
Expressive Modular Fine-Grained Concurrency Specification

Bart Jacobs ∗ Frank Piessens
DistriNet Research Group, Department of Computer Science, Katholieke Universiteit Leuven, Belgium

{bart.jacobs,frank.piessens}@cs.kuleuven.be

Abstract
Compared to coarse-grained external synchronization of operations
on data structures shared between concurrent threads, fine-grained,
internal synchronization can offer stronger progress guarantees and
better performance. However, fully specifying operations that per-
form internal synchronization modularly is a hard, open problem.
The state of the art approaches, based on linearizability or on
concurrent abstract predicates, have important limitations on the
expressiveness of specifications. Linearizability does not support
ownership transfer, and the concurrent abstract predicates-based
specification approach requires hardcoding a particular usage pro-
tocol. In this paper, we propose a novel approach that lifts these
limitations and enables fully general specification of fine-grained
concurrent data structures. The basic idea is that clients pass the
ghost code required to instantiate an operation’s specification for
a specific client scenario into the operation in a simple form of
higher-order programming.

We machine-checked the theory of the paper using the Coq
proof assistant. Furthermore, we implemented the approach in our
program verifier VeriFast and used it to verify two challenging fine-
grained concurrent data structures from the literature: a multiple-
compare-and-swap algorithm and a lock-coupling list.

Categories and Subject Descriptors F.3.1 [Logics and Mean-
ings of Programs]: Specifying and Verifying and Reasoning about
Programs—Specification techniques

General Terms Verification

Keywords fine-grained concurrency, separation logic

1. Introduction
34 years after Owicki and Gries (O&G) proposed their resource-
invariants-based (RI) method [12] and their interference-freedom-
checks-based (IF) method [13] for the verification of parallel pro-
grams, doing so fully modularly is still an area of active research.
For parallel programs, two kinds of modularity can be distin-
guished: thread-modularity and procedure-modularity.

Thread-modularity means that each thread can be verified sepa-
rately, under a well-defined, concise set of assumptions on its envi-
ronment. The RI method satisfies this criterion, since the resource
invariants are the only shared assumptions among the threads. The

∗ This work was performed while Bart Jacobs was a Postdoctoral Fellow of
the Research Foundation - Flanders (FWO)

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
POPL’11, 23-JAN-2011, Austin, TX, USA
Copyright c© 2011 ACM 978-1-4503-0490-0/11/01. . . $10.00

IF method does not, since it requires each command of each thread
to be checked for interference with each command of each other
thread. The latter problem was solved by the rely-guarantee (RG)
method [9], which summarizes each thread’s interference assump-
tions and guarantees in a single rely, resp. guarantee condition.

Procedure-modularity means that each procedure, or each group
of procedures that cooperate to implement an abstract data type,
can be verified separately, again under a well-defined, concise set
of assumptions on its environment that performs proper abstraction
over implementation aspects. Neither the RI method nor RG satisfy
this criterion. RI, because it requires auxiliary variable annotations
that break modularity, as we will show; and RG, because it does not
allow as-if-atomic operations on data structures to be treated just
like atomic machine instructions, although this has been addressed
recently with work on linearizability-based verification [6, 15].

In this paper, we propose an extension of the RI method that
achieves procedure-modularity. The basic idea is simple: at each
procedure call, the auxiliary variable updates required to enable
verification of the client program are passed into the procedure as
an extra argument. Correspondingly, the procedure’s specification
is parameterized by a precondition and a postcondition for the
updates, and imposes a correctness condition on the updates in the
form of a Hoare triple.

We first describe the approach informally in the context of an
informal extension of the RI method with procedures. However,
since the RI method imposes syntactic restrictions on which threads
may mention specific variables, an extension with procedures re-
quires more involved bookkeeping of variable occurrences. These
details are not very interesting, and we do not develop this setting
formally; rather, our formal system, like our implementation, uses
separation logic [11, 14], where these issues do not occur.

We implemented the approach in our program verifier VeriFast
and verified two challenging fine-grained concurrent data structures
from the literature: a multiple-compare-and-swap (MCAS) algo-
rithm [5], and a lock-coupling list.

The remainder of the paper is structured as follows. In §2 we re-
call the RI method. In §3 we show that this method is not procedure-
modular. In §4, we informally present our approach for extending
RI to achieve procedure-modularity. In §5, we describe how our
approach may be lifted to a dynamic setting using separation logic
and permission accounting. In §6, we introduce ghost objects, data
structures constructed from auxiliary heap cells that enable par-
tial information sharing. In §7, we describe how programs that use
atomic machine instructions can be encoded straightforwardly into
the system of this paper. In §8, we describe our proof of a concur-
rent set algorithm. In §9 we describe the verification tool. Finally,
we discuss related work in §10.

2. The Owicki-Gries Method
Consider the simple parallel program used by O&G [12] to in-
troduce their resource-invariant-based method, reproduced in Fig-

resource r(x) : cobegin
with r when true do x := x+ 1

//
with r when true do x := x+ 1

coend

Figure 1. A simple parallel program; can be verified with resource
invariants and auxiliary variables

ure 1. It uses the parallel execution command

cobegin S1// . . . //Sn coend

to run two threads that each increment variable x. Variable x is
protected by resource r: the critical section command with r
when B do S blocks until B is true and no other thread is using
r.

In this simple language, data races can be avoided by imposing
the following simple syntactic restrictions:

• An assignment to a variable x that belongs to a resource r is
allowed only inside a critical section for r.

• An occurrence of a variable x outside of a critical section for a
resource to which it belongs, if any, is allowed only if no other
thread modifies the variable.

O&G propose the following axioms for parallel executions and
critical sections, similar to the ones proposed by Hoare but with re-
laxed conditions on variable occurrences. The axioms assume that
an assertion I(r) has been defined for each resource r, called the
resource’s resource invariant.
Parallel Execution Axiom. If {P1} S1 {Q1} and {P2} S2 {Q2}
and . . . and {Pn} Sn {Qn} and no variable free in Pi or Qi
is changed in Sj (i 6= j) and all variables in I(r) belong
to resource r, then {P1 ∧ · · · ∧ Pn ∧ I(r)} resource r :
cobegin S1// . . . //Sn coend {Q1 ∧ · · · ∧Qn ∧ I(r)}.
Critical Section Axiom. If {I(r) ∧ P ∧ B} S {I(r) ∧ Q},
and I(r) is the invariant from the cobegin command, and no
variable free in P or Q is changed in another process, then
{P}with r when B do S {Q}.

We would like to prove that if x = 0 before the program exe-
cutes, then x = 2 after the program terminates. As O&G point out,
this property cannot be verified using the above axioms directly.
They propose to augment the program with auxiliary variables y
and z, that track each thread’s contribution to the value of x. Fig-
ure 2 shows the proof outline given by O&G for the augmented
program.

Notice that the auxiliary variables are mentioned in assertions
outside of the with do commands, even though they are protected
by resource r; this is allowed provided that the thread that mentions
a given variable is the only one that modifies that variable, per the
Parallel Execution Axiom.

To regulate reasoning using auxiliary variables, O&G propose
auxiliary variable sets and the Auxiliary Variable Axiom.
Definition. A set AV of program variables is an auxiliary variable
set for a given program if variables in AV appear in the program
only in assignments to variables in AV.
Auxiliary Variable Axiom. If AV is an auxiliary variable set for S,
let S′ be obtained from S by deleting all assignments to variables
in AV. Then if {P} S {Q} is true and P and Q do not refer to any
variables from AV, {P} S′ {Q} is also true.

3. The Procedure-Modularity Problem
Now consider again the un-augmented program of Figure 1. Sup-
pose we wish to encapsulate x and the operation on it, i.e. the in-

{x = 0}
begin y := 0; z := 0;
{y = 0 ∧ z = 0 ∧ I(r)}
resource r(x, y, z) : cobegin
{y = 0}
with r when true do
{y = 0 ∧ I(r)}
begin x := x+ 1; y := 1 end
{y = 1 ∧ I(r)}
{y = 1}

//
{z = 0}
with r when true do
{z = 0 ∧ I(r)}
begin x := x+ 1; z := 1 end
{z = 1 ∧ I(r)}
{z = 1}

coend
{y = 1 ∧ z = 1 ∧ I(r)}

end
{x = 2}
I(r) = {x = y + z}

Figure 2. Owicki and Gries’ proof of the program of Figure 1. y
and z are auxiliary variables.

procedure incr() do x := x+ 1
resource r(x) : cobegin

with r when true do incr()
//

with r when true do incr()
coend

(a) External synchronization

procedure incr(r) do with r when true do x := x+ 1
resource r(x) : cobegin

incr(r)
//

incr(r)
coend

(b) Internal synchronization

Figure 3. Two modularized versions of the program of Figure 1

crement operation, into a separate module. (Note: neither the pro-
gramming language of O&G, nor their proof system, support proce-
dures, since both impose syntactic conditions on the threads where
variables occur, and this is not well-defined in the presence of pro-
cedures. In this section and the next, we informally introduce our
approach, while glossing over this issue. In Section 5 we present
our approach formally, using heap cells instead of global variables,
thus eliminating this issue.) There are two ways to do this: using
external synchronization (Figure 3a) and using internal synchro-
nization (Figure 3b).

In the version that uses external synchronization, the module is
easy to specify: procedure incr satisfies the following specifica-
tion: {x = X} incr() {x = X+1} whereX is a logical variable;
the specification holds for all values of X . Using this specification,
both module and client program are easy to verify; the proof outline
of Figure 2 is mostly unchanged. The reason is that the auxiliary
variables can be added in the client program; no augmentation of
the module is required.

procedure incr(r, ρ) do
with r when true do begin x := x+ 1; ρ end

begin y := 0; z := 0;
resource r(x, y, z) : cobegin

incr(r, y := 1)
//

incr(r, z := 1)
coend

end

Figure 4. The program of Figure 3b, augmented per our approach

For the version that uses internal synchronization, this is not the
case. The updates of y and z need to be added inside the with do
command, but this command is in the module and furthermore
different updates need to be added for different call sites. One
might then wonder whether insisting on internal synchronization is
worthwhile; it is, because delegating synchronization to the module
allows the module to perform fine-grained synchronization, for
example by acquiring locks multiple times for smaller amounts of
time, or by using atomic machine instructions such as compare-
and-swap.

One can easily see that verifying this program with the Owicki-
Gries method is impossible. Indeed, consider any augmentation of
the program with auxiliary variable assignments, and any proof
outline for the augmented program. Since the assignments inside
the critical section occur in both threads, no variable modified
inside the critical section may be mentioned by any thread’s proof
outline outside the critical section. Therefore, removing the critical
section from the program does not invalidate the proof outline.
Consequently, the proof outline cannot verify the triple {x =
0} · {x = 2}.

4. Achieving Procedure-Modularity
In order to enable a modular specification of the module of Fig-
ure 3b, we propose to augment the program not just with auxiliary
variables, but with a simple form of higher-order programming to
allow the client program to pass auxiliary variable updates into the
module. Specifically, we augment procedure incr with a parame-
ter ρ that ranges over commands, and its body so that it executes
ρ after the update of x inside the critical section. In the client pro-
gram, at each call of incr , the appropriate auxiliary variable update
is specified as the value for parameter ρ. The augmented program
is shown in Figure 4.

The specification of incr is now more involved:

x /∈ FV (P,U,Q)
P ∧ I(r)⇒ U(x+ 1) {U(x)} ρ {Q ∧ I(r)}

{P} incr(r, ρ) {Q}

The specification is universally quantified over the predicates P ,
Q, and U ; it can be instantiated with appropriate predicates at each
call site. Notice also that the specification is generic in the resource
invariant. The resource invariant for the resource that protects a
fine-grained concurrent data structure is chosen by the client of the
data structure. This enables the client to specify the relationship
between the state of the data structure and the auxiliary variables
introduced by the client.

It is important to point out that although the specification of
incr looks like a proof rule, it is not part of the proof system and
it does not affect the soundness of the proof system. Rather, it is
a derived proof rule that must be verified starting from the proof
rules of the proof system.

{P}
with r when true do begin
{P ∧ I(r)}
{U(x+ 1)}
x := x+ 1;
{U(x)}
ρ
{Q ∧ I(r)}

end
{Q}

Figure 5. Proof outline for procedure incr

{x = 0}
begin y := 0; z := 0;
{y = 0 ∧ z = 0 ∧ I(r)}
resource r(x, y, z) : cobegin
{y = 0}
incr(r, y := 1)

with P ≡ y = 0;Q ≡ y = 1;U(X) ≡ X = 1 + z
{y = 1}

//
{z = 0}
incr(r, z := 1)

with P ≡ z = 0;Q ≡ z = 1;U(X) ≡ X = y + 1
{z = 1}

coend
{y = 1 ∧ z = 1 ∧ I(r)}

end
{x = 2}
I(r) = {x = y + z}

Figure 6. Proof outline for the client program

It is easy to see that the implementation of incr satisfies the
specification; a proof outline is shown in Figure 5.

The proof of the client program is equally easy; see the proof
outline in Figure 6.

5. Formal System
We presented our approach informally in the preceding sections.
In order to achieve a well-defined approach, we need to resolve
the problem of O&G’s syntactic restrictions on which threads may
mention which variables; these are not compatible with procedures.
To do so, we move to a programming language without global
variables, where threads share data only through the heap; and we
use separation logic to reason about such programs. Specifically,
we adopt the programming language and program logic of Gotsman
et al. [4] for storable locks and threads, with a few modifications:

• We add support for auxiliary heap cells and passing closed
commands into procedures as argument values.

• We do not treat local variables as resources.

A translation of the modularized Owicki-Gries example with
internal synchronization of Figure 3 (b) to the more dynamic pro-
gramming language is shown in Figure 7. The program consists
of a procedure incr and a main program. The main program allo-
cates two consecutive memory cells and it initializes the first one
(at address `) for use as a lock, and releases it. (After a thread ini-
tializes a lock, it initially holds it.) The second cell (at address `+1)
corresponds to the global variable x in the original program. The
program then starts two threads, both of which increment the sec-

procedure incr(`) =
acquire(`); r := [`+ 1]; [`+ 1] := r + 1; release(`)

` := cons(1, 0); init(`); release(`);
t1 := fork incr(`);
t2 := fork incr(`);
join(t1); join(t2);
acquire(`); finalize(`)

Figure 7. The Owicki-Gries example, translated into the dynamic
programming language

ond cell, under protection of the lock. Finally, it joins both threads,
acquires the lock, and decommissions it. (A thread may only de-
commission locks that it holds.) We wish to prove that when the
program terminates, we have `+ 1 7→ 2 ∗ true.

The original proof by O&G used auxiliary global variables. In
this section, we use auxiliary heap cells instead. Specifically, with
each allocated real heap cell, say at address `, we associate an
infinite number of auxiliary heap cells, whose address is given by a
pair of integers `.`′, where ` is the real address and `′ is the ghost
offset.1 In the example, we use the auxiliary heap cells at addresses
`.0 and `.1 to track the contributions of thread 1 and 2 to the value
of the cell at `+ 1, corresponding to auxiliary variables y and z in
the original proof.

The proof system of Gotsman et al. requires that a tag A be
associated with each lock, and a lock invariant IA with each tag.
We will associate the tag mylock with the lock of the example, and
the following lock invariant with the tag:

Imylock(`) =

∃C0, C1 • `.0
1/27→ C0 ∗ `.1

1/27→ C1 ∗ `+ 1 7→ C0 + C1

The lock invariant corresponds closely to the resource invariant of
the original example. It states that the value of ` + 1 is the sum of
the value of `.0 and `.1. In the original proof, syntactic restrictions
ensured that auxiliary variable y could be modified only inside a
critical section and only by the first thread; in the current proof,
fractional permissions [1] achieve the same goal. Specifically, one
half of the permission for each auxiliary heap cell becomes owned
by the lock; the other half is retained by the corresponding thread.

As in the previous section, to verify procedure incr , we start by
augmenting it with an auxiliary parameter ρ that ranges over aux-
iliary commands, and by augmenting its body with an occurrence
of ρ after the update of ` + 1 but before the lock is released. As
before, this parameter will serve to perform the auxiliary state up-
dates required to preserve the lock invariant. The specification of
procedure incr enforces that it does so:

IA(`) ∗ P ⇒ ∃X • `+ 1 7→ X ∗ U(X)
∀X • {`+ 1 7→ X + 1 ∗ U(X)} ρ {IA(`) ∗Q}

{πA(`) ∗ P} incr(`, ρ) {πA(`) ∗Q}
The specification is universally quantified over the address ` of the
lock, the tag A of the lock, the fraction π of the lock permission
available to the procedure (any fraction will do), an additional pre-
condition P and postcondition Q, and a predicate U(X), parame-
terized over an integerX , that describes the resources (specifically,
the auxiliary heap cells) owned by the lock besides the heap cell at
address ` + 1, and states that those resources are in a state corre-
sponding to value X of the heap cell at address `+ 1.

The specification has two premises. The first one states that the
lock invariant IA(`) combined with the additional precondition P
implies full permission to access the heap cell at address `+1, plus

1 We use the terms auxiliary and ghost interchangeably.

some extra state U(X), where X is the value of the heap cell. The
second premise states the correctness of the parameter ρ: it states
that executing command ρmust re-establish the lock invariant after
the update of `+ 1, and the remaining state must satisfy Q.

We again point out that this specification has the shape of a
proof rule, but is not part of the proof system; as always when ver-
ifying programs with procedures, the specifications of the proce-
dures must be derived using the proof rules of the system as part of
the verification of the program.

A proof outline of the program is shown in Figure 8. Notice the
following:

• The release of the lock consumes the lock invariant.
• A thread specification and thread specification arguments are

associated with each fork operation for verification purposes.
A fork with thread specification τ and arguments n con-
sumes the precondition of τ and produces a thread permission
tidτ (t, n), where t is the thread identifier.

• Joining a thread consumes the thread permission and produces
the thread specification’s postcondition.

• The acquisition of the lock produces the lock invariant. Merging
the fractions of the auxiliary heap cells yields full information
about `+ 1, per the following law:

(a
1/27→ v ∗ ∃C • a 1/27→ C ∗ P (C))⇒ a 7→ v ∗ P (v)

5.1 Programming Language
The syntax of arithmetic expressions e, boolean expressions b, and
commands c is given below. All commands return a value. Local
variables are scoped, using let commands. The syntax x := c; y :=
c′; c′′ is syntactic sugar for let x := c in let y := c′ in c′′.
We assume a global table pdef of procedure definitions. The re-
cursion operator (µf(x) • c)(e) applies the recursive function f
with parameters x and body c to arguments e. The scope of f is c,
minus any command expressions in c. The syntax letrec f(x) =
c in c′ is syntactic sugar for c′[(µf(x)•c)/f]. All substitutions are
capture-avoiding. A command is closed if it has no free variables
x ∈ Vars and no free functions f ∈ FuncNames. We assume a bi-
jective encoding b·c of closed commands into integers. A command
expression c denotes the encoding of c as an integer. A closure ex-
ecution command exec(e) executes the closed command obtained
by decoding the value of e. In the examples, we simply write ρ
instead of exec(ρ). That is, a variable name used as a command
denotes a closure execution.

n ∈ Z, x ∈ Vars, p ∈ ProcNames, f ∈ FuncNames
e ::= n | x | e+ e | e− e | c
b ::= e = e | e < e
c ::= cons(e) | gcons(e) | [e] | [e.e] | [e] := e | [e.e] := e

| dispose(e) | if b then c else c | return e
| p(e) | exec(e) | let x := c in c
| (µf(x) • c)(e) | f(e) | fork c | join(e)
| initA(e) | acquire(e) | release(e) | finalize(e)

pdef ::= procedure p(x) = c

The evaluation JeK of a closed expression e is defined as follows:

JnK = n Je+e′K = JeK+Je′K Je−e′K = JeK−Je′K JcK = bcc

We define a small-step interleaving semantics. A configuration
consists of a real heap h, a ghost heap g, and a thread map T . A real
heap is a finite partial function from positive integers to integers. A
ghost heap is a partial function from pairs of integers to integers.
A thread map is a finite partial function from thread identifiers
to closed continuations. The continuations κ and contexts ξ are

procedure incr(`, ρ) =
{πA(`) ∗ P}
acquire(`);
{πA(`) ∗ lockedA(`) ∗ IA(`) ∗ P}
{πA(`) ∗ lockedA(`) ∗ `+ 1 7→ X ∗ U(X)}
r := [`+ 1]; [`+ 1] := r + 1;
{πA(`) ∗ lockedA(`) ∗ `+ 1 7→ X + 1 ∗ U(X)}
ρ;
{πA(`) ∗ lockedA(`) ∗ IA(`) ∗Q}
release(`),
{πA(`) ∗Q}

threadspec thread1 (`)

req 1
2

mylock(`) ∗ `.0 1/27→ 0

ens 1
2

mylock(`) ∗ `.0 1/27→ 1
threadspec thread2 (`)

req 1
2

mylock(`) ∗ `.1 1/27→ 0

ens 1
2

mylock(`) ∗ `.1 1/27→ 1

{emp}
` := cons(1, 0);
{` 7→ 1 ∗ (~`′∈N`.`

′ 7→ 0) ∗ `+ 1 7→ 0 ∗ (~`′∈N(`+ 1).`′ 7→ 0)}
{` 7→ 1 ∗ `.0 7→ 0 ∗ `.1 7→ 0 ∗ `+ 1 7→ 0 ∗ true}
initmylock(`); release(`);

{mylock(`) ∗ `.0 1/27→ 0 ∗ `.1 1/27→ 0 ∗ true}
t1 := fork

{ 1
2

mylock(`) ∗ `.0 1/27→ 0}
incr(`, [`.0] := 1);

with U(X) = `.0 7→ 0 ∗ `.1 1/27→ X

{ 1
2

mylock(`) ∗ `.0 1/27→ 1}
{ 1

2
mylock(`) ∗ `.1 1/27→ 0 ∗ tidthread1 (t1, `) ∗ true}

t2 := fork

{ 1
2

mylock(`) ∗ `.1 1/27→ 0}
incr(`, [`.1] := 1);

with U(X) = `.0
1/27→ X ∗ `.1 7→ 0

{ 1
2

mylock(`) ∗ `.1 1/27→ 1}
{tidthread1 (t1, `) ∗ tidthread2 (t2, `) ∗ true}
join(t1);

{ 1
2

mylock(`) ∗ `.0 1/27→ 1 ∗ tidthread2 (t2, `) ∗ true}
join(t2);

{mylock(`) ∗ `.0 1/27→ 1 ∗ `.1 1/27→ 1 ∗ true}
acquire(`); finalize(`)

{(∃C0, C1 • `.0
1/27→ C0 ∗ `.1

1/27→ C1 ∗ `+ 1 7→ C0 + C1)

∗ `.0 1/27→ 1 ∗ `.1 1/27→ 1 ∗ ` 7→ ∗ true}
{`.0 7→ 1 ∗ `.1 7→ 1 ∗ `+ 1 7→ 2 ∗ ` 7→ ∗ true}

Figure 8. Proof outline for the example program

defined as follows:

κ ::= c; ξ | n; ξ
ξ ::= let x := [] in c; ξ | done

The step relation is defined in Figure 9. In the step rules, symbols
n match not just integer literals but other closed expressions as
well, and denote their value. Notice that locks are implemented as
a single heap cell that holds either the value 0, if the lock is not
held, or the value 1, if the lock is held. We omit rules for init and

finalize; we define them as equivalent to return 0 (i.e., a no-op)
for purposes of the step relation. Throughout, f [x := y] denotes
function update; i.e. f [x := y](x) = y and f [x := y](z) = f(z)
for z 6= x.

5.2 Simple Closures
We say a program has simple closures if there exists a partitioning
of procedure parameters into closure parameters and non-closure
parameters such that all exec commands are of the form exec(x)
where x is a closure parameter, and all procedure call argument
expressions for closure parameters are either command expressions
or closure parameters. Applying the specification approach of this
paper requires only simple closures. As we will see, simple closures
admit a very simple proof system.

5.3 Proof System
The correctness of a command c is expressed in the form of a
correctness judgment Γ ` {P} c {Q}, where Γ is a function
environment and P and Q are assertions. An assertion describes
a set of permissions. The set of permissions is defined as follows:

p̂ ::= ` 7→ v | `.`′ 7→ v | A(`) | lockedA(`) | tidτ (t, v)

A permission bundle is a total function from permissions to real
numbers between 0, inclusive and 1, inclusive. We identify asser-
tions with sets of permission bundles. That is, we treat assertions
semantically. We denote the empty permission bundle (that maps
all permissions to 0) as 0.

We define some syntax for assertions:

emp = {0}
`
π7→ v = {0[` 7→ v := π]}

`.`′
π7→ v = {0[`.`′ 7→ v := π]}

πA(`) = {0[A(`) := π]}
πtidτ (t, v) = {0[tidτ (t, v) := π]}
P ∗Q = {b | ∃b1, b2 • b = b1 + b2 ∧ b1 ∈ P ∧ b2 ∈ Q}
(∃X • P (X)) = {b | ∃X • b ∈ P (X)}
(~i∈N P (i)) = {b | ∃B • b = ΣiB(i) ∧ ∀i •B(i) ∈ P (i)}

where b = ΣiB(i) ⇔
(∀p̂, ε • ∃n • ∀i > n • |b(p̂)− Σ0≤j≤iB(j)(p̂)| < ε)

We say a permission bundle is consistent if there are no two
points-to permissions with the same address and different values
that both map to non-zero coefficients. We say one assertion A
implies another one A′, written A ⇒ A′, if for every consistent
bundle b ∈ A, we have b ∈ A′.

The correctness judgment is defined inductively by the rules
shown in Figure 10.

Notice that the proof rules for procedure calls and for closure
executions simply require the correctness of the procedure or clo-
sure’s body. It follows that a procedure that calls another procedure,
or that executes a closure, does not, in isolation, have a closed proof
tree. Rather, its proof tree is parameterized by the proof trees for
the procedures called and closures executed. This simple approach
is sufficient if the program has simple closures and an acyclic pro-
cedure call graph. Indeed, in that case, given a main command,
one can inline all procedure calls to obtain an equivalent command
that contains no procedure call or closure execution commands; the
shape of the proof tree for the original main command will reflect
the shape of the main command after inlining.

5.4 Soundness
We sketch how one can prove soundness of the program logic used.
More details are in the technical report [7]; also, a machine-checked
proof is at http://www.cs.kuleuven.be/˜bartj/finegrained/.

Continuation step rules for relation 〈h, g, κ〉 〈h′, g′, κ′〉 | abort
〈h, g, cons(n1, . . . , nm); ξ〉 〈h ∪ {` 7→ n1, . . . , `+m− 1 7→ nm}, g ∪ {(`1, `2) 7→ 0 | ` ≤ `1 < `+m}, `; ξ〉

if 0 < ` and {`, . . . , `+m− 1} ∩ dom(h) = ∅
〈h, g,gcons(n); ξ〉 〈h, g ∪ {(0, `′) 7→ n}, `′; ξ〉 if 0 < `′ ∧ (0, `′) /∈ dom(g)
〈h, g, [n]; ξ〉 if n ∈ dom(h) then 〈h, g, h(n); ξ〉 else abort
〈h, g, [n.n′]; ξ〉 if (n, n′) ∈ dom(g) then 〈h, g, g((n, n′)); ξ〉 else abort
〈h, g, [n] := v; ξ〉 if n ∈ dom(h) then 〈h[n := v], g, 0; ξ〉 else abort
〈h, g, [n.n′] := v; ξ〉 if (n, n′) ∈ dom(g) then 〈h, g[(n, n′) := v], 0; ξ〉 else abort
〈h, g,dispose(n); ξ〉 if n ∈ dom(h) then 〈h \dom {n}, g \dom {(n, `′)|true}, 0; ξ〉 else abort
〈h, g, if b then c else c′; ξ〉 if b = true then 〈h, g, c; ξ〉 else 〈h, g, c′; ξ〉
〈h, g, p(v); ξ〉 〈h, g, c[v/x]; ξ〉 if procedure p(x) = c
〈h, g, exec(bcc); ξ〉 〈h, g, c; ξ〉
〈h, g, return n; ξ〉 〈h, g, n; ξ〉
〈h, g, let x := c in c′; ξ〉 〈h, g, c; let x := [] in c′; ξ〉
〈h, g, (µf(x) • c)(v); ξ〉 〈h, g, c[(µf(x) • c)/f, v/x]; ξ〉
〈h, g,acquire(n); ξ〉 〈h[n := 1], g, 0; ξ〉 if (n, 0) ∈ h
〈h, g,acquire(n); ξ〉 abort if n /∈ dom(h)
〈h, g, release(n); ξ〉 if n ∈ dom(h) then 〈h[n := 0], g, 0; ξ〉 else abort
〈h, g, v; let x := [] in c; ξ〉 〈h, g, c[v/x]; ξ〉

Thread map step rules for relation 〈h, g, T 〉 〈h′, g′, T ′〉 | abort
〈h, g, T 〉 〈h′, g′, T [t := κ′]〉 if (t, κ) ∈ T and 〈h, g, κ〉 〈h′, g′, κ′〉
〈h, g, T 〉 abort if (t, κ) ∈ T and 〈h, g, κ〉 abort
〈h, g, T 〉 〈h, g, T [t := t′; ξ, t′ := c; done]〉 if (t, fork c; ξ) ∈ T and t′ /∈ dom(T)
〈h, g, T 〉 〈h, g, T [t := v; ξ] \dom {t′}〉 if (t, join(t′); ξ) ∈ T and (t′, v; done) ∈ T
〈h, g, T 〉 abort if (t, join(n); ξ) ∈ T and n /∈ dom(T)

Figure 9. Step rules for continuations κ and thread maps T . Note: init and finalize are no-ops.

{emp} r := cons(v0, . . . , vn) {~i r + i 7→ vi ∗ (~`′∈N (r + i).`′ 7→ 0)} {emp} r := gcons(v) {0.r 7→ v}

{` π7→ v} r := [`] {` π7→ v ∧ r = v} {`.`′ π7→ v} r := [`.`′] {`.`′ π7→ v ∧ r = v} {` 7→ } [`] := v {` 7→ v}

{`.`′ 7→ } [`.`′] := v {`.`′ 7→ v} {` 7→ ∗~`′∈N`.`
′ 7→ } dispose(`) {emp} {P} r := return v {P ∧ r = v}

Γ ` {P ∧ b} c {Q} Γ ` {P ∧ ¬b} c′ {Q}
Γ ` {P} if b then c else c′ {Q}

procedure p(x) = c {P} c[v/x] {Q}
{P} p(v) {Q}

{P} c {Q}
{P} exec(c) {Q}

Γ ` {P} r := c {Q(r)} ∀X • Γ ` {Q(X)} c′[X/x] {Q′}
Γ ` {P} let x := c in c′ {Q′}

threadspec τ(x) req P ens Q Γ ` {P [v/x]} c {Q[v/x]}
Γ ` {P [v/x]} r := fork c {tidτ (r, v)}

Γ, {P} f(x) {Q} ` {P} c {Q}
Γ ` {P [v/x]} (µf(x) • c)(v) {Q[v/x]}

threadspec τ(x) req P ens Q

{tidτ (t, v)} join(t) {Q[v/x]}
∀X • Γ ` {P (X)} c {Q(X)}

Γ ` {∃X • P (X)} c {∃X •Q(X)}

Γ, {P} f(x) {Q},Γ′ ` {P [v/x]} f(v) {Q[v/x]} {s 7→ 1} initA(s) {A(s) ∗ lockedA(s)}

{πA(s)} acquire(s) {πA(s) ∗ lockedA(s) ∗ IA(s)} {lockedA(s) ∗ IA(s)} release(s) {emp}
{P} c {Q}

Γ ` {P} c {Q}

{A(s) ∗ lockedA(s)} finalize(s) {s 7→ }
P ⇒ P ′ Γ ` {P ′} c {Q} Q⇒ Q′

Γ ` {P} c {Q′}
Γ ` {P} c {Q}

Γ ` {P ∗R} c {Q ∗R}

Figure 10. Proof rules

The soundness theorem states that if for a command c we have
{emp} c {true}, then 〈∅, ∅, {(t, c; done)}〉 6 ∗ abort for any
thread identifier t.

We do not define the semantics of the correctness judgment
directly. Rather, we define an assertion transformer validΓ(c,Q)
(similar to a weakest precondition operator, but we don’t worry

about whether it is the weakest precondition or not). We prove

(Γ ` {P} c {Q})⇒ (P ⇒ validΓ(c,Q))

We can then define validity of a configuration. A configuration
〈h, g, T 〉 is valid iff there exists a set of permissions P such that

• for every (`, `′) with 0 < `, if (`, `′) ∈ dom(g) then ` ∈
dom(h)

• h equals the set of non-ghost points-to permissions in P plus
one element ` 7→ 0 or ` 7→ 1 for each A(`) permission in P

• g equals the set of ghost points-to permissions in P
• there is exactly one tidτ (t, v) permission for each thread t ∈

dom(T), and
• there is exactly one lockedA(`) permission for each A(`) per-

mission whose corresponding heap element equals 1, and
• there exists a permission bundle bt for each thread t, and a

permission bundle b` for each A(`) permission for which there
is no lockedA(`) permission, and a permission bundle bC for
the program’s environment, which in particular contains the tid
permission for the main thread, such that

the sum of all bt and all b` and bC equals {(p̂, 1) | p̂ ∈ P},
and

for each thread (t, κ) ∈ T , bt ∈ valid(κ,Q[v/x]) where
threadspec τ(x) req · · · ens Q and tidτ (t, v) ∈ P .

for each lock A(`) ∈ P for which there is no lockedA(`) ∈
P , b` ∈ IA(`).

By correctness of the main program, the initial configuration is
valid. We then prove that each execution step preserves configu-
ration validity. The theorem then follows from the fact that abort
is not a valid configuration.

5.5 Ghost erasure
After a program is verified, ghost code can be removed without in-
validating the proof. Specifically, if all code that is removed is side-
effect-free and terminates, then if the program after erasure aborts,
the original program aborts. If the program has simple closures and
the procedure call graph is acyclic, then non-termination can result
only from non-terminating recursive functions. Removed code is
side-effect-free if it affects only the ghost heap, provided that all
ghost heap accesses are removed.

6. Ghost Objects
In the previous section we used fractional points-to assertions to
enable a thread to maintain information about a shared object. The
location is read-only while no thread has full permission, and the
thread has full information: it knows the exact value.

Often, proofs require a more fine-grained type of tracking. A
thread needs to maintain partial information about a value, while
allowing other threads to modify the value in ways that preserve all
threads’ assumptions.

A general approach to this problem is rely-guarantee reasoning.
However, in this paper we propose a different strategy. We propose
the use of ghost objects. A ghost object is a data structure built from
auxiliary heap cells, that represents some mathematical value, and
that allows clients to obtain handles on the object that represent
a condition on the value of the object. Handles represent partial
information about the object. Correspondingly, they represent the
permission to violate the condition, in the sense that the object does
not allow violating the condition without handing in the handle.

A basic ghost object is a ghost bag. The abstract predicate
gbag(b,B) represents a ghost bag with identifier b, currently hold-
ing the bag of integers B. The object provides the following opera-
tions:

{emp} r := create gbag() {gbag(r, ∅)}

{gbag(b,B)} gbag add(b, v) {gbag(b,B] {v}) ∗ gbagh(b, v)}

{gbag(b,B) ∗ gbagh(b, v)}
gbag remove(b, v)

{v ∈ B ∧ gbag(b,B − {v})}
The predicate gbagh(b, v) represents the knowledge that the

ghost bag b currently contains element v. It furthermore represents
the permission to remove this element.

This ghost object can be implemented in terms of simple auxil-
iary heap cells. It does not need to be built into the proof system. A
verified ghost bag implementation comes with our verification tool
(see Section 9). Furthermore, based on ghost bags, a wide variety
of ghost objects can be implemented easily.

7. Atomic Instructions
The programming language of the previous section does not in-
clude atomic machine instructions such as atomic compare-and-
swap (CAS) instructions, which are available on most platforms.
However, one can easily translate a program that uses atomics to
a behaviorally equivalent (but less efficient) program of the formal
language that uses locks by introducing an extra lock for each data
structure of the program that is accessed using atomics, and then
translating the atomic operations into code sequences that acquire
the corresponding lock, perform the operation, and then release the
lock. We will call such a lock an atomic space and its address an
atomic space identifier, ranged over by s. (Note: our verification
tool supports atomics and atomic spaces directly, and does not re-
quire a translation.)

A procedure corresponding to a CAS operation could look as
follows, augmented with two ghost parameters ρ and ρ′ for verifi-
cation purposes:

procedure cas(s, `, o, n, ρ, ρ′) =
acquire(s);
v := [`];
if v = o then ([`] := n; ρ) else ρ′;
release(s);
return v

We can prove the following specification for it:

IA(s) ∗ P ⇒ ∃X • ` 7→ X ∗ S(X)
{S(o) ∗ ` 7→ n} ρ {IA(s) ∗Q(o)}

∀X •X 6= o⇒ {S(X) ∗ ` 7→ X} ρ′ {IA(s) ∗Q(X)}
{πA(s) ∗ P} r := cas(s, `, o, n, ρ, ρ′) {πA(s) ∗Q(r)}

We will use this procedure in the examples below, as well
as procedures load and store corresponding to atomic loads and
stores, respectively, specified as follows:

IA(s) ∗ P ⇒ ∃X • ` 7→ X ∗ S(X)
∀X • {S(X) ∗ ` 7→ X} ρ {IA(s) ∗Q(X)}

{πA(s) ∗ P} r := load(s, `, ρ) {πA(s) ∗Q(r)}

IA(s) ∗ P ⇒ ∃X • ` 7→ X ∗ S(X)
∀X • {S(X) ∗ ` 7→ v} ρ {IA(s) ∗Q}

{πA(s) ∗ P} store(s, `, v, ρ) {πA(s) ∗Q}

8. Abstraction: A Concurrent Set
In the example of the preceding sections, the data structure be-
ing manipulated was a simple cell, and its memory representation,
` + 1 7→ X , was disclosed in the specification of the operation,
incr . In this section, we show that our approach supports specifi-
cations that abstract over the representation of the concurrent data
structure. Furthermore, we show that the approach allows abstract
specification and verification of concurrent data structures built on
top of other concurrent data structures. We do so by first showing

a specification and implementation of a binary semaphore mod-
ule implemented in terms of atomic machine instructions. We then
show a specification, implementation, and proof of a concurrent set
module implemented by hand-over-hand locking of a sorted linked
list, that uses the semaphore module.

8.1 Semaphore Specification
The semaphore module defines an abstract predicate sema(`, v)
which represents a semaphore at address ` whose value is v (either
0 or 1). The specification of the functions exported by the module
can be given in terms of this predicate as follows:

{` 7→ 0} init sema(`) {sema(`, 0)}

IA(s) ∗ P ⇔ ∃v • sema(`, v) ∗ S(v)
{S(0) ∗ sema(`, 1)} ρ {IA(s) ∗Q}

{πA(s) ∗ P} sema acquire(s, `, ρ) {πA(s) ∗Q}

IA(s) ∗ P ⇒ ∃v • sema(`, v) ∗ S(v)
∀v • {S(v) ∗ sema(`, 0)} ρ {IA(s) ∗Q}

{πA(s) ∗ P} sema release(s, `, ρ) {πA(s) ∗Q}

{sema(`,)} finalize sema(`) {` 7→ }
Actually, to enable sharing of information about the state of a

semaphore, the semaphore module defines a slightly different pred-
icate [π]sema(`, v). Just sema(`, v) is shorthand for [1]sema(`, v).
The module further exports the following lemmas:

[π1 + π2]sema(`, v)⇒ [π1]sema(`, v) ∗ [π2]sema(`, v)
[π1]sema(`, v) ∗ [π2]sema(`, v′)⇒ [π1 + π2]sema(`, v) ∧ v′ = v

where π1 and π2 range over positive real numbers.

8.2 Semaphore Implementation
The implementation of the semaphore module is straightforward:

predicate [π]sema(`, v) = `
π7→ v

procedure init sema(`) = skip
procedure sema acquire(s, `, ρ) =

letrec iter() =
r := cas(s, `, 0, 1, ρ, skip);
if r 6= 0 then iter()

in iter()
procedure sema release(s, `, ρ) =

store(s, `, 0, ρ)
procedure finalize sema(`) = skip

We omit the proof; it, too, is straightforward.

8.3 Set Specification
The set module exports three procedures:

{emp} r := create set() {set(r, ∅)}

IA(s) ∗ S ⇔ ∃V • set(o, V) ∗ U(V)
∀V • v /∈ V ⇒ {U(V) ∗ P} ρ {U(V ∪ {v}) ∗Q(1)}
∀V • v ∈ V ⇒ {U(V) ∗ P} ρ′ {U(V) ∗Q(0)}

{πA(s) ∗ S ∗ P} r := add(s, o, v, ρ, ρ′) {πA(s) ∗ S ∗Q(r)}

IA(s) ∗ S ⇔ ∃V • set(o, V) ∗ U(V)
∀V • v ∈ V ⇒ {U(V) ∗ P} ρ {U(V \ {v}) ∗Q(1)}
∀V • v /∈ V ⇒ {U(V) ∗ P} ρ′ {U(V) ∗Q(0)}

{πA(s) ∗ S ∗ P} r := remove(s, o, v, ρ, ρ′) {πA(s) ∗ S ∗Q(r)}
Procedure add returns 1 if the element was not yet present, and 0
otherwise. Analogously, procedure remove returns 1 if the element
was present, and 0 otherwise.

Notice that in the specification of add and remove , the first
premise, which enables the procedure to separate the set out of
the lock invariant, uses S instead of P . In earlier specifications,
there was no separate S predicate and P was used for simplicity;
however, using P means the procedure cannot perform further
atomic operations on the set after the closure ρ or ρ′ has been
executed, since it consumes P and produces Q. Using a separate
predicate S means the procedure can access the set both before and
after executing the closure.

To simplify the presentation, the example module does not offer
a procedure for disposing a set object. An implementation that
supports disposal, verified using our verification tool, is available
online.

8.4 Sugared Specifications
In the above specifications of procedures add and remove , the
functional behavior is obscured somewhat by the fine-grained con-
currency scaffolding. Fortunately, however, we can easily define an
abbreviated notation for typical fine-grained specifications, which
makes them look just like sequential specifications. We introduce
the notation

{object(o, v)} r := fooFG(o) {object(o, post(v)) ∧ r = res(v)}
as an abbrevation for

IA(s) ∗ S ⇔ ∃v • object(o, v) ∗ U(v)
∀v • {U(v) ∗ P} ρ {U(post(v)) ∗Q(res(v))}

{πA(s) ∗ S ∗ P} r := foo(s, o, ρ) {πA(s) ∗ S ∗Q(r)}
Often, it is convenient to split the postcondition into multiple cases,
with corresponding ghost command parameters and corresponding
premises. We introduce

{object(o, v)}
r := fooFG(o){
G1(v) ∧ object(o,post1(v)) ∧ r = res1(v) ∨
G2(v) ∧ object(o,post2(v)) ∧ r = res2(v)

}
where Gi are pure assertions, as an abbreviation for

IA(s) ∗ S ⇔ ∃v • object(o, v) ∗ U(v)
∀v •G1(v)⇒ {U(v) ∗ P} ρ1 {U(post1(v)) ∗Q(res1(v))}
∀v •G2(v)⇒ {U(v) ∗ P} ρ2 {U(post2(v)) ∗Q(res2(v))}
{πA(s) ∗ S ∗ P} r := foo(s, o, ρ1, ρ2) {πA(s) ∗ S ∗Q(r)}

This notation allows the above specification for procedure add to
be written as
{set(o, V)}
r := addFG(o, v)
{v /∈ V ∧ set(o, V ∪ {v}) ∧ r = 1 ∨ v ∈ V ∧ set(o, V) ∧ r = 0}

8.5 Set Implementation
The implementation of the set module is shown in Figure 11.

For node values, we implicitly perform an encoding of Z ∪
{−∞,+∞} into Z.

We use the following syntactic sugar: n.next = n + 1, and
n.value = n+ 2.

The set is implemented as a sorted linked list. For synchroniza-
tion, one field of each node is converted into a semaphore that is
used to perform hand-over-hand locking of consecutive nodes. This
affords some degree of parallelism for concurrent operations on the
set.

8.6 Set proof
The core of the proof of the set module is the definition of the
set predicate; it serves as the invariant of the data structure, which
holds before and after each atomic operation. This invariant must

procedure create set() =
lastNode := cons(0, 0,+∞);
firstNode := cons(0, lastNode,−∞);
init sema(firstNode); return firstNode

letrec locate(n) =
n′ := [n.next]; v′ := [n′.value];
if v′ < v then (

sema acquire(s, n′); sema release(s, n);
return locate(n′)

) else return n
in

procedure add(s, o, v) =
sema acquire(s, o);n := locate(o);
n′ := [n.next]; v′ := [n′.value];
if v′ = v then (

sema release(s, n); return 0
) else (
n′′ := cons(0, n′, v); init sema(n′′);
[n.next] := n′′; sema release(s, n); return 1

)

procedure remove(s, o, v) =
sema acquire(s, o);n := locate(o);
n′ := [n.next]; v′ := [n′.value];
if v′ = v then (

sema acquire(s, n′);
n′′ := [n′.next]; [n.next] := n′′;
sema release(s, n); return 1

) else (sema release(s, n); return 0)

Figure 11. Implementation of the set module. Note: desugaring
inlines locate into add and remove

enable each thread to retain, between the atomic operations that
constitute a set operation, the information it needs about the state
of the data structure.

For example, after locating a node, a thread must know this node
will remain in the data structure. For this purpose, we track the set
of nodes in the linked list using a ghost bag (see Section 6). We
keep the identifier of the ghost bag in a ghost field of the first node.
To refer to this ghost field, we use the syntactic sugar o.bag = o.1.

Another consideration when defining the invariant is that we
wish to retain the shape of the linked list even when a thread has
taken ownership of a node’s next field in preparation for inserting
or removing the next node. Therefore, we use the ghost field at
ghost offset 0 of each node as the oldNext field: n.oldNext = n.0.

As usual, we use a recursive predicate lseg to describe the linked
list:

lseg(b, f, vf , `, v`, α, β) =
(α = ε ∧ β = ε ∧ f = ` ∧ vf = v`) ∨
(∃α′, β′, vs, n, vn • α = f · α′ ∧ β = vf · β′ ∧

node(b, f, vs, vf , n, vn) ∗ lseg(b, n, vn, `, v`, α
′, β′))

where

node(b, n, vs, v, n
′, v′) =

(vs = 0 ∧ sema(n, vs) ∗ n.next 7→ n′ ∗ n.oldNext 7→ n′ ∗
n.value

1/27→ v ∗ n′.value
1/27→ v′ ∗ gbagh(b, n) ∧ v < v′) ∨

(vs = 1 ∧ [1
2
]sema(n, vs) ∗ n.oldNext

1/27→ n′ ∗
n.value

1/47→ v ∗ n′.value
1/47→ v′ ∧ v < v′)

The predicate lseg(b, f, vf , `, v`, α, β) denotes the section of
the sorted linked list from node f to node `, excluding node `. The
other parameters are the ghost bag identifier b, the first value vf ,
the last value v`, the list of nodes α, and the list of values β. The
body of the predicate is a disjunction. The first disjunct describes
the case where the first node equals the last node and therefore the
section is empty.

The second disjunct describes the non-empty case. Specifically,
it describes the first node using the predicate node and recursively
calls the predicate to describe the subsection from the second node
to the last node. This disjunct quantifies existentially over the tail
α′ of α, the tail β′ of β, the value of the semaphore vs of the first
node, the next node n, and the value of the next node vn.

Predicate node’s body, too, is a disjunction; the first disjunct
describes the case where the node is not locked; the second disjunct
describes the case where the node is locked. In the latter case,
full ownership of the n.next field and fractional ownership of the
semaphore and the n.oldNext, n.value, and n′.value fields has
been transferred to the thread that acquired the lock.

Notice that each node owns half of the value field of the next
node. This means that when a thread locks a node, it knows not
only that node’s value but also the next node’s value. This allows
it to safely insert a new node in between, while maintaining the
sortedness of the list.

The definition of the set predicate itself is now straightforward:

set(o, V) =
∃b, `, α, β • lseg(b, o,−∞, `,+∞, α,−∞ · β) ∗
o.bag 7→ b ∗ gbag(b, elems(α)) ∗ true ∧ V = elems(β);

The definition uses the mathematical function elems(α) which
denotes the bag of the elements of the list α. It states that there
is a sorted linked list starting at o, that starts with value −∞ and
ends with value +∞ (which means that an insertion point can be
found within the list for any finite value). It further states that the
nodes of the list are exactly the elements in the ghost bag at o.bag,
and that abstract value V of the set is exactly the bag of the values
of the list.

The syntax ` 7→ v is shorthand for ∃π•` π7→ v. That is, it denotes
an unspecified fraction of the points-to permission. As applied in
the set predicate, this allows threads to remember the connection
between o and b.

The true conjunct allows us to leak memory locations (or
fractions thereof) that we do not use; specifically, of the last node
` we use only one-half of field `.value. We would need to be more
precise if we wanted to support disposal of the set object.

The specification of local recursive function locate is as fol-
lows:

πA(s) ∗ S ∗ o.bag 7→ b ∗ gbagh(b, n) ∗
[1
2
]sema(n, 1) ∗ n.oldNext

1/27→ n′ ∗ n.next 7→ n′ ∗
n.value

1/47→ vn ∗ n′.value
1/47→ vn′ ∧ vn < v


r := locate(n)

πA(s) ∗ S ∗ o.bag 7→ b ∗ gbagh(b, r) ∗ [1
2
]sema(r, 1) ∗

∃n, vr, vn • r.oldNext
1/27→ n ∗ r.next 7→ n ∗

r.value
1/47→ vr ∗ n.value

1/47→ vn ∧ vr < v ∧ v ≤ vn


Note that even though locate is shown outside of add and remove ,
after desugaring it is within the scope of the parameters of these
procedures, and furthermore its proof can use the premises of these
procedures’ specifications, and in particular the first premise.

We show in Figure 12 the set implementation annotated with
ghost commands. A full proof outline is in the technical report [7].

procedure create set() =
lastNode := cons(0, 0,+∞);
firstNode := cons(0, lastNode,−∞);
[firstNode.oldNext] := lastNode;
init sema(firstNode);
b := create gbag(); gbag add(b, f); [firstNode.bag] := b;
return firstNode

letrec locate(n) =
n′ := [n.next]; v′ := [n′.value];
if v′ < v then (

sema acquire(s, n′, skip);
sema release(s, n, skip);
return locate(n′)

) else
return n

in

procedure add(s, o, v, ρ, ρ′) =
sema acquire(s, o, skip);
b := [o.bag]; n := locate(o);
n′ := [n.next]; v′ := [n′.value];
if v′ = v then (

sema release(s, n, ρ′);
return 0

) else (
n′′ := cons(0, n′, v); [n′′.oldNext] := n′;
init sema(n′′); [n.next] := n′′;
sema release(s, n,

(gbag add(b, n′′); [n.oldNext] := n′′; ρ));
return 1

)

procedure remove(s, o, v, ρ, ρ′) =
sema acquire(s, o, skip);
b := [o.bag]; n := locate(o);
n′ := [n.next]; v′ := [n′.value];
if v′ = v then (

sema acquire(s, n′, skip);
n′′ := [n′.next]; [n.next] := n′′;
sema release(s, n,

(gbag remove(b, n′); [n.oldNext] := n′′; ρ));
return 1

) else (
sema release(s, n, ρ′);
return 0

)

Figure 12. The set module, with ghost commands (highlighted)

8.7 Client program
In this subsection, to illustrate how the specification of the set
module can be used to verify rich properties of client programs,
we verify the example client program shown in Figure 13. The
program starts by creating a set object o and a lock s for use by
the set module to emulate its atomic operations. (Remember that
this lock can be erased after verification if real atomic operations
are used; see Section 7.) Then, the lock is initialized. From this
time, the lock protects the set data structure. Finally, a producer
thread is forked and the main thread turns into a consumer thread.
The producer thread simply adds 1,2,3,. . . to the set. The consumer
thread repeatedly performs the following experiment: it picks an
arbitrary number (by allocating a heap cell and disposing it, just

letrec
producerThread(s, o, x) =

add(s, o, x); producerThread(s, o, x+ 1)
consumer(s, o, x) =
r := remove(s, o, x);
if r = 1 then (r := remove(s, o, x); assert(r = 0))

consumerThread(s, o) =
// pick random number x
x := cons(0); dispose(x);
consumer(s, o, x); consumerThread(s, o)

in
o := create set(); s := cons(1); initspace(s); release(s);
fork producerThread(s, o, 1);
consumerThread(s, o)

Figure 13. Example client program for the concurrent set module

for the address) and tries to remove it. If the remove operation
succeeds, it tries to remove it again and asserts that the latter
remove operation fails. It always does, since the producer thread
never adds the same number twice.

Here is how our approach succeeds in verifying the assert
command of this program. A proof outline for this program, includ-
ing ghost commands, is shown in Figure 14. As always, the crucial
step is coming up with an invariant; specifically, a lock invariant
for the lock s. It is shown at the bottom of Figure 14. The proof
uses three ghost fields of s: s.set (sugar for s.0) connects the lock
to the set o; s.prod (sugar for s.1) records the last number added
by the producer; and s.cons (sugar for s.2) records the last number
removed by the consumer. The invariant states that the last value
added by the producer is an upper bound for the set’s elements;
that the last value removed by the consumer is not greater than the
last value added by the producer; and that the last value removed
by the consumer is not in the set.

Once the invariant is established, the proof outline follows eas-
ily. As usual, each thread retains half of its associated ghost field:
the producer thread retains half of s.prod and the consumer thread
retains half of s.cons. The producer passes the required update of
s.prod into add as a ghost argument; analogously, the consumer
passes the required update of s.cons into remove as a ghost argu-
ment.

The specifications of add and remove are instantiated as fol-
lows. For all calls, predicate S is instantiated with s.set 7→ o and
predicate U(V) is instantiated with the invariant minus the set data
structure itself:

U(V) = ∃p, c • s.set 7→ o ∗ s.prod
1/27→ p ∗ s.cons

1/27→ c
∧ (∀v ∈ V • v ≤ p) ∧ c ≤ p ∧ c /∈ V

where variables s and o are bound at the call site. The instantiations
of P and Q are shown at the call sites in Figure 14. Given these
instantiations, the premises of add and remove’s specifications can
be verified easily.

9. Verification Tool
We implemented our approach in our program verification tool,
VeriFast [8], and we used the tool to verify two challenging fine-
grained concurrent data structures from the literature: a multiple-
compare-and-swap algorithm [5] and a lock-coupling list [15].

VeriFast is a general-purpose verifier prototype for C programs,
based on separation logic. It takes source code annotated with
function specifications, loop invariants, predicate definitions, and
other annotations, and reports either that the program is memory-
safe, data-race-free, and complies with function specifications, or

threadspec producerThread(s, o, x) =

req 1
2

space(s) ∗ s.set 7→ o ∗ ∃p • s.prod
1/27→ p ∧ p < x

ens false
threadspec consumerThread(s, o) =

req 1
2

space(s) ∗ s.set 7→ o ∗ ∃c • s.cons
1/27→ c

ens false
letrec

producerThread(s, o, x) =

{ 1
2

space(s) ∗ s.set 7→ o ∗ ∃p • s.prod
1/27→ p ∧ p < x}

add(s, o, x, [s.prod] := x, skip);

P = ∃p • s.prod
1/27→ p ∧ p < x

Q(r) = s.prod
1/27→ x

{ 1
2

space(s) ∗ s.set 7→ o ∗ s.prod
1/27→ x}

producerThread(s, o, x+ 1)
consumer(s, o, x) =

{ 1
2

space(s) ∗ s.set 7→ o ∗ ∃c • s.cons
1/27→ c}

r := remove(s, o, x, [s.cons] := x, skip);

P = ∃c • s.cons
1/27→ c

Q(r) = ∃c • s.cons
1/27→ c ∧ (r = 1⇒ c = x)

{ 1
2

space(s) ∗ s.set 7→ o ∗ ∃c • s.cons
1/27→ c ∧ (r = 1⇒ c = x)}

if r = 1 then (
r := remove(s, o, x, skip, skip);

P = s.cons
1/27→ x

Q(r) = s.cons
1/27→ x ∧ r = 0

{ 1
2

space(s) ∗ s.set 7→ o ∗ s.cons
1/27→ x ∧ r = 0}

assert(r = 0))
consumerThread(s, o) =

{ 1
2

space(s) ∗ s.set 7→ o ∗ ∃c • s.cons
1/27→ c}

// pick random number x
x := cons(0); dispose(x);
consumer(s, o, x);
consumerThread(s, o)

in
{emp}
o := create set();
{set(o, ∅)}
s := cons(1);
{set(o, ∅) ∗ s 7→ 1 ∗~`′∈Ns.`

′ 7→ 0}
[s.set] := o;
[s.prod] := 0;
[s.cons] := 0;
{set(o, ∅) ∗ s 7→ 1 ∗ s.set 7→ o ∗ s.prod 7→ 0 ∗ s.cons 7→ 0 ∗ true}
initspace(s); release(s);

{space(s) ∗ s.set 7→ o ∗ s.prod
1/27→ 0 ∗ s.cons

1/27→ 0 ∗ true}
fork producerThread(s, o, 1);

{ 1
2

space(s) ∗ s.set 7→ o ∗ s.cons
1/27→ 0 ∗ true}

consumerThread(s, o)

Ispace(s) =
∃o, p, c, V •
s.set 7→ o ∗ s.prod

1/27→ p ∗ s.cons
1/27→ c ∗

set(o, V) ∧ (∀v ∈ V • v ≤ p) ∧ c ≤ p ∧ c /∈ V

Figure 14. Proof outline for the client program

it shows a symbolic execution trace that leads to a potential error.
It symbolically executes each function in turn, using a separation
logic formula as the symbolic representation of memory.

VeriFast supports ghost commands for creating and updating
ghost cells. It also supports lemma functions, which are like ordi-
nary C functions except they may contain only ghost commands
and VeriFast checks that they terminate. It follows that calls of
lemma functions are ghost commands. Thirdly, it supports lemma
function pointers and lemma function pointer calls. These features
are all that was needed to make it possible to apply our approach in
VeriFast. More generally, any verification tool that supports ghost
variables, ghost functions, and dynamic binding of ghost functions
supports our verification approach. This means it should be easy to
extend other verification tools, such as VCC [2] and Chalice [10],
to support our approach.

We have used VeriFast to verify the concurrent set module used
as the example for this paper. We also verified a multiple-compare-
and-swap (MCAS) algorithm proposed by Harris et al. [5]. MCAS
is built on top of a restricted-double-compare-single-swap (RD-
CSS) algorithm by the same authors. Our MCAS proof consists of
a proof of RDCSS with respect to an abstract specification of RD-
CSS, and a proof of MCAS based on the abstract specification of
RDCSS. We also verified a simple example client program for each
algorithm. The annotation overhead, consisting of specifications as
well as proof steps, is shown in the following table:

Program LOC LOAnn Overhead Time
lcset.c 72 610 847% 0.37s

lcset client.c 27 266 985% 0.13s
rdcss.c 51 528 1035% 0.5s
mcas.c 63 1111 1763% 1.33s

mcas client.c 34 230 676% 0.22s

In each case, the annotation overhead is in the order of 10 to 20
lines of annotation per line of code. Three things should be kept
in mind when considering the overhead. Firstly, these are probably
some of the most complex algorithms in existence. Secondly, we
did not optimize the annotation requirements for lemma function
pointers; it currently involves significant boilerplate. Thirdly, we
show these results only as evidence that the specification approach
is applicable to challenging algorithms; this paper is not about
VeriFast.

Notice that the run-time of the verification tool is very accept-
able: on the order of one second. This enables an interactive anno-
tation insertion process.

The tool and the annotated example programs are available
online at http://www.cs.kuleuven.be/˜bartj/verifast/.

10. Related Work
To the best of our knowledge, our approach is the first that enables
fully general modular specification and verification of fine-grained
concurrent modules and their clients.

We are aware of two existing approaches for specification of
fine-grained concurrent data structures, both based on a marriage
of rely-guarantee and separation logic [17]: a linearizability-based
approach, initially proposed in Vafeiadis’ PhD thesis [15], and
concurrent abstract predicates [3].

In the linearizability-based approach, the specification for a data
structure operation is in the form of a piece of sequential code
that operates on a ghost variable that holds the abstract state of the
data structure. An implementation complies with the specification
if for each execution trace, there is a total ordering of the operation
invocations in the trace such that their return values equal the
return values that would result if the operations’ specifications were
executed sequentially in this total order. In other words, there exists
a linearization point between the start and end of each operation

invocation such that the result values are as if each operation’s
specification was executed atomically at the linearization point.

Linearizability-based verification verifies that the data structure
is linearizable, by verifying that there exists a linearization point
for each operation. The approach can then verify client code as if
the operations executed atomically.

A limitation of the linearizability-based approach is that it does
not support the transfer of ownership of memory locations or other
resources between the data structure and its client. For example, a
queue implemented as a linked list where nodes are allocated by the
client, passed into the module on enqueue, and passed back to the
client on dequeue, cannot be specified by the linearizability-based
approach. This is because the definition of linearizability assumes
no memory is shared across the module boundary, and all interac-
tion is in the form of invocation arguments and results. In contrast,
in our approach ownership transfer is supported. For example, here
is a specification for the enqueue and dequeue operations of the
queue module suggested above:

IA(s) ∗ S ⇔ ∃α • queue(q, α) ∗ U(α)
∀α • {U(α) ∗ P} ρ {U(α · n) ∗Q ∗ node(n)}

{πA(s) ∗ S ∗ P} enqueue(s, q, n, ρ) {πA(s) ∗ S ∗Q}

IA(s) ∗ S ⇔ ∃α • queue(q, α) ∗ U(α)
∀n, α • {U(n · α) ∗ P ∗ node(n)} ρ {U(α) ∗Q(n)}

{U(ε) ∗ P} ρ′ {U(ε) ∗Q(0)}
{πA(s) ∗ S ∗ P} r := dequeue(s, q, ρ, ρ′) {πA(s) ∗ S ∗Q(r)}

An important advantage of linearizability, however, is that pow-
erful automation techniques have been built for it, e.g. [16].

Concurrent abstract predicates (CAP) extend separation logic
with shared regions. Each shared region is associated with an
interference specification, which is a set of action names with
associated pre- and postconditions. A piece of local state can be
converted into a shared region. This gives the thread full permission
to perform the actions associated with the region. It may then
pass fractions of these action permissions to other threads. Each
assertion about a shared region must be stable with respect to the
actions that other threads may perform.

The CAP authors [3] propose the following approach for mod-
ular specification of a fine-grained data structure. The module ex-
poses the data structure to clients in the form of a number of concur-
rent abstract predicates, each of which give permission to perform a
particular type of operation. For example, their example lock mod-
ule exposes predicates isLock(x) and Locked(x), which give per-
mission to acquire, resp. release lock x. Their example set module
exposes predicates in(h, v) and out(h, v), which give permission
to remove, resp. add element v.

This specification approach does not subsume ours. Whereas
our approach enables fully general specification of data structure
operations, this approach enforces restrictions on how the data
structure may be used. Specifically, while the set module specifi-
cation allows threads to concurrently add or remove distinct ele-
ments, it does not allow them to race to concurrently add or remove
the same element. More generally, the choice of which predicates
to expose is a trade-off between the restrictions on usage and the
type of information a client can track. Indeed: the information con-
tent of a predicate imposes a restriction on what other threads can
do. For example, if one thread holds an in(h, v) permission, other
threads cannot remove this element.

To achieve a fully general specification, the choice of stable per-
missions must be done by the client, not by the module designer. In
order to enable this, the client must be able to do atomic or unstable
observations, not just non-atomic or stable ones. This is what lin-
earizability enables by allowing operations to be treated like atomic
instructions, and what our approach enables by allowing the in-

sertion of ghost code into the critical section, and by allowing the
client to choose the auxiliary variables and the lock invariant.

Note that our comparison is with the way the CAP logic is used
in [3], not with other specification approaches based on the CAP
logic that may be proposed in the future.

However, the CAP logic is a convenient alternative to the use of
ghost objects to track partial information, and as such is comple-
mentary to our specification approach. Specifically, one could have
a single auxiliary variable that holds the precise abstract state of the
data structure, and then insert this variable into a shared region. For
example, the ghost bags of Section 6 could be implemented more
straightforwardly using shared regions than using a data structure
built from auxiliary heap cells.

Acknowledgments
The authors would like to thank Cristiano Calcagno, Mike Dodds,
Peter O’Hearn, Matthew Parkinson, Viktor Vafeiadis, and Hongseok
Yang for helpful comments on drafts of this paper. This research is
partially funded by the Interuniversity Attraction Poles Programme
Belgian State, Belgian Science Policy, and by the Research Fund
K.U.Leuven.

References
[1] Richard Bornat, Cristiano Calcagno, Peter O’Hearn, and Matthew

Parkinson. Permission accounting in separation logic. In POPL, 2005.
[2] Markus Dahlweid, Michał Moskal, Thomas Santen, Stephan Tobies,

and Wolfram Schulte. VCC: Contract-based modular verification of
concurrent C. In ICSE, 2009.

[3] Thomas Dinsdale-Young, Mike Dodds, Philippa Gardner, Matthew
Parkinson, and Viktor Vafeiadis. Concurrent abstract predicates. In
ECOOP, 2010.

[4] Alexey Gotsman, Josh Berdine, Byron Cook, Noam Rinetzky, and
Mooly Sagiv. Local reasoning for storable locks and threads. In
APLAS, 2007.

[5] Tim Harris, Keir Fraser, and Ian A. Pratt. A practical multi-word
compare-and-swap operation. In 16th International Symposium on
Distributed Computing, 2002.

[6] Maurice Herlihy and Jeanette Wing. Linearizability: A correctness
condition for concurrent objects. ACM TOPLAS, 12(3), 1990.

[7] Bart Jacobs and Frank Piessens. Expressive modular fine-grained con-
currency specification (extended version). Technical Report CW590,
Dept. CS, K.U.Leuven, 2010.

[8] Bart Jacobs, Jan Smans, and Frank Piessens. A quick tour of the
VeriFast program verifier. In APLAS, 2010.

[9] C. B. Jones. Specification and design of (parallel) programs. In IFIP
Congress, 1983.

[10] K. Rustan M. Leino, Peter Müller, and Jan Smans. Foundations of
Security Analysis and Design V, FOSAD 2007/2008/2009 Tutorial
Lectures, volume 5705 of LNCS, chapter Verification of concurrent
programs with Chalice. Springer, 2009.

[11] Peter W. O’Hearn, John Reynolds, and Hongseok Yang. Local reason-
ing about programs that alter data structures. In CSL, 2001.

[12] Susan Owicki and David Gries. Verifying properties of parallel pro-
grams: An axiomatic approach. CACM, 19(5):279–285, May 1976.

[13] Susan Owicki and David Gries. An axiomatic proof technique for
parallel programs i. Acta Inf., 6, 1976.

[14] J. C. Reynolds. Separation logic: a logic for shared mutable data
structures. In LICS, 2002.

[15] Viktor Vafeiadis. Modular fine-grained concurrency verification. PhD
thesis, Computer Laboratory, University of Cambridge, July 2007.

[16] Viktor Vafeiadis. Automatically proving linearizability. In CAV, 2010.
[17] Viktor Vafeiadis and Matthew Parkinson. A marriage of rely/guarantee

and separation logic. In CONCUR, 2007.

