geometry with a height distribution
given by:

H(R) = 1+ν(1−R), (15)

the Reynolds equation is written as (without hydrodynamic or
squeeze contribution):

1
R

(RH3 dP2

dR
) = 0 (16)

Integration results in:
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Figure 5. OUTLINE OF THE SOLUTION PROCEDURE

P2 = C1Bν(R)+C2, (17)

where, (a = 1+ν)

Bν(R) =
1
a3

(

log(
R
H

)+
(a+H)2− (1+a)2H2

2H2

)

(18)

Normalisation is performed with respect to ambient (a) or gap
entrance conditions (o). Introducing entrance and ambient
boundary conditions defines the integration constantsC1 andC2.

APPLICATION OF THE PROPOSED METHOD TO DIF-
FERENT FEEDING SYSTEMS

In this section the proposed solution method is applied to
bearing problems with different geometrical configurations and
feedings systems. Comparison has been made with experimental

data from other authors and with data obtained in our lab. In all
following cases the working fluid concerns air. Before making
the actual comparison it might be useful to point to some general
trends typical to the derived solutions (Fig. 4):

(1) Initially the flow is always accelerating, as in indicated by
Q′(1) > 0, independent of the value of the reduced Reynolds
number and entrance Mach number;

(2) The pressure curves always feature a characteristic trough,
followed by a crest. An increasing value of the reduced
Reynolds numberRe∗o makes this pressure trough more pro-
nounced. This depression has for long been explained by
the presence of a “vena contracta” caused by a separation
bubble just downstream of the feedhole. This study shows
that a pressure depression does not automatically involve the
occurrence of separation.

Figure 6 reveals the different feeding systems on which the
proposed solution method has been applied. The simplest ge-
ometry is the inherent restrictor (a) with a uniform gap height,
characterised by the feedhole radiusro and gap height value
h(r) = ho. The actual restriction occurs at the entrance curtain
area given by 2πroho. If a feeding pocket (b) with radiusrp and
depthdp is provided (mostly for reasons of increased load carry-
ing capacity and/or stiffness, although deep feeding pockets can
introduce the phenomenon of “pneumatic hammering” due to the
loss of damping), the first restriction takes place at the orifice. A
second entrance effect happens when the flow enters the gap, this
being comparable in a certain way to an inherently compensated
feeding system withro = rp. A last category holds the geome-
tries with a convergent gap height denoted by the conicity angle
α. These geometries provide superior bearing characteristics as
increased load carrying capacity and stiffness.

Figure 7 compares with the experimental data points ob-
tained by Mori et al. [10] for the case of an inherently com-
pensated bearing with a uniform gap height. The agreement is
fair, especially regarding the high value of the reduced Reynolds
number and entrance Mach number (Mo = 0.696, Re∗o = 220.4
for the lowest of the two curves). The solution indicates thepres-
ence of back-flow in the region 1.5 mm< r < 3 mm.

The next comparison is made against more recent data from
Belforte et al. [11]. The test bearing is also of the inherently re-
stricted type, but with a fairly small entrance radiusro = 0.1 mm.
Figure 8 shows the derived solution for two different valuesof
the entrance radius. The solution data forro = 0.1 mm (value as
been mentioned by the authors) yields only qualitative agreement
with their experimental data points. Good to excellent agreement
is however achieved for an entrance radius valuero = 0.15 mm,
even in the region just downstream of the feedhole, as is shown
in detail by Fig. 9. Regarding the fact that only this geometry
features such a discrepancy, the cause is most likely an inaccu-
racy in the feedhole fabrication process, either a deviation of the
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Figure 6. NOTATION OF THE DIFFERENT FEEDING SYSTEMS:

(a) INHERENT RESTRICTOR, (b) ORIFICE WITH FEEDING POCKET,

(c) CONVERGENT GAP.

diameter itself or a chamfer at the hole exit, both resultingin an
increased entrance curtain area. Configurations combiningsmall
entrance radii and thin air gaps are more likely to suffer from the
above mentioned effect (as is indicated by all other comparisons
having either larger entrance radii or an increased gap height).

Although the solution method was originally intended to be
applied to inherently restricted bearing configurations, it can also
handle feeding systems which incorporate a pocket/recess.Two
distinct approaches are outlined and compared with experimen-
tal data. The first approach is to be used on shallow feeding
pockets. When entering the bearing gap, the flow passes through
two separate entrance curtains, each contributing to the global
flow pattern. A first restriction occurs at the curtain given by
2πro(ho + dp) after which the flow settles down in the feeding
recess. From this point, the flow undergoes a second (minor)
restriction characterised by 2πrpho. Even further downstream,
viscous flow sets in up to ambient conditions at gap exit. To
model this flow pattern, it is sufficient to introduce a step inthe
gap height functionh(r) at r = rp (a gradual step can prevent
numerical problems when integrating the begin value problem).
The outlined approach is adopted to the geometry of Fig. 10,
demonstrating good agreement with measurements performedby
Belforte et al. [11].

For geometries with much deeper pockets, the entrance con-
ditions may be such that severe reverse flow takes place in there-
cess volume involving the onset of permanent turbulence. Atthis
point the basic assumptions of the solution method are violated
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and we have to refer to another solution. For this purpose, a feed-
ing geometry with a deep recess is regarded as a combination of
an orifice flow characterised byro and a certain orifice discharge
coefficientCd,ori f ice followed by an entrance phenomenon at the
curtain denoted by 2πrpho. The orifice flow is assumed to loose
all its dynamic pressure before leaving the recess volume. An
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iterative solution strategy yields the value of the intermediate re-
cess pressurepr by matching of both flow rates:

ṁ1 = f (ps, pr ,Cd,ori f ice) (19)

ṁ2 = f (pr , po) (20)

Figure 11 shows the results obtained in this way. A discharge
coefficientCd,ori f ice = 0.6 is assumed for the orifice flow. No
information regarding the actual pressure distribution before gap
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entrance is gained through this method. The comparison should
therefore only be made forr > rp.

A last validation of the method involves bearing configura-
tions with a converging gap height. Figure 12 displays the com-
parison with measurements performed in our lab. Besides the
good agreement, the superior pressure distribution characteris-
tics of this bearing type are underlined.
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Conclusion and remarks
The method of separation of variables has been amply

demonstrated by means of different bearing configurations and
feeding systems. A fair to good agreement is observed over a
wide range of geometrical parameters (entrance radiusro and gap
heightho) resulting in varying entrance flow conditions (reduced
Reynolds numberRe∗o and Mo). In a few cases some discrep-
ancy is noticed with experimental data. Besides being caused
by inevitable measurement and fabrication errors, some possible
explanations are listed:

(1) In the case of small entrance radii and thin air gaps, any sur-
face imperfection (e.g. in the form of burrs, entrance chan-
nel chamfering...) affects the entrance curtain geometry to a
great extent;

(2) All pressure measurements are recorded by means of a small
measuring hole connected through some tubing to a pressure
transducer. This measuring hole, albeit small, may change
the channel flow to some extent;

(3) The method assumes uniform pressure across the gap, and
therefore only predicts an averaged pressure value, while
measurements always indicate the wall pressure value. The
difference between averaged pressure and wall pressure be-
comes more pronounced when asymmetry in the flow oc-
curs.

(4) The above stated initial value problem (Eqn. 7) relies onthe
presence of axisymmetry in the entrance region. For practi-
cal bearing configurations, this condition is not always ful-
filled. The imposed error is however small since the entrance
region of a well designed bearing only constitutes a small
part of the total bearing surface.

FORMULATION OF A LUMPED PARAMETER MODEL
The above outlined and demonstrated method has proven its

value for application to various bearing geometries. It would be
however more practical to deduce a lumped parameter entrance
formulation which combined with the Reynolds equation, results
in a fast and easy solution process for a wide variety of bear-
ing problems. The basic idea is to use the theoretical entrance
pressurept (defined by extrapolating the viscous solution back
to gap entrance) rather than the pressure at gap entrancepo as an
intermediate parameter. The error introduced in this way, is neg-
ligible since the entrance flow constitutes only a small fraction
of the total bearing surface. In what follows, the definitionof an
expedient coefficient of discharge will be derived.

The basis of the lumped parameter model is found in the
above mentioned nozzle/orifice formula. The difficulty of this
formula regards the determination (both empirical or theoretical)
of its loss coefficient. To arrive to a new formulation, let usfirst
restate the ideal entrance flow formula (see Eqn. 1 withAo =
2πroho):

ṁo = Ao

√

2κ
κ−1

ps√
ℜTs

Φ(
po

ps
) (21)

where we replacepo with pt while introducing the coefficient of
dischargeCd,

ṁo = CdAo

√

2κ
κ−1

ps√
ℜTs

Φ(p̄t) (22)

with,

p̄t =
pt

ps
(23)

The problem is now to ascertain if this presentation is validand
if so, to determine the form ofCd. From the previous analysis it
is known that:

pt

po
= f1(Re∗o,Mo,geo) (24)

po

ps
= f2(Mo) (25)

“geo” stands for de entrance gap geometrical properties, e.g. uni-
form gap or convergent gap. Elimination ofpo yields:

p̄t =
pt

ps
= f3(Re∗o,Mo,geo) (26)

which implies thatCd must be of the following form:

Cd = Cd(Re∗o,Mo,geo) (27)

Sincepo has been eliminated, the problem arises to defineRe∗o
andMo (which are directly or indirectly related topo). So, a new
set of parameters has to be sought that replaces the previousones.
Combining the definitions of the reduced Reynolds number and
entrance Mach number (Eqns. 12 and 13) together with the feed
flow equation, creates the following relationship:

Re∗oΛe = f4(Mo) (28)
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where the entrance numberΛe depends on the supply pressure,
geometry of the problem and on its fluid properties:

Λe =
µro
psh2

o

√

ℜTs

κ
(29)

Inserting this relation into Eqn. 26 makes clear that bothRe∗o and
Mo must be of the form:

(Re∗o,Mo) = f5(Λe, p̄t ,geo) (30)

Finally, this gives the sought after expression forCd:

Cd = f6(Λe, p̄t ,geo) (31)

The question still remains if this function is single-valued
over the entire range of its parameters. The only way to con-
clude about the uniqueness off6 is to calculate the value ofCd

for different entrance conditions. This is done by solving the
entrance problem for varying values of(Re∗o,Mo) as is outlined
above. Extrapolating each solution back to gap entrance results
in a new combination of(p̄t ,Cd). An example of the calculation
result for a bearing with a uniform gap height is shown in Fig.13.
Below a certain value of ¯pt , the onset of turbulence prevents the
calculation of a coefficient of discharge. The asymptotic nature
of the different curves appears to indicate a constant coefficient
of discharge for pressure ratios below this point. The figurealso
proves the uniqueness of the formulated discharge coefficient for
each value of the entrance numberΛe.

The original begin value problem describing narrow chan-
nel flow has now been converted into a more practical lumped
parameter formulation by introducing a coefficient of discharge
Cd. Tabulation of this coefficient into a lookup table facilitates
the bearing design to a great extent, as will be demonstratedby
the following solution procedure (Fig. 14). Given the bearing ge-
ometry, working conditions, fluid properties and bearing supply
pressure, the total problem of finding the pressure distribution
across the bearing gap is split into two subproblems which are
coupled through the intermediate pressure valuept . Starting with
an arbitrary valuep∗t , the first subproblem concerns the solution
of the feed flow problem described by Eqn. 22. A second part
constitutes of solving the viscous film flow problem in the bear-
ing gap described by the well known Reynolds equation. The
value of p∗t serves as a boundary condition at feeding sources.
Application of a discretisation scheme (finite difference in our
case), then yields the static pressure distribution. In case of com-
pressible flow, this requires an iterative solution strategy, e.g.
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Figure 13. COEFFICIENT OF DISCHARGE AS A FUNCTION OF THE

EXTRAPOLATED INLET PRESSURE RATIO FOR A BEARING WITH

UNIFORM GAP HEIGHT.

a Newton-Raphson algorithm. Matching of the feed flow rate
ṁf eed and the viscous film flow rate ˙mf ilm by means of e.g. the
method of false position (regula falsi) leads to the correctvalue
of the intermediate pressure levelpt in a few iteration steps. This
matching has to be performed for each feeding source, as eccen-
tric operation conditions result in distinct entrance gap heights
and therefore different solutions for the theoretical inlet pressure
pt . Convergence of the matching procedure shows to be some-
what difficult in case of closely spaced feeding sources due to
coupling that occurs between the different inlet boundary condi-
tions.

CONCLUSIONS
The preceding results demonstrate the effectiveness of the

proposed solution method in characterising the entrance flow ef-
fects encountered in aerostatic bearings over a wide range of
entrance parameters. This method takes into account both the
Reynolds and Mach numbers at entrance, resulting in an accu-
rate and efficient solution, which can be expressed in terms of
the bearing design parameters. It therefore proves its potential as
a valid alternative for the various solution methods found in liter-
ature, particularly when applying the derived lumped parameter
formulation. When compared to empirical solutions, the present
solution method relies on an underlying physical model instead
of being only the result of experimental data. The method proves
to be valid over a wide range of entrance parameters while exist-
ing empirical formulas are hardly valid outside the experimental
conditions that produced them. Purely numerical solutions, on
the other hand, are far less efficient and unhandy for practical
bearing design.
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ṁf eed

Reynolds eqn.
Newton-
Raphson

pressure
distribution
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