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Abstract— This paper presents a SIFT algorithm adapted
for 3D surfaces (called meshSIFT) and its applications to
3D face pose normalisation and recognition. The algorithm
allows reliable detection of scale space extrema as local feature
locations. The scale space contains the mean curvature in
each vertex on different smoothed versions of the input mesh.
The meshSIFT algorithm then describes the neighbourhood of
every scale space extremum in a feature vector consisting of
concatenated histograms of shape indices and slant angles. The
feature vectors are reliably matched by comparing the angle in
feature space.

Using RANSAC, the best rigid transformation can be esti-
mated based on the matched features leading to 84% correct
pose normalisation of 3D faces from the Bosphorus database.
Matches are mostly found between two face surfaces of the
same person, allowing the algorithm to be used for 3D face
recognition. Simply counting the number of matches allows
93.7% correct identification for face surfaces in the Bosphorus
database and 97.7% when only frontal images are considered. In
the verification scenario, we obtain an equal error rate of 15.0%
to 5.1% (depending on the investigated face surfaces). These
results outperform most other algorithms found in literature.

[. INTRODUCTION

Reliable feature detection and matching on 3D face sur-
faces is useful for several biometrics related applications,
such as pose normalisation, face recognition and modeling
of face deformation. In this paper, we develop a feature
detection and description method for meshes, based on the
SIFT algorithm [1]. This algorithm, which we call meshSIFT,
allows for accurate detection of scale space extrema on
meshes and a rich description of the local feature neighbour-
hood of the detected scale-space extrema. In this paper, we
validate the meshSIFT algorithm for pose normalisation and
3D face recognition. The experiments will be performed on
an extensive database of 3D faces: the Bosphorus database
[2] .

The remainder of this section gives a brief overview of
related work. In section II, we describe the newly developed
meshSIFT algorithm for detection of scale space extrema and
construction of local feature descriptors. In section III, the
meshSIFT algorithm is tested on pose normalisation of 3D
face scans and 3D-3D face recognition. Section IV discusses
the performance of the developed algorithm. Section V,
finally, concludes the paper and gives some directions for
future work.
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The Scale Invariant Feature Transform (SIFT), proposed
in [1], has been shown to be a very useful methodology in
2D computer vision, where it has been used for all kinds
of general object recognition tasks [1], [3], including 2D
face recognition [4], [5]. Applied to three dimensions, local
features like the ones used in the SIFT algorithm could be
very useful for shape registration, motion capture, computer
animation synthesis, object and face recognition and shape
retrieval, among others.

Triggered by the success of SIFT in 2D computer vision,
there have been several attempts to extend the algorithm to
three dimensions. N-SIFT [6] and VSIFT [7] are extensions
of SIFT for 3D volumetric (medical) image data, but also
extensions of the original SIFT algorithm to work on 3D
surface data have been proposed. In [8] the SIFT-algorithm
is adapted to range images but is not suited for full 3D
surface representations such as point clouds or meshes. The
developed algorithm is hence called 2.5D SIFT.

Both [9] and [10] describe a method for detection of
scale space extrema on meshes. In [9], the 3D features
are detected and constructed using a general framework
of scalar fields defined on 2D manifolds. As such, the
features can be based on any scalar function defined over
the 2D manifold, such as photometric data, mean surface
curvature,. .. This is a strength of the algorithm, but on the
other hand, the 3D geometry is in this way not directly
encoded in the feature descriptor. The feature point detector
is called MeshDoG, and is a generalisation of the Difference
of Gaussians (DoG) operator. It builds a scale space of the
scalar function on the mesh, making use of the DoG operator
to approximate the Laplacian operator. The feature descriptor
is called MeshHOG, and is a generalisation of the histogram
of oriented gradients (HOG) descriptor. The features were
validated using five rigidly and non-rigidly deformed meshes.

In [10], a similar concept is developed. Here, a so-called
geodesic scale space of the scalar field defined on the mesh is
constructed, in which the feature points are detected. Unlike
[9], an extra fine tuning step to locate the scale space extrema
more precisely, eliminating groove and ridge responses, is
added. The feature descriptors are based on spin images [11]
and are called scale invariant spin images. The resulting
algorithm is applied to face matching with expressions as
well as surface alignment and stitching.

Castellani et al. [12] also describe a method for detection
of scale space extrema on meshes. In contrast to [9] and
[10], the scale space for feature detection is not constructed
based on a scalar function on the mesh, but based on the
mesh vertex locations itself. As such, the feature location



detection of this research shows the closest resemblance to
our proposed method. The feature description and matching
are obtained using a Hidden Markov Model (HMM). The
algorithm is validated for mesh matching on 8 models.

For years, automatic face recognition has been an active
research topic. The main quest has been the detection and
recognition of human faces in 2D still images and (surveil-
lance camera) videos. A good survey hereof is presented in
[13]. The SIFT-methodology has been applied for tackling
this task [4], [S]. Recently, face recognition research has
started to take 3D information into account when dealing
with this problem. This way, it is believed that face recogni-
tion will be more robust, as 3D face models are, if accurately
acquired, invariant to differences in pose and lighting con-
ditions. This is very important for realistic situations, where
face images are usually captured in environments where no
fixed pose can be enforced, and also lighting conditions vary.
An overview of 3D face recognition approaches can be found
in [14]. Although 3D face recognition methods that make use
of local features exist [15], [16], 3D face recognition using
automatically located local features based on solely the mesh
geometry are not commonly used in 3D face recognition.

II. MESHSIFT

Similar to the SIFT algorithm [1], the meshSIFT algorithm
consists of three major components: keypoint detection,
orientation assignment and the local feature descriptor. This
section presents each of these components in detail.

A. Keypoint detection

This component identifies salient points on the mesh.
Similar to the SIFT algorithm [1] a scale space approach
is pursued. In this scale space salient points are detected,
leading to a scale invariant descriptor. First, a scale space is
constructed containing smoothed versions of the input mesh.
These smoothed versions are obtained by approximating a
Gaussian filter for meshes. This approximation consists of
subsequent convolutions of the mesh with a binomial filter
[17]. The scale space is constructed as follows:
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where M is the original mesh, @U and D/O\Gi are the ap-
proximations of the Gaussian and the difference of Gaussians
respectively. The standard deviation of the Gaussian filter
G, that was approximated to obtain a smoothed mesh M;
is given by o;. Figure 1 shows three smoothed meshes of
the constructed scale space.

Next, for the detection of salient points in the scale space,
the mean curvature
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is computed for each vertex and at2each scale in the scale
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(a) o; = 1.83 mm (b) o; = 3.66 mm (c) o; = 6.18 mm

Fig. 1: Smoothed meshes in the scale space at three different
scales defined by o;.

a set containing the mean curvature for each vertex at scale
1. Differences between subsequent scales are computed as
follows:

DH; = Hit, — H; . “4)

In order to detect scale space extrema, the value DH at each
vertex is compared to those of its neighbors, on the same
scale as well as on the upper and lower scale (see figure 2).
A vertex is selected only if its value for DH is larger or
smaller than all of its neighbors.

(@) DH; 1 (b) DH; (©) DH;11

Fig. 2: The neighborhood of a vertex in scale space.

Finally, the correct scale o; is assigned to each scale space
extremum, leading to a keypoint with an assigned scale.

B. Orientation assignment

In order to have an orientation-invariant descriptor, each
keypoint is assigned a canonical orientation. By expressing
all parameters in function of the scale o;, we ensure a scale
invariant descriptor as well.

Only vertices within a spherical region with radius 9 - o;
around each keypoint are considered. First, for each vertex
within this region, the normal vector is computed (using [18])
and the geodesic distance to the respective keypoint (using
[19]) is determined. Next, as shown in figure 3, all calculated
normal vectors are projected onto the tangent plane to the
mesh M; containing the keypoint.

These projected normal vectors are gathered in a weighted
histogram comprising 360 bins (thus covering 360 degrees
with a bin width of 1 degree). Each histogram entry is
Gaussian weighted (o = 4.5 - g;) with its geodesic distance
to the keypoint. As such, every bin represents a possible
canonical orientation in the tangent plane. The resulting
histogram is smoothed by convolving it three times with a
Gaussian filter (17 bins, 0 = 17) for a more accurate and
robust localization of the canonical orientation. Finally, the
highest peak in the histogram and every peak above 80% of
this highest peak value is selected as a canonical orientation.
If more than one canonical orientation exists for a keypoint,
this results in multiple keypoints, each assigned one of the
canonical orientations.



Fig. 3: The neighborhood of a scale space extremum with
normals and projected normals.

C. Local descriptor

The local descriptor provides for each keypoint (with
assigned scale and canonical orientation) a feature vector
consisting of a series of concatenated histograms. Each of
these histograms is calculated over a small circular region.
Figure 4 shows the arrangement of these regions around
the keypoint. The regions each have a geodesic radius of
3.75 - 0; and their centers are located at a geodesic distance
of 4.5-0; (horizontal and vertical) or 4.5- ﬂ2) -0; (diagonal),
respectively, to the keypoint.

Fig. 4: Size and location of the regions w.r.t. the canonical
orientation (red), used for the construction of the feature
vector.

In each region (green circles in figure 4) we calculate two
histograms with 8 bins each: one containing the shape index,

1 kl(x,y) + k2(x7y)
ki(x,y) — ka(x,y)

(with ky and ko the maximal and minimal curvature re-
spectively), and the other containing the slant angles, being
the angle between every projected normal and the canonical
orientation. First, each entry for both histograms is Gaussian
weighted with the geodesic distance to the keypoint (¢ =
4.5-0;) and Gaussian weighted with the geodesic distance to
the center of the region (green circles in figure 4, o = 4.5-0;).
Next, every histogram is normalized and clipped to ﬁ (with
n the number of bins, equal to 8 in this case), reducing
the influence of large histogram values. In a final step all

S(z,y) = %tan (5)

histograms are concatenated as follows:
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with F'V the final feature vector.

D. Matches

In order to find corresponding keypoints, two sets of
feature vectors are compared. The angle between each pair
of feature vectors is calculated as follows:
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The angles of all candidates are ranked in ascending order.
If the ratio between the first and the second is smaller
than 0.8, a match is accepted; other matches are rejected.
This ratio was determined emperically, and is the same
as in the original SIFT algorithm [20]. Figure 5 shows
two pictures of textures beloning to 3D face scans from
the Bosphorus database [2] with detected keypoints and
the detected matches (all calculations are performed on the
meshes, the pictures are only used to show the results).
Figure 6 shows a detailed view with the corresponding scale
space extrema.

Fig. 5: Corresponding scale space extrema for two face
surfaces with a neutral expression (both from the same
person)

ITII. APPLICATIONS AND RESULTS

All experiments in this paper are performed on the
Bosphorus 3D face database [2]', a multi-expression and
multi-pose 3D face database. The database contains 4666
textured depth maps of 105 persons in various poses, ex-
pressions and occlusion conditions, and for each depth map
a subset of 24 manually labelled facial landmarks. The depth
maps are converted to surface meshes in a straightforward
manner.

! Available via http://bosphorus.ee.boun.edu.tr/.



(a) Detailed view of face surface 1 (b) Detailed view of face surface 2

Fig. 6: Detailed view of two faces with neutral expression.
Corresponding scale space extrema are shown in the same
color.

A. Pose Normalisation

Because the angle at which a person is scanned can not
always be determined at scan time, also 3D face scans show
variation because of the head pose. This is mostly the first
correction that has to be made in 3D face preprocessing.
Because of the 3D nature of the face scans, face pose
normalisation comes down to the determination of a rigid
transformation matrix. In this experiment, we do this by
matching meshSIFT features between the faces that need to
be face pose normalised. To eliminate the contribution of
possible false matches, the determination of the rigid trans-
formation matrix is performed using the RANdom SAmple
Consensus (RANSAC) algorithm [21], a non-deterministic
iterative algorithm to estimate parameters of a mathematical
model based on data containing outliers.

For the validation of the pose normalisations, we made
use of the landmarks that are available in the Bosphorus
database (see figure 7) . We consider the mean distance
between corresponding landmarks after pose normalisation.
Because these distances also incorporate deviations due to
inter-person and expression variations, we consider a pose
normalisation as correct if all Euclidean landmark distances
after pose normalisation are smaller than 20 mm. This
distance was determined empirically. Table I summarizes
the results of the pose normalisation experiment. Because of
the fact that yaw rotations of +90° and —90° can lead to the
physical impossibility of keypoint matches, we also show the
results of the pose normalisation experiment without taking
these scans into account. Because we noticed that the scans
with yaw rotations of +45° and —45° are sometimes of bad
quality, the results without taking these scans into account are
displayed as well. To show the influence of the expressions,
also results when only taking frontal neutral expression scans
are shown.

Fig. 7: 22 manually indicated landmarks, available with the
Bosphorus database. Two additional landmarks are situated
at the ear base and are thus not visible in this image.

TABLE I: Results of the pose normalisation experiment.

mean dist. (mm) | % correct
All meshes 6.28 83.73
All meshes except +90° 6.22 87.65
All meshes except £90° and £45° 5.86 90.25
Only neutral face expressions 3.95 98.32

B. Face Recognition

To perform a face recognition experiment on the Bospho-
rus database using meshSIFT, we implement a Bag Of
Features approach: the similarity measure between two 3D
face scans is defined as the number of matching features.
We performed an identification experiment where the probe
scans are compared to a gallery consisting of one neutral
face scan of each of the different persons in the database.
This experiment stands for the situation in which we have
to identify an unknown individual. The identification only
succeeds if, when given a face scan, the algorithm selects
the gallery face scan belonging to the same person as the
given face scan. The Rank 1 Recognition Rate (R1RR)
and Rank 5 Recognition Rate (R5RR) are tabulated in
table II. Because of the same reasons as with the pose
normalisation experiment, we also tabulated results when
omitting the +90° and —90°, and both +90° and —90°
and 4+45° and —45° yaw rotations, respectively. Also results
when omitting also cross rotations (approximately 20° pitch
and 45° yaw rotation, and approximately —20° pitch and
45° yaw rotation, respectively, are included in the Bosphorus
database) are tabulated.

We also performed a verification experiment, where the
faces in the database are pairwise compared. This experi-
ment stands for the situation in which we have to to verify
that the individual is who he claims to be. Based on one
threshold, the algorithm has to decide whether two face scans
are from the same person. Based on this experiment, the
Equal Error Rate (EER) can be computed. If the threshold



TABLE II: Results for the face identification experiment

R1RR (%) | R5RR (%)
All meshes 93.66 96.62
All meshes except £90° 97.01 99.31
All meshes except £90° and +45° 97.59 99.44
All meshes except 90°, +45°,
97.73 99.42
430° and cross rotations

value is set so that the false acceptance rate and its false
rejection rate are equal, the common value is referred to as
the EER. The lower the EER, the higher the accuracy of the
algorithm. The results are shown in III, both for the all to
all (ata) and the all to neutral (atn) scenario. The latter has
the advantage that comparisons of, for instance, scans with
+90° and —90° yaw rotations are avoided.

TABLE III: Results for the face authentication experiment

EER ata(%) | EER atn(%)
All meshes 19.52 10.75
All meshes except 90° 14.96 7.92
All meshes except 90 and 45° 11.95 6.41
All meshes except 99, 45, 945 508
30° and cross rotations

The reason that the EER is relatively poor in comparison
to the excellent R1RR, is the nature of the similarity mea-
sure. The similarity we use is the number of corresponding
features between two 3D face scans. We do not normalize
for overlap area, noise ration ...For a better EER, we will
have to design a new similarity measure that is invariant to
these effects.

To give an indication of the number of scale-space ex-
trema, and the number of correspondences retrieved, we
tabulated the mean number of scale-space extrema, matches
at rank 1 and matches at rank 5 for all face scans in the
Bosphorus databse in table IV.

IV. DISCUSSION

Important advantages of using meshSIFT for pose normal-
isation are the robustness against missing data, large rotations
and translations, as occuring in the Bosphours database. This
is of great importance for robust automatic initialization
before fine registration.

The use of meshSIFT for 3D face recognition is a natural
way to compare faces based on characteristic features in the
human face [20]. It also allows face comparisons even when
parts of the face are occluded.

The main shortcoming of meshSIFT for face recognition
is that the subject’s global shape characteristics are not taken
into account during comparison. Another disadvantage is
the rather high computation time, mainly for constructing
the local shape descriptor. Large rotations and expression
variations decrease the number of matches between feature
vectors and thus the recognition performance. A more ad-
vanced similarity measure based on the angles between the

feature vectors or other score-based measures could solve
this issue.

It is interesting to compare the obtained recognition results
with other algorithms that have been published and validated
on the same database. The results of this comparison are
shown in Table V. Remark that only the method presented in
this paper was validated on the whole database. The methods
described in [22] and [23] both perform face recognition
on regions that are more robust to expression variations
(mainly the nose region). In [24], two benchmark algorithms
are implemented and validated, namely the Iterative Closest
Point algorithm and a method based on Principal Component
Analyis of depth images.

TABLE V: Comparison with other methods mentioned in
literature, validated on a subset of the Bosphorus database.

Method RI1RR | # probes | gallery
ours

frontal 97.7% 3186 105

all 93.7% 4561 105
Alyiiz et al. [22]

all 95.3% 1508 47
Dibeklioglu et al. [23]

frontal 89.2% 1527 47

rotations 62.6% 423 47
Alyiiz et al. [24]

all (ICP) 72.4% 1508 47

all (PCA) 70.6% 1508 47

Numerical comparison has to be done with sufficient
caution since the subsets differ for the different methods.
However, we still observe an excellent performance of our
method described here, compared to the methods in the
literature.

V. CONCLUSION AND FUTURE WORK

In this paper, we present an adapted version of the SIFT-
algorithm [1] for meshes (called meshSIFT). This algorithm
allows reliable detection of scale space extrema and a scale
and orientation invariant description in a feature vector. The
matches, found with this feature vector, open possibilities
for pose normalisation and face recognition. It is possible
to normalize the pose of 90% of the face surfaces in the
Bosphorus database (90° and 45° rotations excluded). The
described algorithm correctly identifies 97.0% of the face
surfaces in the Bosphorus database (90° rotations excluded).
In the verification scenario, an equal error rate of 15.0% up to
5.1% is possible (depending on the face surfaces considered).

As future work, we propose to examine other criteria
to define matches between feature vectors. Moreover, a
more advanced similarity measure (instead of the number
of matches) could also improve 3D face recognition perfor-
mance.

VI. ACKNOWLEDGMENTS

This work is supported by the Flemish Institute for the
Promotion of Innovation by Science and Technology in



TABLE IV: Number of scale space extrema and matches
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