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1 Byline

2 Synonyms

Multiple-Instance Learning

3 Definition

Multiple-Instance (MI) Learning is an extension of the standard supervised learning setting. In
standard supervised learning, the input consists of a set of labeled instances each described by an
attribute vector. The learner then induces a concept that relates the label of an instance to its
attributes. In multiple-instance learning, the input consists of labeled examples (called “bags”)
consisting of multisets of instances, each described by an attribute vector, and there are constraints
that relate the label of each bag to the unknown labels of each instance. The multiple-instance learner
then induces a concept that relates the label of a bag to the attributes describing the instances in it.
This setting contains supervised learning as a special case: if each bag contains exactly one instance,
it reduces to a standard supervised learning problem.

4 Motivation and Background

The multiple-instance setting was introduced by Dietterich et al. [1] in the context of drug activity
prediction. Drugs are typically molecules that fulfill some desired function by binding to a target. If
we wish to learn the characteristics responsible for binding, a possible representation of the problem
is to represent each molecule as a set of low energy shapes or conformations, and describe each
conformation using a set of attributes. Each such bag of conformations is given a label corresponding
to whether the molecule is active or inactive. To learn a classification model, an algorithm assumes
that every instance in a bag labeled negative is actually negative, whereas at least one instance in a
bag labeled positive is actually positive with respect to the underlying concept.

From a theoretical viewpoint, multiple-instance learning occupies an intermediate position be-
tween standard propositional supervised learning and first-order relational learning. Supervised
learning is a special case of MI learning, while MI learning is a special case of first-order learning. It
has been argued that the multiple-instance setting is a key transition between standard supervised
and relational learning [2]. At the same time, theoretical results exist that show that, under certain
assumptions, certain concept classes that are PAC-learnable in a supervised setting remain PAC-
learnable in a multiple-instance setting. Thus, the MI setting is able to leverage some of the rich
representational power of relational learners while not sacrificing the efficiency of propositional learn-
ers. Figure 1 illustrates the relationships between standard supervised learning, multiple-instance
learning and relational learning.

Since its introduction, a wide variety of tasks have been formulated as multiple-instance learning
problems. Many new algorithms have been developed, and well-known supervised learning algo-
rithms extended, to learn MI concepts. A great deal of work has also been done to understand what
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Figure 1: The relationship between supervised, multiple-instance and relational learning. (a) In
supervised learning, each example (geometric figure) is labeled. A possible concept that explains
the example labels shown is “the figure is a rectangle”. (b) In MI learning, bags of examples are
labeled. A possible concept that explains the bag labels shown is “the bag contains at least one
figure that is a rectangle.” (c) In relational learning, objects of arbitrary structure are labeled. A
possible concept that explains the object labels shown is “the object is a stack of three figures and
the bottom figure is a rectangle.”
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Given: A set of bags {B1, ...Bn} each with label `i ∈ {0, 1}. Each Bi is a multiset of ni instances,
Bi = {Bi1, . . . , Bini

}.

Constraints: There exists a concept c such that:

• For every Bi with `i = 1, c(Bij) = 1 for at least one j, and

• For every Bi with `i = 0, c(Bij) = 0 for all j.

Do: Learn a concept that maps a bag Bi to its label `i.

Figure 2: Statement of the multiple-instance classification problem.

kinds of concepts can and cannot be learned efficiently in this setting. In the following sections, we
discuss the theory, methods and applications of multiple-instance learning in more detail.

5 Structure of the Problem

The general multiple-instance classification task in shown in Figure 2. The multiple-instance regres-
sion task is defined analogously by substituting a real-valued response for the classification label.
In this case, the constraint used by the learning algorithm is that the response of any bag is equal
to the response of at least one of the instances in it, for example, it could be equal to the largest
response over all the instances.

Notice the following problem characteristics:

• The number of instances in each bag can vary independently of other bags. This implies in
particular that an MI algorithm must be able to handle bags with as few as one instance (this
is a supervised learning setting) to bags with large numbers of instances.

• The number of instances in any positive bag that are “truly positive” could be many more
than one—in fact, the definition does not rule out the case where all instances in a positive
bag are “truly positive.”

• The problem definition does not specify how the instances in any bag are related to each other.

6 Theory and Methods

In this section we discuss some of the key algorithms and theoretical results in multiple-instance
learning. We first discuss methods and results for multiple-instance classification. Then we discuss
work on multiple-instance regression.

6.1 Multiple-Instance Classification

Axis-Parallel Rectangles (APRs) are a concept class that early work in multiple-instance clas-
sification focused on. These generative concepts specify upper and lower bounds for all numeric
attributes describing each instance. An APR is said to “cover” an instance if the instance lies
within it. An APR covers a bag if it covers at least one instance within it. The learning algorithm
tries to find an APR such that it covers all positive bags and does not cover any negative bags.

An algorithm called “iterated-discrimination” was proposed by Dietterich et al. [1] to learn
APRs from multiple-instance data. This algorithm has two phases. In the first phase, it iteratively
chooses a set of “relevant” attributes, and grows an APR using this set. This phase results in the
construction of a very “tight” APR that covers just positive bags. In the second phase, the algorithm
expands this APR so that with high probability, a new positive instance will fall within the APR.
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The key steps of the algorithm are outlined below. Note that initially, all attributes are considered
to be “relevant”.

The algorithm starts by choosing a random instance in a positive bag. Let us call this instance
I1. The smallest APR covering this instance is a point. The algorithm then expands this APR by
finding the smallest APR that covers any instance from a yet uncovered positive bag; call the newly
covered instance I2. This process is continued, identifying new instances I3, . . . , Ik, until all positive
bags are covered. At each step, the APR is “backfitted” in a way that is reminiscent of the later
Expectation-Maximization (EM) approaches: each earlier choice is revisited, and Ij is replaced with
an instance from the same bag that minimizes the current APR (which may or may not be the same
as the one that minimized it at step j).

This process yields an APR that imposes maximally tight bounds on all attributes and covers
all positive bags. Based on this APR, a new set of “relevant” attributes is selected as follows. An
attribute’s relevance is determined by how strongly it discriminates against negative instances, i.e.
given the current APR bounds, how many negative instances the attribute excludes. Features are
then chosen iteratively and greedily according to how relevant they are until all negative instances
have been excluded. This yields a subset of (presumably relevant) attributes. The APR growth
procedure in the previous paragraph is then repeated, with the size of an APR redefined as its size
along relevant attributes only. The APR-growth and attribute selection phases are repeated until
the process converges.

The APR thus constructed may still be too tight, as it fits narrowly around the positive bags in
the dataset. In the second phase of the algorithm, the APR bounds are further expanded using a
kernel density estimate approach. Here, a probability distribution is constructed for each relevant
attribute using Gaussian distributions centered at each instance in a positive bag. Then, the bounds
on that attribute are adjusted so that with high probability, any positive instance will lie within the
expanded APR.

Theoretical analyses of APR concepts have been performed along with the empirical ap-
proach, using Valiant’s “probably approximately correct” (PAC) learning model [3]. In early work [4],
it was shown that if each instance was drawn according to a fixed, unknown, product distribution
over the rational numbers, independently from every other instance, then an algorithm could PAC-
learn APRs. Later, this result was improved in two ways [5]. First, the restriction that the individual
instances in each bag come from a product distribution was removed. Instead, each instance is gen-
erated by an arbitrary probability distribution (though each instance in a bag is still generated
independent and identically distributed (iid) according to that one distribution). Second, the time
and sample complexities for PAC-learning APRs was improved. Specifically, the algorithm described
in this work PAC-learns APRs in time
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labeled training bags. Here, d is the dimension of each instance, n is the (largest) number of
instances per training bag and ε and δ are parameters to the algorithm. A variant of this algorithm
was empirically evaluated and found to be successful [6].

Diverse Density [7, 8] is a probabilistic generative framework for multiple-instance classifica-
tion. The idea behind this framework is that, given a set of positive and negative bags, we wish to
learn a concept that is “close” to at least one instance from each positive bag, while remaining “far”
from every instance in every negative bag. Thus, the concept must describe a region of instance
space that is “dense” in instances from positive bags, and is also “diverse” in that it describes every
positive bag. More formally, let
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1
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where t is a candidate concept, B+
i represents the ith positive bag, and B−

i represents the ith

negative bag. We seek a concept that maximizes DD(t). The concept generates the instances of a
bag, rather than the bag itself. To score a concept with respect to a bag, we combine t’s probabilities
for instances using a function based on noisy-or [9]:

Pr(t|B+
i ) ∝ (1 −

∏

j

(1 − Pr(B+
ij ∈ t))) (1)

Pr(t|B−

i ) ∝
∏

j

(1 − Pr(B−

ij ∈ t)) (2)

Here the instances B+
ij and B−

ij belonging to t are the “causes” of the “event” that “t is the target”.
The concept class investigated by Maron [8] is the class of generative Gaussian models, which are
parameterized by the mean µ and a “scale” s = 1

2σ2 :

Pr(Bij ∈ t) ∝ e−
P

k
(sk(Bijk−µk)2),

where k ranges over attributes. Figure 3 illustrates a concept that Diverse Density might learn when
applied to an MI dataset.

Diverse Density with k disjuncts is a variant of Diverse Density that has also been inves-
tigated [8]. This is a class of disjunctive Gaussian concepts, where the probability of an instance
belonging to a concept is given by the maximum probability of belonging to any of the disjuncts.

EM-DD [10] is an example of a class of algorithms that try to identify the “cause” of a bag’s
label using Expectation-Maximization (EM). These algorithms sometimes assume that there is a
single instance in each bag that is responsible for the bag’s label (though variants using “soft EM”
are possible). The key idea behind this approach is as follows: from each positive bag, we take a
random instance and assume that this instance is the relevant one. We learn a hypothesis from these
relevant instances and all negative bags. Next, for each positive bag, we replace the current relevant
instance by the instance most consistent with the learned hypothesis (which will initially not be the
chosen instance in general). We then relearn the hypothesis with these new instances. This process
is continued until the set of chosen instances does not change (or alternatively, the objective function
of the classifier reaches a fixed point). This procedure has the advantage of being computationally
efficient, since the learning algorithm only uses one instance from each positive bag. This approach
has also been used in multiple-instance regression, described later.

“Upgraded” supervised learning algorithms can be used in a multiple-instance setting by
suitably modifying their objective functions. Below, we summarize some of the algorithms that have
been derived in this way.

1. Decision Tree induction algorithms have been adapted to the MI setting [11]. The stan-
dard algorithm measures the quality of a split on an attribute by considering the class label
distribution in the child nodes produced. In the MI case, this distribution is uncertain, be-
cause the true instance labels in positive bags are unknown. However, some rules have been
identified that lead to empirically good MI trees: (a) use an asymmetric heuristic that favors
early creation of pure positive (rather than negative) leaves, (b) once a positive leaf has been
created, remove all other instances of bags covered by this leaf; (c) abandon the depth-first
or breadth-first order in which nodes are usually split, adopting a best-first strategy instead
(indeed, because of (b), the result of tree learning is now sensitive to the order in which the
nodes are split).

2. Artificial Neural Networks have been adapted to the MI setting by representing the bag
classifier as a network that combines several copies of a smaller network, which represents the
instance classifier, with a smooth approximation of the max combining function [12]. Weight
update rules for a backpropagation algorithm working on this network have been derived. Later
work on multiple-instance neural networks has been performed independently by others [13].

3. Logistic Regression has been adapted to the MI setting by using it as an instance-based
classifier and combining the instance-level probabilities using functions like softmax [14] and
arithmetic and geometric averages [15].
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Figure 3: An illustration of the concept that Diverse Density searches for on a simple MI dataset
with three positive bags and one negative bag, where each instance (represented by the geometric
figures) is described by two attributes, f1 and f2. Each type of figure represents one bag, i.e. all
triangles belong to one bag, all circles belong to a second bag and so forth. The bag containing
the red circles is negative, while the other bags are positive. Region C is a region of high density,
because several instances belong to that region. Region A is a region of high “Diverse Density”,
because several instances from different positive bags belong to that region, and no instances from
negative bags are nearby. Region B shows a concept that might be learned if the learning algorithm
assumed that all instances in every positive bag are positive. Figure adapted from Maron (1998) .
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4. The k-Nearest Neighbor algorithm has been adapted to the MI setting by using set-based
distance metrics, such as variants based on the Hausdorff distance. However, this alone does
not solve the problem – it is possible for a positive bag to be mistakenly classified negative if
it contains a “true negative” instance that happens to be much closer to negative instances in
other negative bags. To solve this, a “Citation-kNN” [16] approach has been proposed that
also considers, for each bag B, the labels of those bags for which B is a nearest neighbor.

5. Support Vector Machines have been adapted to the MI setting in several ways. In one
method, the constraints in the quadratic program for SVMs is modified to account for the
fact that certain instance labels are unknown but have constraints relating them [17]. In
another method, new kernels are designed for MI data by modifying standard supervised
SVM kernels [18] or designing new kernels [19]. The modification allows these MI kernels
to distinguish between positive and negative bags if the supervised kernel could distinguish
between (“true”) positive and negative instances.

6. Rule learning algorithms have been adapted to the MI setting in two ways. One method has
investigated upgrading a supervised rule-learner, the ripper system [20], to the MI setting by
modifying its objective function to account for bags and addressing several issues that resulted.
Another method has investigated using general purpose relational algorithms, such as foil [21]
and tilde [22], and providing them with an appropriate inductive bias so that they learn MI
concepts. Further, it has been observed that techniques from multiple instance learning can
also be used inside relational learning algorithms [23].

A large scale empirical analysis of several such propositional supervised learning algorithms and
their MI counterparts has been performed [14]. This analysis concludes that: (a) no single MI
algorithm works well across all problems. Thus, different inductive biases are suited to different
problems, (b) some multiple-instance algorithms consistently perform better than their supervised
counterparts but others do not (hence for these biases there seems room for improvement), and (c)
assigning a larger weight to false positives than to false negatives is a simple but effective method
to adapt supervised learning algorithms to the multiple-instance setting. It was also observed that
the advantages of multiple instance learners may be more pronounced if they would be evaluated on
the task of labeling individual instances rather than bags.

Along with “upgrading” supervised learning algorithms, a theoretical analysis of supervised

learners learning with MI data has been carried out [24]. In particular, the multiple-instance
problem has been related to the problem of learning in the presence of classification noise (i.e. each
training example’s label is flipped with some probability < 1/2). This implies that any concept
class that is PAC-learnable in the presence of such noise is also learnable in the multiple-instance
learning model when each instance of a bag is drawn iid. Since many concept classes are learnable
under this noise assumption (using e.g. statistical queries [25]), Blum and Kalai’s result implies PAC
learnability of many concept classes. Further, they improved on previous learnability results [5] by
reducing the number of training bags required for PAC learning by about a factor of n with only an
increase in time complexity of about log log n/ε.

Besides these positive results, a negative learnability result describing when it is hard to
learn concepts from multiple-instance data is also known [5]. Specifically, if the instances of each
bag are allowed collectively to be generated according to an arbitrary distribution, learning from
multiple-instance examples is as hard as PAC-learning disjunctive normal form (DNF) formulas from
single-instance examples, which is an open problem in learning theory that is believed to be hard.
Further, it has been showed that if an efficient algorithm exists for the non-iid case that outputs
as its hypothesis an axis-parallel rectangle, then NP = RP (Randomized Polynomial time, see e.g.
Papadimitriou [26]), which is very unlikely.

Learning from structured multiple-instance data has received some attention [27]. In this
work, each instance is a graph, and a bag is a set of graphs (for example, a bag could consist of
certain subgraphs of a larger graph). To learn concepts in this structured space, the authors use
a modified form of the Diverse Density algorithm discussed above. As before, the concept being
searched for is a point (which corresponds to a graph in this case). The main modification is the
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use of the size of the maximal common subgraph to estimate the probability of a concept—i.e., the
probability of a concept given a bag is estimated as proportional to the size of the maximal common
subgraph between the concept and any instance in the bag.

6.2 Multiple-Instance Regression

Regression problems in an MI setting have received less attention than the classification problem.
Two key directions have been explored in this setting. One direction extends the well-known standard
linear regression method to the MI setting. The other direction considers extending various MI
classification methods to a regression setting.

In Multiple-Instance Linear Regression [28] (referred to as multiple-instance regression in
the cited work), it is assumed that the hypothesis underlying the data is a linear model with Gaussian
noise on the value of the dependent variable (which is the response). Further, it is assumed that it
is sufficient to model one instance from each bag, i.e. that there is some primary instance which
is responsible for the real-valued label. Ideally, one would like to find a hyperplane that minimizes
the squared error with respect to these primary instances. However, these instances are unknown
during training. The authors conjecture that, given enough data, a good approximation to the ideal
is given by the “best-fit” hyperplane, defined as the hyperplane that minimizes training set squared
error by fitting one instance from each bag such that the response of the fitted instance most closely
matches the bag response. This conjecture will be true if the non-primary instances are not a better
fit to a hyperplane than the primary instances. However, exactly finding the “best-fit” hyperplane
is intractable. It is shown that the decision problem “Is there a hyperplane which perfectly fits
one instance from each bag?” is NP -complete for arbitrary numbers of bags, attributes and at
most three instances per bag. Thus, the authors propose an approximation algorithm which iterates
between choosing instances and learning linear regression models that best fit them, similar to the
EM-DD algorithm described earlier.

Another direction has explored extending MI classification algorithms to the regression
setting. This approach [29] uses algorithms like Citation-kNN and Diverse Density to learn real-
valued concepts. To predict a real value, the approach uses the average of the nearest neighbor
responses or interprets the Gaussian “probability” as a real number for Diverse Density.

Recent work has analyzed the Diverse Density-based regression in the on-line model [30, 31].
In the on-line model, learning proceeds in trials, where in each trial a single example is selected
adversarially and given to the learner for classification. After the learner predicts a label, the true
label is revealed and the learner incurs a loss based on whether its prediction was correct. The goal
of the on-line learner is to minimize loss over all trials. On-line learning is harder than PAC learning
in that there are some PAC-learnable concept classes that are not on-line learnable.

In the regression setting above [32], there is a point concept, and the label of each bag is a
function of the distance between the concept and the point in the bag closest to the target. It is
shown that similar to Auer et al.’s lower bound, learning in this setting using labeled bags alone is
as hard as learning DNF. They then define a multiple-instance membership query (MI-MQ) in which
an adversary defines a bag B = {p1, . . . , pn} and the learner is allowed to ask an oracle for the label
of bag B + ~v = {p1 + ~v, . . . , pn + ~v} for any d-dimensional vector ~v. Their algorithm then uses this
MI-MQ oracle to on-line learn a real-valued multiple-instance concept in time O(dn2).

7 Applications

In this section, we describe domains where multiple-instance learning problems have been formulated.
Drug activity was the motivating application for the multiple instance representation [1]. Drugs

are typically molecules that fulfill some desired function by binding to a target. In this domain, we
wish to predict how strongly a given molecule will bind to a target. Each molecule is a three-
dimensional entity and takes on multiple shapes or conformations in solution. We know that for
every molecule showing activity, at least one its low energy conformations possesses the right shape
for interacting with the target. Similarly, if the molecule does not show drug-like activity, none of
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its conformations possess the right shape for interaction. Thus, each molecule is represented as a
bag, where each instance is a low energy conformation of the molecule. A well-known example from
this domain is the MUSK dataset. The positive class in this data consists of molecules that smell
“musky”. This dataset has two variants, MUSK1 and MUSK2, both with similar numbers of bags,
with MUSK2 having many more instances per bag.

Content Based Image Retrieval is another domain where the MI representation has been
used [7, 33]. In this domain, the task is to find images that contain objects of interest, such as
tigers, in a database of images. An image is represented by a bag. An instance in a bag corresponds
to a segment in the image, obtained by some segmentation technique. The underlying assumption
is that the object of interest is contained in (at least) one segment of the image. For example, if
we are trying to find images of mountains in a database, it is reasonable to expect most images
of mountains to have certain distinctive segments characteristic of mountains. A multiple-instance
learning algorithm should be able to use the segmented images to learn a concept that represents the
shape of a mountain and use the learned concept to collect images of mountains from the database.

The identification of protein families has been framed as a multiple-instance problem [19].
The objective in that work is to classify given protein sequences according to whether they belong
to the family of thioredoxin-fold proteins. The given proteins are first aligned with respect to a
motif that is known to be conserved in members of the family. Each aligned protein is represented
by a bag. A bag is labeled positive if the protein belongs to the family, and negative otherwise. An
instance in a bag corresponds to a position in a fixed length sequence around the conserved motif.
Each position is described by a vector of attributes; each attribute describes a properties of the
amino acid at that position, and smoothed using the same properties from its neighbors.

Text Categorization is another domain that has used the MI representation [17, 14]. In this
domain, the task is to classify a document as belonging to a certain category or not. Often, whether
the document belongs to the specified category is the function of a few passages in the document.
These passages are however not labeled with the category information. Thus, a document could be
represented as a set of passages. We assume that each positive document (i.e., that belongs to the
specified category) has at least one passage that contains words that indicate category membership.
On the other hand, a negative document (that does not belong to the category) has no passage that
contain words indicating category membership. This formulation has been used to classify whether
MEDLINE documents should be annotated with specific MeSH terms [17] and to determine if specific
documents should be annotated with terms from the Gene Ontology [14].

Time-series data from hard drives have been used to define a multiple-instance problem [34].
The task here is to distinguish drives that fail from others. Each hard drive is a bag. Each instance
in the bag is a fixed-size window over timepoints when the drive’s state was measured using certain
attributes. In the training set, each drive is labeled according to whether it failed during a window
of observation. An interesting aspect to prediction in this setting is that it is done on-line, i.e. the
algorithm learns a classifier for instances, which is applied to each instance as it becomes available
in time. The authors learn a näıve Bayes model using an EM-based approach to solve this problem.

Discovering useful subgoals in reinforcement learning has been formulated as a multiple-
instance problem [35]. Imagine a robot has to get from one room to another by passing through a
connecting door. If the robot knew of the existence of the door, it could decompose the problem into
two simpler subproblems, to be solved separately: getting from the initial location in the first room
to the door, and then getting from the door to its destination. How could the robot discover such
a “useful subgoal”? One approach formulates this as a multiple-instance problem. Each trajectory
of the robot, where the robot starts at the source and then moves for some number of time steps, is
considered to be a bag. An instance in a bag is a state of the world, that records observations such
as, “is the robot’s current location a door?” Trajectories that reach the destination are positive,
while those that do not are negative. Given this data, we can learn a classifier that predicts which
states are more likely to be seen on successful trajectories than on unsuccessful ones. These states
are taken to be useful subgoals. In the previous example, the MI algorithm could learn that the
state “location is a door” is a useful subgoal, since it appears on all successful trajectories, but
infrequently on unsuccessful ones.
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8 Future Directions

Multiple-instance learning remains an active research area. One direction that is being explored
relaxes the “Constraints” in Figure 2 in different ways [36, 19]. For example, one could consider
constraints where at least a certain number (or fraction) of instances have to be positive for a bag
to be labeled positive. Similarly, it may be the case that a bag is labeled positive only if it does
not contain a specific instance. Such relaxations are often studied as “generalized multiple-instance
learning.”

One such generalization of multiple-instance learning has been formally studied under the name
“geometric patterns.” In this setting, the target concept consists of a collection of axis-parallel
rectangles, and a bag is labeled positive if and only if (1) each of its points lies in a target APR,
and (2) every target APR contains a point. Noise-tolerant PAC algorithms [37] and on-line algo-
rithms [38] have been presented for such concept classes. These algorithms make no assumptions
on the distribution used to generate the bags (e.g. instances might not be generated by an iid pro-
cess). This does not violate Auer et al.’s lower bound since these algorithms do not scale with the
dimension of the input space.

Another recent direction explores the connections between multiple-instance and semi-supervised
learning. Semi-supervised learning generally refers to learning from a setting where some instance
labels are unknown. Multiple instance learning can be viewed as one example of this setting. Ex-
ploiting this connection between multi-instance learning and other methods for semi-supervised
learning, recent work [39] proposes an approach where a multiple-instance problem is transformed
into a semi-supervised learning problem. An advantage of the approach is that it automatically also
takes into account unlabeled bags.

9 Cross References

Artificial Neural Network, Attribute, Classification, Data Set, Decision Trees, Expectation-Maximization,
First-order Rule, Gaussian Distribution, Inductive Logic Programming, Kernel Methods, Linear Re-
gression, Nearest Neighbor, Noise, On-line Learning, PAC Learning, Relational Learning, Supervised
Learning
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