
Breaks, cuts, and patterns

 Dries Goossens and Frits Spieksma

DEPARTMENT OF DECISION SCIENCES AND INFORMATION MANAGEMENT (KBI)

Faculty of Business and Economics

KBI 1033

Breaks, cuts, and patterns

Dries R. Goossens(1,2), Frits C.R. Spieksma(2)

(1) PostDoc researcher for Research Foundation - Flanders

Corresponding author. E-mail: Dries.Goossens@econ.kuleuven.be

(2) Center for Operations Research and Business Statistics (ORSTAT),

Faculty of Business and Economics, K.U.Leuven, Belgium

Abstract

In sports scheduling, a team is said to have a break when it plays

two home (or two away) matches in a pair of consecutive rounds. In this

paper, we generalize this concept by also considering pairs of nonconsec-

utive rounds. We show that a set of home-away patterns minimizing the

number of generalized breaks cannot be found in polynomial time, unless

P=NP. For the special case where all teams have the same set of breaks,

the decision version becomes polynomially solvable; the optimization ver-

sion remains NP-hard. For this special case, we also provide a lower bound

for the number of generalized breaks for a given break set, thereby gener-

alizing a classical result by De Werra.

Keywords: sport scheduling, home-away patterns, breaks, non-

consecutive rounds, complexity

1 Introduction

Consider a sports competition in which an even number of teams (say 2n) com-

pete. Each team has its own venue, and each pair of teams meets once in one

of the team’s venues. Clearly, this is a single round robin tournament which

can be played in 2n− 1 rounds. A schedule is called compact when it uses the

minimum number of rounds required to schedule all the games. In a compact

1

schedule with an even number of teams, each team plays exactly one game in

each round. If the league contains an odd number of teams, a dummy team may

be added, reducing this situation to the case with an even number of teams. In

each round, the team playing against the dummy team has a ‘bye’, i.e. does not

play. In this work, we deal solely with compact schedules for an even number

of teams.

Traditional terminology prescribes that the sequence of home matches (‘H’)

and away matches (‘A’) played by a single team is called its home-away pattern

(HAP). Given such a HAP, the occurrence of two consecutive home matches, or

two consecutive away matches is called a break.

In this contribution, we will generalize the concept of a break. The idea is

simple: instead of defining a break as two home games (or two away games) in

a pair of consecutive rounds, we will view a break as two home (away) games

in a given, arbitrary pair of rounds. More specific, each team i, i = 1, . . . , 2n

specifies a set of pairs of rounds indicating that this team does not want to

play either at home or away in both rounds of each pair (which need not be

consecutive). The set of pairs is called the break set of team i, and is denoted by

Bi, with i = 1, . . . , 2n. It generalizes the traditional concept of a break. Indeed,

the traditional setting arises when:

B1 = B2 = . . . = B2n = {{1, 2}, {2, 3}, {3, 4}, . . . , {2n− 2, 2n− 1}}.

We say that a home-away pattern (HAP) is break-free with respect to a break

set Bi if no two home matches or two away matches are scheduled on a pair of

rounds that is an element of Bi. We call a set of 2n home-away patterns a pat-

tern set if they are pairwise distinct, and when each round has n H’s (and hence

n A’s). We call a pattern set break-free if the i-th HAP in the set is break-free

with respect to Bi. The main problem can now be described as follows: given

2

2n break sets Bi, with i = 1, . . . , 2n, does there exist a break-free pattern set

with respect to Bi? We refer to this problem as the BfPS problem.

In this paper, we present the following results. We show that when given a

break set Bi for each team i, i = 1, . . . , 2n, deciding whether a break-free

pattern set exists is NP-complete (section 4). In the special case where all

teams have identical break sets, we show that the BfPS problem can be solved

in polynomial time, while minimizing the number of generalized breaks remains

NP-hard (section 5). For this special case, we also provide a lower bound for

the number of breaks, generalizing a classical result by De Werra (1981). In

the next section, we motivate the concept of generalized breaks with practical

applications in football scheduling, and in the traveling tournament problem.

We give an overview of related problems and results in section 3.

2 Motivation

In most major football leagues, the vast majority of the matches are scheduled

on weekend days. However, as there are often more rounds than available week-

ends, some rounds need to be scheduled on Wednesdays. Since a home game on

a Wednesday typically attracts less fans (for instance because of overlap with

the Champions League, see Forrest and Simmons (2006)), teams generally do

not appreciate a home game on a midweek round. Consequently, teams ask for

a schedule where the assignment of home games on Wednesdays is balanced:

if a team plays at home on one Wednesday round, they don’t want to play at

home on the next Wednesday round. This is for instance the case in the Belgian

Jupiler Pro Football League (see Goossens and Spieksma (2009)). Obviously,

Wednesday rounds need not be consecutive, and hence generalized breaks arise.

In most sports competitions, the number of consecutive away (home) games is

limited (see e.g. Goossens and Spieksma (2010)). When at most two consecutive

3

away (home) games are allowed for each team, we can express this condition

with the following break set:

B1 = B2 = . . . = B2n = {(1, 3), (2, 4), (3, 5), . . . , (2n− 3, 2n− 1)}.

This type of constraint is also relevant for the traveling tournament problem (see

Easton et al. (2001)). In this problem, the objective is to minimize the total

distance traveled by the teams to complete a (double) round robin tournament.

Obviously, combining a number of away games that are geographically close

by in a single trip is useful to reduce the travel distance. However, the length

of an away trip is usually limited to some value k, which can be expressed

using generalized breaks. Indeed, a schedule for 2n teams will have at most k

consecutive home (away) games if and only if it uses a break-free pattern set

with respect to the following break set:

B1 = B2 = . . . = B2n = {(1, k +1), (2, k +2), (3, k +3), . . . , (2n−1, k +2n−1)}.

3 Related work

Kendall et al. (2010) present an annotated bibliography of sports scheduling

literature. Many of the theoretical results and scheduling algorithms in this

bibliography are based on graph theory. For an overview of graph-based models

in sports scheduling, we refer to work by Drexl and Knust (2007). These authors

mention that, to the best of their knowledge, De Werra (1981) was the first who

suggested to use graphs for constructing schedules with home and away games.

De Werra (1981) uses the complete graph K2n on 2n nodes for single round

robin tournaments, where the nodes correspond with the teams, and the edges

with games between the teams. A compact schedule can then be seen as an

edge coloring with 2n− 1 colors, i.e. a partitioning of the edge set into 2n− 1

perfect matchings.

4

Apart from introducing graph theory in sports scheduling, De Werra (1981) also

considers the problem of finding the minimum number of breaks (in the classic

interpretation, i.e. with consecutive rounds) for a single round robin tournament

with 2n teams. He finds that since only two different patterns without breaks

exist (HAHA...H and AHAH...A), and all teams must have different patterns

(indeed, two teams with the same pattern can never play against each other), at

most two teams will not have any break. Consequently, in each schedule at least

2n−2 breaks occur. Furthermore, De Werra shows that schedules achieving this

lower bound can be constructed using the so-called canonical 1-factorization,

which dates back to, as far as we are aware, a paper by Kirkman (1847). In this

work, we partly extend De Werra’s result to our setting with generalized breaks.

A set of home-away patterns restricts the set of possible matches. Of course,

two teams should have a different home-away assignment in some round in or-

der to be able to play against each other in that round. Obviously, there is

no guarantee that a random set of HAPs allows a feasible single round robin

schedule (i.e. where each team plays exactly once against each other team).

The question whether or not it is possible to create a feasible single round robin

schedule with a given set of home-away patterns is known as the pattern set fea-

sibility problem. The complexity of this problem is still unsettled, but a number

of necessary conditions are known.

Miyashiro et al. (2003) point out that it is easy to see that every feasible set of

HAPs must satisfy the following two conditions:

1. in each round, the number of As and Hs are equal,

2. the HAPs are pairwise different.

Notice that these conditions correspond with our definition of a pattern set in

section 1. They are, however, not sufficient. In other words, finding a break-free

pattern set does not guarantee the existence of a schedule without (generalized)

5

breaks.

Miyashiro et al. (2003) also come up with more elaborate necessary conditions,

which can be checked in polynomial time for sets of patterns with a minimum

number of breaks. For this case, the authors checked computationally that the

conditions are sufficient for problems with up to 26 teams. Briskorn (2008)

provides a necessary condition based on a linear programming formulation. He

shows that this condition is strictly stronger than those provided by Miyashiro

et al. (2003). Nevertheless, these conditions are not sufficient, as shown by

Horbach (2010).

Another related problem is the break minimization problem: given a tournament

schedule without home-away assignment, find a feasible home-away pattern set

that minimizes the number of (classic) breaks. To the best of our knowledge,

the complexity status of this problem is still unknown. However, Miyashiro and

Matsui (2005) proved a conjecture by Elf et al. (2003), stating that deciding

whether a feasible home-away pattern set with 2n − 2 breaks exists, can be

solved in polynomial time.

4 The break-free pattern set problem

The break-free pattern set problem is the following: given a break set Bi for each

team i = 1, . . . , 2n, does there exist a break-free pattern set with respect to Bi?

We prove that this problem is NP-complete using a reduction from a problem

we call the matrix flopping problem (MFP). In the matrix flopping problem, we

are given a 0-1 matrix M , consisting of 2k rows and 2k− 1 columns. Moreover,

each row contains at least one ’1’ and one ’0’, and all rows are pairwise distinct

and noncomplementary. A flop is defined as changing each ’1’ into a ’0’ and

vice versa, for all the entries on some row i, with 1 6 i 6 2k (we will refer to

6

this operation as flopping a row). The question is whether there exists a series

of flops such that as a result, each column sum equals k. The following lemma

shows that the matrix flopping problem is NP-complete.

Lemma 4.1 The matrix flopping problem is NP-complete.

Proof. We prove the theorem by presenting a reduction from a special case

of Exact Cover by 3-sets (X3C), namely where each element occurs in exactly

three subsets. We refer to this problem as X3C3. Garey and Johnson (1979)

showed that X3C is NP-complete. Hein et al. (1996) implied that X3C re-

mains NP-complete when each element occurs in exactly three subsets. The

NP-completeness of X3C3 was explicitly proven by Hickey et al. (2008).

X3C3

Input: A set of elements X with |X| = 3q, and a collection C of m = 3q 3-

element subsets of X, such that each element occurs in exactly 3 members of C.

Question: Does C contain an exact cover for X, i.e. does there exist a sub-

collection C ′ ⊂ C such that every element of X occurs in exactly one member

of C ′?

Each instance of X3C3 can be transformed into an instance of MFP as follows.

We construct a matrix M with 6q−2 rows and 6q−3 columns. We call the first

3q columns the left part of the matrix, the next 3q − 3 columns are the right

part. The first column of the right part, i.e. column 3q + 1, is called the target

column. The first 3q rows are denoted as the upper part of the matrix, the next

3q − 6 rows are the middle part, and the last 4 rows form the lower part. The

left part columns correspond with the 3q elements in X, the upper part rows

correspond with the 3q members of C. Each entry mij in the upper left part

of the matrix has value 1 if the j-th element of X occurs in the i-th member

of C, and 0 otherwise. Thus, the left upper part of M captures the instance

of X3C3. The entries in the middle left part of the matrix all have value 1. In

7

the lower left part, all entries in the second and third row are 1, the entries in

the first and last row have value 0. The target column has in its upper part all

zeros, except on the three rows corresponding to the 3 members of C in which

the first element of X occurs. The middle part of the target column consists of

q − 2 ones, followed by 2q − 4 zeros. The lower part of the target column has

a zero in the first and the third row, and a one in the second and the last row.

In the upper part of the matrix, the columns to the right of the target column

are the complement of the target column. In the middle part, the entries in

the first q − 2 rows have value 1, except that mij = 0 for i = 3q + 1, ..., 4q − 2

with j = i + 1. The next q − 2 rows have value 0, except that mij = 1 for

i = 4q − 1, ..., 5q − 4 with j = i − q + 3. The last q − 2 rows of the middle

part again have value 1, except that mij = 0 for i = 5q − 3, ..., 6q − 7 with

j = i− 2q + 5 and i = 5q − 2, ..., 6q − 6 with j = i− 2q + 4. In first two rows of

the lower part, all entries have value 1 in columns 3q + 1 to 4q− 2, and 0 in the

next columns. The last two rows of the lower part consist of ones in the columns

to the right of the target column. We illustrate this transformation with the

following matrix M , where lines have been inserted to show the various parts.

The target column is indicated in boldface.

8

M =

0 0 0 1 . . . 0 0 1 1 . . . 1 1 1 . . . 1

0 1 0 0 . . . 0 0 1 1 . . . 1 1 1 . . . 1

1 1 0 0 . . . 0 1 0 0 . . . 0 0 0 . . . 0

0 1 1 1 . . . 0 0 1 1 . . . 1 1 1 . . . 1

0 0 0 0 . . . 1 0 1 1 . . . 1 1 1 . . . 1

1 0 1 0 . . . 0 1 0 0 . . . 0 0 0 . . . 0

1 0 0 0 . . . 0 1 0 0 . . . 0 0 0 . . . 0
...

...
...

...
. . .

...
...

...
...

. . .
...

...
...

. . .
...

0 0 1 0 . . . 1 0 1 1 . . . 1 1 1 . . . 1

1 1 1 1 . . . 1 1 0 1 . . . 1 1 1 . . . 1

1 1 1 1 . . . 1 1 1 0 . . . 1 1 1 . . . 1
...

...
...

...
. . .

...
...

...
...

. . .
...

...
...

. . .
...

1 1 1 1 . . . 1 1 1 1 . . . 0 1 1 . . . 1

1 1 1 1 . . . 1 1 1 1 . . . 1 0 1 . . . 1

1 1 1 1 . . . 1 0 1 0 . . . 0 0 0 . . . 0

1 1 1 1 . . . 1 0 0 1 . . . 0 0 0 . . . 0
...

...
...

...
. . .

...
...

...
...

. . .
...

...
...

. . .
...

1 1 1 1 . . . 1 0 0 0 . . . 1 0 0 . . . 0

1 1 1 1 . . . 1 0 0 0 . . . 0 1 0 . . . 0

1 1 1 1 . . . 1 0 0 1 . . . 1 1 1 . . . 1

1 1 1 1 . . . 1 0 0 0 . . . 1 1 1 . . . 1

1 1 1 1 . . . 1 0 1 0 . . . 1 1 1 . . . 1
...

...
...

...
. . .

...
...

...
...

. . .
...

...
...

. . .
...

1 1 1 1 . . . 1 0 1 1 . . . 0 1 1 . . . 1

1 1 1 1 . . . 1 0 1 1 . . . 0 1 1 . . . 1

0 0 0 0 . . . 0 0 1 1 . . . 1 0 0 . . . 0

1 1 1 1 . . . 1 1 1 1 . . . 1 0 0 . . . 0

1 1 1 1 . . . 1 0 1 1 . . . 1 1 1 . . . 1

0 0 0 0 . . . 0 1 1 1 . . . 1 1 1 . . . 1

9

Observe that the rows of M are indeed pairwise distinct and noncomplementary.

Notice also that for each column in the left part, the sum over the rows equals

3q− 1, i.e. exactly half of the number of rows. For the target column, however,

the sum equals q + 3, and for each of the other columns 5q− 5. This completes

the description of the instance of MFP.

We now show that a yes-answer for the X3C3 instance corresponds to a feasible

solution for the MFP instance. If X3C3 has a solution, this means that there

exist q rows from the upper part of M such that for each column in the left part,

the sum over these rows is exactly 1. Flopping these rows will switch in each

left part column q − 1 zeros into ones, and 1 one into a zero. In other words,

the column sums for the left part now all increased by q − 2. To compensate

for this, we also flop the last q − 2 rows of the middle part, and the first 2

rows of the lower part. Observe that the upper parts of the target column and

the first column are identical. Consequently, in the upper part of the target

column, q− 1 zeros are switched to one, and 1 one was switched to zero. In the

lower part of the target column, flopping the last q− 2 results in as many extra

1-entries. In total, this brings the sum over all the rows for the target column

to 3q − 1. In the remaining columns of the right part, the flops cause a column

sum to decrease by q−2 in the upper part rows, and again by q−2 in the other

flopped rows, such that these column sums now also equal 3q − 1. Thus, the

X3C3 solution determines a series of row flops, such that the sum over all rows

equals 3q − 1 for each column of M .

A yes-answer to the MFP instance in turn corresponds to a yes-answer of the

X3C3 instance. Let’s determine how this solution for MFP looks like. We will

first argue that if a solution for MFP exists, it must flop exactly q or 2q rows

from the upper part. Notice that for the left part of M , the column sums al-

ready equal 3q − 1. This is not the case for the target column, for which the

sum is q + 3. Therefore, a solution will always require at least one flop in the

10

upper part. Indeed, flopping rows from the lower part could set the sum in the

target column to the required 3q − 1, but will decrease the sum for each left

part column, which can only be compensated by by flopping upper part rows.

Flopping just one upper part row will also never result in a solution, since this

would result in 3 columns in the left part, where the sum over the rows is one

lower than for the other left part columns. In fact, equal column sums in the

left part can only be maintained if a multiple of q rows are flopped in the upper

part. However, flopping all 3q upper part rows can never lead to a solution for

our MFP problem. Indeed, it would increase the sum in each left part column

by 3q − 6, which can only be compensated by flopping at least 3q − 6 middle

or lower part rows. This would however set the target column sum to at least

5q + 1. In conclusion, a solution for MFP flops exactly 2q or q rows from the

upper part of the matrix. Let’s now consider both options in more detail, and

show how a yes-answer for X3C3 follows.

Option 1: flop 2q rows in the upper part.

In order to ensure that all columns in the left part have an equal sum, the 2q

rows must be flopped such that in each column precisely 2 ones are switched

to zeros, and hence 2q − 2 zeros are switched to ones. This increases the sum

in the left part columns by 2q − 4. Consequently, at least 2q − 4 rows from the

middle and lower part will have to be flopped. If we look at the target column,

we notice that the sum also increased by 2q − 4 (recall that the upper part

of the first and the target column are identical). This brings the sum in the

target column, and in the other left part columns, to q + 3 + 2q − 4 = 3q − 1.

Therefore, flopping e.g. the first 2q − 4 rows from the middle part accounts

for the necessary flops needed to balance the left part, and leaves the sum in

the left part columns equal to 3q − 1. This solution for MFP translates to a

solution for X3C3 by selecting those members of C that correspond to the q

rows in M from the upper part that were not flopped. Indeed, since the 2q rows

that were flopped have the property that exactly 2 ones occur in each column,

11

and since each column has exactly 3 ones, the remaining rows together must

have precisely 1 one in each column. Consequently, those members of C form

an exact cover of X.

Option 2: flop q rows in the upper part.

In order to ensure that all columns in the left part have an equal sum, the q

rows must be flopped such that in each column precisely 1 one is switched to

zero, and hence q − 1 zeros are switched to ones. This increases the sum in the

left part columns by q− 2, and therefore, at least q− 2 rows from the middle or

lower part will have to be flopped. The sum in the target column also increases

by q − 2, such that it now equals 2q + 1. Consequently, flopping e.g. the last

q− 2 rows from the middle part and the first two rows of the lower part will set

the sum in all columns to 3q−1. This solution for MFP translates to a solution

for X3C3 by selecting those members of C that correspond to the q rows in M

from the upper part that were flopped. Indeed, these rows have precisely 1 one

in each column, which means that the corresponding members of C form an

exact cover of X.

Notice that both options in fact correspond to the same solution for X3C3.

Notice also that if MFP has a solution, then its complement will also be a

solution for MFP. In other words, given a MFP solution, flopping all rows will

result in another MFP solution.

tu

We now show that deciding whether a break-free pattern set exists is NP-

complete, even if at most two home-away patterns are break-free with respect

to Bi, for each team i. If no break-free home-away pattern exists for the break

set of some team i, then obviously no break free pattern set exists. Checking

whether a break set Bi has a break-free pattern can be done in polynomial

time (see section 5). Therefore, without loss of generality, we assume for the

12

remainder of this section that each break set Bi allows at least one break-free

home-away pattern.

Theorem 4.2 Given a break set Bi for each team i = 1, . . . , 2n, deciding

whether a break-free pattern set exists is NP-complete, even if at most two home-

away patterns are break-free with respect to Bi, for each team i.

Proof.

Each instance of MFP can be transformed into an instance of the BfPS prob-

lem as follows. Given a matrix M with 2k rows and 2k − 1 columns, each row

corresponds with a team, and each column with a round. Each row i in M can

be translated into a break set Bi, with i = 1, ..., 2k by adding to Bi a pair of

rounds for each pair of columns for which different entries can be found in row i.

Since each row contains at least one ’1’ and one ’0’, each Bi will be nonempty,

and hence allow at most two break-free home-away patterns.

A yes-answer for the MFP instance corresponds to a feasible solution for the

BfPS instance. Indeed, translating the ones into home games and the zeros into

away games (or vice versa) produces a home-away pattern that is break-free with

respect to Bi. For each round, there will be exactly as many home games as away

games, and since the rows of M are pairwise distinct and noncomplementary,

each team receives a different home-away pattern. A yes-answer to the BfPS

instance in turn corresponds to a yes-answer of the MFP instance. If there

exists a break-free pattern set, this means that, using the same translation as

before, each row in the matrix can be flopped into the position corresponding

to the HAP in the break-free pattern set, such that there are exactly k ones and

k zeros in each column.

tu

We point out the following necessary condition for the matrix flopping problem.

Compute for each pair of columns in the matrix, the number of rows for which

13

the entries in these columns have the same value. If that number is odd for some

pair of columns, then no solution exists for the matrix flopping problem. Indeed,

since each row allows exactly two complementary solutions, an equal number k

of ones and zeros will never be possible in that case for both columns in that

pair. The following matrix E shows that this condition is not sufficient, since

it has an even number of entries with the same value for each pair of columns,

and yet no solution exists.

E =

1 0 1 1 1

0 1 1 0 0

1 1 0 1 1

0 0 0 1 1

1 0 0 0 1

0 1 1 0 1

5 A special case: identical break sets

In this section we deal with the complexity of the problem in the special case

where the team’s break sets are identical, i.e., the case when B ≡ B1 = B2 =

. . . = B2n. We first consider the case of deciding whether there exists a break-

free pattern set, and then we discuss the optimization variant where we want to

find a pattern set minimizing the number of breaks.

5.1 Deciding

We will reformulate the problem by building a graph, and view our problem

as a coloring problem. Construct a graph GB as follows: there is a node for

each round, and two nodes are connected if and only if the corresponding pair

of rounds is in the set B. A coloring of GB is an assignment of one out of two

colors to each node. A coloring is called feasible when connected nodes receive

different colors. Notice that a HAP for a specific team is a coloring of GB and

vice versa. Observe also that the existence of a feasible coloring amounts to

14

bipartiteness of GB . Let kB be the number of connected components of GB ; in

the sequel we will omit the subscript ‘B’, and simply use k instead. We will also

use the symbol gB , or g for short, denoting the number of bipartite connected

components of GB .

The decision variant of our problem arises when we ask for the existence of a

pattern set with no breaks: given B, does there exist a break-free pattern set?

This question can be answered in polynomial time.

Theorem 5.1 Given B, the question whether or not a break-free pattern set

exists, can be answered in polynomial time.

Proof. We use the following procedure. Decide whether GB is bipartite. If so,

and if k ≥ 2log 2n, the answer is yes; else the answer is no. This procedure is

correct, since

1. if GB contains a component that is not bipartite, no feasible coloring of

that component, and hence no break-free pattern set, exists,

2. in case each component is bipartite, there are exactly two feasible colorings

of that component (by interchanging red and blue).

Thus, given k components, we can exhibit 2k pairwise distinct colorings such

that each node is colored with one color 2k−1 times. If 2k > 2n, we simply

remove 2k − 2n colorings (that form 2k−2n
2 complementary pairs). tu

5.2 Optimizing

There is an intimate relation between our problem, and MAX-CUT. Indeed, re-

call that the (unweighted) MAX-CUT problem is to partition the vertex set of a

given graph G into two sets such that the number of edges between vertices that

are in different sets, is maximized. Clearly, solving a MAX-CUT problem on GB

15

gives us a single HAP minimizing the number of breaks. Thus, our optimization

problem is almost equivalent to finding the best n MAX-CUT solutions on GB .

Notice that, since we are allowed to interchange the colors, we can restrict our-

selves to finding the best n solutions. Given the above discussion, the following

result will come as no surprise.

Theorem 5.2 Given B, finding a pattern set that minimizes the number of

breaks is NP-hard.

Proof. We show that our problem is at least as hard as MAX-CUT. An instance

of MAX-CUT is specified by a graph G′ = (V ′, E′). Let us assume, without

loss of generality, that |V ′| is odd. We now build an instance of our problem

by adding to G′ p pairs of triangles, where p is a number satisfying: 32p ≥

|V ′| + 6p + 1. The righthand side denotes the number of nodes in our graph

GB that we are building (notice that this will be an odd number), while the

left hand side denotes the number of different optimal MAX-CUT solutions

in the graph GB , assuming there is a unique optimal MAX-CUT solution of

G′. Indeed, each added triangle gives rise to three new MAX-CUT solutions

depending upon which of the three edges is not in the cut. Then finding the best

|VB |+ 1 MAX-CUT solutions in GB is equivalent to finding a best MAX-CUT

solution in G′. tu

Furthermore, given GB , if l is a lower bound for MAX-CUT on GB , then 2nl is

a lower bound for the minimum number of breaks. Let us derive a lower bound

for the number of breaks in any schedule given a break set B.

Theorem 5.3 Given B, the number of breaks in any feasible schedule is at least

2n(k − g) + max(0, 2n− 2g).

Proof. Each component that does not admit a feasible coloring gives rise to at

least one break in each of the 2n colorings (MAX-CUT solutions): 2n(k − g).

16

Each component that admits a feasible coloring, admits exactly two feasible

colorings, and hence no more than 2g colorings are break-free. tu

Observe that in the traditional setting, where GB is a path on 2n − 1 nodes,

the lower bound coincides with De Werra’s bound of 2n− 2. Also, observe that

in case GB is a tree 2n− 2 remains a valid lower bound.

6 Conclusion

Breaks are quite common in sports competitions, and are often one of the most

important constraints in sports scheduling. In this paper, we generalized the

classic concept of breaks by also considering pairs of nonconsecutive rounds in

our break set. We motivated this generalization with examples from football

and traveling tournament scheduling. We found that the problem of finding

a pattern set that minimizes the number of breaks is NP-hard. The decision

version of this problem (i.e., given a break set, is there a pattern set without

breaks?) is NP-complete. However, for the special case where all teams have

identical break sets, the decision version can be solved in polynomial time; the

optimization version remains NP-hard. For this special case, we also provided a

lower bound for the number of breaks, and this result is in fact a generalization

of De Werra’s well known result that any single round robin schedule for 2n

teams will have at least 2n− 2 (classic) breaks.

References

Briskorn, D. (2008). Feasibility of homeaway pattern sets for round robin tour-

naments, Operations Research Letters 36(3): 283–284.

De Werra, D. (1981). Scheduling in sports, in P. Hansen (ed.), Studies on Graphs

and Discrete Programming, Vol. 11 of Annals of Discrete Mathematics,

North-Holland, Amsterdam, pp. 381–395.

17

Drexl, A. & Knust, S. (2007). Sports league scheduling: Graph- and resource-

based models, Omega 35: 465–471.

Easton, K., Nemhauser, G. & Trick, M. (2001). The traveling tournament

problem: Description and benchmarks, principal and practises of constraint

programming, Lecture Notes in Computer Science 2239: 580–585.

Elf, M., Jünger, M. & Rinaldi, G. (2003). Minimizing breaks by maximizing

cuts, Operations Research Letters 31: 343–349.

Forrest, D. & Simmons, R. (2006). New issues in attendance demand: The case

of the English football league, Journal of Sports Economics 7(3): 247–266.

Garey, M. & Johnson, D. (1979). Computers and Intractability: A Guide to the

Theory of NP-Completeness., New York: W.H. Freeman and Co.

Goossens, D. & Spieksma, F. (2009). Scheduling the Belgian soccer league,

Interfaces 39(2): 109–118.

Goossens, D. & Spieksma, F. (2010). Soccer schedules in Europe: an overview,

FBE Research Report KBI1011, K.U.Leuven.

Hein, J., Jiang, T., Wang, L. & Zhang, K. (1996). On the complexity of com-

paring evolutionary trees, Discrete Applied Mathematics 71: 153–169.

Hickey, G., Dehne, F., Rau-Chaplin, A. & Blouin, C. (2008). SPR distance

computation for unrooted trees, Evolutionary Bioinformics Online 4: 17–

27.

Horbach, A. (2010). A combinatorial property of the maximum round robin

tournament problem, Operations Research Letters 38(2): 121–122.

Kendall, G., Knust, S., Ribeiro, C. & Urrutia, S. (2010). Scheduling in sports:

An annotated bibliography, Computers and Operations Research 37: 1–19.

Kirkman, T. (1847). On a problem in combinations, Cambridge and Dublin

Math. J. 2: 191–204.

18

Miyashiro, R., Iwasaki, H. & Matsui, T. (2003). Characterizing feasible pattern

sets with a minimum number of breaks, Lecture Notes in Computer Science

2740: 78–99.

Miyashiro, R. & Matsui, T. (2005). A polynomial-time algorithm to find an

equitable home-away assignment, Operations Research Letters 33: 235–241.

19

	FEB_KBI-voorblad onderzoeksrapport-sharepoint.pdf
	Goossens Spieksma - Generalized breaks
	Introduction
	Motivation
	Related work
	The break-free pattern set problem
	A special case: identical break sets
	Deciding
	Optimizing

	Conclusion

