
Dealing with concerns ask for an architecture-centric approach

Nelis Boucḱe and Tom Holvoet
AgentWise, Distrinet, Departement of Computer Sience, KULeuven, Belgium

{nelis.boucke,tom.holvoet}@cs.kuleuven.be

It is becoming more and more clear that architectural design
is a crucial step in building complex software. Architectural
design involves the first and most crucial design decisions to
meet the expected quality attributes [1]. Dealing with con-
cerns that influence important quality attributes asks for an
architecture-centric approach. In this paper we propose archi-
tectural concerns as basic concept for such architecture-centric
approach and discuss possible ways of representing architec-
tural concerns.

Software architecture and concerns
The requirements and the domain model describe the problem,
software architecture is the solution to the problem. The soft-
ware architecture defines the general structure of the system
(the solution) to meet functional requirements and satisfying
essential quality requirements (the problem).

Concernsin software systems are in essence ’issues impor-
tant for the stakeholders of the software system’. The software
architect, being an important stakeholder and responsible for
building the software architecture, will have his own set of es-
sential issues. From thisarchitectural concernsare defined as
’the concerns of the software architect’. Example architectural
concerns could be coordination between distributed entities or
security guarantees of the system.

By narrowing down the definition to ’concerns of the ar-
chitect’, there is a distinction between requirements and ar-
chitectural concerns: requirements describe the problem, ar-
chitectural concerns are issues of the solution. There is no
perfect alignment between requirements and architectural con-
cern, because the concerns of a software architect are not only
influenced by the requirements but also by the solution strat-
egy. Thus a single architectural concern will contribute (posi-
tively or negatively) to the fulfillment of several requirements.

Representation of architectural concerns
Until now only the definition of architectural concerns has
been discussed. Another important issue is how architectural
concerns can be represented to prevent scattering and tan-
gling [8] of the representation of an individual concern (and
thus allow good separation of concerns). Architectural con-
cerns can be represented in several ways, depending on the
complexity of the concern (e.g. amount of software entities,
relation complexity) and the goal of the architect. Moreover,
the representations do not fully exclude each other. Some pos-
sible ways of representing architectural concerns are:

1. Component aspects
2. Instantiated architectural patterns
3. Architectural views

1. Component aspects are a logical extension of code level as-
pects [8, 11, 2]. Component aspects are well suited to modu-
larize solutions in asingle aspect componentwith similar char-
acteristics as components and within asingle viewpointon the
system. Examples from literature are [12, 13, 10].

2. Architectural patterns are solutions with well known
properties, involvingseveral software entities and the relations

between them. Instantiating patterns permits for identifying
solutions in isolation and composing those solutions to build
the final software. Architectural patterns are typically used
within a single view. Patterns are useful when well known so-
lutions exist. Care should be taken in combining the patterns
to prevent interference between them, both for functional as
for quality attributes [5].

3. An architectural description uses several architectural
views [9, 4]. Such a view is a partial description of the soft-
ware architecture from a certain perspecive, to emphasizing
certain facets of the solution as clear and as concise as pos-
sible while deemphasizing and ignoring other facets. Each
view uses some style, providing the set of abstractions that
can be used in the view (software elements, externally visible
properties and relationships between them [1, 5]). Compared
with the previous approaches, views inherently involvemulti-
ple viewpointson software architecture and typically involve
many software entities and relationsto each other.

Architectural views are our main interest for two reasons.
(1) Using views to represent concerns is close to current prac-
tice in software architecture, views have been introduced to
represent different stakeholders concerns and different types
of structures. Architectural views could be seen as an MD-
SOC [14] mechanism on architectural level [7, 6]. But the
current notion of software architectures lacks a structured way
to describe non-trivial relationships between views. Some
implicit, informal or simple relationships (e.g. one-to-many
of software elements) may be feasible for typical styles like
component- connector and module-decomposition, there rela-
tion is common knowledge in software engineering. But sim-
ple relations are insufficient for new types of views (contain-
ing an architectural concern) having non-trivial relationships
and probably intefering with other views. We believe that new
mechanisms are needed to describe the composition of archi-
tectural views (for architectural views) and to translate those
views to detailed design. In this context, we provided an ini-
tial sketch for State-based join-points [3] to describe the rela-
tion between the ’coordination’ architectural concern and the
remainder of the application.

(2) We believe architectural concerns show interesting prop-
erties to represent more ’coarse grained’ architectural con-
cerns. There could arise some confusion because architec-
tural views do not formally ’modularize’ concerns, architec-
tural views are not ’modules’ of the final software system! But
notice that the description of different architectural concerns is
fully separated (thus tangling and scattering of representations
is prevented) and the different architectural concerns can be
recomposed to make up the final software architecture, clearly
a mechanism of separation of concerns.

Kand́e et al. [7, 6] describes one possible way of using
architectural views to describe concerns, called Perspectival
Concern-Space (PCS). PCS is an interpretation of the IEEE-
Std-1471 and uses an extension of UML to describe concerns.

1



Many open questions regarding the nature of architectural
views to represent architectural concerns remain open, e.g.:

1. Which architectural concerns should be described as
views?
2. How do new architectural views relate to the classical
views like module decomposition, component and con-
nector, ...?
3. What concepts of AOSD apply on architectural level?
Weaving architectural concerns? Architectural join-
points? Aspects? Or should join-points being described
in a radical new way?
4. How do architectural concerns relate AOSD techniques
of design and implementation?

References

[1] Len Bass, Paul Clements, and Rick Kazman.Software
Architectures in Practice (Second Edition). Addison-
Wesley, 2003.

[2] Lodewijk Bergmans and Mehmet Aksits. Composing
crosscutting concerns using composition filters.Com-
munications of the ACM, 44(10):51–57, 2001.

[3] N. Boucke and T. Holvoet. State-based join-points:
Motivation and requirements. In Robert E. Filman,
Michael Haupt, and Robert Hirschfeld, editors,Proceed-
ings of the Second Dynamic Aspects Workshop (DAW05
at AOSD05), pages 1–4, 2005.

[4] Paul Clements, Feliz Bachman, Len Bass, David Gar-
lan, James Ivers, Reed Little, Robert Nord, and Judith
Stafford. Documenting Software Architectures, Views
and Beyond. Addison Wesley, 2003.

[5] David Garlan and Mary Shaw. An introduction to soft-
ware architecture. In V. Ambriola and G. Tortora, editors,
Advances in Software Engineering and Knowledge Engi-
neering, pages 1–39, Singapore, 1993. World Scientific
Publishing Company.

[6] Mohamed Kand́e. A Concern-Oriented Approach to
Software Architecture. PhD thesis,́Ecole Polytechnique
Féd́erale de Lausanne, 2003.

[7] Mohamed Mancona Kande and Alfred Stroheier. On the
role of multi-dimensional separation of concerns in soft-
ware architecture. InProoceedings of the OOPSLA’2000
Workshop on Advanced Separation of Concerns, 2000.

[8] G. Kiczales, J. Lamping, A. Menhdhekar, C. Maeda,
C. Lopes, J.M. Loingtier, and J. Irwin. Aspect-
oriented programming. Proceedings European Con-
ference on Object-Oriented Programming, Springer-
Verslag, 1241:220–242, 1997.

[9] P. Kruchten. The 4+1 view model of architecture.IEEE
Software, 12(6):42–50, November 1995.

[10] M. Mezini and K. Ostermann. Conquering aspects with
caesar. In M. Aksit, editor,Proceedings of the 2nd Inter-
national Conference on Aspect-Oriented Software Devel-
opment (AOSD), pages pp. 90–100. ACM Press, 2003.

[11] H. Ossher and P. Tarr. Multi-dimensional separation of
concerns and the hyperspace approach. InProceedings
of the Symposium on Software Architectures and Compo-
nent Technology: The State of the Art in Software Devel-
opment. Kluwer, 2000.

[12] Monica Pinto, Lidia Fuentes, and Jose Maria Troya.
Daop-adl: an architecture description language for dy-
namic component and aspect-based development. In
GPCE ’03: Proceedings of the second international con-

ference on Generative programming and component en-
gineering, pages 118–137. Springer-Verlag New York,
Inc., 2003.

[13] D. Suve, W. Vanderperren, and V. Jonckers. Jasco: an
aspect-oriented approach tailored for component based
software development. InIn Proc of international confer-
ence on aspect-oriented software development (AOSD),
2003.

[14] Peri L. Tarr, Harold Ossher, William H. Harrison, and
Stanley M. Sutton Jr. N degrees of separation: Multi-
dimensional separation of concerns. InInternational
Conference on Software Engineering, pages 107–119,
1999.

2


