KATHOLIEKE UNIVERSITEIT LEUVEN
FACULTEIT ECONOMIE EN BEDRIJFSWETENSCHAPPEN

Pattern-based Coordination in
Process-based Service Compositions

Proefschrift voorgedragen tot het
behalen van de graad van Doctor
in de Toegepaste Economische
Wetenschappen

door

Geert MONSIEUR

Nummer 351 2010

Committee

president Prof. dr. Marleen Willekens K.U.Leuven
supervisor Prof. dr. Monique Snoeck K.U.Leuven
supervisor Prof. dr. Wilfried Lemahieu K.U.Leuven
co-supervisor Prof. dr. Guido Dedene K.U.Leuven
Prof. dr. Willem-Jan Van den Heuvel Tilburg University
Prof. dr. Uwe Zdun University of Vienna

Daar de proefschriften in de reeks van de Faculteit Economie en Bedrijfsweten-
schappen het persoonlijk werk zijn van hun auteurs, zijn alleen deze laatsten
daarvoor verantwoordelijk.

iii

Dankwoord

Feeling gratitude and not expressing it is
like wrapping a present and not giving it.

— William Arthur Ward (1921-1994),
American writer

Eerst en vooral wil ik mijn dank betuigen aan mijn promotoren, prof. dr.
Monique Snoeck en prof. dr. Wilfried Lemahieu, en mijn co-promotor, prof.
dr. Guido Dedene.

Monique, bedankt om mijn schrijfsels steeds te voorzien van uitgebreide
en constructieve commentaar. Ook al kreeg u het als programma-directeur
en later vice-decaan onderwijs steeds drukker, toch maakte u tijd vrij om mij
te begeleiden. In het bijzonder speelde u voor mij een grote rol door me te
helpen zoeken naar de rode draad in mijn doctoraat en onderzoek. Indien ik
op zekere dag de draad eerder als blauw aanzag, gaf u niet op en kon u mij
weer motiveren om verder te gaan door samen een groene draad te zoeken.

Wilfried, ook u las mijn artikels vaak tot in de kleinste details na, waarvoor
mijn oprechte dank. Doctoreren vergeleek u soms met een zoektocht naar
de kerk in een onbekend dorp wanneer je alleen de kerktoren ziet. Vandaag
heb ik de kerk gevonden en dit is mede dankzij uw bijdrage. Bedankt voor
de vele onderzoeksideeén die u deelde met mij, de grote interesse in mijn
werk, en de bereidheid om in mij en mijn onderzoek te investeren.

Guido, van u heb ik niet alleen geleerd dat studie en onderzoek gepaard
moet gaan met een Belgisch bier (e.g. Witte van Hoegaarden en pindanoot-
jes), maar tijdens de doctorale seminaries wist u me ook steeds te verbazen
met nieuwe inzichten en suggesties voor verder onderzoek. Verder wil ik u
graag bedanken om mijn werk steeds nog beter te willen maken.

Naast mijn promotoren en co-promotor kon ik ook rekenen op het deskundig
advies van twee buitenlandse commissieleden, prof. dr. Willem-Jan Van den
Heuvel (Tilburg University) en prof. dr. Uwe Zdun (University of Vienna).

Willem-Jan, tot ongeveer een half jaar geleden kende ik u voornamelijk
als een auteur van de vele artikels die ik de voorbije jaren las. Ik ben dan ook
vereerd dat u deel uit wilde maken van mijn jury. Verder zou ik u oprecht
willen danken voor de tijd die u vrijmaakte om mijn werk nauwgezet te lezen.
Uit de talrijke tips die u mij gaf om dit doctoraat een niveautje hoger te tillen,
heb ik enorm veel geleerd. Het deed me dan ook veel plezier om te horen dat

vi

u een duidelijke evolutie zag in de korte tijd tussen ons gesprek in Tilburg en
mijn presentatie in Leuven.

Uwe, already before you were an ’official’ member of the jury, you took
some time to read my papers. I'm really grateful to you for your valuable
comments. Each time you managed to come up with lots of suggestions for
improvement. Furthermore, I would like to thank you for convincing me to
implement large parts of my research. Although this required me to spend
almost day and night in front of my computer in the past few months, it really
helped me to make the story of this PhD complete. Finally, I also thank you
for making EuroPLoP conferences unforgettable in two ways. Firstly, having
you as workshop leader was the best way to learn everything about pattern
writing. Secondly, I always enjoyed beating you when we played the world’s
famous soccer game Germany against the rest of the world.

Naast mijn doctoraatscommissie hebben ook vele anderen een belangrijke
rol gespeeld bij de totstandbrenging van dit proefschrift.

Eigenlijk begon alles bij de start van mijn academische carriere. Na de
zomervakantie van 2001 begon mijn universitaire loopbaan in Leuven. Ik
koos voor de opleiding tot kandidaat en licentiaat in de informatica. Waarom
zou ik iets anders kiezen, want computers waren toch leuk? Bovendien zou
je relatief eenvoudig werk vinden, want bedrijven zagen informatici graag
toekomen. Mijn omgeving keek vol spanning toe hoe ik het ervan af ging
brengen. Na vier jaar kon ik (samen met de mensen rond mij) tevreden
terugkijken. Om die reden volgen verschillende woordjes van dank. Dank in
de eerste plaats aan mama en papa die me de kansen gaven om een univeritair
diploma te behalen en steeds achter mij stonden. Ook mijn broer en zus,
Dirk en Nadine, speelden voor mij een belangrijke rol. Dirk was ongetwijfeld
de beste medestudent en kotgenoot die je je kan voorstellen, terwijl Nadine
zorgde voor de betere maaltijden of me door de moeilijke oefeningen van
lineaire algebra sleurde in ’eerste kan’. Ook als doctoraatsstudent kon ik
de voorbije jaren rekenen op de steun en liefde van mijn ouders, broer,
zus en hun partners. Bedankt daarvoor! Mama & papa, Dirk & Liesbeth,
Nadine & Wim, ik vind het fijn dat jullie vandaag meevieren. Ook mijn
inmiddels overleden grootouders (Oma & 'Peter’, Moeke & Bompa) hebben
mijn ’carriere’ steeds met veel fierheid gevolgd. Moeke, je keek heel hard
uit naar de publieke verdediging van mijn doctoraat. Jammer genoeg moest
je ons onverwacht op 16 november 2010 verlaten. Ik wil je in ieder geval
bedanken om steeds achter mij te staan en ik zal nooit je blik vergeten toen
je ongeveer twee maanden geleden vol trots door de voorlopige versie van
mijn doctoraat bladerde. Het ga je goed!

Tijdens de jaren als KUL-student was het uiteraard niet altijd alleen maar

vii

studeren en examens wat de klok sloeg. Tk bedank dan ook graag Bram, Kris,
Peter, Piet(er), Sarah, Sven, Tim, Toon (de beste postermaker van de wereld)
en Toon (de netwerkspecialist) voor de vele leuke feestjes in de Winabar of
een of andere fuifzaal in het Leuvense.

In 2003 werd Marijke een deel van mijn leven. Sindsdien werd ik ook
aangemoedigd door haar ouders, Anne-Liese & Henri. Bij deze wil ik hen
ook bedanken voor de verschillende ’overlevingspakketten’ die Marijke en
ik steeds krijgen tijdens zware en drukke (examen)periodes. Ook gaat mijn
dank uit naar Marijke’s zus Anne-Katrien omdat ze de voorbije jaren steeds
klaarstond voor ons. Marijke’s broer Johan en diens vriendin Leen ben ik
dankbaar voor hun gastvrijheid en het uitwisselen van technologie-weetjes.

Zomer 2005, tijd om een job als informaticus te zoeken, maar plots was er
de mogelijkheid om te doctoreren. Doctoreren was grotendeels nog onbekend
voor mij, maar al snel was ik overtuigd van deze unieke kans. Bovendien
was het een aangenaam gevoel om te zien dat verschillende vrienden en
studiegenoten beslisten om aan het werk te gaan als onderzoeker. Zou ik
net als hen aan het werk gaan bij het departement computerwetenschappen?
Tijdens de lessen van prof. dr. Guido Dedene was ik immers verliefd geworden
op beleidsinformatica. Het toeval wil dat er ook een mogelijkheid was om
bij de onderzoeksgroep beleidsinformatica aan een doctoraat te werken. Tk
besloot ervoor te gaan en solliciteerde met veel motivatie en interesse bij
Monique. Zoals hierboven (en op pagina iii) vermeld, is zij een promotor
van mijn doctoraat. Ik wil haar dan ook bedanken dat ze in mijn onderzoeks-
capaciteiten geloofde en me in oktober 2005 tewerkstelde aan de faculteit
economie en bedrijfswetenschappen.

Het leven als doctoraatstudent was soms hard labeur, maar ook heel
variérend en boeiend. Mijn eerste ’opdracht’ bestond uit het maken van een
ER-diagram op een reuzeposter als cadeau voor de emeritaatsviering van prof.
dr. Jacques Vandenbulcke. Samen met nieuwkomer Birger leerde ik op die
manier de vele collega’s van toen op een aangename manier kennen. Som-
migen van hen zijn ondertussen elders aan het werk gegaan, maar ik dank
Johan, Stijn, Joke, Birger en Bjorn alvast voor de fijne tijd. De ancien van
toen, Frank, wil ik graag bedanken omdat hij me enkele uren voor de emeri-
taatsviering erop attent maakte dat ik best een deftige broek en sjiek hemd
zou dragen. Frank, later heb je ook op wetenschappelijk vlak een waardevolle
bijdrage geleverd aan dit doctoraat, een Rijselse merci! Ex-collega Lotte wil
ik graag bedanken om mij te introduceren in het wereldje van patronen en
de bijhorende PLoP-conferenties. Manu, ik wil jou bedanken omdat je jouw
ervaringen als doctoraatsstudent deelde met mij, vaak spontaan interesse
toonde in mijn voortgang en ik mocht samenwerken met je. Prof. dr. ir. David,
jou wil ik bedanken om de after-work feestjes steeds te voorzien van een

viii

plezante start. Raf, ook jij mag niet ontbreken in dit dankwoord. Ik vond het
steeds prettig om met jou te babbelen over de nieuwste technologie of de
nieuwste hype in de SOA-wereld. Verder wil ik ook mijn ex-bureaugenootjes
Caroline en Inge bedanken voor de gezellige momenten op kantoor.

Een onderzoeksgroep leeft niet zonder professoren, daarom ook mijn
dankbetuiging aan Jan Vanthienen (die de voorbije jaren vaak voor aflei-
ding zorgde met behulp van recepties, etentjes en fijne kerstuitstapjes), Bart
Baesens (voor zijn waardevol onderzoeksadvies en wereldwijde restaurant-
tips) en Ferdi Put (voor de leuke, soms technische, gesprekken).

Ook de huidige collega-doctoraatstudenten verdienen uiteraard een ver-
melding in dit dankwoord: Helen (for convincing me to visit Paris one day),
Thomas (om het Limburgs gevoel te versterken), Tom (om mijn ecologische
voetafdruk te compenseren door minder af te drukken), Isel (for the tempo-
rary increase in the percentage of female researchers), Filip (om avondjes uit
met de collega’s onvergetelijk te maken), Willem (om data provider te spelen
tijdens mijn voorlopige verdediging), Karel (om LIRIS sportief te houden),
Wouter (voor de babbels en pintjes op vrijdagavond), Philippe (om me te
doen dagdromen over Canada), Jochen (om iets te kunnen bijleren over
process mining), Jonas (voor zijn gezelschap tijdens de avondshifts op de
faculteit), Flavius (for learning me what 'quality of service’ means) en Piet(er)
(voor de LaTeX-hulp en inspirerende discussies). Bij doctoreren komt ook
heel wat administratie kijken. Gelukkig werd ik de voorbije jaren verlost van
deze taken dankzij Elke Tweepenninckx, Nicole Meesters, Annie Vercruysse
en Isabelle Theys.

Doctoreren is niet altijd even makkelijk en gaat soms gepaard met een
portie stress, maar gelukkig zorgden veel vrienden op tijd en stond voor
ontspanning. Met veel plezier denk ik terug aan de zomer van 2007, toen
Sven en ik beiden in Salt Lake City (Utah, USA) een presentatie mochten
geven op een internationale conferentie. We besloten deze 'zakenreis’ te
combineren met een grootse rondreis door West-Amerika. Anne-Katrien, Bert,
Marijke, Peter, Pieter en Sven, bedankt voor deze prachtige ervaring! Ook
het jaarlijks eetfestijn in de Ardennen doet me lachen, net als onze trips naar
de groene Alpen in Zwitserland en de witte in Frankrijk.

Het mag duidelijk zijn dat de vrienden rond me een belangrijke rol spelen
in mijn leven en tijdens de voorbereiding van dit doctoraat. Om die reden
een welgemeende ’dank v’ voor Anne-Katrien (die op belangrijke momenten
steeds voor mij duimt, zelfs met haar grote tenen), Sofie (voor het amusant
gezelschap tijdens reisjes naar Dublin en Sardinié), Sven & Femke (om aan
te tonen dat hardwerken perfect gecombineerd kan worden met uitgaan),
Annelies & Bart (voor de verrukkelijke etentjes en gezellige pokeravonden),

ix

Piet & Eveline (voor de heerlijke Kwak-momenten en de spelletjestoevoer),
Kris & Isabel (voor de traditionele verjaardagsfeestjes en Zwitserse uitstapjes),
Sarah & Tim (voor de fijne momenten op café en restaurant), Veronique &
Karel (voor de spannende wielermomenten en om voor te doen dat partners
samen kunnen doctoreren), Bert (om steeds bereid te zijn om te helpen
met eender wat), Peter (voor de Prolog-ondersteuning en het gezelschap op
café), Geert (voor de boeiende en gevarieerde gesprekken), Bram (voor leuke
feestjes en uitstapjes zoals een bezoek aan het autosalon) en alle vrienden
van Marijke die in de loop der jaren ook mijn vrienden werden. Ook dank
ik de Tilburgse collega’s van Marijke die de voorbije maanden meeleefden
en aan ons dachten. De vrienden uit Maasmechelen kunnen eveneens niet
onvermeld blijven. Barbara & Bas, Kathleen & Philippe, Ilse & Paul, Jochen,
Yves & Ans, Veerle, Sarah & Stefan, ook al zie ik jullie niet vaak, ik vind het
altijd fijn om jullie terug te zien en bij te praten.

Een constante gedurende het hele verhaal is en blijft Marijke: Marijke,
jouw bijdrage aan dit doctoraat heeft voor mij een grote waarde. Je was mijn
steeds klaarstaande coach, trouwste fan en meest creatieve inspiratiebron
voor tal van voorbeelden in mijn onderzoek. De voorbije maanden kon ik
letterlijk en figuurlijk dag en nacht op je rekenen en vormde je jezelf om tot
mijn keukenprinses. Bedankt lieverd voor al je steun en lieve woordjes!

Ten slotte wil ik iedereen bedanken die op 17 december 2010 mijn pu-
blieke verdediging bijwoonde. Santé!

— Geert Monsieur
Leuven, december 2010

Inhoudsopgave

[Committee iii
Dankwoord v
xvii
(1__Introduction| 1
[1.1 Researchcontext]o...... 2
|1.1.1 Services and service-based systems| 2

|1.1.2 Challenges related to service-based systems| 3

1.2 Research goal and questions| 6
|1.3 Research methodology| 7
[1.4 Thesisoutlinel 14
[2__Related workl 15
[2.1 Dependencies in service compositions|. 15
[2.2 Managing sequence dependencies|. 18
2.2.1 Intr tionl e 18

[2.2.2 A meta-model for service composition| 19

[2.2.3 Orchestration and choreography as composition view- |

POINES| e e 21

[2.2.4 Orchestration and choreography as composition styles| 23

2.2.5 Conclusionl, 25
[2.3 Managing data dependencies| 26
[2.3.1 Runningexample|. 26

[2.3.2 Existing techniques for dealing with data dependencies| 27

2.3.3 Conclusion| 29

xii Inhoudsopgave
[2.4 Patterns for Service-Oriented Architectures|. 31
|2.4.1 Service interaction patterns| 31

2.4.2 Pattern-b rchitectural framework for Service-Orient
| Architectures| oo 32
|2.4.3 Flexible coordination of service interaction patterns|. . 33
2.5 Related standards|. 34
[2.5.1 Business Process Modeling Notation (BPMN)| 34
|2.5.2 Web Services Description Language (WSDL)| 35
|2.5.3 Business Process Execution Language (BPEL)| 37
|3 Managing sequence dependencies| 39
[3.1 Introductory example|., 39
[3.2 Pattern language| o oo 45
3.2.1 Introduction| 45
[3.2.2 Pattern overview]l 48
[3.2.3 Controlled Service Provider] 49
[3.2.4 Independent Controller] 53
[3.2.5 Controlling Service Provider|]. 55
3.2.6 Coordinator] 59
3.2.7 Self-controlled Service Provider 63
[3.3 Applying the patterns in practice] 66
[3.3.1 Design guidelines|. 66
[3.3.2 Coordination in workflow patterns| 67
............................. 72
[3.4.1 Shepherding and writers’ workshop|. 73
[3.4.2 Completeness of the pattern language| 74
3.5 Conclusion| 76
|4 Managing data dependencies| 79

[4.1 Introductory examplel.o 79

INHOUDSOPGAVE xiii

|4.2 Pattern languagel Lo 82
[4.2.1 Introduction| 82
[4.2.2 Pattern overview| 86
[4.2.3 Data flow initiation|. 87
|4.2.4 Direct-Indirect request] 91
[4.2.5 Direct-Indirect transmission| 94

|4.3 Applying the patterns to construct coordination scenarios|. . . 97
|4.3.1 Combining the patterns into coordination scenarios|. . 97
|4.3.2 Design guidelines for applying the patterns| 98
|4.3.3 Applying the patterns and guidelines to the hospital |

| example| 102

|4.4 Demonstrating the practical utility] 106

|4.4.1 Analytical validation: a shepherding process and a |

writers’ workshop|. o oL 107

4.4.2 Observational evaluation: real-life insurance case| . . . 107

|4.4.3 Descriptive evaluation: flexible coordination of service |

| Interactions] e e e e e 112
4.5 Completeness confirmation| 114
|4.5.1 Formalizing a coordination scenario| 116

|4.5.2 Executing the Prolog program|. 118

4.6 Conclusionl 119

|5 Combining the pattern languages| 121
|5.1 Data dependencies service compositions| 121
|5.2 Managing data dependencies in service compositions| 123
|5.3 Combining sequence and data dependency management| . . . 124
5.4 Conclusionl 128

|6 Tool support for pattern-based coordination| 131
|6.1 From business process modeling to service composition|. . . . 131

|6.1.1 Existing BPMN-to-BPEL transformations| 132

xiv Inhoudsopgave
|6.1.2 Pattern-based service composition and coordination|. . 133

|6.2 Input for pattern-based service composition and coordination| 134
|6.2.1 Representing sequence and data dependencies in BPMN|134

|6.2.2 An additional data dependencies model| 135

|6.2.3 Representing a coordination model| 136

|6.3 Pattern-based service composition and coordination|. 139
|6.3.1 Processing the input models| 141

|6.3.2 Generating the outputfiles| 143

|6.4 Demonstration in a concrete example|. 150
|6.4.1 Sequence and data dependencies in the travel agency |

| example| L. 150
|6.4.2 Specifying the input models| 152

|6.4.3 The generated BPEL and WSDL files| 156

|6.4.4 Testing generated BPEL processes|. 160

6.5 Conclusion| 163
[Z__Conclusions| 165
|7.1 Research objectives evaluation|. 165
[7.2 Limitations and issues for future research| 169
|7.2.1 Sequence versus action dependencies|. 170

|7.2.2 Extending the execution modell 172

|7.2.3 Time dimensions in data dependencies management| . 173

[7.2.4 Additional validation|. 177

[7.2.5 Joined forces| 177

|7.2.6 Composite datarequests| 178

|7.2.7 Patterns for self-adaptive service coordination| 178

|A Completeness confirmation in Prolog| 185
[B_ XML Schemas| 189
B.1 XML Schema for a data dependencies model| 189

INHOUDSOPGAVE XV

B.2 XML Schema for a coordination modell 191
195
199
List of Listings 201
Bibliography 205

[Doctoral dissertations from the Faculty of Business and Economics| 217

Biography 219

Samenvatting

Om vandaag de dag competitief te blijven zijn bedrijven steeds meer ge-
noodzaakt om zich snel te kunnen aanpassen aan een steeds veranderende
omgeving. Zowel organisaties als wetenschappers zijn het er over eens dat
business agility een kritische succesfactor is om te kunnen antwoorden op
trends zoals een stijgende vraag naar meer productvariatie, snellere innovatie
en business-on-demand (Poppendieck & Poppendieck, 2006).

Om tegemoet te komen aan deze vraag naar flexibiliteit hebben bedrijven
nood aan nieuwe organisatiestructuren. Ze transformeren steeds meer van
stabiele en monolitische organisaties naar meer gedistribueerde en service-
georiénteerde organisaties (Di Nitto, Ghezzi, Metzger, Papazoglou, & Pohl,
2008). Zulke organisaties concentreren zich steeds meer op hun belangrijkste
competenties (Kohlborn, Korthaus, Chan, & Rosemann, 2009; Cherbakov, Ga;
lambos, Harishankar, Kalyana, & Rackham, |2005|; Hagel III & Singer}, | 1999)).
Om flexibel te zijn, ontwikkelen mensen en organisaties bepaalde compe-
tenties die hen ondersteunen om typische zakelijke problemen op te lossen.
Service-oriéntatie is niets anders dan het bundelen van die competenties in
mooi afgebakende en duidelijk beschreven services, vaak gerelateerd aan
een bepaalde functionele context (OASIS|, 2006a). Een service moet het
mogelijk maken om op de juiste momenten gebruik te kunnen maken van
deze competenties (Erl, 2005, 2007).

Net zoals organisatiestructuren, worden informatiesystemen ook meer en
meer gebouwd door softwareservices te combineren tot flexibele en adap-
tieve service-gebaseerde systemen. Softwareservices zijn zelfbeschrijvende
en platformagnostische software-elementen die toelaten om relatief snel en
eenvoudig gedistribueerde applicaties te ondersteunen (Papazoglou, {2003
Papazoglou & Van den Heuvel, 2007b). In het algemeen, voeren services
bepaalde functies uit, gaande van eenvoudige taken tot complexe bedrijfspro-
cessen. Vaak zijn services toegankelijk via Internet (of intranet) en maken ze
gebruik van gestandardiseerde talen en vaste protocollen (Papazoglou, 2003
Papazoglou & Van den Heuvel, 2007Db).

Service-gebaseerde systemen worden meestal geimplementeerd met een
service-georiénteerde architectuur (SOA). Typerend voor SOA’s is de hierar-
chische compositie van services. Een servicecompositie kan afzonderlijk aan-
geboden worden, maar ook deeluitmaken van nieuwe servicecomposities om
uiteindelijk een service-gebaseerd systeem te bouwen ter ondersteuning van
een bedrijfsproces. De grondgedachte achter een SOA is dat bedrijfsprocessen

xvii

xviii Samenvatting

ondersteund en uitgevoerd worden door onafhankelijke, combineerbare en
configureerbare services.

Jammer genoeg is het niet evident om services te combineren tot volwaar-
dige service-gebaseerde systemen. Momenteel bestaan er geen richtlijnen om
hoogniveau bedrijfsprocessen eenvoudig en snel te vertalen naar technische
implementaties. Servicecompositie vereist een precieze specificatie van de
coordinatie van de te combineren services. Alle interacties met services moe-
ten precies beschreven worden. Dit is meestal een tijdrovende taak en het
resultaat is vaak complexe programmacode. Bovendien verloopt het ontwerp
van codrdinatiescenario’s vaak ad hoc. Er bestaan noch specifieke richtlijnen
noch tools om codrdinatiescenario’s te ontwerpen. Op de koop toe moeten
ontwikkelaars vaak dezelfde zaken herhaaldelijk implementeren. Samenge-
vat kan men dus stellen dat er nood is aan een systematische manier om
coordinatiescenario’s op een gepaste wijze te ontwerpen. Met dit doctoraat
trachten we hiertoe bij te dragen en stellen we de volgende onderzoeksvragen
Voorop:

OV1 Bestaat er een systematische manier om codrdinatiescenario’s samen te
stellen, gebruikmakend van fundamentele bouwblokken die gecombi-
neerd kunnen worden tot volledige coérdinatiescenario’s?

OV2 Bestaat er een manier om ontwikkelaars te begeleiden en ondersteunen
tijdens de constructie van coordinatiescenario’s met behulp van concrete
ontwerprichtlijnen?

Alvorens op zoek te gaan naar antwoorden op deze twee onderzoeksvra-
gen, is het belangrijk om te weten wat coordinatie betekent. In deze the-
sis volgen we hiervoor de definitie van Malone en Crowston (1994), die
coordinatie definiéren als het beheren van afhankelijkheden. In het verleden
hebben verschillende onderzoekers tal van soorten van afhankelijkheden
binnen servicecomposities onderscheiden. De twee meest voorkomende af-
hankelijkheden zijn volgorde-afhankelijkheden (sequence dependencies) en
data-afthankelijkheden (data dependencies). In ons onderzoek richten we ons
dan ook voornamelijk tot deze types van afthankelijkheden. Een volgorde-
afhankelijkheid tussen twee services betekent dat een service pas uitgevoerd
mag worden nadat de andere service is uitgevoerd (bv. een transport-service
mag pas uitgevoerd worden nadat een betaalservice succesvol voltooid werd).
Een data-afhankelijkheid tussen twee services stelt dat een service data nodig
heeft die geleverd kan worden door de andere service (bv. een transport-
service kan pas uitgevoerd nadat een klantenservice het afleveradres bezorgd
heeft).

De oplossingen gepresenteerd in dit doctoraat worden beschreven in de

Samenvatting Xix

vorm van zogenaamde (ontwerp)patronen (design patterns). Vereenvoudigd
voorgesteld kan men een patroon beschouwen als een oplossing voor een
terugkerend probleem in een bepaalde context. Typisch is een mogelijke oplos-
sing voor zo'n probleem onderhevig aan zogenaamde krachten die aanwezig
zijn in de context waarin het probleem zich bevindt. Een oplossing voor
het probleem houdt rekening met deze krachten en bevat zonodig een spe-
cifieke afweging tussen de verschillende aanwezige krachten. De keuze om
de resultaten van ons onderzoek neer te schrijven in de vorm van patronen
is niet willekeurig. Niet alleen is coordinatie een terugkerend probleem
in servicecompositie, maar een service-georiénteerde architectuur gaat ook
gepaard met verschillende krachten (bv. gewenste niveau van losse koppeling
tussen services, strenge eisen inzake vertrouwelijkheid van informatie, nood
aan flexibiliteit, etc.). Aangezien patronen oplossingen beschrijven door
ondermeer een afweging te maken tussen deze krachten, is de patroonvorm
uitermate geschikt om te komen tot een antwoord op de tweede onder-
zoeksvraag. In dit doctoraat worden verschillende patronen voorgesteld,
die allemaal gebruikt kunnen worden als fundamentele bouwblokken voor
coordinatiescenario’s. Samen vormen deze patronen twee zogenaamde pa-
troontalen, een voor het beheer van volgorde-afhankelijkheden en een voor
het beheer van data-afhankelijkheden. De patronen zijn als het ware het vo-
cabularium, en de regels om de patronen te combineren en te implementeren
vormen de grammatica van de (patroon)taal.

In dit doctoraat hebben we zowel voor de patroontaal voor het beheer
van volgorde-beperkingen als de patroontaal voor het beheer van data-
afhankelijkheden aangetoond dat de beschreven patronen voldoende zijn
om alle mogelijke coordinatiescenario’s te kunnen samenstellen. Dit heeft
als groot voordeel dat ontwikkelaars voortaan codrdinatiescenario’s kunnen
ontwerpen door enkel en alleen een aantal patronen te combineren. Kortom,
de patronen vormen bouwblokken voor coordinatiescenario’s, waarmee de
eerste onderzoeksvraag beantwoord is. Bovendien bieden de patronen ook
concrete ontwerprichtlijnen, aangezien ieder patroon heel precies neerschrijft
hoe het de verschillende aanwezige krachten afweegt, zodat ook de tweede
onderzoeksvraag niet langer onbeantwoord is.

Op basis van de twee patroontalen hebben we vervolgens een tool ontwik-
keld die toelaat om automatisch volledige coordinatiescenario’s te genereren
vertrekkend van bedrijfsprocessen. De invoer voor deze tool bestaat uit drie
elementen. Ten eerste is er een bedrijfsproces vereist. Dit bedrijfsproces
moet gespecifieerd worden gebruikmakend van de Business Process Modeling
Notation (BPMN) (OMG, |2010a)) en heeft in de eerste plaats als doel om
volgorde-afhankelijkheden te modelleren. Aangezien BPMN slechts in beperk-
te mate toelaat om data-afthankelijkheden te specifiéren, bestaat het tweede

XX Samenvatting

invoerelement voor de tool uit een zogenaamd data-afhankelijkhedenmodel.
Dit model is niets anders dan een XML-bestand waarin bijkomende data-
afhankelijkheden vastgelegd kunnen worden. Ten slotte moet de gebruiker
van de tool een keuze maken welke patronen hij of zij wil gebruiken om de
tool een compleet coordinatiescenario te laten genereren. Het resultaat van
de generatie is een verzameling van BPE en WSDbestanden die een
volledig en uitvoerbaar coordinatiescenario beschrijven.

Dankzij de ontwikkeling van de twee patroontalen en de bijhorende
integratie in een concrete tool, kunnen ontwikkelaars in de toekomst op een
systematische en meer eenvoudige manier codrdinatiescenario’s samenstellen.
Het coordinatievraagstuk werd herleid tot de kern van het probleem, en
bestaat voortaan uit het kiezen en combineren van patronen. Complexe en
herhaaldelijke implementaties van gelijkaardige patronen zijn bovendien
dankzij de automatische generatie van coérdinatiescenario’s niet meer nodig.

1Business Process Execution Language (BPEL) (OASIS}|2007)
2Web Services Description Language (WSDL) (W3C} 2001} |{2007a)

Information technology and business are
becoming inextricably interwoven.

I don’t think anybody can talk meaning-
fully about one without the talking about
the other.

— Bill Gates (1955),
Chairman and founder of Microsoft

Introduction

In today’s business world the economic success of an enterprise depends on
its ability to adapt to the ever-changing business environment. Organizations
are confronted with changes such as new introduced laws or changes in
customers’ attitudes. Therefore, companies and researchers have recognized
business agility as a critical success factor for being able to cope with business
trends like increasing product and service variability, faster time-to-market,
and business-on-demand (Poppendieck & Poppendieck, 2006).

To increase the level of flexibility and agility many organizations are
transforming from stable and monolithic enterprises into dynamic and dis-
tributed service-oriented enterprises (Di Nitto et al., [2008). Organizations
more and more tend to focus on their core competencies (Kohlborn et al.,
2009; [Cherbakov et al., [2005}; Hagel III & Singer, |1999). In order to enhance
their flexibility, people and organizations create capabilities to solve or sup-
port a solution for the problems they face in the course of their business.
Service-orientation is about grouping these capabilities into well-defined and
scoped services. A service needs to enable access to one or more capabilities
(OASIS, 20064a) that are grouped together because they relate to a functional
context established by the service (Erl, 2005} 2007).

For example, Zara, a major fashion retailer, already started restructuring
its organization using the service-orientation principles during the 1980s,
when they decided to use groups of designers instead of individuals. Since
then the company can offer considerably more products than similar compa-
nies. It produces about 11,000 distinct items annually compared with 2,000
to 4,000 items for its key competitor (Mcafee, Sjoman, & Dessain, [2004).

Lhttp://en.wikipedia.org/wiki/Zara_(clothing)

2 1.1. Research context

Moreover, it is claimed that the company can design a new product and have
finished goods in its stores in four to five weeks; it can even modify existing
items in as little as two weeks. As such, Zara has a competitive advantage
because it can more rapidly meet its customers’ preferences.

Organizations such as Zara (Mcafee et al., [2004)) leverage similar trends
and evolutions in the software systems that support the company’s business
processes. Similar to today’s structures of organizations, information systems
are more and more built by combining software services into flexible, dynamic
and adaptive service-based systems. The research described in this thesis is
situated in the domain of creating such flexible service-based systems.

In Section[L.T]we further describe the research context of this thesis. In
that section we elaborate on software services and service-based systems, and
the challenges that come with this innovative way of building information
systems. Subsequently, Section[1.2] presents the research goal and questions
that are addressed in this thesis. In Section[1.3|the research methodology that
was used is presented. This chapter ends with an outline of this dissertation
(see Section|(1.4).

1.1 Research context

1.1.1 Services and service-based systems

Software services are self-describing, platform-agnostic computational ele-
ments that support rapid, low-cost composition of distributed applications
(Papazoglou, (2003} [Papazoglou & Van den Heuvel, |2007b)). In general,
services perform functions, which can be anything from simple requests to
complicated business processes. Services allow organizations to expose their
core competencies programmatically over the Internet (or intra-net) using
standard languages and protocols, and be implemented via a self-describing
interface based on open standards (Papazogloul, 2003} |Papazoglou & Van den
Heuvel, [2007b)).

Service-based systems are mostly implemented using a Service Oriented
Architecture (SOA) (Metzger & Pohl, [2009). A central idea in an SOA is the
(hierarchical) composition of multiple services. Such service compositions can
in turn be offered to service clients, used in further service compositions and
eventually be composed to service-based systems to support an organization’s
business processes. Therefore, service composition can be considered as a
way to solve a real-world business problem by combining the functionality
provided by several services.

CHAPTER 1. INTRODUCTION 3

Service composition aims at providing effective and efficient means for
creating, running, adapting, and maintaining services that rely on other
services in some way (Benatallah, Dijkman, Dumas, & Maamar, 2005). It is
the use of service composition that lays the basis for an increased flexibility
of an organization’s information systems. A new or modified business process
is supposed to be easily supported by (re)assembling the appropriate services
into a new or adapted service-based system. In the past, information system
support for the tasks in a business process was often realized by means of
large monolithic applications that include the rules governing the execution
of tasks into the programming code. This entails very inflexible systems that
require a lot of time to be adapted to the ever changing business. Nowa-
days, in service-based systems, business processes are supported by highly
independent, composable and reconfigurable services. When having ser-
vices aligned to the business at your disposal, creating service-based systems
largely comes down to firstly modeling the business processes that need to be
supported. Subsequently, this business process model provides the blueprint
for the service composition resulting in the service-based system. This way
of creating systems is in contrast to creating programs based on a low-level
programming language, which is sometimes referred to as programming in
the small (DeRemer & Kronl, |1975)). Programming in the large emphasizes
putting together large software components, built by several people over a
long period of time, and having local state (e.g services). As such, model-
ing business processes as a first step towards a service-based system is an
example of programming in the large (Emig, Momm, Weisser, & Abeckl, 2005
Singh, Chopra, Desai, & Mallyal |[2004} [Leymann) 2006). In summary, one
can say that business domains experts do programming in the large by using
business process technology to compose new services out of existing services
(Leymann), 2006)).

1.1.2 Challenges related to service-based systems
Gap between process design and implementation

Beautiful as the concept of service composition can be, programming in the
large comes with both advantages and disadvantages. On the one hand we
like this way of creating and changing business applications since designers
do not require detailed information technology skills, while on the other hand
this causes strong expectations about the service-based implementation of
the business processes. In order to maintain a proper alignment between the
business and the information systems a precise translation of the high-level
business processes to the technical implementation is needed. This is one of

4 1.1. Research context

the difficulties often discussed in the literature. For example, in a study of
Bandara et al.| (2007) in which several Business Process Management (BPM)
experts were interviewed, major problems that arise in the BPM life cycle are
described. In particular they conclude that different vendors specialize in
different aspects of the BPM life cycle, and often, due to a lack of standards,
activities completed in one phase with one type of tool (e.g. BPMN (OMG,
2010a) processes modeled using Microsoft VisicE] (Parker, 12010)) do not
easily translate to the next steps of the life cycle, which may require the
use of another type of tool (e.g. defining BPEL (OASIS, [2007) processes
using Eclipse BPEL Designelﬁ (Juric, |2006)). This creates a gap between
the business process design and implementation. As a consequence the
connection between the abstract level and the implementation is easily lost.

Complexity of message-based implementations

Another problem that is often described in the literature is the complexity of
service-based business process implementations. Large scale service-based
systems rely on complex message exchanges between individual software
services. As the complexity and the number of interactions increase, there is
a need to explicitly control and implement the service interactions (Henkel,
Zdravkovic, & Johannesson, [2004; Monsieur, Snoeck, & Lemahieu, 2007}
Monsieur, [2008; |Snoeck, Lemahieu, Goethals, Dedene, & Vandenbulcke,
2004). The development of composite (Web) services still largely requires
time-consuming hand coding, which entails a considerable amount of low-
level programming.

Design of coordination logic and tool support

A service-based business process implementation requires the design of co-
ordination logic. The service composition’s coordination logic describes all
service interactions needed for the service composition. Although a typical
business process definition specifies the sequencing of activities, extra coordi-
nation logic is required to manage access to information and the progress of
process execution.

Service composition and coordination are often performed in an ad-hoc
fashion. Papazoglou and Van den Heuvel| (2003) describe this situation as
“not desirable as it does not encourage ’clean’ design and architecture, reuse

2http://office.microsoft.com/en-us/visio
Shttp://www.eclipse.org/bpel

CHAPTER 1. INTRODUCTION 5

of existing building blocks, and, consistency of multi-programmer supported
application construction projects”.

Therefore several researchers describe the need for development tools
incorporating high-level abstractions for facilitating, or even automating,
the (coordination) tasks associated with service composition. They state
that these tools should provide the infrastructure for enabling the design
and execution of composite services (Benatallah, Sheng, & Dumas, 2003}
Benatallah et al., [2005). Additionally, there is a rising demand for business-
driven automated composition (Papazoglou, Traverso, Dustdar, & Leymann)
2007; Dustdar & Schreiner, 2005)), which implies an (semi-)automated design
of coordination logic.

Tool support for constructing coordination logic is limited. For example,
although Microsoft Visio (Juric, 2006)) is the most frequently used tool for
modeling BPMN processes (Recker, [2008), it is not trivial to design coordina-
tion logic for a BPMN process modeled in Visio (Juric,|2006). For example,
even Microsoft’s Biztalk Orchestration Designetﬁ] does not support importing
BPMN processes modeled in Visio. It is up to the developer to manually
interpret the BPMN model and design appropriate coordination logic.

Major BPM players such IBM, Oracle, etc. try to close the gap between
process design and implementation by offering a better interoperability be-
tween the process modeling and process implementation tools. Typically,
these players offer a BPMN modeling tool (e.g. IBM WebSphere Business
Modeler (Iyengar, Jessani, & Chilanti, 2007))) in which business analysts need
to model business processes. Subsequently, the BPMN model can be imported
in the implementation tool (e.g. IBM WebSphere Integration Developer
(Iyengar et al.| 2007)). Typically, such an implementation tool generates,
based on the BPMN model, a BPEL (OASIS, |2007) ’skeleton’ in which de-
velopers can add service interactions and so define the coordination logic.
However, this methodology decreases the flexibility, which was supposed to
be one of the promising advantages of a service-based system. This is so
because, if the business process changes, developers need to re-import the
BPMN process model and redefine all service interactions and reconstruct the
coordination logic. In their article discussing the adoption of BPM and SOA
in a large Danish bank, Brahe| (2007)) state that developers too often need
to repeatedly implement the same implementation patterns. Such a manual
synchronization of changes between design and implementation is not an
efficient development practice. Furthermore, the chance of wrongly design-
ing the coordination logic grows, resulting into a less effective development
practice as well.

“http://www.microsoft.com/biztalk

6 1.2. Research goal and questions

Summary of the key research challenges

Based on the previous discussions we list the most important challenges that
come with the development of service-based systems:

e Precise translation of the high-level business processes to techni-
cal implementations without losing the connection between the ab-
stract design level and the implementation level.

e Managing the complexity of message-based implementations and
reducing the amount of time-consuming hand coding and low-level
programming.

e Avoiding an ad-hoc design of coordination logic by using a systematic
approach for constructing coordination scenarios that is based on best
practices.

e Using tools to support the design of coordination logic, so that the
construction of coordination scenarios is significantly simplified and
semi-automated.

¢ Increasing the reuse of existing building blocks as much as possible
so that a better consistency of multi-programmer implementations can
be achieved and developers less often need to repeatedly implement
the same implementation patterns.

As we will describe in the next section this thesis focuses on the design of
coordination logic. Ultimately, the solutions presented need to address the
challenges listed above as much as possible.

1.2 Research goal and questions

In this thesis, we address the lack of rigorous and systematic guidelines
on how to design appropriate coordination logic. Such guidelines can
significantly contribute to an efficient and effective design of coordination
logic and service compositions, because it can support developers to more
rapidly design coordination logic that is optimized to the business require-
ments. Ultimately, this contributes to flexible and dynamic service-based
systems, because coordination logic can be designed in a more efficient and
semi-automatic way and more easily adapted to changes in a business process.
If we define a coordination scenario as a specific set of service interactions
constituting the coordination logic in a service composition, we can formulate
two research questions that we try to answer in this thesis:

CHAPTER 1. INTRODUCTION 7

Process lteration

o
v v F .
o £ 2
2 3
IDENTIFY ° DEFINE DESIGN & B | Dewonstraton 8 EvaLuaTioN %’ COMMUNICATION
. PROBLEM X OBJECTVESOF | 2 | DEVELOPMENT 3 < Observe ho 5
Nominal process & MOTIVATE g ASOLUTION = E Find suitable .3 effective, vl E Scholarly
seauence < i i 2 five, "
8 Define problem | £ E | At 3 conext |- 5| G| 2| publcatons
What would a ; c £
Show better artifact 5 | Usearetactto | % | ortopackto | @ | Professional
importance accomplish? solve problem ° design 2 publications
3 a
=
A 4 v Y A 4
DESIGN &
PROBLEM- OBJECTIVE- DEVELOPMENT- CLIENT/
CENTERED CENTERED CENTERED CONTEXT
INITIATION SoLuTioN INITIATED

INITIATION

Possible Research Entry Points

Figure 1.1: DSRM Process Model (Peffers et al.,|2007)

RQ1 Can we come up with a systematic way of composing coordination
scenarios, starting from some fundamental building blocks that can be
combined to construct all possible scenarios?

RQ2 Can we provide service composers with a set of design guidelines for
constructing a coordination scenario that complies to some predefined
design criteria into account?

1.3 Research methodology

The research in this thesis can be classified as design-science research (Hevner
March, Park, & Ram)}|2004). This type of research is fundamentally a problem-
solving paradigm, which addresses research through the creation and jus-
tification of artifacts. Such artifacts are not exempt from natural laws or
behavioral theories. On the contrary, their creation relies on existing theories
that are applied, tested, modified, and extended through the experience,
creativity, intuition, and problem solving capabilities of the researcher.

In order to answer the research questions described in section we
followed the Design Science Research Methodology (DSRM) (Peffers, Tuu{
nanen, Rothenberger, & Chatterjee, 2007), which provides a process model
consisting of six steps: problem identification and motivation, definition
of the objectives for a solution, design and development, demonstration,
evaluation, and communication (see Figure .

1. Problem identification and motivation: In this step the specific re-
search problem needs to be defined and the value of a solution should

8 1.3. Research methodology

RESEARCH GOAL
Addressing the lack of rigourous and systematic guidelines on
how to design appropriate coordination logic

Research Question 1 Research Question 2

What are fundamental What are design
building blocks for guidelines for
coordination logic? coordination logic?

Building blocks allow Building blocks make it Design guidelines

one to compose every possible to automate the support developers

possible coordination construction of during the design of
scenario coordination logic coordination logic

Research Objectives

e 4

)
[}
[}
)
[}
[}
)
[}
[}
|
)
[}
[}
[}
)
[}
|
| a
VA Key research challenges to be addressed
E ;
)
I
I
)
I
I
)
)
I
)
)
)
I
|
)
I

Precise No ad-hoc Increased
translation design reuse
Tool support
\ SOLUTION ;

|:(> ‘Research Objective’ = testable objective derived from ‘Research Question’

Figure 1.2: The relationship between our research goal, research questions
and research objectives

CHAPTER 1. INTRODUCTION 9

be justified. Furthermore, |Peffers et al.| (2007)) advise to atomize the
problem conceptually, because the problem definition will be used to
develop an artifact that can effectively provide a solution. Resources
required for this step include knowledge of the state of the problem
and the importance of its solution.

Sections|[I.1]and already provide a clear description of the research
context and problem. Since the main topic in our research is about
coordination, it is necessary to have a good understanding of the con-
cept of coordination. Coordination is not only in computer science
an important research topic. It is also studied in disciplines such as
organization theory, operations research, economics, linguistics, and
psychology. Malone and Crowston| (1994) studied the similarities and
connections between the different flavors of coordination and created
a more generic coordination theory. They define coordination as man-
aging dependencies between activities. This definition is based on the
intuitive idea that there is nothing to coordinate without any interde-
pendence. In their work they state that coordination theories should
try to characterize different kinds of dependencies and identify the
coordination processes that can be used to manage them. Therefore,
in Chapter [2] we will discuss several types of dependencies that can
exist when composing services to service-based systems. As we will
explain in that chapter, our research is targeted at two types of de-
pendencies, namely sequence dependencies and data dependencies.
Therefore, we atomize our research problem based on these two types
of dependencies. This means we will first try to answer the research
questions for both types of dependencies separately (see Chapters
and [4), before providing a complete solution to our research problem.
Furthermore, in both the chapter on sequence dependencies and the
chapter on data dependencies we first introduce a refined research
context specific for the type of dependencies we are dealing with. This
refined research context defines a terminology used throughout the pre-
sented solution. Additionally, it describes how we further decompose
the specific problem (Vaishnavi & Kuechler, |2007), which lays the basis
for our systematic way of constructing coordination scenarios and the
fundamental building blocks for doing so.

Chapter 2| also highlights existing solutions in our problem domain and
discusses why these solutions do not suffice.

2. Definition of the objectives for a solution: This step is about inferring
the objectives of a solution from the problem definition and knowledge
of what is possible and feasible.

The general objective is that our solution provides rigorous and system-

10

1.3. Research methodology

atic guidelines on how to design appropriate coordination logic. More
specifically, we derived three research objectives from the two research
questions described in Section[1.2] These three research objectives are
formulated in such a way that it can be tested whether the objective is
achieved or not. In short, the three testable research objectives describe
what we expect from a solution:

e By combining the building blocks in several ways, it should be
possible to construct every potential coordination scenario. This
objective is derived from the first research question (see Section

1.2).

e The solution should describe a set of fundamental building blocks
for coordination logic. Based on these building blocks it should
be possible to semi-automate the construction of a coordination
scenario by letting developers pick specific building blocks for
dependencies management and automatically generate a complete
coordination from a business process specification. This objective
is derived from the first research question (see Section [1.2)).

e Our solution should guide developers to choose and combine the
building blocks in a way that an optimized coordination scenario
can be constructed. This objective is derived from the second
research question (see Section [1.2)).

In Figure the relationship between our research goal, research
questions and research objectives is shown.

. Design and development: This step is the core of design science and

is about the creation of the artifact. Conceptually, a design research
artifact can be any designed object in which a research contribution is
embedded in the design.

In this thesis the artifact created is a set of patterns. In its simplest form
a pattern can be defined as a solution to a problem that arises within
a specific context (Buschmann, Henney, & Schmidt, 2007). Patterns
originated as an architectural concept by Christopher Alexander. In his
book The Timeless Way of Building (Alexander, (1979) he describes a
pattern as follows:

Each pattern is a three-part rule, which expresses a relation
between a certain context, a problem, and a solution.

As an element in the world, each pattern is a relationship be-
tween a certain context, a certain system of forces which occurs
repeatedly in that context, and a certain spatial configuration
which allows these forces to resolve themselves.

CHAPTER 1. INTRODUCTION 11

As an element of language, a pattern is an instruction, which
shows how this spatial configuration can be used, over and over
again, to resolve the given system of forces, wherever the context
makes it relevant.

The pattern is, in short, at the same time a thing, which happens
in the world, and the rule which tells us how to create that
thing, and when we must create it. It is both a process and
a thing; both a description of a thing which is alive, and a
description of the process which will generate that thing.

The design of coordination logic is a recurring problem in service
composition, which explains our choice for patterns. Furthermore, as
we will describe in Chapters[3|and 4 an SOA creates a context in which
several forces are present. As we will show, these forces can be used as
evaluation criteria for constructing an optimized coordination scenario.
Each pattern balances these forces differently, which brings us a bit
closer to an answer to the second research question (see Section [1.2)).

The patterns presented in this thesis can be classified as design pat-
ternﬂ A design pattern provides a scheme for refining the subsystems
or components of a software system, or the relationships between them.
It describes a commonly recurring structure of communicating com-
ponents (e.g. services in a service composition) that solves a general
design problem within a particular context (Gamma, Helm, Johnson, &
Vlissides, {1995).

The patterns presented in this thesis are the building blocks for con-
structing coordination logic. This means that the patterns presented do
not exist in isolation. The patterns are supposed to complement each
other and there should exist a way of combining the patterns in order to
obtain a complete coordination scenario. In other words, the patterns
together form a pattern language for constructing coordination logic,
in which the patterns make the vocabulary of the language, and the
rules for their implementation and combination make up its grammar
(Buschmann, Meunier, Rohnert, Sommerlad, & Stal, [1996).

Similar to the approach taken for the discovery of the service interaction
patterns (Barros, Dumas, & Hofstede, [2005)), our patterns have been
derived and extrapolated from insights into real-scale B2B transaction
processing, BPEL (OASIS,|2007) and WS-CDL (W3C, 2005) examples in
academic and industrial literature, generic scenarios identified in indus-

5The patterns presented in this thesis are intended to support the design of coordination logic.
Important run-time issues such as message buffering, task execution scheduling and message
reliability do not belong to the research scope of this dissertation.

12

1.3. Research methodology

try standards (e.g. RosettaNet Partner Interface Protocols (RosettaNet,
n.d.)), and case studies reported in the literature.

. Demonstration: The demonstration step is about showing the use of

the artifact to solve one or more instances of the problem. This could
involve its use in experimentation, simulation, case study, proof, or
other appropriate activity.

In this thesis we demonstrate the artifacts created in several ways:

e Based on the patterns for managing sequence and data depen-
dencies in service compositions, we have developed a tool for
generating coordination logic from business process specifications
(see Chapter|[6)).

e We have applied the patterns for data dependencies management
in both a fictive and real-life business case (see Subsections [4.3.3

and in Chapter [4).

e Workflow patterns are often used for the evaluation of business
process modeling languages, because these patterns are considered
as fundamental process constructs (Van der Aalst, Ter Hofstede|
Kiepuszewski, & Barros, [2003). For a similar reason, we demon-
strate the patterns for sequence dependencies management by
showing that our patterns can be used to coordinate the sequence
of activities specified in a workflow pattern. In particular, we have
applied our patterns to the basic control flow patterns (see Chapter

3).

5. Evaluation: In the evaluation step researchers need to observe and

measure how well the artifact supports a solution to the problem.
This activity involves comparing the objectives of a solution to actual
observed results from use of the artifact in the demonstration.

First of all, we have implemented a tool that demonstrates that it is
possible to semi-automate the construction of a coordination scenario
(in the form of BPEL (OASIS, |2007) processes) by letting developers
pick specific patterns for sequence and data dependencies management
and automatically generate a complete coordination from a business
process specification (in the form of a BPMN process (OMG) 2010a))).
This implementation (presented in Chapter|[6)) also shows the practical
utility of our pattern languages, which is an important evaluation aspect
in design science (Hevner et al.,|2004).

In both the chapter on sequence dependencies (see Chapter[3) and the
chapter on data dependencies (see Chapter[4) evaluation sections are
included. In these sections it is shown that every possible coordination

CHAPTER 1. INTRODUCTION 13

scenario can be constructed using the patterns presented (see Section
in Chapter [3| and Section [4.5in Chapter [4). Furthermore, the
chapter on data dependencies contains a real-life case study with a Bel-
gian bank and insurance company, in which the patterns for managing
data dependencies are applied (see Subsection [4.4.2in Chapter [4).

6. Communication: In this step the researcher needs to communicate
the research problem and its importance, the constructed artifact, its
utility and novelty, the rigor of its design, and its effectiveness to other
researchers and relevant audiences such as practicing professionals,
when appropriate.

In general, we have communicated our research in several ways. We
have published several articles for presentation at an international
conference. Preliminary versions of the pattern languages presented in
this thesis were published in the following conference articles:

Monsieur, G., Snoeck, M. & Lemahieu, W. (2009). A pattern language
for service input data provisioning. In Proceedings of the 16th
Conference on Pattern Languages of Programs (PLoP 2009). New
York, NY, USA: ACM.

Monsieur, G., Snoeck, M. & Lemahieu, W. (2010). Managing sequence
dependencies in service compositions. In Proceedings of the 15th
European Conference on Pattern Languages of Programs (EuroPLoP
2010).

Additionally, we submitted a large part of Chapter [4]for publication in
an international journal:

Monsieur, G., Snoeck, M. & Lemahieu, W. (2010). Managing data
dependencies in service compositions. Submitted for publication
in IEEE Transactions on Software Engineering.

Finally, the following publications were written during the preparation
of this thesis:

Monsieur, G., Snoeck, M. & Lemahieu, W. (2007). Coordinated Web
Services Orchestration. In Proceedings of IEEE 2007 International
Conference on Web Services (ICWS 2007) (pp. 775-783). Washing-
ton, DC, USA: IEEE Computer Society.

Monsieur, G., De Rore, L., Snoeck, M. & (2008). Handling transac-
tional business services. In Proceedings of the 15th Conference on
Pattern Languages of Programs (PLoP 2008). New York, NY, USA:
ACM.

14 1.4. Thesis outline

Monsieur, G. (2008). Gestructureerd bedrijfsprocessen implementeren
(structured business process implementation). In IT Professional,
3(43), 26-27.

As explained before, the core part of our research, or the created
artifacts, were written as patterns and pattern languages. This im-
mensely facilitates the communication of our research. Although we
have successfully applied the patterns to generate coordination logic
from business process specifications, people are the prime audience for
patterns. Patterns form a specialized but common vocabulary that soft-
ware architects and developers can use to discuss particular problems
that arise in their projects, resulting into a better joint understanding
of specific problems and solutions to these problems (Buschmann et
al., 2007). Furthermore, previous research has shown that patterns
improve the repeatability, usability and reuse of design practices (Ng!
Cheung, Chan, & Yu, |2006; Prechelt, Unger, Tichy, Brossler, & Votta,
2001).

1.4 Thesis outline

Chapter [2] presents an overview of research that is related to this dissertation.
Based on the literature, it presents several types of dependencies that can exist
when composing services to service-based systems. Subsequently, the chapter
continues with a detailed discussion on existing approaches for managing
these dependencies, followed by a description of existing patterns and pattern
languages for building SOAs. The chapter concludes with a description of a
few standards that are frequently used in the rest of this thesis. Chapters
and (4] present the pattern languages for managing sequence and data
dependencies, respectively. Subsequently, in Chapter [5]it is described how
these two pattern languages can be combined. Chapter [6] provides an in-
depth discussion on how these pattern languages are applied to build a tool
for generating coordination logic from business process specifications. In
the last chapter of this dissertation, Chapter |7, we draw several conclusions,
point out limitations and present several challenges for further research.

If I have seen further it is by standing on
the shoulders of giants

— Isaac Newton (1643-1727),
English physicist,

in a letter to Robert Hooke

in February 1676

Related work

The main topic of this thesis is coordination. As explained in our research
methodology (see Section [1.3), we follow the definition by Malone and
Crowston| (1994), who define coordination as managing dependencies between
activities. Therefore, this chapter starts with an overview of several types
of dependencies that can exist when composing services to service-based
systems (see Section [2.1)).

In Section [2.2] we discuss several studies on managing sequence depen-
dencies, while in Section [2.3|we present an analysis of current approaches
for managing data dependencies.

As mentioned in our research methodology (see Section [1.3)) our solution
to the research problem described in Section consists of a set patterns.
Therefore, in Section[2.4] of this chapter we elaborate on several important
patterns for Service-Oriented Architectures and how these patterns can poten-
tially contribute to a solution that manages sequence and data dependencies
in service compositions.

This chapter ends with a discussion on several related standards that will
be frequently referenced and used in the rest of this dissertation (see Section

2.5).

2.1 Dependencies in service compositions

Multiple researchers have studied dependencies in the context of service
composition (Janssen & Feenstral, [2008}; Bhiri, Perrin, & Godart, 2005, [2006;

15

16 2.1. Dependencies in service compositions

Yang, Papazoglou, & Van den Heuvel, |2002; Papazoglou, Delis, Bouguettaya,
& Haghjool |1997).

Bhiri et al.| (2005, |2006) have used dependencies to specify how (com-
ponent) services are coupled and how the behavior of some given services
influences the behavior of some others. In their view on inter-service depen-
dencies they assume that a service’s behavior can be modeled using a finite
state machine. In particular, they assume that a service has a minimal set of
states (initial, active, aborted, canceled, failed and completed) and transitions
(activate, abort, cancel, fail and complete). When a service is instantiated
(e.g. the service received a request for executing a business task), the state of
the instance is initial. Then this instance can be either aborted or activated.
Once it is active, the instance can normally continue its execution or it can be
canceled during its execution. In the first case, it can achieve its objective and
successfully complete or it can fail. Additionally, the service’s transactional
properties can be extended by adding a compensated state and compensate
transition, which can be fired when the service is in the completed state.
Based on this behavior model Bhiri et al.| (2005, [2006) consider two classes
of dependencies: activation dependencies and transactional dependencies.
The activation dependencies class contains two types of dependencies:

Activation dependency There is an activation dependency between a ser-
vice s; and a service s, if the completion of s; can fire the activation of
S9.

Abortion dependency There is an abortion dependency between a service
s1 and a service s» if the failure, the cancellation or the abortion of s;
can fire the abortion of s,.

In the transactional dependencies class a distinction is made between three
types of dependencies:

Compensation dependency There is a compensation dependency from s;
to sg if the failure or the compensation of s; can fire the compensation
of S9.

Cancellation dependency There is a cancellation dependency from s; to s,
if the failure of s; can fire the cancellation of s5.

Alternative dependency There is an alternative dependency from s; to s
if the failure of s; can fire the activation of ss.

Janssen and Feenstral (2008)) argue that the analysis of dependencies is
necessary to create feasible service compositions and to identify alternative

CHAPTER 2. RELATED WORK 17

compositions. In their social-technical theory they identify two main classes
of dependencies among component services: resource and link dependencies
(Janssen & Feenstra, |2008)).

Resource dependency There is a resource dependency between two services
if both services use the same resource, which sets constraints on the
execution order (i.e. a service should be consumed before another
service can start).

Link dependency There is a link dependency between two services if one
service depends in some way on the output of the other service (e.g. a
service cannot continue its execution until another service has provided
certain data)

Yang et al. (2002) and [Papazoglou et al.| (1997) make a distinction be-
tween two types of dependencies that can occur among service components:

Sequence dependency There is a sequence dependency (also referred to
as a commit dependency) between a service s; and a service s; if the
start or continuation of the execution of service s, depends on the
completion of the execution of s.

Data dependency There is a data dependency between a service s; and a
service s, if the start or the continuation of the execution of service s,
depends on data that is provided by s;.

In our research we use the two dependencies as proposed by [Yang et al.
(2002), because these two types are more general than the dependencies
proposed by Bhiri et al.| (2005, |2006) and Janssen and Feenstral (2008]). The
dependencies presented by Bhiri et al.| (2005} [2006)) are mostly sequence
dependencies, while |Janssen and Feenstral (2008]) listed both sequence and
data dependencies. A transactional dependency such as proposed by Bhiri et
al.| (2005 12006)) can be considered as a special form of sequence dependency.
In general, a sequence dependency can be described as a situation in which
one service needs to do something after something happened with another
service. Hence, this definition also matches with transactional dependencies.
For example, if one service fails (i.e. something happened), another service
needs to execute a certain business task (i.e. do something).

Based on the distinction between sequence and data dependencies, we
can identify two main coordination challenges that one faces when composing
service-based systems. The first challenge is the management of sequence
dependencies. This challenge consists of consuming all component services in
the right order (i.e. according to sequence dependencies as possibly specified

18 2.2. Managing sequence dependencies

in a business process). For example, an order fulfillment process could have
a sequence dependency between a payment service and a shipping service,
because this business process specifies that the order can only be shipped
after the payment is arranged. The second challenge is the management of
data dependencies, which is about providing a service with all the data it
needs. Consider for instance a data dependency between a shipping service
and a customer relationship service, because the shipping service can only
ship an order if it received the customer’s shipping address, which can be
provided by the customer relationship service. It should be mentioned that
in this dissertation it is always assumed that a data dependency describes
a situation in which one service needs data from second service, without
the need for blocking the data in the first service. Obviously, each complete
coordination scenario (for an order fulfillment process) needs to take into
account both sequence and data dependencies.

In their Extended SOA Papazoglou| (2005) and Papazoglou and Van den
Heuvel| (2007b) describe the coordination function that a composite service
needs to perform as follows: “controlling the execution of component services,
and manage data flow among them and to the output of the component service
(e.g. by specifying workflow processes and using a workflow engine for run-
time control of service execution)”. Controlling the execution of services
and managing the data flow, exactly is what managing sequence and data
dependencies is about.

Alonso, Casati, Kuno, and Machiraju| (2004) consider six different dimen-
sions of a service composition model. Among these are an orchestration model,
which Alonso et al.| (2004)) define as a model that specifies the order in which
services are to be invoked, and a data and data access model, which they
define as a model that describes how data is specified and how it is exchanged
between components. Hence, in an orchestration model it is specified how
sequence dependencies are managed, while a data and data access model
describes how data dependencies are dealt with.

2.2 Managing sequence dependencies

2.2.1 Introduction

Many developers use the terms orchestration and choreography to describe
the business interaction protocols that control the execution of services
(Papazoglou et al.,|2007). Since managing sequence dependencies is about
controlling the execution of services and designing the appropriate service

CHAPTER 2. RELATED WORK 19

interactions for accomplishing this, orchestration and choreography must be
relevant terms when designing coordination logic for managing sequence
dependencies.

However, orchestration and choreography are not always defined in the
same way. Furthermore, some researchers introduce centralized or decen-
tralized variants such as centralized orchestration, decentralized orchestration,
centralized choreography and decentralized choreography. In addition, it is
not always clear how these terms are related to terms such as centralized
coordination, decentralized coordination and peer-to-peer coordination. In the
same way, it is not always easy to understand the relations to concepts such
as a coordinator, an orchestrator or a choreographer. To make things even
more complex, there exist several synonyms or overlapping concepts such
as behavioral interface, an abstract process in BPEL (OASIS, [2007)) and an
executable process in BPEL (OASIS| 2007).

In order to understand terms like orchestration and choreography (and
related concepts) it is beneficial to have a set of basic concepts that are related
to service composition in general, regardless of whether an orchestration- or
a choreography-oriented description is used. In Subsection [2.2.2| we discuss
such basic concepts. Subsequently, we use these concepts to discuss two
groups of orchestration and choreography definitions that can be found in

the literature (see Subsections and|[2.2.4).

2.2.2 A meta-model for service composition

As mentioned in the introduction of this section (see Subsection|2.2.1)), in
our discussion on orchestration and choreography (see Subsections [2.2.3
and we distinguish between several orchestration and choreography
definitions by using a set of basic concepts that are related to service com-
position in general. These concepts are explained in our meta-model for
service composition design (see Figure [2.1). The purpose of this meta-model
is only to illustrate common concepts in service composition design and their
relationships using the UML class diagram notation (OMG, 2010b)). It is not
a core research contribution in this dissertation, but it helps to better under-
stand and analyze current approaches for managing sequence dependencies.
If one wants to use the meta-model in a broader context, more details and
specifications would be required. For example, for several concepts (e.g.
composition) it would be better to make a distinction between an abstract
type and a concrete type.

The model in Figure extends the meta-model proposed by Benatallah
et al.| (2005) by adding business process-related concepts such as business

2.2. Managing sequence dependencies

20

suonisodwod 2214195 Ul s3dsouod d1seq :1°g 2In3Ig

JUDAY ssaursng

T

uonesynoN
JU2AY ssaursng

yse, ssaursng

1sonbay ssaursng

uoney

{aurofsip ‘o197dwod}

odA [, 98essoN

*

uonoy

§S9001(ssaulsng

1

*

JuaAY 98eSSIIN

{aurofsip dquEoﬁm W

Eneciy

uonisoduwon)

T

JUSAY 98eSSIN
Zummouiy,

JuaAy 93eSSOIN

umydied UOISIAOI] IJIAISS

uonoeraup

IOPIAOIJ 9DTAIDS

CHAPTER 2. RELATED WORK 21

process, business task, business request and business event. A service composi-
tion supporting a business process consists of a number of (component) services
that are provided by service providers. The same service can be provided more
than once by different service providers (e.g. a flight booking service can
be provided by different airlines). A service has several (internal) actions
and is associated to several message events that are part of an interaction
with other services. The interactions are message-based because this is the
basic mechanism for interaction used in the mainstream service description
languages (e.g. WSDL (W3C, [2001}, [2007a)). Each interaction consists of
a catching message event (receive) and a throwing message event (send). A
message event is associated with a message type, which is either a business
request or a business event. A business request - also referred to as a service
request - means that the service sends (in case of a throwing message event)
or receives (in case of a catching message event) a request for executing
a certain business task in the business process. Business requests typically
are defined in a contract between two parties in which is stated what the
requester can expect from the party that receives the request (Weigand & Van
den Heuvel, [2002). A business event means that the service sends or receives
an event notification that describes a business task-related event (e.g. the
end of a certain business task) (Hens, Snoeck, Poels, & De Backer, [2009).
Relations relate actions and interactions to each other via message events.
The interactions (including the message events) form the coordination logic
in a service composition.

In this meta-model abstraction is made of the sequence constraints be-
tween interactions. Furthermore, the meta-model does not take into account
the transactional aspect of coordinating business processes and tasks. In
Chapter [7] we briefly discuss how interactions for transactional purposes can
be integrated in this meta-model (see Subsection[7.2.2).

2.2.3 Orchestration and choreography as composition view-
points

A first group of researchers consider orchestration and choreography simply
as different viewpoints in a service composition. The most detailed definitions
in this category are proposed by |Barros, Dumas, and Oaks| (2006). Therefore,
we will summarize their definitions below and indicate the relationship with
the meta-model presented in Subsection[2.2.2] Subsequently, we highlight
similar definitions by other researchers.

Barros et al.| (2006) define a choreography (model) as follows:

22 2.2. Managing sequence dependencies

e ”A description of a collaboration between a collection of services to achieve
a common goal.

e "It captures the interactions in which the participating services engage
to achieve this goal and the dependencies between these interactions,
including the causal and/or control-flow dependencies (i.e. that a given
interaction must occur before another one, or that an interaction causes
another one)”

e "The interactions are captured from a global perspective meaning that all
participating services are treated equally. In other words, a choreography
encompasses all interactions between the participating services that are
relevant with respect to the choreography’s goal.”

e "It does not describe any internal action of a participating service that
does not directly result in an externally visible effect, such as an internal
computation or data transformation.”

Hence, choreography is about the design of all interactions, including the
message events, in a service composition. In a service composition component
services are collaborating together to achieve a common goal, which is the
realization of a new composite service. A choreography does not describe
the relationship between these interactions and the internal actions of the
component services.

Barros et al.[| (2006) define an orchestration (model) as ”a description of
the communication actions and the internal actions in which a service engages.
Internal actions include data transformations and invocations to internal soft-
ware modules.” Thus, orchestration is about designing all (internal) actions
and related message events and interactions in which a particular component
service is involved.

The above definitions of orchestration and choreography fit well in sev-
eral business-to-business service composition methodologies, in which both
orchestration and choreography (as viewpoints) need to be combined in
order to build a service-based application that supports the inter-enterprise
business process. The main idea in these methodologies (Papazoglou et al.,
2007; [Papazoglou & Van den Heuvel, |2007a; Peltz, |2003) is that companies
involved in the business process first agree upon on the way they collaborate
by designing and specifying a choreography. Subsequently, each participating
company can develop an orchestration that fits into the choreography. In
practice companies first design a choreography (e.g. in a WS-CDL (W3C,
2005)) or BPEL4Chor (Decker, Kopp, Leymann, & Weske, 2009) representa-
tion) and then generate a sort of orchestration skeleton for each company

CHAPTER 2. RELATED WORK 23

(e.g. in an abstract BPEL process (OASIS|, |2007)). Barros et al.| (2006) refer
to this orchestration skeleton as a behavioral interface:

e ”A behavioral interface captures the behavioral aspects of the interactions
in which one particular service can engage to achieve a goal.”

e "It focuses on the perspective of one single party (in a choreography). As a
result, a behavioral interface does not capture ‘complete interactions’ since
interactions necessarily involve two parties.”

e "Basically, it consists of communication actions performed by one partici-
pant”

e ”A behavioral interfaces does not describe internal tasks such as internal
data transformations.

Note that these definitions imply that in each service composition there is
only one choreography viewpoint, but several orchestration viewpoints.

2.2.4 Orchestration and choreography as composition styles

A second group of researchers describe orchestration and choreography as
composition styles, which are two generic ways that illustrate how component
services in a service composition interact. This means that orchestration and
choreography can be considered as two templates for coordination scenarios
that manage sequence dependencies.

Several researches define orchestration as a service composition in which
a central coordinator - sometimes also referred to as the orchestrator (Busi.
Gorrieri, Guidi, Lucchi, & Zavattarol 2005} [Tabatabaei, Kadir, & Ibrahim)
2008;; [Beek, Bucchiarone, & Gnesi, [2006)), the controller (Barker, Weissman|
& Hemert, |2009) or the choreographer (Mitra, Kumar, & Basul [2008) - is
responsible for coordinating the business process execution by invoking all
component services in the right order (Busi et al., 2005} [Barker et al., [2009;
Tabatabaei et al., 2008; [Malinova & Gocheva-Ilieva, |2008; Beek et al., 2006;
Bellini, Prado, & Zaina, |2010). This coordinator can be either one of the
component services or another service (e.g. a BPEL engine) (Malinova &
Gocheva-Ilieval, 2008]). [Pedraza and Estublier| (2009) describe orchestration
as a service composition in which “a single engine on a single machine forms
the heart of the (service-based) system, with all communication going to and
coming from that machine”. Similarly, |[Pessoa, Silva, Sinderen, Quartel, and
Pires| (2008) state that all the interactions in an orchestration pass through
the coordinator.

24 2.2. Managing sequence dependencies

In summary, this means that orchestration can be considered as a service
composition style in which one service (the coordinator) interacts with all
component services. There are no (explicit) interactions between component
services; each interaction in the orchestration is between the coordinator and
a component service. Typically, only the coordinator has knowledge of the
business process and sends business requests to the component services. The
component services mostly send business events to the coordinator. In the
literature, orchestration defined in this way is also referred to as centralized
coordination (Pessoa et al., [2008]; Benatallah et al., [2003)), centralized orches-
tration (Binder, Constantinescu, & Faltings, [2006) or centralized choreography
(Mitra et al., |2008]). This definition can also be explained by means of the
orchestra metaphor. As in a real-life orchestra, one service is playing the
role of the conductor and coordinates all component services (Lin & Chang}
2005).

In line with orchestration as a composition style, choreography is often
described as a service composition in which there is no central coordinator.
In a choreography the component services are rather collaborating together.
The business process is executed and coordinated by several peer-to-peer
interactions among the collaborating services (Busi et al., 2005} Barker
et al., |2009; [Tabatabaei et al., |2008}; Malinova & Gocheva-Ilieva, 2008}
Beek et al.l |2006; Bellini et al., |[2010). The component services directly
communicate with each other, and not through a central coordinator (Pedraza
& Estublier, [2009; [Pessoa et al.l |2008). According to Barker et al.| (2009)
and Malinova and Gocheva-lIlieval (2008)) all participants in a choreography
need to be aware of the business process, operations to execute, messages
to exchange, and the timing of message exchanges. In contrast, [Pedraza
and Estublier| (2009) state that each participant is responsible for routing
messages to the 'next’ (Web) service(s) without any global view such as the
business process. In summary, choreography can be considered as a service
composition style in which the component services interact with each other
and there is no central coordinator that exclusively interacts with component
services. Typically, several component services have knowledge about (part
of) the business process and send business requests to each other; component
services mostly also send business events to other component services. In the
literature, choreography defined in this way is also referred to as peer-to-peer
coordination (Pessoa et al., [2008; Benatallah et al., [2003)) or decentralized
orchestration (Binder et al., 2006). This definition can also be explained by
means of the dancers metaphor. As a group dancers do in real life, each
service knows exactly when to execute and with whom to interact (Lin &
Chang, 2005).

CHAPTER 2. RELATED WORK 25

2.2.5 Conclusion

As discussed in the introduction of this section, orchestration and choreogra-
phy are important terms when designing coordination logic that deals with
sequence dependencies. Based on our literature overview (see Subsections
and we can conclude that orchestration and choreography are
relevant terms in two ways. On the one hand, orchestration and choreogra-
phy can be considered as viewpoints in a service composition. In particular,
one can say that orchestration and choreography provide local and global
views on a coordination scenario. On the other hand, orchestration and
choreography can refer to two composition styles. In the context of this
thesis, this perspective is probably the most relevant, because in a way these
composition styles refer to different kinds of coordination scenarios.

We believe both composition viewpoints and styles are useful concepts
when designing service interactions. However, as shown in the previous
subsections the terms orchestration and choreography are used for both
purposes, which can potentially lead to confusion and inconsistencies. In
this thesis, therefore, we consider orchestration and choreography only as
viewpoints in a service composition. When referring to the composition styles,
we prefer the terms centralized and decentralized coordination. Terms such
as centralized orchestration or decentralized orchestration are very confusing
when orchestration is considered as a viewpoint, because then orchestration
is, per definition, always executed by one service. Centralized choreography
or decentralized choreography are perhaps easier to understand, because then
the adjectives tell something about the interactions. However, these terms,
currently, are not so frequently used in the literature.

Note that it is relatively easy to understand that people confuse com-
position viewpoints with composition styles. Indeed, from the viewpoint
perspective orchestrations are always executed by one service. However, it
is important to realize that this does not necessarily imply that the service
executing the orchestration have to coordinate the complete business process.
Similarly, it is true that in a choreography (as viewpoint) there are several
services interacting with each other, but this does not imply a centralized or
decentralized coordination. Indeed, also in a centralized coordination one
can consider the choreography viewpoint.

As mentioned earlier, in this thesis we are particularly interested in com-
position styles, because centralized or decentralized coordination describes a
sort of coordination style. Nevertheless, orchestration and choreography as
composition styles does not explicitly describe the types of messages that are
exchanged between services (i.e. business requests or business event notifica-
tions). As we have described in Subsection|2.2.4} centralized coordination

26 2.3. Managing data dependencies

(or orchestration as composition style) typically implies that one coordinating
service has business process knowledge and sends business requests to the
component services. However, one could also think of a coordination scenario
in which a central business process-agnostic service (e.g. an event broker)
does not send business requests but only forwards business event notifications
to interested services. Similarly, a choreography as composition style does
not describe the nature of inter-service communication. On the one hand,
one can easily imagine scenarios in which component services collaborate to-
gether and send business requests to each other. On the other hand, however,
services can also collaborate together by only sharing business events. For
example, in a group of dancers typically dancers do not tell each other what
and when to do something (i.e. they do not send business requests to each
other). Dancers rather react on movements etc. from others to know when
to do something. In summary, we can conclude that the common distinction
between orchestration and choreography does not describe the complete set
of possible coordination scenarios. However, currently, there are no concrete
guidelines available for building such scenarios and choosing an appropriate
solution.

2.3 Managing data dependencies

In this section we will discuss existing solutions for managing data dependen-
cies in service compositions. Before discussing these studies in detail, we first
describe a small running example that we use for illustrating the results of
these studies.

2.3.1 Running example

We use a simple (fictive) example of a service composition in hospitals as
running example. We deliberately chose a non-automated example so as
not to clutter the discussion with (low-level) implementation issues, but
the conclusions presented in this section are equally applicable to software
services.

Consider a nurse who wants to treat a patient’s high fever using a febrifuge.
Getting the right febrifuge requires consumption of several services. In
particular, the nurse should request a febrifuge from the pharmacist, who of
course also provides several services to the hospital staff. Hence, the nurse
can be considered as a service composer that needs to consume the service
of a pharmacist. Both aspirin and paracetamol are fever reducers. However,

CHAPTER 2. RELATED WORK 27

Information request

concerning the risk for
@ stomach bleeding

Request for
@ notifying the pharmacist | © o o oo o >
- e of the risk for stomach bleeding
cea
Nurse Ceey Nurse Doctor
.
.
X ——————
! M ! The risk for @
@ . A v @ . . stomach bleeding
. M . .
L] - .
Request for * [. Request for * 4
amedicine for * o Riskfor Doctor a medicine for * ¥ Risk for
; . ¢ stomach bleeding ; . '
reducing fever ' reducing fever 0 stomach bleeding
L] .
. . . '
O) ® Y,

‘The risk for
stomach bleeding

(@ (b)

Figure 2.2: Two ways of coordinating the pharmacist and doctor

aspirin has the unpleasant side effect that it can cause stomach bleeding
in certain circumstances. Therefore, the pharmacist needs patient-specific
information concerning the risk for stomach bleeding, before he or she can
deliver an appropriate febrifuge. The risk for stomach bleeding is only known
by the patient’s doctor. This means that the doctor provides a second service
that needs to be consumed in order to support the task of choosing a febrifuge.
Hence, this implies that there is a data dependency in this service composition
between the pharmacist and the doctor. In this case, service coordination
means providing the pharmacist with the data that is held by the doctor.

Even though this is a rather small example of data dependencies in a
service composition, many coordination scenarios are possible. In figures
[2.2(a)]and [2.2(b)| two ways of managing the data dependency between the
pharmacist and the doctor are shown.

2.3.2 Existing techniques for dealing with data dependen-
cies

Data dependencies are related to the data flow concept in service composi-
tions. In general, data flow can be defined as the service interactions that
are necessary for sending data from one service that can provide certain data
to another service that needs that data (Barker, Weissman, & Van Hemert),
2008Db; [Yang, [2003; [Weber, Schuler, Neukomm, Schuldt, & Schek, 2003;
Charfi & Mezinil, 2007). A data flow thus specifies how data dependencies
are managed. Therefore, we will focus on studies that contain approaches

28 2.3. Managing data dependencies

@ @ @ Nurse @
Nurse Pid -
R < '~ . ¢ Request for
Request for Request for ¢ ici
e o K \ amedicine for e risk for ¢ ’;‘eg“:j,;f;";j‘;:
est for o reducing fever stomach bleeding *
the risk for (includes the risk for %o
stomach bleeding J \ stomach bleeding) ¢
] - :
L]
N “The risk for | N
] stomach bleeding - v
Doctor
Doctor
“The risk for
stomach bleeding
(a) Central data flow (b) Decentral data flow

Figure 2.3: Two possible data flows for hospital example

to find and use alternative data flows in a service composition. We illustrate
the results of these studies by means of the running example presented in
Subsection [2.3.1] Subsequently, we will show that these studies do not cover
all aspects that are important for the design of an appropriately coordinated
service-based system.

In the descriptions below, we use two coordination scenarios for the
hospital example, which are represented in figures[2.3(a) and [2.3(b)| Each
arrow corresponds to a message sent between two entities. The dashed
arrows refer to service invocations, while the solid arrows denote the transfer
of data between two entities. The semi-dashed arrow (as used in figure
is used to indicate that the data is included in the invocation message.
While in figure all data passes via the nurse (central data flow), the
data flow in figure is decentral, since data flows directly from one
service to the other. As we will show below, the contributions of many studies
can be easily explained by means of this small example consisting of two
possible coordination scenarios.

Barker et al.| (2008b) and [Barker, Weissman, and Van Hemert| (2008a))
have presented a Web services based architecture that allows centralizing
component invocations (centralized control flow) and decentralizing data
flows (similar to figure [2.3(b)]). This architecture consists of a centralized
orchestration engine that issues control flow messages to Web services taking
part in service composition. However, enrolled Web services can pass data
messages among themselves, as in a peer to peer model. The architecture
is mainly based on the idea of so called proxies, which are deployed in the
vicinity of Web services. These proxies realize the more efficient data flow
between component services.

CHAPTER 2. RELATED WORK 29

Liu, Law, and Wiederhold| (2002al,)2002b) have published a mathematical
model that is built to compare the data flow performances. They concluded
that decentralized data flow is in general superior in performance (i.e. the
service composition in figure outperforms [2.3(a)). Subsequently,
they developed a Flow-based Infrastructure for Composing Autonomous
Services (FICAS) (Liu et al.| |2002al [2002b]). Autonomous services are built
to support the service access protocol, which enforces the explicit separation
of data flows from control flows. In FICAS the so called autonomous services
are implemented by wrapping each software application or service into an
autonomous service with a mediator.

The infrastructure based on so called service invocation triggers, intro-
duced by Binder et al.| (2006), is very similar to FICAS. In this infrastructure
service invocation triggers also act as proxies for individual service invoca-
tions. Triggers collect the required input data before they invoke the service.
Moreover, they forward service outputs to exactly those services that need
the output. In order to make use of triggers, business processes are decom-
posed into sequential fragments, and the data dependencies are encoded
within the triggers. Once the trigger of the first service in a business process
has received all input data, the execution of that service is started and the
outputs are forwarded to the triggers of subsequent services. Consequently,
the service composition is implemented in a fully decentralized way, the data
is transmitted directly from the producer to all consumers.

Balasooriya, Padhye, Prasad, and Navathe| (2005) use the same ideas for
decentralizing data flows. In particular, they create a proxy wrapper around
each Web service. The proxy wrappers embed the coordination logic so that
instances of wrapped Web services become stateful self-coordinating web
objects. However, the proxy wrappers need to interact with the actual Web
service to complete each method invocation.

2.3.3 Conclusion

We can conclude that several approaches exists that cater for alternative data
flows. Many studies propose architectural infrastructures for such data flows.
These infrastructures often use the same idea: wrapping each component
service with additional logic that decides where to send input or output
data. Obviously, these infrastructures are valuable and useful when one
wants to implement a specific data flow. However, the focus on the problem
of designing the data flow itself is rather limited. Furthermore, as we will
show below, it remains difficult for a service composer to construct a well
coordinated service composition. There are two main reasons why the current

30 2.3. Managing data dependencies

approaches are not entirely adequate for this purpose:

1. As most approaches have only a limited focus on designing the data
flow, these studies fail to systematically analyze the coordination prob-
lem. Most approaches allow finding alternative data flows, but do not
provide a systematic way of building different coordination styles nor
do they analyze the advantages and disadvantages of alternatives. As
a consequence, they fail to exhaustively identify all coordination sce-
narios. The approaches mostly propose techniques for decentralizing
data flows in service compositions. Applied to the hospital example,
this would mean that a scenario such as shown in figure can be
transformed into a scenario such as shown in figure However,
one can easily see that there are more possibilities. For example, the
scenario represented in figure contains a different coordination
scenario. In this scenario the pharmacist requests and receives the risk
information directly from the doctor, which can be considered as yet
another different way of managing the data dependency between the
pharmacist and the doctor. Other possible scenarios were shown in
the subsection discussing the running example (see figures and

2.2(b)).

2. The main motivation behind existing approaches are performance is-
sues (i.e. communication overhead, etc.). Only the work by Balasooriya
et al.| (2005)) recognizes that decentral data flow can be required due
to security, privacy, or licensing imperatives. However, when evaluating
their infrastructure, they only focus on the performance aspect. To the
best of our knowledge, no studies about data dependency management
take into account other aspects that could influence the choice of a spe-
cific data flow such as data confidentiality, loose coupling or robustness
to change. This can result in badly or suboptimally coordinated service
compositions and service-based systems. For example, the pharmacist
and doctor in the decentralized data flow scenario shown in figure
are not optimally coordinated. This is due to the fact that nurses
probably should not need to understand which data is required by the
pharmacist. Nurses simply want to consume the pharmacist’s services,
and it is to be avoided that changes in data requirements on behalf
of the pharmacist result in changes in how nurses need to work (or
consume the pharmacist’s services). Hence, the scenarios represented
in figures and are probably more appropriate, because in
these scenarios the nurse does not have to know which data is needed
by the pharmacist. This example illustrates that robustness to change is
another useful criterion to be considered next to performance issues.

CHAPTER 2. RELATED WORK 31

Request for
a medicine for
reducing fever

Request for
the risk for
stomach bleeding

Doctor

V.

The risk for
stomach bleeding

Figure 2.4: An alternative data flow for the scenarios represented in figures
[2.3(a)|and [2.3(b)|

2.4 Patterns for Service-Oriented Architectures

In the two previous sections (Sections and we have discussed several
existing approaches to manage sequence and data dependencies in service
compositions. The approach presented in this thesis is described in the form
of a set of patterns. Therefore, in this section we discuss several important
patterns for Service-Oriented Architectures. In this discussion we focus on
how these patterns can potentially contribute to a solution that manages
sequence and data dependencies in service compositions.

2.4.1 Service interaction patterns

Barros et al.| (2005) have proposed a set of service interaction patterns.
They identified four groups of patterns. The first group encompasses single-
transmission bilateral interaction patterns. These correspond to elementary
interactions where a party sends (receives) a message, and as a result ex-
pects a reply (sends a reply). The second group of patterns consists of
single-transmission multilateral interactions. In this case, a party may send
or receive multiple messages but as part of different interaction threads
dedicated to different parties. The third group of patterns is dedicated to
multi-transmission interactions, where a party sends (receives) more than
one message to (from) the same party. The fourth group consists of routed
interactions, which means that the receiver of the "response” is not the same
as the sender of the request.

Barros et al.| (2005) aim to consolidate recurrent interaction scenarios

32 2.4. Patterns for Service-Oriented Architectures

in orchestrations and choreographies, and abstract them in a way that pro-
vides reusable knowledge. Furthermore, the service interaction patterns are
intended for assessing an orchestration or choreography language for its in-
teraction modeling capabilities. In the past such evaluations were conducted
for BPEL (Barros et al., |2005)), WS-CDL (Decker, Overdick, & Zahal, |2006),
BPMN (Decker & Puhlmannl, [2007} Decker & Barros, 2008) and BPEL4Chor
(Decker, Kopp, Leymann, & Weske, 2007)).

Although the service interaction patterns may be composed through
operators expressing flow dependencies (e.g. sequence, choice, etc.) (Barros
& Borger, |2005), no guidelines exist on how to combine the patterns to
construct coordination logic that manage sequence and data dependencies.

2.4.2 Pattern-based architectural framework for Service-
Oriented Architectures

Zdun, Hentrich, and Van der Aalst| (2006]) have proposed a pattern-based
architectural framework for SOAs. In their reference architecture|Zdun et al.
(2006) adopted software patterns from several sources that were described
originally in a number of different domains such as remoting, messaging,
resource management, networked and concurrent objects, software archi-
tecture, component integration, object-oriented design, e-business, process-
driven architectures, business objects, and workflow systems. Their major
contribution is the domain-specific combination of these patterns - in the SOA
domain.

In the reference architecture by|Zdun et al.| (2006) the coordination logic
in service compositions is referred to as the process integration logic. Since
both a business process and coordination logic are represented using process
flows, |Zdun et al.| (2006)) propose to make a distinction between two general
types of process flows: macroflow representing the higher-level business pro-
cess, and microflow addressing the process flow within a macroflow activity.
The distinction between micro- and macroflow is a conceptual decision in
order to be able to design process steps at the right level of granularity when
designing at the long running business process level (macroflow) or the short
running, more technical level (microflow) (Hentrich & Zdun, 2006). Typically,
a microflow consists of coordinated service interactions. However, no patterns
were referenced for constructing such service interactions systematically, nor
were patterns referenced for different sorts of microflow (i.e. templates or
coordination styles).

CHAPTER 2. RELATED WORK 33

2.4.3 Flexible coordination of service interaction patterns

Zirpins, Lamersdorf, and Baier| (2004) propose to make a distinction between
the logical dependencies that are modeled by the interaction logic and the
operational coordination that refers to the procedure or method that is uti-
lized to enforce the logical dependencies. In Section [2.1] we identified logical
dependencies in the form of sequence and data dependencies. Similarly,
the operational coordination matches our vision on coordination, which is
about managing the sequence and data dependencies. |Zirpins et al.| (2004)
argued that while workflow processes represent the logical dependencies
of interactions (i.e. causal and data relationships of message exchanges)
they often simultaneously act as instructions for their coordination on the
execution-level by distributed workflow management systems. As such, the
coordination procedure emerges only implicitly as a side-effect of depen-
dencies from the interaction logic and not because of application-specific
reasons.

However, there are in most cases multiple alternatives for the enforce-
ment of the abstract interaction logic. A reason for this is the multiplicity of
possibilities for splitting the dependencies of the interaction logic into differ-
ent partitions as well as the variety of alternatives for delegating parts of a
partition to executive organizations for operational coordination. Therefore
Zirpins et al.| (2004) suggest that a technical solution for service composition
should consist of a combination of design and implementation patterns. A de-
sign pattern corresponds to the interaction logic that only specifies the generic
process characteristics, while an implementation pattern refers to the refine-
ment of the interaction logic that is needed for the concrete coordination of
services.

Zirpins et al.| (2004) state that the criteria for the choice of the most
appropriate coordination pattern must be specified by so called coordination
policies. A coordination policy describes the effect of a coordination variant
in terms of specific (non-functional) service properties and thereby controls
the choice of alternatives.

In summary, we can conclude that in this thesis we are looking for both
implementation patterns and coordination policies (Zirpins et al., [2004;
Zirpins & Lamersdorf, [2004). The implementation patterns allow us to
systematically construct coordination scenarios, and the coordination policies
make it possible to construct the most appropriate coordination scenario in a
certain business context.

34 2.5. Related standards

Process Order Arrange payment Process Order . Arrange payment
s
Processed Processed
order order
(a) Two directed data associations (b) One undirected association

Figure 2.5: Two ways of modeling that the output data of a certain task is
the input for another task in BPMN (OMG]/, |2010al)

2.5 Related standards

In this section we describe several standards that are strongly related to ser-
vice composition and coordination. Moreover, in the rest of this dissertation
these standards will be frequently referenced and used.

2.5.1 Business Process Modeling Notation (BPMN)

The Object Management Group (OMG) has developed a standard Business
Process Modeling Notation (BPMN) (OMG, 2010a)). The primary goal of
BPMN is to provide a notation that is readily understandable by all business
users, from the business analysts that create the initial drafts of the processes,
to the technical developers responsible for implementing the technology that
will perform those processes (e.g. service-based systems), and finally, to the
business people who will manage and monitor those processes.

In BPMN one can model both sequence and data dependencies. The latter
type of dependencies can be modeled using so called data objects that can
be associated to BPMN tasks as data input or data output. Furthermore, it is
possible to link an activity’s data output to another activity’s data input to
indicate that the output data of a certain task is the input for another task
(e.g. see Figures[2.5(a)]and [2.5(b)]). Additionally, it is possible to model that
data from outside the process (i.e. data that is not the result of a certain task)
is the input for a certain task (e.g. see Figure [2.6).

However, currently, BPMN does not provide language constructs for mod-
eling associations between data objects and sequence flow conditions. This
implies that it is not possible to model that certain data is required for decid-
ing whether a certain task should be executed or not. In other words, when

CHAPTER 2. RELATED WORK 35

Make Béarnaise

Sauce

Béarnaise
Sauce
Recipe

Figure 2.6: Modeling external data as input data in BPMN (OMG, 2010al)

using a data-based gateway to model such a decision, it can not be specified
that certain data objects are required in order to decide which task needs to
be executed (e.g. see Figure[2.7). When one draws an undirected association
between a data-based gateway and a data object (see Figure [2.8), the BPMN
specification does not provide a definition describing what this would mean.

The BPMN specification comes together with an XML schema (W3C,
2004), which allows to serialize BPMN models and construct automated
model transformations (e.g. generation of coordination scenarios for a spe-
cific BPMN business process, see Chapter [6).

2.5.2 Web Services Description Language (WSDL)

The Web Services Description Language (WSDL) provides a model and an
XML format for describing Web services (W3C| 2001, 2007a). A WSDL
document separates the description of the abstract functionality offered by a
Web service from concrete details of a Web service description such as "how”
and "where” that functionality is offered.

At an abstract level, WSDL describes a Web service in terms of the messages
it sends and receives. Typically, these messages are defined using XML Schema
(W3C, |2004). An operation describes an interaction that the Web service
supports (e.g. request/response) and specifies which messages are exchanged
in that interaction. A port type (in WSDL version 1.1 (W3C|, |2001)) or an
interface (in WSDL version 2.0 (W3C| [2007a)) groups operations together
without any commitment to transport or wire format.

At a concrete level, a binding specifies transport (e.g. HTTP (Fielding et
al.,[1999)) and wire format (e.g. SOAP (W3C,|2000)) details for one or more

36 2.5. Related standards

This data-based gateway
models a decision, but it
cannot be specified that
the ‘processed order’ data
object is required for
making a decision large products

are ordered

Deliver to the
customer

Process Order

Deliver to the
customer’s
preferred store

only small products

AN are ordered

Processed
order

Figure 2.7: Modeling that data objects are required to make a decision in
BPMN (OMG, 2010a)

: Y
In order to decide a data Condition 1
object is required
Task 1
R
Y
Task 2
Condition 2
-
Data
Object Such an assocation is
currently not defined in
BPMN

Figure 2.8: An undefined way of modeling that data objects are required to
make a decision in BPMN (OMG, 2010a)

CHAPTER 2. RELATED WORK 37

port types or interfaces. A port (in WSDL version 1.1 (W3C, |2001)) or an
endpoint (in WSDL version 2.0 (W3C, 2007a))) associates a network address
with a binding. Finally, a service groups together ports or endpoints.

2.5.3 Business Process Execution Language (BPEL)

The Business Process Execution Language (BPEL) is the most widely used
standard for specifying Web service orchestrations (Van der Aalst et al.,|2005;
Papazoglou, 2007 [Nitzsche, Lessen, Karastoyanova, & Leymann, [2007).
An executable BPEL process defines how multiple Web service interactions
are coordinated to achieve a business goal, as well as the state and the
logic necessary for this coordination (OASIS,|2007). In terms of our service
composition concepts (see Subsection this means that an executable
BPEL process both defines service interactions, internal actions and relations
between these interactions and actions. In an abstract BPEL process only
the service interactions are defined. In other ways, an abstract BPEL process
defines a behavioral interface (see Subsection [2.2.3)).

Since BPEL is mainly intended for defining service interactions (from
the perspective of one Web service), a set of BPEL processes can be used to
describe a specific coordination scenario that manages sequence and data
dependencies.

The BPEL specification comes together with an XML schema (W3C|[2004),
which allows to serialize BPEL models and construct automated model trans-
formations (e.g. generation of BPEL-based coordination scenarios for a
specific business process, see Chapter|[6]).

The Belgian federal government is like an orches-
tra without conductor

— Tim Pauwels (1971),
Belgian political journalist,
September 11th, 2010

Managing sequence dependencies

In this chapter we present our pattern language that can support service
composers when designing coordination logic that manages sequence depen-
dencies in a service composition. The chapter starts with a concrete example
that shows the problem of managing sequence dependencies (see Section
[3.1). Subsequently, in Section the different patterns are presented. In
Section [3.3| we discuss how these patterns can be applied in practice. Then
follows a short discussion on the validation of the patterns (see Section [3.4).
Finally, the chapter ends with a short conclusion (see Section [3.5)).

3.1 Introductory example

In Figure a travel agency business process is represented using the Busi-
ness Process Modeling Notation (BPMN) (OMG, 2010a). The main goals

Task 5:
Register
payment

Task 3a:
Book hotel

Task 2:
Checking for
unpaid
invoices

Task 4:
Arrange
online
payment

Task 1:
Process
customer’s
request

No
unpaid
invoices

Task 3b:
Book flight

One or more

unpaid invoic
L‘O Task 3c:
Book car

Task 6:
Send tickets
to customer

Figure 3.1: A travel agency business process

39

40 3.1. Introductory example

in the business process are the reservation of a hotel room, a flight and a
rental car. As shown in Figure the first task (task 1) is about processing a
customer’s request. It is only after this task that the travel agency knows for
which hotel, flight and car it needs to make reservations. In the next task it is
checked whether or not the customer has still unpaid invoices (task 2). If this
is not the case, the business process continues with the real booking of the
desired hotel, flight and car (task 3a, 3b and 3c). These three booking tasks
can occur in parallel. Once all three reservations are completed an online
payment should be arranged (task 4). Finally, the business process ends by
registering the payment (task 5) and sending the tickets to the customer (task
6).

In this example we assume that the business process represented in Figure
can be supported by seven services: Customer Service (task 1), Finance
Service (task 2 and 5), Hotel Booking Service (task 3a), Flight Booking
Service (task 3b), Car Rental Booking Service (task 3c), Online Payment
Service (task 4) and Mail Service (task 6). Hence, coordination logic for this
business process consists of interactions with these seven services. These
service interactions should manage the sequence dependencies as specified
in the business process (e.g. a request to the Mail Service can only be sent
when the Online Payment Service had successfully processed the customer’s
payment).

In Figures and [3.5] different coordination scenarios for the
business process represented in Figure are shown using iBPMN (Decker &

Barros, |2008]; IDecker| |2009). iBPMN is an extension of BPMN (OMG, |2010a)
aimed at modeling choreographies. While BPMN allows to connect interface
behavior models, iBPMN extends BPMN so that choreography designers can
fully model interactions between services, including sequences of interactions
etc.

In a service-oriented environment, business processes often are imple-
mented by coordinating services centrally using a process engine. This means
that there is a central coordinating service that manages all sequence depen-
dencies and (simply) interacts with all services in the order that is specified
in the business process. For example, in Figure one can see that the
independent coordinator firstly interacts with the Customer Service (task 1),
before it interacts with the Finance Service (task 2). Both the coordination
scenarios in Figure and Figure consist of one service that centrally
coordinates the other services (i.e. centralized coordination as described
in Subsection of Chapter [2). While Figure [3.2] contains a separated
independent coordinator, in Figure the Customer Service takes the role of
central coordinator.

41

CHAPTER 3. MANAGING SEQUENCE DEPENDENCIES

2OIAIDS [T

s19xon Surrewt
10§ 1s9nbay

sapuapuadap souanbas [[e 3urdeuew 103eUIPI00D JUSpULdapU] 7' 2IN3I

9IIAISS dUBUL]

Juswked
Surosi8ar
10§ 3sanbay

90IAIDS
JudWARd SUIUQ

JuswAed suruo
Surduerre
10J 159nbay

—@—@&

paredwiod
JuswAeq

01A19S Sunjoog
ey Ien

901A19G Sunjoog
BLEHES

3o ¥
yoe 18D

311

9014195 3unjoog
19104

PI0Y ©
3upjooq
10§ 3sonbay

3y e
3unjooq
10j 3sanbay

Ied e
3unjooq
10§ 3s9nboy

N

(@

o

sadroAur predun
J10W 10 3UQ

$9D10AUT
Awy@r@ @

saotoAul predun
JO IquINN

sad10AUl predun
noqe axmbuyg

9DIAISS JOWOISND

1sanbai s 1owoisny

meEwb:gu
[PARI],
519WoIsn)

107RUIPI00D Juspuadapu]

3.1. Introductory example

42

saouapuadap souanbas [[e Surdeuew 921AI9S IOWOISNY) :¢°E 9INJIY

DIAIDS eI

ADIAIDS DUBUIL]

syoypn Surrew
10§ 3sanbay

Juswked
Burraysidar
10§ 3s9nbay

0IAIDS
JuswAed SUIUQ

JuswAed suruo
BurSueire
105 3sanbay

901195 Sunjoog
[eIuay 18D

201A19G 3unjoog
BUELES

201A195 3unjoog

| o100 e

W wsye 8upoog

10104 & Supjooq 10j 3sanbay

3upjooq 10J 1sonboy sad10AUT predun

| 10§ 3sanbay a10W 10 SUQ

muMYJ %)
S9010AUT
2| =] = predun @ N
| OoN -
ﬂ@ _UBENEDU @ " i @ muu_o\::ﬁ redun
2 e 31 i 1oAU! Pt
Em:,&mm v_um,umu | jo Bn,—Ezz

sadtoAul predun
moqe axmbuyg

9DIAIRS JoWOISND

43

DIAIS [N

sipn Bupew
10} 159b3Y

O—a@

(1) uoneuIpIo0d PazIenuadd([g 2In31g

9D1AIDS JUBWARJ SUIUO

uauifed auuo
SuiBueire
105 359nboy

wowifeq

o

——

Elnet

pg oueUL

T
e 18)

a01A198 Bunjoog
[euay 18D

CHAPTER 3. MANAGING SEQUENCE DEPENDENCIES

patajduwion
usuIeg

201A198 Sunjoog
W31

201A198 Sunjoog

[P10H e
sy e Supjooq
10y & Sunjooq Jog3sanbay 9
Supjooq 10y 159nbay saooaur predun
10§ 159Mboy 10U 10 U0
)
saotoaur
&) - >+ predun
oN

saojoaut predun
wnoqe axmbug

9DIAIDG IAWOISND

3.1. Introductory example

44

(Z) UOTIBUIPIOOD PIzZI[eNUad(:§'¢ 2In3L]

DIAIIS eI

9DIAIDSG ADUBUIL]

parorduod
JuwAedq

s19yon Surprew

10§ 3s9nbay

DIAIRS JUSWIAR] UIUQ

parardwod
Juswkeq

T

e 18

(———pe 10K

201195 Sunjoog
[eIuay 18D

201A19S Sunjoog
BUEHES

Q01A19S Sunjoog
[PIo0H

P10y &
Sunjooq
10§ 359mbay

e
sy e Bupjooq

107 159nbay

@

Supooq 10) 15onbay O

$9010AUY

210w 10 UQ

sovronur
e predun @
oN
soojouy predun
JO IdqUINN

predun

Inoqe axmbuyg

QDIAIDG IDWOISND

CHAPTER 3. MANAGING SEQUENCE DEPENDENCIES 45

In contrast, the coordination scenarios represented in Figure and
Figure[3.5/have no central coordinator. In Subsection of Chapter[2 we
refer to this kind of coordination scenarios as decentralized coordination.
While in a centralized coordination scenario all sequence dependencies are
managed centrally, in a decentralized coordination scenario the management
of sequence dependencies is distributed among all services. For example, in
the coordination scenario represented in Figure the sequence between
task 1 and 2 is managed by the Customer Service, while the Finance Service
is responsible for requesting the Online Payment Service.

It is easy to understand that in case of centralized coordination, the ex-
ample discussed above has eight possible coordination scenarios. This is so
because, in theory, every service can take the role of central coordinator. Ad-
ditionally, a separated service can act as the central coordinator. In case of a
decentralized coordination scenario even many more coordination scenarios
are possible. Furthermore, one can imagine that the solution space, contain-
ing all possible coordination scenarios, enlarges when the business process
contains transactions (e.g. a transaction for booking the car, flight and hotel).
This raises two main research questions concerning a coordination scenario:

RQ1 Can we come up with a systematic way of composing coordination
scenarios, starting from some fundamental building blocks that can
be combined to construct all possible scenarios that manage sequence
dependencies?

RQ2 Can we provide service composers with a set of design guidelines for
constructing a coordination scenario that complies to some predefined
design criteria into account?

An approach covering these research questions allows service composers to
construct a coordination scenario that manages all sequence dependencies
and is optimized for aspects such as flexibility, loose coupling and perfor-
mance.

3.2 Pattern language

3.2.1 Introduction

In this section we present five patterns that can be used to construct coor-
dination scenarios that manage sequence dependencies. These patterns all
deal with the same problem, in common context, and under influence of the

46 3.2. Pattern language

same set of forces. The main difference between the patterns is the solution
described in the pattern and the consequences that come with that solution.

Common context

In a service-based business process implementation different services are
consumed in a coordinated way. Assuming that business process tasks are
directly supported by the services, the business process describes the logic
that can be used to find out when and which service should be consumed. In
a service-based system this means that for each task in the business process
there exists an entity that holds a set of rules to determine when it should
send a service request to a certain Service Provider. Typically, these rules,
which can be directly derived from the business process specification, specify
which business events (e.g. the completion of a business process task) need
to occur before a service request should be senfl] We assume that business
events are generated and published by Service Providers and notifications of
these events are disseminated by business event dispatchers. In practice, such
a business event dispatcher can be either a Service Provider itself or part of
a PUBLISH-SUBSCRIBE architecture (Avgeriou & Zdun, |2005; [Eugster, Felber,
Guerraoui, & Kermarrec, [2003)).

Common problem

For each task in a business process one needs an answer to the following
question:

Which entity sends a service request to the Service Provider supporting
the business process task?

Common forces

When trying to find a solution to the problem described above, several forces
are present. As we will show, each pattern presented in this chapter balances
these forces differently. As such, these forces can be used as evaluation
criteria for constructing an optimized coordination scenario.

In this thesis we do not aim to exhaustively identify all relevant forces
when trying to construct a coordination scenario that manages sequence

LConcepts such as service requests (also referred to as business requests), Service Providers
and business events were explained in our service composition meta-model proposed in Subsec-

tion in Chapter

CHAPTER 3. MANAGING SEQUENCE DEPENDENCIES 47

dependencies in a service composition. Rather, we refer to common and
frequently used forces in the literature (Erl, 2007} Goethals) |2008; |Chang!
Mazzoleni, Mihaila, & Cohn, |2008; Haesen, De Rore, Snoeck, Lemahieu, &
Poelmans|, [2006; |Zirpins et al.,[2004; Monsieur, De Rore, Snoeck, & Lemahieu,
2008)):

e Performance: Intuitively, software engineers tend to create additional
logical layers when business (process) logic must be implemented. Typ-
ically, such a logical layer contains process or task logic. However, if
high levels of performance are required, this approach is less appro-
priate. In a service-based system additional logical layers increase the
inter-service communication, resulting in a less performing system.

e Process flexibility: From time to time business processes change, and so
service-based systems need to change. Preferably, business process logic
can be easily changed without having to change services dramatically.

e Loose coupling and autonomy: A frequently discussed aspect of service-
orientation is loose coupling. This aspect means that it should be
relatively easy to replace or change services in a service-based system
without having to make changes to other services or the global sys-
tem. This would allow businesses to rapidly adapt their systems when
necessary. In that perspective, some researchers propose to combine
a service-oriented architecture with the strengths of an event-driven
architecture. They consider services to be more autonomous, and im-
plicitly more loosely coupled, when these are positioned in an SOA as
entities that both react to events instead of requests and send out event
information to other services instead of requests.

e Complexity: The entity that sends a request to the Service Provider
requires business event information (e.g. the completion of another
business process task) that is available elsewhere (i.e. business events
published by other Service Providers). This potentially makes the global
coordination scenario more complex. This is because business event
information needs to be transferred between the entity holding the
event information and the entity that needs to consume the event
information.

e Business process monitoring: A business process forming the basis for a
service-based system can be long-running. Therefore, it is potentially
required that the business process progress can be easily monitored.

e Access restrictions: In a service-oriented system it can occur that a
particular service only accepts requests from a limited set of clients. For

48 3.2. Pattern language

CONTROLLED \ alternatives (SELF-CONTROLLED
SERVICE PROVIDER) k SERVICE PROVIDER
controlled by controlled by
[N 4
INDEPENDENT alternatives CONTROLLING
CONTROLLER SERVICE PROVIDER
part of part of
4 [N

[COORDINATOR j

Figure 3.6: An overview of the pattern language

example, in a business-to-business environment between two compa-
nies often only a limited set of services in one company are allowed to
interact with services in the other company.

3.2.2 Pattern overview

In general, we can distinguish between two possible solutions (see Figure[3.6).
Either one applies the CONTROLLED SERVICEE] pattern or one goes for the SELF-
CONTROLLED SERVICE. A CONTROLLED SERVICE can be controlled by either an
INDEPENDENT CONTROLLER Or @ CONTROLLING SERVICE PROVIDER. Addition-
ally, this INDEPENDENT CONTROLLER or CONTROLLING SERVICE PROVIDER can
be part of a COORDINATOR.

Each pattern presents a solution by describing which entity sends a request
to the Service Provider. We will complement these descriptions with BPMN
(OMG, |2010a)) models that exactly show the internal actions and interactions
that contribute to the management of sequence dependencies.

Additionally, we will summarize the solution using a simplified visual
representation that consists of rectangles, circles and arrows (see Figure[3.7).
A rectangle C; denotes the controller that both sends a request to Service
S; and holds the set of rules to decide when it should send out this request.
Service providers are represented using circles. A rounded rectangle is used

2Pattern names are presented in SMALL CAPITALS font

CHAPTER 3. MANAGING SEQUENCE DEPENDENCIES 49

Service j that controls Service i

G Controller for Service i

e Service i
—
®

A service request message
Business Event transfer

Runtime step i

Figure 3.7: A legend for the simplified pattern representation

to represent a Service Provider that also controls the execution of a Service
Provider (i.e. a Service Provider that is also a controller). Solid arrows
denote requests sent from a controller C; to a service S;, while dashed arrows
represent the transfer of business event information to a controller C;.

Finally, we give for each pattern an example of how that pattern is applied

in one of the coordination scenarios shown in Figures or[3.5]

3.2.3 Controlled Service Provider
Solution

Use a CONTROLLED SERVICE PROVIDER that receives requests from a so
called controller. This controller controls the execution of the CON-
TROLLED SERVICE PROVIDER. This means that the controller reacts to
business events by sending a request to the CONTROLLED SERVICE PROVIDER
so that the business process task supported by the service is executed
at the right time, as specified in the business process.

Figure shows a BPMN representation of a CONTROLLED SERVICE
PROVIDER. A CONTROLLED SERVICE PROVIDER starts the task execution upon
request. It receives requests from the controller. The controller receives
business event notifications from a business event dispatcher. If all conditions

50 3.2. Pattern language

Business Event (x)
Business Event Dispatcher
Business Event (y)
Business Event (z)
g
o Process i
= . Business Event
R Business Event
g notifications
O
Service Request
.
k) |
2%
52 Business Task O ,,,,,,,,,,,,,
= Execution
3.2
Oz
L)
"

Figure 3.8: A BPMN representation of a CONTROLLED SERVICE PROVIDER

@ Process Business Event(s)

) and send request
Business Event(s)

Request (i)

@3} Execute task

Figure 3.9: A simplified representation of a CONTROLLED SERVICE

as specified in the business process are met (e.g. business events z,y and z
have occurred), a request is sent to the CONTROLLED SERVICE.

In Figure a simplified representation of a CONTROLLED SERVICE
PROVIDER is shown.

Consequences

A CONTROLLED SERVICE does not control its own execution. This means there
exists a separate controller that sends service requests to the CONTROLLED
SERVICE. Hence, a CONTROLLED SERVICE introduces an additional logical

CHAPTER 3. MANAGING SEQUENCE DEPENDENCIES 51

layer (i.e. the controller). Since requests need to be sent to the CONTROLLED
SERVICE, this increases the inter-service communication, resulting in a less
performing system.

A CONTROLLED SERVICE does not hold business process logic. As a conse-
quence, a change in the business process does not require the modification
of the CONTROLLED SERVICE, which increases the process flexibility of the
overall system.

It is relatively difficult to replace a CONTROLLED SERVICE, since a CON-
TROLLED SERVICE implies that requests need to be sent to the CONTROLLED
SERVICE. Hence, when the CONTROLLED SERVICE is replaced, the service re-
quester (i.e. the controller) must be adapted so that it can send new requests
to the alternative service. Thus a CONTROLLED SERVICE increases the coupling
between services. Furthermore, a CONTROLLED SERVICE is less autonomous
because it does not react to events, but only accepts requests.

If one wants to check if a certain task execution is already started, an
interaction with the CONTROLLED SERVICE PROVIDER is not necessary. One
needs to interact with the controller, which is potentially relatively easy.
However, in case of multiple CONTROLLED SERVICE PROVIDERS with different
controllers, multiple interactions with controllers are required in order to
retrieve the process progress status, resulting in complex monitoring sys-
tems. The COORDINATOR pattern can further facilitate the monitoring (see
Subsection [3.2.6).

Example

In the coordination scenarios discussed in the introductory example of this
chapter (see Section[3.I)), several applications of the CONTROLLED SERVICE
PROVIDER pattern can be found. For example, in Figure the CONTROLLED
Finance Service receives a request ‘register payment’ from the INDEPENDENT
COORDINATOR, which plays the role of controller and service requester. The
INDEPENDENT COORDINATOR receives business event information ’payment
completed’ (see Figures and and processes this information using
its local knowledge of the business process, before it sends out a request for
registering the payment to the Finance Service (see Figures and[3.11)).

Related patterns

Per definition a CONTROLLED SERVICE PROVIDER is controlled by a controller.
As mentioned earlier (see Subsection and Figure [3.6)) this controller

52 3.2. Pattern language

Business Event: Business Event Dispatcher
Payment completed

Process ‘payment .
completed’ : Payment Registered

Controller

Service Request:
Register Payment

Register
Payment

Controlled
Finance Service

Figure 3.10: BPMN representation of the Finance Service as a CONTROLLED
SERVICE PROVIDER

@ Controller Process Business Event
(register e and send request for
Business Event: payment) ‘register payment’

Payment completed

Request:
Register payment

Finance

. Register payment
Service e & paym

Figure 3.11: A simplified representation of the Finance Service as a CON-
TROLLED SERVICE PROVIDER

CHAPTER 3. MANAGING SEQUENCE DEPENDENCIES 53

can be either an INDEPENDENT CONTROLLER (presented in Subsection [3.2.4))
or a CONTROLLING SERVICE PROVIDER (presented in Subsection (3.2.5)). Fur-
thermore, this controller can be part of a COORDINATOR (see Subsection

3.2.6).

The COMMAND MESSAGE proposed by Hohpe and Woolf| (2003) is a related
pattern, because a CONTROLLED SERVICE PROVIDER, typically, receives a
COMMAND MESSAGE that is a request for starting the execution of a certain
business (process) task.

In a similar way a CONTROLLED SERVICE PROVIDER can be linked to the
EXPLICIT INVOCATION PATTERN proposed by Avgeriou and Zdun| (2005) since
a CONTROLLED SERVICE PROVIDER needs to be invoked explicitly in order to
start the execution of a certain business task.

3.2.4 Independent Controller
Pattern-specific context

One has selected a CONTROLLED SERVICE PROVIDER without choosing a
specific controller.

Solution

Use a CONTROLLED SERVICE PROVIDER that receives requests from an IN-
DEPENDENT CONTROLLER. An INDEPENDENT CONTROLLER is not a Service
Provider in the service composition, but only controls the execution of
a CONTROLLED SERVICE PROVIDER.

Figure shows a BPMN representation of a CONTROLLED SERVICE
PROVIDER controlled by an INDEPENDENT CONTROLLER. This solution is
similar to the solution described in the CONTROLLED SERVICE PROVIDER
pattern. However, while the solution described in the CONTROLLED SERVICE
PROVIDER pattern refers to a generic kind of controller, this solution specifies
that the CONTROLLED SERVICE PROVIDER is specifically controlled by an
INDEPENDENT CONTROLLER.

In Figure a simplified representation of a CONTROLLED SERVICE
PROVIDER is shown.

54 3.2. Pattern language

Business Event (x)
Business Event (y)

Business Event (z)
Independent
controller

Service Request

Business Event Dispatcher

Process
Business Event
notifications

Business Event

Independent
controller

Business Task O)
W
Execution

Controlled
Service Provider

Figure 3.12: A BPMN representation of a CONTROLLED SERVICE PROVIDER
controlled by an INDEPENDENT CONTROLLER

Independent
controller

@ Process Business Event(s)
and send request

Business Event(s)

Request (i)

Execute task

Figure 3.13: A simplified representation of a CONTROLLED SERVICE controlled
by an INDEPENDENT CONTROLLER

CHAPTER 3. MANAGING SEQUENCE DEPENDENCIES 55

Consequences

As described in the CONTROLLED SERVICE PROVIDER pattern the CONTROLLED
SERVICE PROVIDER does not hold business process logic. Therefore, a change
in the business process does not require the modification of the CONTROLLED
SERVICE PROVIDER, which increases the process flexibility of the service-based
system. Furthermore, when the CONTROLLED SERVICE PROVIDER is controlled
by an INDEPENDENT CONTROLLER, the business process logic (or at least part
of it) is clearly separated and not included in any Service Provider. Hence, a
CONTROLLED SERVICE PROVIDER controlled by an INDEPENDENT CONTROLLER
contributes to a higher level of process flexibility.

As explained in the common forces (see Subsection a controller
requires business event information in order to decide whether or not a
request needs to be sent to the CONTROLLED SERVICE PROVIDER. This business
event information needs to be sent to the INDEPENDENT CONTROLLER, which
increases the complexity of the complete coordination scenario. However, if
the INDEPENDENT CONTROLLER needs business event information that is also
required by another INDEPENDENT CONTROLLER, then a COORDINATOR (see
Subsection can reduce the complexity.

The CONTROLLED SERVICE PROVIDER needs to accept requests from an
INDEPENDENT CONTROLLER. If the CONTROLLED SERVICE PROVIDER only
accepts requests from certain Service Providers, a CONTROLLING SERVICE
PROVIDER as controller is more appropriate (see Subsection [3.2.5).

Example

In the coordination scenario specified in Figure all Service Providers
are controlled by an INDEPENDENT CONTROLLER, namely the independent
coordinator. For example, the CONTROLLED Finance Service (see Figures|3.10
and [3.11)) is controlled by an INDEPENDENT CONTROLLER.

3.2.5 Controlling Service Provider
Pattern-specific context

One has selected a CONTROLLED SERVICE PROVIDER without choosing a
specific controller.

56 3.2. Pattern language

Business Event (x)

Business Event Dispatcher

Business Event @

Business Event (z)
=
=
1o
= | B
= =
5 | 2
b1 [
3| & [
& 9 Business Event (j)
8| @
2
2
L7
w
o0 ~
5 =
2 B Process
B 3 e Business Event
£ E ifications (
S Z notifications (j)
[J

Service Request@

Business Task
@ Execution (j) G' 777777

Controlled
Service Provider (j)

Figure 3.14: A BPMN representation of a CONTROLLED SERVICE PROVIDER
controlled by a CONTROLLING SERVICE PROVIDER

Solution

Use a CONTROLLED SERVICE PROVIDER controlled by a CONTROLLING SER-
VICE PROVIDER. The latter Service Provider is a Service Provider that
plays the role of controller for the CONTROLLED SERVICE PROVIDER.

Figure shows a BPMN representation of a CONTROLLED SERVICE
PROVIDER controlled by a CONTROLLING SERVICE PROVIDER. A CONTROLLED
SERVICE PROVIDER controlled by a CONTROLLING SERVICE PROVIDER receives
requests from another Service Provider. The latter Service Provider reacts
to business event information and sends the necessary requests to the CON-
TROLLED SERVICE PROVIDER.

In the simplified representation of a CONTROLLED SERVICE PROVIDER con-
trolled by a CONTROLLING SERVICE PROVIDER (see Figure [3.15|the controller
C; is included in the Service Provider S; to indicate that Service ¢ controls
Service j.

Note that this pattern does not tell anything about how the CONTROL-

CHAPTER 3. MANAGING SEQUENCE DEPENDENCIES 57

Process
Business
Event(s) and
send request

@3} Execute task

Request (j)

@

Business Event(s)

Figure 3.15: A simplified representation of a CONTROLLED SERVICE controlled
by a CONTROLLING SERVICE PROVIDER

LING SERVICE PROVIDER (Service S;) is controlled. The CONTROLLING SER-
VICE PROVIDER can be either a CONTROLLED SERVICE PROVIDER or a SELF-
CONTROLLED SERVIGE PROVIDER. This is the reason why we left the Service

Provider lane in Figure empty.

Consequences

A CONTROLLED SERVICE PROVIDER (controlled by a CONTROLLING SERVICE
PROVIDER) does not hold business process logic. Therefore, a change in
the business process does not require the modification of the CONTROLLED
SERVICE PROVIDER. However, if a CONTROLLING SERVICE PROVIDER is used as
controller, a change in the business process requires the modification of the
CONTROLLING SERVICE PROVIDER (Service 4 in Figures[3.14and [3.15).

If the event information, that is needed to decide whether a request
should be sent to the CONTROLLED SERVICE PROVIDER, is available at the
CONTROLLING SERVICE PROVIDER, then a CONTROLLED SERVICE PROVIDER
controlled by a CONTROLLING SERVICE PROVIDER results into a less complex
coordination scenario. This is thanks to the fact that no event information
needs to be transferred, since both event source and event consumer (Con-
troller C; in Figures [3.14] and [3.15)) belong to the same service (i.e. the
CONTROLLING SERVICE PROVIDER or Service S; in Figures[3.14)and [3.15).

The CONTROLLING SERVICE PROVIDER (Service S; in Figures[3.14|and [3.15)
needs to be an accepted client for the CONTROLLED SERVIGE PROVIDER. If the
CONTROLLED SERVICE PROVIDER only accepts requests from an independent
party, an INDEPENDENT CONTROLLER is more appropriate (see Subsection
3.2.4).

58 3.2. Pattern language

Business Event:
Flight ack
Business Event Dispatcher
Business Event:
Hotel ack
Business Event:
Car ack

Finance Service

Business Event:
Payment completed

N Process ‘ack’s’

Controlling Finance Service

Controller
(Online Payment Service)

Service Request:
Arrange Online Payment

Arrange
@ Online O S

Payment

Controlled
Online Payment Service

Figure 3.16: A BPMN representation of the Finance Service controlling the
Online Payment Service

Example

In the coordination scenario represented in Figure the Online Payment
Service is a CONTROLLED SERVICE PROVIDER controlled by a CONTROLLING
SERVICE PROVIDER, because it is the Finance Service that sends an ’arrange
online payment’ request to the Online Payment Service (see Figures
and [3.17). This coordination scenario is possibly preferable when the Online
Payment Service only accepts requests (to arrange online payments) from the
Finance Service.

Related patterns

A CONTROLLED SERVICE PROVIDER controlled by a CONTROLLING SERVICE
PROVIDER can be related to decentralized coordination, as described in Sub-
section of Chapter[2] This is so because in a decentralized coordination
in which Service Providers collaborate together, coordination responsibilities
are distributed among Service Providers.

CHAPTER 3. MANAGING SEQUENCE DEPENDENCIES 59

Business Event:

Hotel ack
Business Event: Business Event:
Flight ack @ @ Car ack
@ Process
Business Event
and send

request for
‘arrange online

Controller
(Arrange Online
Online

Payment) Request:

Arrange
Online Payment

Finance Service

Figure 3.17: A simplified representation of a the Finance Service controlling
the Online Payment Service

3.2.6 Coordinator
Pattern-specific context

One has selected a CONTROLLED SERVICE PROVIDER (either controlled by an
INDEPENDENT CONTROLLER Or @ CONTROLLING SERVICE PROVIDER).

Solution

Use a CONTROLLED SERVICE PROVIDER controlled by a COORDINATOR,
which is a service that controls multiple Service Providers.

Figure shows a BPMN representation of a CONTROLLED SERVICE
PROVIDER controlled by a COORDINATOR. The coordinator also has the busi-
ness process logic that specifies when another business task needs to be
executed (i.e. the rules to determine if a request needs to be sent to another
Service Provider).

In the simplified representation of the CONTROLLED SERVICE PROVIDER
controlled by a COORDINATOR in Figure [3.19|this is represented by merging
the controller C; with another controller C;. Note that this pattern does not
tell anything about the location of Service .S;, which means that Service \S; can
be either a SELF-CONTROLLED SERVICE PROVIDER or a CONTROLLED SERVICE
PROVIDER. This the reason why in Figure the COORDINATOR includes

60 3.2. Pattern language

Business Event (x)
Business Event Dispatcher
Business Event (y)
Business Event (z)
Process Request
Business Event quest Business Event (j)
= N 3 " Service (i)
5 notifications (i) m®
£
R
g
<1
© Process
i Business Event
notifications (j)
Service Request (j)
3
g
-
3 2 Business Task
£ F R e () S E
L Execution (j)
S g +
5
7]

Figure 3.18: A BPMN representation of a CONTROLLED SERVICE PROVIDER
controlled by a COORDINATOR

@ Process Business Event(s)

) and send request
Business Event(s)

Request (j)

Execute task

Figure 3.19: A simplified representation of a CONTROLLED SERVICE controlled
by a COORDINATOR

CHAPTER 3. MANAGING SEQUENCE DEPENDENCIES 61

a collapsed subprocess - named 'Request Service (i)’ - for the consumption
of Service S;. In case that S; is a SELF-CONTROLLED SERVICE PROVIDER
we say that S; is controlled by a COORDINATING SERVICE PROVIDER. If
S; is a CONTROLLED SERVICE PROVIDER we refer to the coordinator as an
INDEPENDENT COORDINATOR.

Consequences

The COORDINATOR holds business process logic related to multiple business
process tasks. For each business process task business event information is
needed to decide when the business process task should be executed. In case
there is a common need for certain event information, the COORDINATOR
pattern decreases the complexity of the overall coordination scenario. This
is true because that kind of event information needs to be transferred only
once from the source to the consumer.

In the COORDINATOR pattern there is one entity containing logic for mul-
tiple business process tasks. This eases the process monitoring, because
one would need only one interaction for retrieving information concerning
multiple tasks. Furthermore, it potentially also contributes to a higher level
of process flexibility, because the COORDINATOR pattern limits the number
of components that need to be modified in case of a change in the business
process.

Example

In each coordination scenario discussed in the introduction (see Figures|3.2]
and the entity that sends the 'book car’ request to the Car Rental
Booking Service, also has the responsibility to send requests to the Hotel
Booking Service and Flight Booking Service. Since for each responsibility
there is a common need for specific business event information (no unpaid
invoices), the COORDINATOR pattern results into a preferable coordination
scenario. In Figures and this pattern is applied to the Car Rental
Booking Service.

Related patterns

This pattern is related to the ORCHESTRATION and PROCESS CENTRALIZATION
patterns as described by [Erl| (2009), because the main idea behind a COORDI-
NATOR is that two or more controllers are merged into one controlling entity
referred to as a COORDINATOR.

62 3.2. Pattern language

Business Event Dispatcher
Business Event:

Unpaid invoices? Yes/No
Eusiness Event:
Process Request Car ack
‘unpaid invoices’ Hotel Booking }——‘ ,
(Book hotel) H Service
H

Process
‘unpaid invoices’
(Book car)

Service Request:
Book car A — J

Book car | —{ B}

M

Coordinator

Car Rental
Booking Service

Figure 3.20: A BPMN representation of a CONTROLLED SERVICE PROVIDER
controlled by a COORDINATOR

@ Controller Process Business Event
troll
(Book (CBO;)I?C;S e and send request for
Business Event: hotel) ‘book car’

Unpaid invoices? (yes/no)

Request:
Book car

Car Rental

Booking e Book car
Service

Figure 3.21: A simplified representation of a CONTROLLED SERVICE controlled
by a COORDINATOR

CHAPTER 3. MANAGING SEQUENCE DEPENDENCIES 63

Business Event @
Business Event Dispatcher -
Business Event @
‘ Eusiness Event
Business Event @

Process .
. Business Task i
S = Business Event R () S
e Execution
notifications
R (=) H

Self-controlled
Service Provider

Figure 3.22: A BPMN representation of a SELF-CONTROLLED SERVICE
PROVIDER

©)

. Busin
Business Event(s) React to Business

Event(s)

Figure 3.23: A simplified representation of a SELF-CONTROLLED SERVICE

In similar way, this pattern is related to centralized coordination, as de-
scribed in Subsection of Chapter[2] because coordination responsibilities
are grouped together in one COORDINATOR.

3.2.7 Self-controlled Service Provider
Solution

Use a SELF-CONTROLLED SERVICE PROVIDER that reacts to business events
so that business process tasks are executed at the right time, as specified
in the business process.

Figure shows a BPMN representation of a SELF-CONTROLLED SERVICE
PROVIDER. A SELF-CONTROLLED SERVICE PROVIDER does not start the task
execution upon request. Instead, it simply receives and processes certain
business event information, provided by a business event dispatcher. If all
conditions as specified in the business process are met (e.g. business events
x,y and z have occurred), the SELF-CONTROLLED SERVICE PROVIDER reacts to
the events by starting the execution of the business process task.

In Figure [3.23|a simplified representation of a SELF-CONTROLLED SERVICE
PROVIDER is shown.

64 3.2. Pattern language

Consequences

Since a SELF-CONTROLLED SERVICE PROVIDER holds (partial) business process
logic, the execution of business process task can start immediately when
necessary. A SELF-CONTROLLED SERVICE PROVIDER directly reacts to event
information. No additional request messages need to be sent to the SELF-
CONTROLLED SERVICE PROVIDER, which has a relatively positive influence on
the overall performance.

A SELF-CONTROLLED SERVICE PROVIDER (negatively) effects the process
flexibility of the service-based system. A SELF-CONTROLLED SERVICE includes
partial business process logic, in the form of a set of rules to determine if
a business process task needs to executed, and this means that a change
in the business process potentially requires the modification of the SELF-
CONTROLLED SERVICE PROVIDER.

As discussed earlier a SELF-CONTROLLED SERVICE PROVIDER reacts to event
information. Hence, a SELF-CONTROLLED SERVICE PROVIDER can be consid-
ered more autonomous. Furthermore, it is assumed that a SELF-CONTROLLED
SERVICE PROVIDER can be relatively easier replaced in a service-based sys-
tem, because no explicit requests are sent to the SELF-CONTROLLED SERVICE
PROVIDER. The idea is that event information sent to the SELF-CONTROLLED
SERVICE PROVIDER can be simply sent to an alternative SELF-CONTROLLED
SERVICE PROVIDER. In that sense, the service-based system has a loose
coupling with the SELF-CONTROLLED SERVICE PROVIDER.

Since a SELF-CONTROLLED SERVICE PROVIDER reacts to event information
a complete coordination scenario requires the correct transfer of event infor-
mation to the SELF-CONTROLLED SERVICE PROVIDER. If this event information
comes from several other services (e.g. in case of multiple sequence depen-
dencies between the SELF-CONTROLLED SERVICE PROVIDER and multiple other
services providers, the overall coordination scenario is relatively complex.

If one wants to check if a certain task execution has already started,
an interaction with the SELF-CONTROLLED SERVICE PROVIDER is necessary.
Hence, the more SELF-CONTROLLED SERVICE PROVIDERS constitute a service-
based system, the more interactions with services are needed when one
wants to monitor the business process progress. However, if business event
notifications are sent using a PUBLISH-SUBSCRIBE architecture (Avgeriou &
Zdunl, 2005|; [Eugster et al., 2003), the business process state can still be
relatively easily derived by interacting with the entity that disseminates
the business event notifications and observing which business events have
occurred.

CHAPTER 3. MANAGING SEQUENCE DEPENDENCIES 65

Business Event Dispatcher <+

Business Event: .
Payment completed Payment Registered

Process ‘payment Register | AN |
completed’ Payment
H

Figure 3.24: A BPMN representation of a SELF-CONTROLLED SERVICE
PROVIDER

Self-controlled
Finance Service

©)

. Controller
Business Event: (register e Process Business Event
Payment completed payment) and register payment

Finance Service

Figure 3.25: A simplified representation of a SELF-CONTROLLED SERVICE

Access restrictions are not relevant when dealing with a SELF-CONTROLLED
SERVICE PROVIDER, because, per definition, a SELF-CONTROLLED SERVICE
PROVIDER does not accept requests.

Example

The SELF-CONTROLLED SERVICE PROVIDER pattern is applied in the example
represented in Figure In this example the SELF-CONTROLLED Finance
Service receives business event information concerning the payment. In
particular, it receives a ‘payment completed’ message from the Online Payment
Service. Subsequently, it is the responsibility of the Finance Service to react
to this event information as specified in the business process. This means
that the Finance Service contains process logic for the 'register payment’ task
and registers a payment when it receives event information concerning that
payment (see Figures and [3:25). In this scenario, this creates a loose
coupling between the Online Payment Service and the Finance Service.

66 3.3. Applying the patterns in practice

Related patterns

The EVENT MESSAGE as described by |[Hohpe and Woolf| (2003) is a related
pattern, because a SELF-CONTROLLED SERVICE PROVIDER, typically, reacts to
EVENT MESSAGES by starting the execution of a certain business (process)
task.

In a similar way a SELF-CONTROLLED SERVICE PROVIDER can be linked to
the IMPLICIT INVOCATION PATTERN proposed by |Avgeriou and Zdun| (2005)
since a SELF-CONTROLLED SERVICE PROVIDER is not invoked explicitly. In
order to start the execution of a certain business task the SELF-CONTROLLED
SERVICE PROVIDER needs to be implicitly invoked through mechanisms such
as a PUBLISH-SUBSCRIBE system (Avgeriou & Zdun, [2005; [Eugster et al.,
2003).

This pattern is also related to what is often referred to as implicit invocation
or event-based architectures (Shaw & Garlan, [1996), in which business event
notifications replace explicit invocations.

3.3 Applying the patterns in practice

3.3.1 Design guidelines

As explained in the introduction to the pattern language (see Subsection
[3.2.1)), a coordination scenario specifies for each business process task which
entity is responsible for sending a service request to the Service Provider
supporting that task. The patterns presented in this chapter (see Section [3.2]
describe different ways of distributing such a responsibility. This means that
in order to build a complete coordination scenario one needs to apply the
patterns for each business process task.

In order to design a coordination scenario that is optimized to a certain set
of criteria, it is important to take all consequences that come with a pattern
into account. However, one should understand that an optimized solution
specific for a certain business process task, does not completely determine
the optimization of the complete coordination scenario. For example, if one
applies a pattern that contributes to an increased level of process flexibil-
ity (e.g. a CONTROLLED SERVICE PROVIDER controlled by an INDEPENDENT
CONTROLLER), the global coordination scenario can still have a moderate or
even low level of process flexibility (e.g. in case of multiple INDEPENDENT
CONTROLLERS instead of a few or a single COORDINATOR(S)). In particular,
this is the case for forces such as performance, process flexibility, complexity

CHAPTER 3. MANAGING SEQUENCE DEPENDENCIES 67

and process monitoring, which are dependent from the global solution.

Therefore, designing a coordination scenario by means of the patterns is
preferably an iterative process in which forces are constantly balanced. In
case of an under optimized coordination scenario, it is important to carefully
look at the pattern consequences and find additional improvements.

Based on these thoughts and the pattern language overview (see Subsec-
tion [3.2.2) we can come up with the following design process:

1. Taking the identified pattern consequences into account, determine
for each business process task and corresponding Service Provider
whether a CONTROLLED SERVICE PROVIDER or a SELF-CONTROLLED SER-
VICE PROVIDER is the most appropriate solution.

2. For each CONTROLLED SERVICE PROVIDER determine whether it is better
to control the Service Provider by an INDEPENDENT CONTROLLER or a
CONTROLLING SERVICE PROVIDER.

3. Try to make additional improvements by combining controllers into
COORDINATORS.

3.3.2 Coordination in workflow patterns

The workflow patterns proposed by [Van der Aalst et al.| (2003) are often
used for the evaluation of business process modeling languages (e.g. BPMN
(Wohed, Van der Aalst, Dumas, Ter Hofstede, & Russell, 2006 or UML (OMG,
2010b)) Activity Diagrams (Wohed, Van der Aalst, Dumas, Ter Hofstede, &
Russell, 2005))), because these patterns are considered as fundamental pro-
cess constructs. Therefore, we try to prove the value of our patterns by
showing that our patterns can be used to coordinate the sequence of activities
specified in a workflow pattern. In particular, we will focus on the basic
control flow patterns (SEQUENCE, PARALLEL SPLIT, SYNCHRONIZATION, EXCLU-
SIVE CHOICE, SIMPLE MERGE) and advanced branching and synchronization
patterns (MULTI-CHOICE, SYNCHRONIZING MERGE, MULTI-MERGE, DISCRIMI-
NATOR).

First we will discuss the coordination of the sequence pattern. The other
basic workflow patterns can be classified as either a split pattern (PARALLEL
SPLIT, EXCLUSIVE CHOICE, MULTI-CHOICE) or a join pattern (SYNCHRONIZATION,
SIMPLE MERGE, SYNCHRONIZING MERGE, MULTI-MERGE, DISCRIMINATOR).
Therefore, we will limit our discussion to the coordination of one split pattern
(PARALLEL SPLIT) and one join pattern (SYNCHRONIZATION). Analogously, one
can construct coordination scenarios for the remaining patterns.

68 3.3. Applying the patterns in practice

Sequence pattern

The SEQUENCE workflow pattern consists of two tasks, Task 1 and Task 2,
whereby Task 2 can only start when Task 1 is completed. If Services 1 and
2 support these tasks, the pattern requires that Service 2 must start the
execution of Task 2 when Service 1 has completed the execution of Task 1.
We assume that event information concerning the completion of Task 1 is
available at Service 1.

For both Task 1 and Task 2 one needs to decide which entity is responsible
for sending a request to the Service Provider supporting that task. If we
follow the design guidelines described in Subsection [3.3.1} this means that
we first need to choose between a CONTROLLED SERVICE PROVIDER and a
SELF-CONTROLLED SERVICE PROVIDER for both Service 1 and Service 2. Then,
in case of a CONTROLLED SERVICE PROVIDER we need to specify if the Service
Provider is controlled by an INDEPENDENT CONTROLLER Or a CONTROLLING
SERVICE PROVIDER. Additionally, the controller can be part of COORDINATOR.
Hence, for both Service 1 and Service 2 there exist five different solutions:
a SELF-CONTROLLED SERVICE PROVIDER, a Service Provider controlled by an
INDEPENDENT CONTROLLER, a Service Provider controlled by a CONTROLLING
SERVICE PROVIDER, a Service Provider controlled by an INDEPENDENT CO-
ORDINATOR or a Service Provider controlled by a COORDINATING SERVICE
PrROVIDER. Theoretically, this would mean that there are twenty-five ways
of coordinating the sequence pattern. However, as shown in Table some
combinations are not possible, while other combinations result into equal
coordination scenarios.

As shown in Table|3.1|eleven combinations are not possible. This is easy to
understand when considering a CONTROLLED SERVICE PROVIDER controlled by
a COORDINATING SERVICE PROVIDER. Suppose that Service 2 is controlled by
a COORDINATING Service 1. This means that Service 1 sends requests to both
Service 1 and another service. The latter service is Service 1 itself, because
there are only two services involved in the coordination of the SEQUENCE
pattern. This implies that Service 1 needs to be a SELF-CONTROLLED SERVICE
PROVIDER, which directly drops eight combinations (see last column and row

in Table [3.1)).

In a similar way, it is possible to explain why three other combinations
are not possible. In particular, if one service is a CONTROLLED SERVICE
PROVIDER controlled by an INDEPENDENT COORDINATOR, then the other
service needs per definition to be also controlled by that same INDEPENDENT
COORDINATOR. Hence, a Service Provider controlled by an INDEPENDENT
COORDINATOR can only be combined with a Service Provider controlled by
the same INDEPENDENT COORDINATOR.

69

CHAPTER 3. MANAGING SEQUENCE DEPENDENCIES

‘OLIBUSIS UONBUIPIO0) dWesS

91J3 01UI I[NSAI [SAI] S[BISARIZ SWES I YIIM S[[30 PapeyS "ADNHNOHES B 9JBUIPIOOD 01 suIaied o) Sutuiquio) :1°¢ S[qelL

dS SNLIVNIQY00D

aqissod 10N 9rqrssod 10N 9[qrssod 10N arqrssod 10N © £Q PO[[OIIUO dS (%)

YOLVNIQYOO0D YOLVNIQYOO0D

LNHANEJIANI LNHANEJIANI YOIVNIQYOO0D
a[qrssod 10N 9UO Aq pafjonuod 9[qrssod J0N 9UO Aq pafjonuod a[qissod 10N LNAANAJHANI)

91 SIIAISS 91 SIIAISS ue %n_ pa[[onuod s
10q yeyp sardur 10q yerp sardur
dS SNILVNIQY00D
Aq pa[[0o1U0d dS SNITIOYLNOD
d1qissod 10N d1qissod 10N - © £q POT[OLUO? dS ©
ey sarjduir

YOLVNIQYO0D

LNHANEdIANI YATIOULNOD
d[qissod J0N ~ auo £q pa[jonuod LNAANHdIANI @

aIB SIDIAIDS ue Aq pa[[onuod d4s
110q yey sardur
dS SNILVNIQY00D
£q pafjonuod
orqrssod 10N 1 7 9IS dS AQATIOYLNOD-ATHS (D
et sorjdur
T 991AID
©) @) © @ ® s

T 9JIAIDS

70 3.3. Applying the patterns in practice

Task 2

TaSk ’

Task 4

Bl

Figure 3.26: PARALLEL SPLIT pattern represented in BPMN

A concrete coordination scenario can be evaluated by studying the con-
sequences of the patterns that are combined into the coordination scenario.
For example, if one would like to limit the overall complexity of the coordina-
tion scenario, it is advisable to design Service 2 as a CONTROLLED SERVICE
PROVIDER controlled by a CONTROLLING Service 1. Since Service 1 has event
information that is needed by the controller of Service 2, the overall complex-
ity of the coordination scenario is decreased if Service 1 is the controller of
Service 2.

In the introductory example of this chapter (see Section[3.I) there is one
SEQUENCE workflow pattern (see Figure[3.1)): ’Checking for unpaid invoices’
(Task 2) must be executed after the customer’s request is processed (Task
1). In the coordination scenario represented in Figure this sequence
is coordinated using a CONTROLLED Finance Service that is controlled by a
CONTROLLING Customer Service.

Split pattern (parallel split)

In the PARALLEL SPLIT workflow pattern the execution of several tasks needs
to be started in parallel after the completion of a certain task. In what follows
we refer to the latter task as the before-split task, while the other tasks, which
are executed in parallel, are referred to as the after-split tasks. Analogously,
we refer to the service supporting the before-split task as the before-split
service and services supporting after-split tasks are referred to as after-split
services. In figure the parallel split pattern is visualized in BPMN (OMG,
2010a). Task 1 is the before-split task, while Task 2, 3 and 4 are the after-split
tasks.

Similar to the discussion on the SEQUENCE workflow pattern one could

CHAPTER 3. MANAGING SEQUENCE DEPENDENCIES 71

React to event(s)
by starting Task 1 If Task 1 is completed, send
requests to Sz, Sz and S4

g Request
Event G Gt & % Execute task 2
Information S1 Request
m Execute task 3

S4 e Execute task 4

)

Request

Figure 3.27: Coordinated parallel split using a SELF-CONTROLLED (BEFORE-
SPLIT) SERVICE and CONTROLLED (AFTER-SPLIT) SERVICES controlled by a
COORDINATING (BEFORE-SPLIT) SERVICE

study all possible combinations of our patterns to construct an appropriate
coordination scenario for the PARALLEL SPLIT workflow pattern. However,
since a parallel split consists of at least three tasks, one can, theoretically,
consider 125 coordination scenarios. Therefore, we prefer to follow the
design guidelines presented in Subsection [3.3.1} This means that first a
choice should be made between a SELF-CONTROLLED SERVICE PROVIDER
and a CONTROLLED SERVICE PROVIDER. Subsequently, one can consider the
INDEPENDENT CONTROLLER and CONTROLLING SERVICE PROVIDER patterns
as potential controllers for a CONTROLLED SERVICE PROVIDER. Additionally,
a COORDINATOR can further balance the forces and optimize a concrete
coordination scenario. For example, as discussed in the pattern consequences
(see Subsection [3.2.6) a COORDINATOR can be valuable in case of common
event information needs. Since this is clearly the case in the split pattern
(all tasks after the split need to be executed when the task before the split
is completed), it is advisable to construct a coordination scenario in which
after-split services are controlled by a COORDINATOR. As such, the event
information available at the before-split service only needs to be transferred
once to the entity that is orchestrating the after-split services. Additionally,
one can motivate the use of a CONTROLLING SERVICE PROVIDER as controllers
for the after-split services. In particular, this would mean that the before-split
service takes the role of controller for all after-split services (see Figure [3.27).

As explained in Subsection [3.2.7] SELF-CONTROLLED SERVICE PROVIDERS
have a higher degree of autonomy and the use of such services tends to
lead to a loose coupling between services. Supposing that after-split services
are SELF-CONTROLLED SERVICE PROVIDERS, the loose coupling results into a
sort of improved flexibility because an after-split service can be easily added

72 3.4. Evaluation

or removed from the service-based system without having to change the
system drastically. This is in contrast to the solution described above, which
is based on CONTROLLED SERVICE PROVIDERS and which requires a change in
the controlling (and coordinating) entity for each to be added or removed
after-split service.

Join pattern (synchronization)

In the SYNCHRONIZATION workflow pattern the execution of a task needs
to be started when all tasks in a set of other tasks are completed. In what
follows we refer to the first task as the after-join task, while the other tasks,
which needs to be completed before the after-join task can start, are referred
to as the before-join tasks. Analogously, we refer to the services supporting
the before-join tasks as the before-join services and the service supporting
the after-join task is referred to as the after-join service. In figure [3.28| the
SYNCHRONIZATION pattern is visualized in BPMN (OMG, 2010a). Tasks 1, 2
and 3 are the before-join tasks, while Task 4 is the after-join task.

Similar to the coordination of the PARALLEL SPLIT workflow pattern one
can compose a large set of coordination scenarios for the JOIN workflow pat-
tern by combining our patterns in different ways. For each business process
task one first needs to make a choice between a SELF-CONTROLLED SERVICE
PROVIDER and CONTROLLED SERVICE PROVIDER. Subsequently, one can con-
sider the INDEPENDENT CONTROLLER and CONTROLLING SERVICE PROVIDER
patterns as potential controllers for a CONTROLLED SERVICE PROVIDER. Ad-
ditionally, a COORDINATOR can further balance the forces and optimize a
concrete coordination scenario.

In contrast to the SPLIT pattern, there are no common event information
needs in the JOIN pattern, which implies that a COORDINATOR does not de-
crease the overall coordination complexity. Similarly, designing the after-join
service as a Service Provider controlled by CONTROLLING SERVICE PROVIDER
does not simplify the coordination scenario, because the after-join service
needs event information available at several services (all before-join services).

3.4 Evaluation

Since every business process consists of sequence dependencies, the best way
of evaluating the patterns presented in this chapter is by using the patterns
for sequence management as a means to automatically generate coordination
scenarios (in the form of BPEL (OASIS| 2007) processes) from a business

CHAPTER 3. MANAGING SEQUENCE DEPENDENCIES 73

Figure 3.28: SYNCHRONIZATION pattern represented in BPMN

process specification (in the form of a BPMN process (OMG, |2010a)). Such
an implementation (presented in Chapter[6) also shows the practical utility
of the pattern language, which is an essential evaluation aspect in design
science (Hevner et al., 2004).

In design science, it is also important to critically analyze the artifact
that is created (Hevner et al., 2004). In Subsection|3.4.1|we describe how
the pattern language for managing sequence dependencies went through a
critical analysis.

Finally, in Subsection we describe how the pattern language provides
building blocks for every possible coordination scenario and hence answers
our first research question (see Section in Chapter (1))

3.4.1 Shepherding and writers’ workshop

The patterns presented in this Chapter were critically analyzed in two phases.
In the first phase the patterns went through a one-month shepherding process.
This was an iterative process of review and revision, in which we collaborated
with an experienced shepherd to significantly improve the value of the pat-
terns. In the second phase the patterns were validated in a so called Writers’
Workshop (Gabriel, [2002) on a EuroPLoP conferenceE] (Monsieur, Snoeck|
& Lemabhieu, 2010b). This resulted into a lot of feedback and constructive
suggestions from other pattern authors about how to improve the quality
and validity of the patterns. During this workshop, all participating authors
were able to give each other feedback on their work in a peer review session.
We remained silent while the others discussed the patterns and explained
additional insights and views they possess about patterns. This validation

3http://hillside.net/europlop

74 3.4. Evaluation

step concluded a first build-evaluate cycle (Hevner et al., [2004). The revised
version of the patterns were presented in this chapter (see Section[3.2)).

3.4.2 Completeness of the pattern language

As stated in our first research question (see Section [1.2]in Chapter [1)), we aim
to find a systematic way of composing coordination scenarios. The patterns
presented in this chapter support this goal by providing fundamental building
blocks that can be combined to construct every possible coordination scenario.
In this subsection we first show that every interaction in a service composition
can be composed by patterns described in this chapter. Subsequently, we
show that the pattern language is also compatible with coordination styles
such as centralized or decentralized coordination.

Combining patterns into interactions

As explained in our service composition meta-model (see Section in
Chapter [2)) a service composition consists of a group of services that interact
with each other using business requests and/or business event notifications.
The services in a service composition either directly support business tasks or
only function as 'glue’ in the composition. The first kind of component services
are referred to as task or activity services (Haesen, 2009). In what follows
the services that function as the ’glue’ are referred to as ’other services’. This
means that in a composition one can make a distinction between eight (= 2?%)
combinations of services and message types that are used in an interaction
between two services .S, and S, (see Table .

As shown in Table five combinations of services and message types
can be directly composed from the patterns presented in this chapter (see
combinations 1, 2, 4, 5 and 6 in Table[3.2). In combinations 3 and 7 business
requests are sent to an ’other service’, which is not defined because per
definition business requests are always sent to task services. The patterns can
not be used as building blocks for the interaction described in combination 8,
but event transfer between ’other services’ is not part of the pattern language’s
scope. However, all patterns can be combined with any kind of event-based
systems (e.g. a publish-subscribe system (Avgeriou & Zdun, 2005} Eugster et
al.l2003)).

75

CHAPTER 3. MANAGING SEQUENCE DEPENDENCIES

suraened a3 Suisn suonisoduIod 3JIAISS UI SUONEBIYIIOU JUIAS puk sisanbai Suruiquio) :z°¢ a[qel,

2doos-jo-1no
pauyap jou

ADIA
-44S qITIOYLINOD-ITAS B ST fig

YATIOYLNOD INEd
-NAJdAANI ue £q pafjonuod st fig

YHTIONL
-NOD INIANAJIANI ue st ‘fig

paugep jou
IDIA
-44S QITIOYLNOD-TdsS ® SI ig

(*S) ¥adIAOYd ADIAYAS DNIT
-TOMINOD ® £q pa[jonuod st ‘g

UuonedIYNON
JUOAY ssaulsng

1sanbay ssaursng

uonedynoN
JuAY ssauisng

1sanbay ssaursng

UOEdYTION
JUDAY SSouIsng

1sonbay ssaursng

UOTIBdYNION
JUDAY ssouIsng

1sonbay ssaursng

9DIAIIS IO
9DIAIOG YSBL

JDIAIIS YSBL,

9DIAIRS Sk,

IAIRS 110

9IAIS IO

9DIAIOG Skl

9DIAIOG Skl

IAIDS 110
9IAIDS IDI0

DIAIRS YO

IIAIRS 1910

9OIAIDS NSkl
9DIAIDS NSkl

9DIAIDS NSkl

QDIAIDG NSkl

(®
)

9

)

)
©

@

(D

suIaned

odAJ, o8essoy

fig

s

76 3.5. Conclusion

Combining patterns into coordination styles

In Chapter [2| we have described orchestration and choreography as composi-
tion styles (see Subsection [2.2.4)).

In an orchestration as composition style one service (the coordinator)
interacts with all component services. There are no (explicit) interactions
between component services; each interaction in the orchestration is between
the coordinator and a component service. Typically, only the coordinator
has knowledge of the business process and sends business requests to the
component services. This composition style can be easily followed by applying
the COORDINATOR pattern, which describes how one service sends multiple
business requests to Service Providers.

In a choreography a business process is executed and coordinated by
several peer-to-peer interactions among a group of collaborating services.
Typically, several component services have knowledge about (part of) the
business process and send business requests to each other. This style can be
easily achieved by applying the CONTROLLING SERVICE PROVIDER pattern in
which a task service controls (i.e. sends business requests) to another task
service (i.e. the CONTROLLED SERVICE PROVIDER).

3.5 Conclusion

In this chapter we have presented a pattern language for managing sequence
dependencies. As explained in the introduction to the pattern language (see
Subsection managing a sequence dependency is about distributing
the business process knowledge among participants in a service composi-
tion. More specifically, a concrete coordination scenario needs to specify
for each task in the business process which entity is responsible for sending
a business request to the Service Provider supporting the business process
task. The pattern language described in this chapter distinguishes between
two solutions for manage a sequence dependency. Either one applies the
CONTROLLED SERVICE pattern (see Subsection [3.2.3)) or one goes for the SELF-
CONTROLLED SERVICE (see Subsection [3.2.7). A CONTROLLED SERVICE can be
controlled by either an INDEPENDENT CONTROLLER (see Subsection [3.2.4) or
a CONTROLLING SERVICE PROVIDER (see Subsection [3.2.5). Additionally, this
INDEPENDENT CONTROLLER Or CONTROLLING SERVICE PROVIDER can be part
of a COORDINATOR (see Subsection [3.2.6).

For each pattern we identified a set of consequences (e.g. with respect
to loose coupling, flexibility, etc.). Based on these consequence we have

CHAPTER 3. MANAGING SEQUENCE DEPENDENCIES 77

presented concrete guidelines on how to combine the patterns to compose
optimized coordination scenarios (see Subsection [3.3.1). In Subsection
[3.3.2] we have applied the patterns and guidelines for managing sequence
dependencies to the basic control flow patterns (Van der Aalst et al., 2003)).

In Subsection we first showed that every interaction in a service
composition can be composed by the patterns presented in this chapter.
Subsequently, we demonstrated that the pattern language is also compatible
with coordination styles such as centralized or decentralized coordination.

Data is a precious thing and will last longer than
the systems themselves.

— Tim Berners-Lee (1955),
British computer scientist,
Inventor of the World Wide Web

Managing data dependencies

In this chapter we present our pattern language that can support service com-
posers when designing coordination logic that manages data dependencies in
a service composition.

The chapter starts with a concrete example that shows the problem of
managing data dependencies (see Section [4.1). Subsequently, in Section
[4.2] the different patterns are presented. In Section it is explained how
the patterns presented in this chapter can be combined to manage data de-
pendencies in an optimized way. The section also includes concrete design
guidelines, including three decision trees that help to select the most appro-
priate patterns. In Section [4.4] the practical utility of the pattern language is
demonstrated using three design science evaluation methods, which includes
an application of the pattern language in a real-life business case. Subse-
quently, in Section[4.5]it is shown that every possible coordination scenario
can be composed using the patterns presented in this chapter.

Finally, the chapter ends with a brief conclusion (see Section [4.6)).

4.1 Introductory example

In this section we present a small example of service composition in hospitals,
which we will use as a running example. The example is substantially the
same as the running example described in Subsection of Chapter
However, in this Section we present the example in a broader context so that
it is clear how the problem of managing data dependencies can be situated in
the process of implementing and coordinating a complete business process.

79

80 4.1. Introductory example

ini Giving the Registering
Ofb;t‘?rlir;‘l"ngea febrifuge to the febrifuge
& the patient given

Wait one
hour

More usage is
acceptable

No more
high fever

Checking the
patient's previous
febrifuge usage

Measuring
the body
temperature

Registering
the body
Previous usage is temperature

t00 recent Fever

is still
high

Figure 4.1: A business process for taking care of patients with high fever
(represented using BPMN (OMG, [2010a)))

In a hospital nurses provide several (business) services to patients, such as
taking care of patients with high fever. In what follows, this service is referred
to as the ’treating fever service’. A business process that supports this service,
which can be used as a blueprint for a service-based system, could consist of
the following tasks: checking the patient’s previous febrifuge usage in the
medical records, obtaining a febrifuge, giving the febrifuge to the patient,
measuring the body temperature and registering the body temperature. In
Figure [4.1] this business process is represented using BPMN (OMG, 2010a).

The business process can be implemented by consuming several services.
As we will describe below, the treating fever service is composed of four
main services: the medical records service, the pharmacist’s service, the
doctor’s service and the nurse’s service. In this example we assume that
the nurse plays the role of service composer. The medical records service
must be consumed for retrieving information concerning previous usage
of febrifuges, registering the febrifuge given and registering the current
body temperature. Obtaining a febrifuge also requires the consumption
of services. In particular the nurse should request a febrifuge from the
pharmacist, who of course also provides several services to the hospital staff.
Hence, the nurse can be considered as a service composer that needs to
consume the service of a pharmacist. Both aspirin and paracetamol are
fever reducers. However, aspirin has the unpleasant side effect that it can
cause stomach bleeding in certain circumstances. Therefore, the pharmacist
needs information concerning the risk for stomach bleeding, before he or she
can deliver an appropriate febrifuge. The risk for stomach bleeding is only
known by the patient’s doctor. This means that the doctor provides a second
service that needs to be consumed in order to support the task of obtaining a
febrifuge. The remaining tasks in the business process require consumption
of the nurse’s service(s). In this example, this means that the nurse can
complete the tasks ’giving the febrifuge to the patient’ and 'measuring the
body temperature’ tasks without the consumption of other services.

CHAPTER 4. MANAGING DATA DEPENDENCIES 81

Although being a rather simple service composition, it already demon-
strates the need for coordination. For example, coordination is required
to ensure that the registration of a given febrifuge (consuming the medi-
cal records service) only occurs when a febrifuge is successfully given to a
patient (consuming the nurse’s service). Service coordination guarantees
that sequence constraints as specified in the business process are met by
constructing an appropriate control flow.

Dealing with data needs is usually also part of service coordination (see
also Section in Chapter [2). Services can require certain input data,
which may in turn be the output from another service. Service coordination
controls when which service is invoked, how input data is delivered and what
to do with a service’s output (Janssen & Feenstral, |2008]). As such service
coordination yields an appropriate data flow. For example, the pharmacist
needs the information concerning the risk for stomach bleeding, which is held
by the doctor. Hence, there is a data dependency between the pharmacist and
the doctor. As a result, service interactions with the pharmacist and doctor
must be coordinated, such that the pharmacist obtains the right information
at the right time and in the right format.

Although this is a rather small example of a service composition in which
needs to be dealt with data dependencies, many coordination scenarios are
possible. In Chapter [2| we already presented several ways of managing the
data dependency between the pharmacist and the doctor (e.g. figures
and [2.2(b)). However, as explained in detail in Chapter [2] (see Section
most approaches for dealing with data dependencies allow finding
alternative data flows, but do not provide a systematic way of building
different coordination scenarios (that can be used to construct every possible
coordination scenario) nor do they analyze the advantages and disadvantages
of alternatives (Monsieur, Snoeck, & Lemahieul, |2010al). Only a few studies
about data dependency management take into account other aspects than
performance that could influence the choice of a specific data flow such as
data confidentiality, loose coupling or robustness to change. This can result
in badly or suboptimally coordinated service compositions and service-based
systems. Ultimately, these shortcomings hamper the effective and efficient
design and automatic generation of coordination logic.

In this chapter we study all possible styles of coordinating services so
that a service’s data needs are fulfilled in an appropriate way. We give
answers to questions like: What are the fundamental differences between
two coordination scenarios (e.g. figure[2.2(a)| versus figure[2.2(b))? What
are advantages and disadvantages of specific coordination scenarios? How
can a service composer construct an optimal coordination scenario?

82 4.2. Pattern language

4.2 Pattern language

4.2.1 Introduction

In this section we present three patterns that can be used to construct coordi-
nation scenarios that manage data dependencies. Each pattern deals with
a specific recurring problem in data dependency management, in common
context, and under influence of the same set of forces.

Common context

Analysing data dependency management requires precisely defined concepts.
Therefore, we first introduce a terminology, which allows one to clearly name
the participants that are relevant in a service composition that includes one
or more data dependencies. We refer to an entity that consumes a particular
service as a Service Requester. In a service composition this entity typically
holds a (partial) description of the control flow, because it knows when to
consume a specific service. Hence, in the context of the patterns for managing
sequence dependencies presented in Chapter [3] a Service Requester is a
controller. The entities of which the services are consumed for the realization
of a composite service are called Service Providers. Possibly, a Service Provider
needs certain data for processing the Service Requester’s request. We refer to
this kind of Service Provider as a needy Service Provider. The service that can
provide the data needed is referred to as the Data Providerl]

In summary, the previous definitions imply that a data dependency as
defined in Chapter 2] (see Section [2.1)) is always related to a Needy Service
Provider and a Data Provider. In the context of the hospital example we can
consider the nurse as a Service Requester, that sends a request to the service
provided by the pharmacist. Hence, the pharmacist plays the role of a Service
Provider. Since the pharmacist needs information that is known by the doctor,
the pharmacist can be considered as a Needy Service Provider and the doctor
can be labeled as a Data Provider. In this example the Data Provider is also
the data owner. However, as defined above, a Data Provider can be the data
owner or a data mediator that forwards data requests to other Data Providers.
In this example a possible data mediator could be the doctor’s assistant.

1In our pattern language we abstract from the fact that a Data Provider can be either the
entity that owns the data or the entity that functions as a data mediator (Gamma et al., [1995)
that can forward data requests to the right entities (e.g. other Data Providers or data owners). A
Data Provider can correspond to a group of data mediators and data owner, in which any request
and/or transmission of data can flow via either the data mediator or the data owner.

CHAPTER 4. MANAGING DATA DEPENDENCIES 83

1. Who triggers the sending of data by the Data Provider?
(data flow initiation)

2. Who sends a request to the Data

Service Provider?
Requester (data request)
’
A
Service request Da.ta
(+data) Coordination logic 4 Provider
Needy
Service Data
Provider @
Data 3. How does the data flow between the Data

Provider and the Needy Service Provider?
(data transmission)

Figure 4.2: Three questions that need to be answered by a specific coordina-
tion scenario that manages a data dependency

Three different problems

In general, a specific coordination scenario that manages a data dependency
should answer three questions (see figure [4.2):

1. Who triggers the sending of data by the Data Provider? (data flow
initiation)
(e.g. Who triggers that the information on the risk for stomach bleeding
must be sent by the doctor?)

2. Who sends a request to the Data Provider? (data request)
(e.g. Who sends the request for the risk for stomach bleeding to the
doctor?)

3. How does the data flow between the Data Provider and the Needy
Service Provider? (data transmission)
(e.g. How does the risk information get from the doctor to the pharma-
cist?)

For each question we have described a pattern that helps to answer the
question in the most optimal way by taking advantages and disadvantages
into account. Answers to these questions can replace the cloud in figure

84 4.2. Pattern language

As such these three patterns form the three building blocks for scenarios
that manage a data dependency between a Needy Service Provider and a
Data Provider (cfr. research question 1). While previous work on alterna-
tive data flows in service compositions is mainly focused on optimizing the
performance (i.e. reducing communication overhead, etc.) (see Section
in Chapter [2)), our approach analyzes the advantages and disadvantages of
each design alternative by considering multiple evaluation criteria or pattern
forces, including robustness to change, loose coupling and data confidential-
ity. In each pattern several solutions to the same problem are describecﬂ
The criteria are used to evaluate the solutions in each pattern. In each pat-
tern several solutions are presented for a specific problem. In each solution
presented in one pattern the forces are balanced differently, resulting into
different solution evaluations. By giving a weight to the evaluation criteria,
service composers can determine the optimal coordination scenario (research
question 2).

Common forces (evaluation criteria)

In contrast to previous work on alternative data flows in service compositions,
which is mainly focused on optimizing the performance (see Section
in Chapter[2)), our approach analyzes the advantages and disadvantages of
each design alternative by considering multiple evaluation criteria or pattern
forces. In this thesis we do not aim to exhaustively identify all relevant forces.
Rather, we refer to common and frequently used forces in the literature. We
summarize eight evaluation criteria (EC) that were discussed in the literature
(e.g. (Balasooriya et al., [2005; Barros et al., |2005; [Erl, |2007; |Goethals, 2008;
Haesen et al., 2006} Zirpins et al., 2004))):

EC1 Robustness to change: In a service-oriented environment it is critical that
the propagation of changes due to the modification of the interface of a
Service Provider is minimized. Consumers prefer to rely on a Service
Provider that only rarely changes its interface. A change in the data
requirements should minimally change the way the Service Provider
is consumed. This evaluation criterion is related to the service design
principle called service reusability, because a service can be considered
more reusable if it has a relatively simple and stable interface (Erl,
2007).

2Qur pattern language for managing sequence dependencies contains different patterns that
all describe one solution to one and the same problem. In contrast, our pattern language for
managing data dependencies consists of three patterns, each addressing one specific problem.
Furthermore, each pattern describes different solutions to one (pattern-specific) problem. In the
literature one can find both kinds of patterns (Paikens & Arnicans, |2008]).

CHAPTER 4. MANAGING DATA DEPENDENCIES 85

EC2 Adjustability: A specific coordination scenario consists of a set of service
interactions so that data available at the Data Provider is sent to the
Service Provider. This criterion is about the ability to change which
data is sent to the Service Provider in function of a specific service
request. For example, in coordination scenarios to manage the data
dependency between the pharmacist and the doctor this criterion can
be used to make a distinction between coordination scenarios in which
information regarding a specific patient is sent to the pharmacist and
coordination scenarios in which information regarding multiple patients
are sent to the pharmacist. Depending on the specific business context,
a certain level of adjustability can be desired. For example, in the
hospital setting efficiency issues can motivate coordination scenarios
with high adjustability, so that pharmacists only receive information
they really need (e.g. patient specific information instead of information
regarding multiple patients).

EC3 Coupling with Data Provider: In some situations the data needed is not
always provided by the same Data Provider. Each time a service takes
over the role of Data Provider the party that is sending data requests to
the Data Provider needs to be notified and modified properly. Similarly,
each change in the interface of the Data Provider, requires a change
in the implementation of the party that is interacting with the Data
Provider. Therefore, a common principle in service design called loose
coupling is often applied (Erl, |2007). This means that preferably a
Service Provider’s implementation does not have to rely on several
other services.

EC4 Data provider accessibility: Sometimes it is possible that the Service
Provider does not know which service can provide the required data
(e.g. the pharmacist does not know who is the patient’s doctor). In
other cases it can occur that the Service Provider does not have access
to the specific Data Provider (e.g. the pharmacist does not have the
phone number of the patient’s doctor or is not allowed to call the doctor
directly). However, it can also occur that only the Service Provider has
access to the right Data Provider (e.g. only the pharmacist can request
information concerning a potential risk for stomach bleeding).

EC5 Confidentiality of data requirements: In order to complete its internal
processing, a Service Provider needs data. It can occur that these data
requirements are confidential (e.g. suppose that nurses cannot have
insight into the pharmacist’s internal decision processes), which means
that only a limited set of services or even only the Service Provider
itself knows which data is needed in the process of delivering its service.
This evaluation criterion is related to the service design principle called

86 4.2. Pattern language

service abstraction, because it is about hiding information about the
Service Provider’s data requirements (Erl, | 2007).

EC6 Data confidentiality: When requesting a Data Provider to send the
required data to an entity, it is important to realize that the provided
data can be confidential and therefore there can exist a need to limit
the number of entities that the Data Provider can share the data with.
For example, a Data Provider can demand that the provided data is
only sent to the entity (e.g. a Service Provider) that needs the data
and that it cannot be shared with other Service Providers or the Service
Requester (Goethals| [2008)).

EC7 Data reusability: In some business cases data provided by a Data
Provider is used by more than one Service Provider. In such situations
an optimal coordination scenario limits the number of data requests
that are sent to the Data Provider.

EC8 Data format: When the Data Provider replies, the data that is provided
is possibly not in a form that is expected by the Service Provider. For
example, the data format needs to be adapted, or the data should be
made anonymous. In short, in some cases data transformations are
desirable before the data is received by the Service Provider. Dealing
with different data formats is a common challenge when information is
shared among services (Goethals, |2008).

4.2.2 Pattern overview

To manage a data dependency, we use three patterns: DATA FLOW INITIATION
(see Subsection |4.2.3)), DIRECT-INDIRECT REQUEST (see Subsection [4.2.4) and
DIRECT-INDIRECT DATA TRANSMISSION (see Subsection[4.2.5). Each pattern
consists of several types of solutions, among which a service composer can
choose by considering the evaluation criteria and solutions’ consequences. In
Figure [4.3] each pattern is visualized in a box (dashed line border) containing
both the pattern name and sub-boxes referring to different types of solutions
in that pattern. The relationships between the three patterns are indicated by
arrows. An application of the DATA FL.OW INITIATION pattern can function as a
first necessary step in managing data dependencies. The next steps toward a
coordination scenario is indicated by means of the arrows in Figure An
arrow pointing from a pattern sub-box A to a pattern box B indicates that the
pattern represented by B should be applied next when a pattern is applied
in the way represented by sub-box A. For example, there is an arrow that
indicates that the DIRECT-INDIRECT REQUEST pattern should be applied when
an active Service Provider is chosen after applying the DATA FLOW INITIATION

CHAPTER 4. MANAGING DATA DEPENDENCIES 87

DATA FLOW INITIATION

Active Service Provider Active Service Requester Active Data Provider

N o o o DD

DIRECT-INDIRECT REQUEST

Direct request Indirect request

pmm——————

requires the application of

*——>»

Figure 4.3: Relationships between the three patterns

pattern. Although theoretically the three patterns can be applied in any order,
the order shown in Figure is the most intuitive one and will therefore be
used in the rest of this chapter.

4.2.3 Data flow initiation
Problem

If a Service Requester sends a request to a Service Provider, it can occur
that the Service Provider does not possess sufficient data for completing its
internal processing. Therefore additional input data should be collected. This
task is accomplished by the data flow. For example, when a nurse asks the
pharmacist a febrifuge for a certain patient, it can occur that the pharmacist
needs more input data (e.g. the risk for stomach bleeding). This raises an
important question regarding the data collection process: Who triggers the
sending of data by a Data Provider?

4.2. Pattern language

Data
request
cececccccse }

Service Data
Requester Provider

Service

Requester

Service
request

Service
request

Data '1
request &
%
Needy @ Needy

Service Service

Provider

Provider

(a) ACTIVE SERVICE (b) ACTIVE SERVICE REQUESTER
PROVIDER

Service

Requester

@ Data flow
iniation
Data

Provider

Needy

Service
Provider

(c) ACTIVE DATA PROVIDER

Figure 4.4: DATA FLOW INITIATION

CHAPTER 4. MANAGING DATA DEPENDENCIES 89

Solutions

There are three possible data flow initiators in a coordination scenario (see
Figures{4.4(a)l4.4(b)} and 4.4(c)). An ACTIVE SERVICE PROVIDER initiates the
data flow by sending out a data request (see step one in Figure[4.4(@)). It is
not specified to which entity the Service Provider sends out its data requests.
This problem is discussed in one of the other patterns (see DIRECT-INDIRECT
REQUEST in subsection [4.2.4). An ACTIVE SERVICE REQUESTER initiates the
data flow by sending a data request to the Data Provider (see step one in
Figure [4.4(b)). While in coordination scenarios with an ACTIVE SERVICE
PROVIDER or an ACTIVE SERVICE REQUESTER the Data Provider sends out
data upon request of an entity (i.e. upon the request of the Service Provider
or Service Requester), in a scenario with an ACTIVE DATA PROVIDER it is the
Data Provider itself that triggers the sending of data (see Figure [4.4(c)).

Consequences (evaluation of the solutions)

For each force discussed in Section we can evaluate each solution

presented in Section

EC1 Robustness to change: In case of an ACTIVE SERVICE REQUESTER or an
ACTIVE DATA PROVIDER every change in the Service Provider’s data
requirements results in a change in the implementation of the Ser-
vice Requester or Data Provider. In contrast, in the ACTIVE SERVICE
PROVIDER scenario these changes are only reflected in modified data
requests sent by the Service Provider itself. Therefore, consumption of
ACTIVE SERVICE PROVIDERS is considered to be rather stable.

EC2 Adjustability: An ACTIVE SERVICE REQUESTER sends both a service
request to the Service Provider and a data request to the Data Provider.
Hence, it is obvious that an ACTIVE SERVICE REQUESTER can adjust the
data request to a specific service request. An ACTIVE SERVICE PROVIDER
can also adjust the data request to a specific service request, because
it receives, per definition, service requests from the Service Requester.
In contrast, in ACTIVE DATA PROVIDER scenario control and data flow
are always separated (i.e. neither the Service Requester nor the Service
Provider is sending data requests to the Data Provider), which means
the data sent by the Data Provider can not be changed in function of a
specific service request.

EC3 Coupling with Data Provider: It is clear that an ACTIVE SERVICE PROVIDER
is coupled with the external world, because it needs to send out data

90

4.2. Pattern language

requests to known external parties. In contrast, in a case of an ACTIVE
SERVICE REQUESTER and ACTIVE DATA PROVIDER the Service Provider
simply expects that the data is provided at some point in time. In
such scenarios Service Providers do not have to initiate interactions
with external parties (for input data purposes). An ACTIVE SERVICE
REQUESTER has a coupling with the Data Provider, but this can possibly
be considered more acceptable because Service Requesters are also
strongly coupled with Service Providers that need to be triggered. An
ACTIVE DATA PROVIDER implies a looser coupled Service Requester and
Service Provider. However, as a consequence an ACTIVE DATA PROVIDER
is more coupled with the external world, because it autonomously sends
out data instead of sending data upon request.

EC4 Data provider accessibility: Since an ACTIVE SERVICE REQUESTER needs to

send a data request to the Data Provider, an ACTIVE SERVICE REQUESTER
is not appropriate when only the Service Provider has access to the
Data Provider.

EC5 Confidentiality of data requirements: As discussed in the previous eval-

uation criterion, an ACTIVE SERVICE REQUESTER needs to send a data
request to the Data Provider. However, if the data requirements are con-
fidential and are only known by the Service Provider itself, an ACTIVE
SERVICE REQUESTER is not appropriate. As discussed in the adjustability
criterion, an ACTIVE DATA PROVIDER cannot send data that is adjusted to
a specific service request. As a consequence, an ACTIVE DATA PROVIDER
often needs to send a larger amount of data (e.g. information regard-
ing multiple patients). This can be favorable because in this way the
specific data requirements are not known by the Data Provider.

EC6-8 Data confidentiality, reusability and format: This pattern only deals

with the initiation of the data flow (see problem definition in[4.2.3)). It
does not describe anything about the data itself or the data transmission
between services. Therefore, evaluation criteria EC6-8 are not relevant
for the evaluation of this pattern.

Table summarizes all consequences of the DATA FLOW INITIATION pattern.

Relationship with other patterns

An ACTIVE SERVICE PROVIDER sends out data requests in order to receive
the missing input data (see step one in Figure[4.4(a)). The DIRECT-INDIRECT
REQUEST pattern shows who contacts the actual Data Provider with the
request (see[4.2.4). An ACTIVE SERVICE REQUESTER sends data requests to

CHAPTER 4. MANAGING DATA DEPENDENCIES 91

Active SR Active SP Active DP
Robustness to change - +
Adjustability + + -
Coupling with Data Provider SR coupled SP or SR coupled no coupling
Data provider accessibility SR needs access SP or SR needs access no access required

Confidentiality of data requirements - depends on request +
Data confidentiality depend on data transmission
Data reusability depend on data transmission
Data format depend on data transmission

SR = Service Requester
SP = Service Provider
DP = Data Provider

Table 4.1: Summary of the consequences of DATA FLOW INITIATION

the Data Provider (see step one in figure [4.4(b)). As a consequence the
Data Provider sends out data. In case of an ACTIVE DATA PROVIDER the Data
Provider itself decides if it needs to send out data. The DIRECT-INDIRECT
TRANSMISSION pattern shows how the data flows from the Data Provider to
the Needy Service Provider (see Subsection [4.2.5).

4.2.4 Direct-Indirect request
Problem

If a Service Provider is active, then the Service Provider sends out data
requests in order to receive missing input data. This raises the following
question: Where can an active Service Provider send its data requests
to? For example, if a pharmacist wants to inform himself about the risk
for stomach bleeding, the pharmacist needs to know who he can ask this
question to. Should he ask the nurse or can he ask the doctor?

Solutions

An ACTIVE SERVICE PROVIDER can send its data requests to two entities, as
shown in Figures [4.5(a)| and |4.5(b)| Firstly, an ACTIVE SERVICE PROVIDER
can send a direct request, which means that the data request is sent directly
to the Data Provider. Secondly, an ACTIVE SERVICE PROVIDER can send its
data request to the Service Requester (see step two in Figure [4.5(b)]), which
is supposed to forward the data request to the appropriate Data Provider (see
step three in figure [4.5(b)). This alternative is referred as an indirect request.

92 4.2. Pattern language
Service
REQEN G
Service : Data
request - Provider
Data '.
N eedy request P
Service P
Provider @
(a) DIRECT REQUEST
Data
@ request
SteccecccadP
Service Data
Requester Provider

Service
request

Figure 4.5:

¢ Data
¢ request

O

Needy
Service

Provider

(b) INDIRECT REQUEST

DIRECT REQUEST versus INDIRECT REQUEST

CHAPTER 4. MANAGING DATA DEPENDENCIES 93

Consequences (evaluation of the solutions)

For each force discussed in section we can evaluate each solution

presented in Section

EC1-2 Robustness to change and adjustability: This pattern deals with ACTIVE
SERVICE PROVIDERS (see problem definition in 4.2.3). Hence, both
solutions presented in this pattern, which both include ACTIVE SERVICE
PROVIDERS, score equally on these evaluation criteria. As discussed in
the evaluation of the DATA FLOW INITIATION pattern (see section [4.2.3),
ACTIVE SERVICE PROVIDERS lead to robust and adjustable coordination
scenarios.

EC3 Coupling with Data Provider: In the direct request scenario there is a
strong coupling between the Service Provider and the Data Provider.
Sending data requests to the Service Requester, as in the indirect request
scenario, removes this coupling. However, note that in the indirect
request scenario there is a coupling between the Service Requester and
the Data Provider. Perhaps this can be considered more acceptable
because Service Requesters are also strongly coupled with Service
Providers that need to be triggered. In the direct request scenario only
the Service Provider needs to know which service plays the role of
Data Provider, while the indirect request scenario requires that the Data
Provider is known by the Service Requester.

EC4 Data provider accessibility: The direct request scenario requires that the
Data Provider is known by the Service Provider, while in the indirect
request scenario only the Service Requester needs to know which service
plays the role of Data Provider. Similarly, the direct request scenario
requires that the Data Provider can be accessed by the Service Provider,
while in the indirect request scenario only the Service Requester needs
to have access to the Data Provider.

EC5 Confidentiality of data requirements: In the indirect request scenario the
Service Requester needs to send a data request to the Data Provider.
However, if the data requirements are confidential and are only known
by the Service Provider itself, an active Service Provider with indirect
request is not appropriate.

EC6-8 Data confidentiality, reusability and format: This pattern only deals
with data requests (see problem definition in[4.2.4). It does not describe
anything about the data itself or the data communication between
services. Therefore, evaluation criteria EC6-8 are not relevant for the
evaluation of this pattern.

94 4.2. Pattern language

Table 4.2| summarizes all consequences of the DIRECT-INDIRECT pattern.

Direct request Indirect request

Robustness to change (+) (+)
Adjustability () €]
Coupling with Data Provider SP coupled SR coupled
Data provider accessibility ~SP needs access SR needs access
Confidentiality of data requirements + -

Data confidentiality depend on data transmission

Data reusability depend on data transmission

Data format depend on data transmission

SR = Service Requester

SP = Service Provider

DP = Data Provider

(+) is inherited from Active SP

Table 4.2: Summary of the consequences of DIRECT-INDIRECT REQUEST

Relationship with other patterns

In both scenarios the Data Provider receives a data request (see step one in
Figure and step two in Figure [4.5(b)). As a consequence, data should
be received by the Service Provider. The DIRECT-INDIRECT TRANSMISSION
pattern shows how the data flows from the Data Provider to the Needy Service
Provider (see Subsection 4.2.5)).

4.2.5 Direct-Indirect transmission
Problem

If a Data Provider received a data request, the requested data should be
received by the Service Provider. If an ACTIVE DATA PROVIDER is used in a
coordination scenario, the Service Provider should also receive data sent by
the Data Provider. In both cases, the following question pops up: How does
the data flow from the Data Provider to the Service Provider?

CHAPTER 4. MANAGING DATA DEPENDENCIES 95

Service

Requester

Data
Provider

Service
request

Needy
Service
Provider

(a) DIRECT DATA TRANSMISSION

Service
REQEN G

@

Data Data
Provider

Service
request

Needy
Service
Provider

(b) INDIRECT DATA TRANSMISSION

Figure 4.6: DIRECT DATA TRANSMISSION versus INDIRECT DATA TRANSMISSION

96 4.2. Pattern language

Solutions

Data can flow from the Data Provider to the Service Provider in two ways.
Firstly, the Data Provider can initiate a direct data transmission, which means
that the data is sent directly to the Service Provider (see step one in Figure
[4.6(a)). Secondly, the data can be transmitted from the Data Provider to the
Service Requester (see step one in Figure [4.6(b)) and subsequently to the
Service Provider (see step two in Figure[4.6(b)]). This alternative is referred
to as an indirect data transmission (see Figure [4.6(b)).

Evaluation of the solutions

For each force discussed in Section we can evaluate each solution
presented in Section [4.2.5

EC1-4 Robustness to change, adjustability, coupling with Data Provider and
Data Provider accessibility: When evaluating a complete coordination
scenario using these evaluation criteria, this pattern has no influence
on the evaluation. In other words, an evaluation of the solutions in this
pattern totally depends on the specific solutions chosen in the other
two patterns. For an evaluation regarding these criteria for the DATA
FLOW INITIATION pattern and the DIRECT-INDIRECT REQUEST pattern,
we refer to sections and

EC5 Confidentiality of data requirements: In the INDIRECT DATA TRANSMISSION
scenario, all data that needs to be transmitted to the Service Provider is
passed through the Service Requester. However, if the Service Provider’s
data requirements are confidential and can only be known by the
Service Provider itself, INDIRECT DATA TRANSMISSION is not appropriate.

EC6 Data confidentiality: When the provided data is confidential, DIRECT
DATA TRANSMISSION is the best scenario, since INDIRECT DATA TRANS-
MISSION implies that the data is passed through the Service Requester
before it is received by the Service Provider.

EC7 Data reusability: INDIRECT DATA TRANSMISSION facilitates the reuse of
the provided data. For example, the Service Requester only receives the
specific data once, before distributing the same data to several Service
Providers it interacts with.

EC8 Data format: INDIRECT DATA TRANSMISSION allows data transformations,
since all data that need to be transmitted to the Data Provider is passed
through the Service Requester. As such, the Service Requester can

CHAPTER 4. MANAGING DATA DEPENDENCIES 97

be responsible for data transformations. However, in a DIRECT DATA
TRANSMISSION scenario the Service Requester is not involved when the
data needs to be transmitted from the Data Provider to the Service
Provider. As a consequence, intermediary data transformations are not
possible.

Table 4.3 summarizes all consequences of the DIRECT-INDIRECT DATA TRANS-
MISSION pattern.

Direct transmission Indirect transmission
Robustness to change depend on initiation/request
Adjustability depend on initiation/request
Coupling with Data Provider depend on initiation/request
Data provider accessibility depend on initiation/request
Confidentiality of data requirements depends on initiation/request -
Data confidentiality + -
Data reusability - +
Data format - +

SR = Service Requester
SP = Service Provider
DP = Data Provider

Table 4.3: Summary of the consequences of DIRECT-INDIRECT DATA TRANSMIS-
SION

4.3 Applying the patterns to construct coordina-
tion scenarios

4.3.1 Combining the patterns into coordination scenarios

As described in the introduction to our pattern language (see Subsection
4.2.1) the three patterns discussed above are building blocks that need to be
combined to build coordination scenarios.

Since the DATA FLOW INITIATION pattern has three solutions, and the
DIRECT-INDIRECT REQUEST pattern and DIRECT-INDIRECT TRANSMISSION pat-
tern have two solutions, it is, in theory, possible to combine the patterns
in twelve different ways. However, by following the pattern relationships
that were discussed in Subsection and shown in figure only eight
combinations are possible. This makes sense, because, per definition, only in
a coordination scenario with an ACTIVE SERVICE PROVIDER it is relevant to
decide whether the data request should be sent in a direct or indirect way.

98 4.3. Applying the patterns to construct coordination scenarios

Service

Requester

Service
request

Data
request

Needy
Service
Provider

Data

Provider
Data @

Figure 4.7: ACTIVE SERVICE PROVIDER with DIRECT REQUEST and DIRECT
DATA TRANSMISSION

An ACTIVE SERVICE REQUESTER sends data requests to the Data Provider in a
direct manner. ACTIVE DATA PROVIDERS do not receive data requests. In fig-
ures to the eight possible combinations are represented. Capitalized
words in the figures’ captions indicate how the patterns are applied.

4.3.2 Design guidelines for applying the patterns

As mentioned before, the consequences that are discussed in each pattern
help service composers to decide on which solution is the most appropriate.
As such service composers are guided in constructing a coordination scenario
that is optimized according to the forces described in Subsection [4.2.1} In
doing so, it can be helpful to consult the Tables and that
summarize all consequences related to solutions described by the patterns.
However, although these tables are perfectly suitable for getting a quick view
on how a specific solution deals with the forces, the tables do not explicitly
guide one to the best solution. Therefore, based on the tables, we derived
three decision trees, one for each pattern or table. Using decision trees the
best solution described in a pattern can be easily found by simply following
the different branches in the tree. In Figures [4.15] [4.16 and [4.17] decision
trees are shown for DATA FLOW INITIATION, DIRECT-INDIRECT REQUEST and
DIRECT-INDIRECT DATA TRANSMISSION, respectively. In the example described
in the next subsection (see Subsectio we show how these trees can be
used when constructing an optimized coordination scenario.

CHAPTER 4. MANAGING DATA DEPENDENCIES 99

Service
Requester

®

Data
Provider

A

re qutest Pl
rd

Service
request

Needy
Service
Provider

-
ceoccee”

Figure 4.8: ACTIVE SERVICE PROVIDER with DIRECT REQUEST and INDIRECT
DATA TRANSMISSION

Data
request
ceccccces)

Service Data
Requester Provider

Service
request

Data ¢ Data

Needy
Service
Provider

Figure 4.9: ACTIVE SERVICE PROVIDER with INDIRECT REQUEST and INDIRECT
DATA TRANSMISSION

100 4.3. Applying the patterns to construct coordination scenarios

@ Data
request

Service b R R

Requester .‘\
.
J
. v
. .
L] .
Service : : Data Data
request ¢ request Provider
L] .
.

Y

Needy
Service
Provider

Figure 4.10: ACTIVE SERVICE PROVIDER with INDIRECT REQUEST and DIRECT
DATA TRANSMISSION

Data
request
ceccccces }

Service Data
Requester Provider

Service
request

Y,

Needy
Service
Provider

Figure 4.11: ACTIVE SERVICE REQUESTER with INDIRECT DATA TRANSMISSION

CHAPTER 4. MANAGING DATA DEPENDENCIES 101

Data
request

Service Se-cees..
Requester A
[}

_)

. \4

.
Service : Data
request Provider

.

.

Needy

Service
Provider

Figure 4.12: ACTIVE SERVICE REQUESTER with DIRECT DATA TRANSMISSION

Service

REQENTS

Y

Service
request

Needy

. Data
Service — N
. Provider
Provider Data

Figure 4.13: ACTIVE DATA PROVIDER with DIRECT DATA TRANSMISSION

102

4.3. Applying the patterns to construct coordination scenarios

Service Data Data
Requester Provider

Service
request

Needy
Service
Provider

Figure 4.14: Active Data Provider with INDIRECT DATA TRANSMISSION

4.3.3 Applying the patterns and guidelines to the hospital

example

By following the pattern relationships as described in and shown in
figure we can construct an appropriate coordination scenario for the
hospital example (see Section[4.T]for problem description):

e DATA FLOW INITIATION: Since neither nurses nor doctors want to un-

derstand which input data is required by the pharmacist, it is probably
more desirable to choose an ACTIVE PHARMACIST. Nurses simply want
to use some services provided by the pharmacist. Furthermore, it is not
preferred that changes in data requirements result in changes to how
the nurses work (or consume the pharmacist’s services). Hence, in the
decision tree shown in Figure first the robustness to change is nec-
essary branch needs to be followed. Subsequently, since the pharmacist
does not know which doctor is treating the patient, the SP has no access
and SP not coupled branches lead to an ACTIVE PHARMACIST.

DIRECT-INDIRECT REQUEST: This pattern needs to be applied, because
pharmacists are considered as active Service Providers. Since the
pharmacist does not know which doctor is treating the patient, the
SP not coupled and SP has no access branches needs to be followed
in the decision tree shown in Figure [4.16] Furthermore, nurses are
supposed to be trusted partners in a hospital setting, which means that
the pharmacist’s data requirements can be shared with nurses. Hence,

103

CHAPTER 4. MANAGING DATA DEPENDENCIES

NOILVILINI MO VIVA 3313 UOISIDR(ST 't 2INSI]

dq oAy
i i
']]
1| dseamy | ' daeamy ||
i | |
' H 1
S 2AIY || || dseamy !
\)
] Juelrodur Jou Jueytodut
da Ay ||
] AN DI
1 N , N
] “Sjuswaimbai eep ' "
ds oamy | ! daLamy |t
'

~..Jo Anfenuapyuo) -

..... Aﬁ e
pamorre Surdnod

PaIdNod 10U US 16 pordnos Jou ds

/. 1

" 1opmoid Emw_
... m Burdnop

§59008 9ABY dS PUE US YIog 52008 SBY d§ JOU YS IOUID)
$5900€ OU Sy d§ 1 dS 10U US RN
10 SS9D0B OU SBY YS \

A1qissadoe

ATessaddU J0U

pa[dnod Jou ys

Ioplaold ereq = da
I9PIAOIJ MIAS = dS

dS A1y
131sanbay d1A198 = Y¥S

>S 2ADY

\
'
'
'
'
'
'
'
'
'

i

Juenodur Jou Juertodurr

Nl

§iuswanmbar e1ep
*..Jo Anpenuspyuo),
pamore Surdnod
/‘_o' pa[dnos jou mm\

. 1opraoiq ereq -
- E:s w::m:cu

uonnjos oN

e

ss9008 mma dS Iou ¥S PN

pamorre Surdnod
S$S900B 2ARY JS PUB YS yiog 10 pardnod Jou ¥s Surdnod ou
$S9008 OU sey dS 10 padnod Jou 4§
10 SSIDDE OU SeY ¥S \..
Bv;o_n_ Ero
. Burdno)

. hu_u«bo& 1R
Aressadou SSDDB 2ARY JS PUB YS Jlog 550098 SE 45 10U S JOYION

_ $S9D0E OU Sy S
B 10 SS900E OU SBY YS v

—

Aiqrssanoe ’
19p1r0id Bleq

Aressadau Jou ATessadau
T afuep i

*. 01 ssauisnqoy

Aiqeisnipy

4.3. Applying the patterns to construct coordination scenarios

104

1sanbaz 1aa1pu

1sanbai waxq

Jueptodw jou

Jo Arenuapyuon

Jueptodury

N 7

~Sitouranmba1 1P

/

$S9008 DABY

1SENOHTY VIVA 9211 UOISIA(g

9T 231g

Japraoid ereq = dd
I9PIA0I] MIAIRS = dS
12159nbay NVIAIS = US

X

Juepodwyjou juenodurn

Nl B [P

~§luawaambaz exepy
Jo Ayenuspyuo)

X T AT

Ssadoe ou sty ds mmmuum ou sey us

Juenoduwr Jou Juentodur
siuowoarmbas elep
Jo Aenuspyuop .

559008 dARY dS PUE YS Yog
59008 OU Sy dS

! \

'
! uonnosoN !
% J

$S9D0B DARY dS PUE YS [Og 5S990€ OU SeY dS

dS pue s yog 59008 OU SBY S

.\ $SI0DB SBY dS 10U YS I2WIN $SOODB OU SBY YSy_ SSOIDE SBY dS 10U YS IDIDN 59008 SBY dS 10U ¥S IOYNIN
N D) .
> A I "
b__ﬁ 9008 Apiqissadoe Apiqissaode s |
19p1A0I] BIRQ | Jopaoid vieq I9pIAOId BIRQ !]

H e -er

pamofe Buidnoo pajdnoo 10u ys PoIdN0> 100 S Buydnon o

F——
. pm Burgdnop

105

CHAPTER 4. MANAGING DATA DEPENDENCIES

ATessa0ou Aress0au
uonewojsuen OU uoneuwojsuRI

N

‘ !
jeuloj eIRQ || UOISSIWSUEL], BR(391U
: \

.................. i NG

NOISSINSNVYL VIVA 9913 UOISA(4T 2ind1g

=
S
2
E
g
=4
g
g
£
E
g
=)
g
£
a

ATessaoou Aressadau
UONBULIOJSURI) OU UOREULIojsuen}

\ . \ .
1 Jeurioj eyeq | uonnjos oN 1 H
| . | ' \
g / b M\ o it " / S y ||||| . b
Juentoduy Jueytodur Jou Jueytoduwr

Juetodur Jou

NS

i Ainqesnar eeq

IR

N
Aipqesnarereq

Jueyodur Jou Jueytodur

< Anenuapyuod eeq :

/

Juetodwr Jou

/.mEme::__uQ Emv..\
~..J0 Aenuspyuo),

o

ATessaoau

JIapiaoid ereq = da
I9PIAOI] MIAISS = dS
1159nbay 01A198 = S

Azessadou

UONBULIOJSURT) OU UONBULIOJSURT)

h—

JeuLIo eeq

Juetodw Jou Juerrodur

NS

g . Ayqqesnaz eeq

Jueriodur

106

4.4. Demonstrating the practical utility

Request for
@ notifying the pharmacist
ceces of the risk for stomach bleeding
Nurse b
LY
A]
L]
A v
a mediine o Risk or bara
stomach bleeding Provider

reducing fever

®

The risk for
stomach bleeding

@

Figure 4.18: ACTIVE PHARMACIST with INDIRECT REQUEST and DIRECT DATA
TRANSMISSION

the confidentiality of data requirements leads to the INDIRECT REQUEST
as the most appropriate solution. This means that the pharmacist asks
the nurse for more information concerning the risk for stomach bleeding
(see step two in Figure [4.18)). Subsequently, the nurse can forward the
request to the right doctor (see step three in Figure [4.18).

DIRECT-INDIRECT DATA TRANSMISSION: Suppose the risk for stomach
bleeding is quite confidential information that can not be shared with
the nurse. Furthermore, as explained above the pharmacist’s data
requirements are not important, nor are data reusability and data
format. Then, the decision tree in Figure [4.17]leads to the DIRECT DATA
TRANSMISSION scenario as the best solution. Hence, the doctor should
send the information concerning the risk for stomach bleeding directly
to the pharmacist (see step four in Figure [4.18]).

The complete solution for this example is shown in figure |4.18

4.4 Demonstrating the practical utility

As described in Subsection the use of our patterns, including the eval-
uation criteria, must help to determine the optimal coordination scenario
(cfr. research question 2). In this Section the practical utility of our pattern
language is demonstrated, using three design science evaluation methods, as
proposed by |[Hevner et al.[(2004):

CHAPTER 4. MANAGING DATA DEPENDENCIES 107

1. Analytical: One of the first versions of the patterns was critically an-
alyzed in two phases. In the first phase the patterns went through a
one-month shepherding process, while in the second phase we partici-
pated in a Writer’s Workshop (see Subsection 4.4.1)).

2. Observational: After the analytical validation, we studied the artifact in
depth in a business environment by means of a real-life case study with
a Belgian bank and insurance company (see Subsection [4.4.2).

3. Descriptive: By using information from the knowledge base (i.e. relevant
research) we built a convincing argument for the artifact’s utility (see
Subsection 4.4.3).

4.4.1 Analytical validation: a shepherding process and a
writers’ workshop

The patterns, including the evaluation criteria that help service composers to
construct an optimal coordination scenario, were critically analyzed in two
phases. In the first phase the patterns and evaluation criteria went through
a one-month shepherding process. This was an iterative process of review
and revision, in which we collaborated with experts from the IT world to
significantly improve the value of the patterns. In the second phase the
patterns were validated in a so called Writers’ Workshop (Gabriel, 2002)) on a
PLoP conferenceE] (Monsieur, Snoeck, & Lemahieu, |2009). This gave us a lot
of feedback and constructive suggestions from other pattern authors about
how to improve the quality and validity of the patterns. During this workshop,
all participating authors were able to give each other feedback on their work
in a peer review session. We remained silent while the others discussed
the patterns and explained additional insights and views they possess about
patterns. This validation step concluded the first build-evaluate cycle (Hevner|
et al., 2004)) at the end of which the revised version of the patterns presented
in this chapter was developed.

4.4.2 Observational evaluation: real-life insurance case

During the second build-evaluate cycle, we validated the patterns by means
of a real-life business case at the Belgian KBC Banking & Insurance company
(Haesen et al.| [2006]). The case can be considered a situation in which a
consumer wants his house to be insured together with the house content.

Shttp://www.hillside.net/plop

108 4.4. Demonstrating the practical utility

A simplified version of the business process consists of the following tasks:
processing the customer’s request, presenting an offer to the customer, making
the contract, sending the insurance policy to the customer, and payment by
the customer. In the context of this thesis we only consider the first task,
which deals with the processing of customer requests. The system supporting
this task, which we refer to as the insurance request management (IRM)
service, is composed of several (component) services: insurance quote service,
sales service, customer information service, blacklist service and external
information service. The main service that is consumed for this task is the
insurance quote service. This service accepts or rejects the request and needs
to calculate the insurance premium in case of acceptance. This yields a
two-staged approach. The acceptance step investigates whether or not to
accept the request for insurance. The second step is the tarification step
which generates a price offer. The first step requires a substantial amount
of data in order to evaluate all possible reasons for rejection. On the other
hand, a minimum of data may be sufficient to provide the customer with a
first, rough estimation of the price, purely for informational purposes. These
data requirements explain why, besides the insurance quote service, several
other services are involved when composing the IRM service. The insurance
quote service needs to be combined with other services because of specific
(data) needs:

1. Information about existing customers: The person who wants to
have an object insured can be an existing or a new customer of the
insurance company. For an existing customer most data will be available
at the customer information service.

2. Information about new customers: All data about a new customer
will have to be retrieved by the sales service, which interactively ques-
tions the customer.

3. Data concerning descriptions of expensive items: The premium of
the house content depends on the fact whether the customer possesses
exclusive and expensive goods, such as jewelry or special stamp col-
lections. The premium increases proportionally to the value of those
possessions. The data used to calculate the premium for the house
content can be altered after the construction of the application. For ex-
ample the premium for a stamp collection may initially only depend on
the number of stamps in the collection. After examining past insurance
claims, the insurance company may wish to consider also the exact kind
of stamps for the premium calculation. This means further communi-
cation with the customer or interactions with an external information
service containing price information of expensive objects, are needed.

CHAPTER 4. MANAGING DATA DEPENDENCIES 109

4. Information about blacklisted customers or fraudulent family mem-
bers: Before the insurance request is accepted, the insurance quote
service needs information about possible fraudulent family members.
Furthermore, the insurance quote service needs to check whether the
customer is present on any blacklists of untrusted payers. This informa-
tion can be retrieved from a third party service which is referred to as
the blacklist service in the rest of this chapter.

5. Base insurance quote: Simplified, an insurance quote can be deter-
mined using a base insurance quote which is raised or reduced depend-
ing on the specific risk estimations. These risk estimations and the
effect on the quote are calculated by the insurance quote service. The
base insurance quote, however, is set by the sales service. Hence, in
order to calculate the complete insurance quote, the base insurance
quote must be retrieved from the sales service.

In summary, we can consider five main data needs, which all require some
interaction with a service that needs to be included in the service composition.
In terms of the terminology as used in this chapter, the insurance quote service
plays the role of a Needy Service Provider, while the other services (e.g. sales
service or third party service to check blacklists) play the role of the Data
Providers. The entity that composes the IRM service is considered as the
Service Requester, since it requests the insurance quote service. Below we
show how the patterns presented in this chapter were applied to this real-life
example in order to find an optimal solution. It allows us to find the most
appropriate coordination scenarios for each data need. The patterns applied
are indicated using small caps. Additionally, we refer to the criteria discussed
in each pattern (see Subsections|4.2.3] [4.2.4/and [4.2.5) that lead up to the
specific choice of coordination styles. Finally, for each data need the resulting
coordination scenario is linked to one of the eight combinations that were
discussed in Subsection

1. Information about existing customers: Information about existing
customers can be retrieved from the customer information service of
the insurance company. Since this is rather stable data (see EC1 eval-
uation of the DATA FLOW INITIATION pattern in Subsection [4.2.3)), that
is strongly related to the specific insurance quote request (see EC2
evaluation of the DATA FLOW INITIATION pattern in Subsection
and one prefers loose coupling between the insurance quote service
and other services (e.g. the customer information service) (see EC3
evaluation of the DATA FLOW INITIATION pattern in Subsection[4.2.3)) it is
better to choose for an ACTIVE INSURANCE QUOTE SERVICE REQUESTER.
This means the insurance quote service simply expects to receive this

110

4.4. Demonstrating the practical utility

information, which is acceptable because it is rather stable data and
consumers do not have to worry that the interface and required data
are changing frequently. The loose coupling between the insurance
quote service and other services is guaranteed, because the Service Re-
quester, which is responsible for triggering the insurance quote service,
should send out a request for customer data to the customer informa-
tion service. Concerning the data transmission, two alternatives remain
possible. Depending on the exact customer information that is needed,
one could decide on the most appropriate solution. If the customer
information needed is rather confidential, DIRECT DATA TRANSMISSION
is better than indirect data transmission (see EC6 evaluation in Sub-
section [4.2.5). However, when the customer information service does
not provide the data in the correct form, transformation by the Service
Requester is needed, which justifies INDIRECT DATA TRANSMISSION via
the Service Requester (see EC8 evaluation in Subsection [4.2.5). The
application of these patterns results in the coordination scenarios repre-
sented in Figures (based on indirect data transmission) and
(based on direct data transmission).

. Information about new customers: For the information about new

customers the patterns are applied in a similar way. The main difference
is the service that provides the data, which can be either a sales service
or perhaps the Service Requester. In any way, the insurance quote
service prefers to have a loose coupling with this Data Provider, which
(again) motivates the choice for an ACTIVE INSURANCE QUOTE SERVICE
REQUESTER (see EC3 evaluation of the DATA FLOW INITIATION pattern
in Subsection[4.2.3). Similar to the previous data need, both DIRECT
DATA TRANSMISSION and INDIRECT DATA TRANSMISSION can be useful
in certain situations. The application of these patterns results in the
coordination scenarios represented in Figures (based on indirect
data transmission) and (based on direct data transmission).

. Data concerning descriptions of expensive items: For some cus-

tomers additional data might be needed. For example, customers
that have large collections of stamps need to be treated in a different
way. Since they want to insure their valuable collections, a precise
estimate of the value of the collection is needed to calculate the insur-
ance premium. Therefore, an insurance quote service requires detailed
descriptions of the stamps. Since this information is only needed in
certain cases - only when the customer has exceptionally expensive
items in his house - it is better to go for an ACTIVE INSURANCE QUOTE
SERVICE (see EC1 evaluation of the DATA FLOW INITIATION pattern in
Subsection 4.2.3). Since the insurance quote service does not have

CHAPTER 4. MANAGING DATA DEPENDENCIES 111

any knowledge on where to get this information, an INDIRECT REQUEST
is necessary (see EC4 in Subsection [4.2.4). Next, as with the other
types of data above, for this data two sorts of data transmission are
possible too. Firstly, in the case of confidential information (e.g. the
value of the items is extremely high), it is better to choose DIRECT
DATA TRANSMISSION (see EC6 evaluation in Subsection[4.2.5)). Secondly,
when transformation of the information is a priority above confiden-
tiality, INDIRECT DATA TRANSMISSION via the Service Requester is more
appropriate (see EC8 evaluation in Subsection [4.2.5). The application
of these patterns results in the coordination scenarios represented in
Figures (based on indirect data transmission) and (based on
direct data transmission).

4. Information about blacklisted customers or fraudulent family mem-
bers: Checking whether or not a customer (or a family member) is on
any blacklist, is only a thing that the insurance quote service can do,
because only this service knows where to get this information. Further-
more, only the insurance quote service has access to the blacklist service.
This motivates the use of an ACTIVE INSURANCE QUOTE SERVICE, using
DIRECT REQUESTS (see EC4 evaluation in Subsections and[4.2.4)).
Since this data is rather confidential, DIRECT DATA TRANSMISSION is also
more appropriate in this case (see EC6 evaluation in Subsection |4.2.5)).
These choices also support the fact that the insurance quote service
prefers not to share its business rules (checking blacklists and/or family
members) with its consumers (i.e. a Service Requester) (see EC5 in
[4.2.3). The application of these patterns results in the coordination
scenario represented in Figure 4.7

5. Base insurance quote: For each type of insurance (car, house, etc.)
there exists a base insurance quote, that is set by the sales service. Both
the insurance quote service and the insurance quote Service Requester
prefer a loose coupling with the sales service. Therefore, it is better
to choose an ACTIVE SALES SERVICE that sends a set of base insurance
quotes to the insurance quote service from time to time (e.g. each
time the sales service decides to modify base insurance quotes) (see
EC3 evaluation of the DATA FLOW INITIATION pattern in Subsection
[4.2.3). Based on potential data transformation requirements, one
can make a choice between DIRECT DATA TRANSMISSION and INDIRECT
DATA TRANSMISSION. The application of these patterns results in the
coordination scenarios represented in Figures (based on direct
data transmission) and (based on indirect data transmission).

Hence, a final solution for the management of the data dependencies is
constructed by combining several coordination scenarios, each taking care

112 4.4. Demonstrating the practical utility

of a particular set of data. As explained above, the insurance quote Service
Requester takes the role of an ACTIVE SERVICE REQUESTER with respect to
customer data, while the insurance quote service takes the role of an ACTIVE
SERVICE PROVIDER when it comes to information about the insured items or
confidential background data about customers.

The conclusion of this validation exercise demonstrates that at least seven
out of eight combinations prove to be useful in practice. Moreover, it also
demonstrates that there is no ’one size fits all’ solution. The ideal solution
can only be obtained by considering the specific characteristics of data and
applying the suitable pattern for each different set of data. This allows to
balance the different requirements and meet several criteria at once. The
solution developed by applying the patterns has been implemented at KBC
Banking and Insurance as a new version in replacement of the existing version
because of its improved stability (robustness to change), its capability of
handling confidential data and its satisfying performance level. Furthermore,
when data requirements are changing at KBC Banking and Insurance, the use
of the patterns, including the guiding criteria, makes it easier to adapt the
coordination scenarios than before when coordination logic was designed
in an ad-hoc fashion. However, more research is needed to quantitatively
evaluate that the use of the patterns contributes to a more efficient and
effective development of coordination scenarios.

One combination of patterns, namely the scenario represented in Figure
has not been used in this real life case. Nevertheless, this does not imply
that this pattern is useless. Since it is the result of a logical deduction step
on the possible combination of the three basic patterns (ACTIVE SERVICE
PROVIDER with DIRECT REQUEST and INDIRECT DATA TRANSMISSION), it has
its place in the overview of potential solutions and might still prove useful in
future real life cases.

4.4.3 Descriptive evaluation: flexible coordination of ser-
vice interactions

For the descriptive evaluation of our research we used the ’informed argu-
ment’ method (Hevner et al.,[2004). We use the work by Zirpins et al.| (2004)
to build our convincing argument that the proposed approach to the man-
agement of data dependencies, consisting of patterns and evaluation criteria,
is useful. In their article |Zirpins et al.| (2004) present which structural ele-
ments a useful approach should have. Below we will show how our approach
follows the same structure and thus can be considered as useful and rigorous.

Zirpins et al.| (2004) propose to make a distinction between the logical

CHAPTER 4. MANAGING DATA DEPENDENCIES 113

dependencies that are modeled by the interaction logic and the operational
coordination that refers to the procedure or method that is utilized to enforce
the logical dependencies. This closely matches the ideas in this chapter. In
Chapter [2] (see Section we identified logical dependencies in the form
of sequence and data dependencies. Similarly, the operational coordination
matches our vision on coordination, which is about managing the sequence
and data dependencies. [Zirpins et al.| (2004) argued that while workflow
processes represent the logical dependencies of interactions (i.e. causal
and data relationships of message exchanges) they often simultaneously act
as instructions for their coordination on the execution-level by distributed
workflow management systems. As such, the coordination procedure emerges
only implicitly as a side-effect of dependencies from the interaction logic and
not because of application-specific reasons.

However, there are in most cases multiple alternatives for the enforce-
ment of the abstract interaction logic. A reason for this is the multiplicity of
possibilities for splitting the dependencies of the interaction logic into differ-
ent partitions as well as the variety of alternatives for delegating parts of a
partition to executive organizations for operational coordination. Therefore,
Zirpins et al.| (2004) suggest that a technical solution for service composition
should consist of a combination of design and implementation patterns. A
design pattern corresponds to the interaction logic that only specifies the
generic process characteristics, while an implementation pattern refers to the
refinement of the interaction logic that is needed for the concrete coordi-
nation of services. In the context of this thesis, the design pattern consists
of triggering the Service Provider, requesting the Data Provider, receiving the
data from the Data Provider and sending the data to the Service Provider. As
discussed above these steps are required to manage the data dependency
between a Needy Service Provider and a Data Provider. This design pattern is
represented in Figure |4.19] using the notation by |Zirpins et al.| (2004)). The
notation, which is geared to usual workflow models, contains communication
steps (circles) and transitions (arrows). Communication steps represent the
sending of messages to an endpoint (e.g. Service Provider) either originating
from (rcv) or going to (snd) a role that represents a participant.

In order to manage a data dependency, a concrete coordination process is
needed. Zirpins et al. (2004) argue that implementation patterns are needed
in order to build such concrete coordination processes. In this dissertation we
propose such implementation patterns. Examples of these implementation
patterns are represented in Figures[4.20(a)|and 4.20(b)| which correspond
to respectively the combinations of patterns represented in Figures and
4.10l As such, all possible coordination scenarios discussed in Subsection
4.3.1|function as implementation patterns. [Zirpins et al.| (2004) propose to

114 4.5. Completeness confirmation

SP:snd DP:snd i i DP:rev SP:snd
trigger request H data data
1. Who triggers 3. How does the data flow |
the sending of i from the Data Provider to the }
data by the Data % needy Service Provider? ¢
Provider? - g
2. Who sends SP = Service Provider
the request to DP = Data provider
the Data
Provider?

Figure 4.19: Interaction procedure

specify criteria for the choice of the most appropriate coordination pattern in
so called coordination policies. A coordination policy describes the effect of a
coordination variant in terms of specific (non-functional) service properties
and thereby controls the choice of alternatives. In that way, the different
patterns presented in this chapter, including the evaluation criteria for certain
coordination styles and the different combinations that can be made by
the patterns, can be considered as coordination policies. They support the
transformation of the interaction logic needed for input data provisioning
into concrete coordination processes.

In summary, we can conclude that we have developed both implemen-
tation patterns and coordination policies (Zirpins et al., |2004). The imple-
mentation patterns allow us to find all possible coordination scenarios, and
the coordination policies make it possible to construct the most appropriate
coordination scenario in a certain business context. Hence, our approach
to the management of data dependencies follows the structure proposed by
Zirpins et al.| (2004).

4.5 Completeness confirmation

Our patterns are innovative in the sense that these patterns are basic building
blocks that can be combined to compose complete "coordination scenarios’. A
coordination scenario then shows the actions taken by all involved parties to
get the data from the Data Provider to the Needy Service Provider. Hence, the
real value of the patterns depends on an evaluation of the composition of the
patterns into concrete coordination scenarios. In this section we show that all

CHAPTER 4. MANAGING DATA DEPENDENCIES 115

SP:snd DP:snd DP:rcv
trigger request data

Selvu‘;a Requester .

Data Provider (DP)

Service Provider (SP)

SP = Service Provider
DP = Data Provider

(a) ACTIVE SERVICE REQUESTER with INDIRECT DATA
TRANSMISSION (see figure [4.11)

SP:rev DP:snd
request request

1ce Requester (SR)

SR:snd SR:rev SP:snd e
request request data

Data Provider (DP)

DP:rev
reply

. . SP = Service Provider
Service Provider (SP) SR = Service Requester

DP = Data Provider

(b) ACTIVE SERVICE PROVIDER with INDIRECT REQUEST and DIRECT
DATA TRANSMISSION (see figure [4.10)

Figure 4.20: Two coordination scenarios visualized as implementation pat-
terns (Zirpins et al.,|2004) (the numbers match the numbers used in figures

|4.10jand |4.11)

116 4.5. Completeness confirmation

potential coordination scenarios can be composed by combining the patterns
(cfr. research question 1). For this completeness confirmation, we did not start
from the aforementioned questions that form the basis for our three patterns
(see introduction to the pattern language in Subsection [4.2.1). Rather, we
declaratively specified what a coordination scenario should accomplish and
in which message exchanges a Service Requester, Service Provider and Data
Provider can be involved. For example, it is easy to understand that in every
coordination scenario the Service Provider must receive data from another
entity. More conditions that should be met by a coordination scenario are
discussed in the rest of this section.

We have used Prolog (Clocksin & Mellish) [2003; Wielemaker, 2003)), a
general purpose logic programming language, to show the completeness of
our patterns. This declarative language has its roots in formal logic. Typically,
a Prolog program logic is expressed in terms of relations, represented as
facts and rules. A computation is initiated by running a query over these
relations. This allows us to declaratively specify what a coordination scenario
should accomplish, so that an execution of the Prolog program (i.e. a query
that calculates or derives all solutions) results into all possible coordination
scenarios.

Appendix [A] contains the complete Prolog program. In this subsection
we first highlight the main relations specified in the Prolog program (see
Subsection [4.5.1). Subsequently, we present the result of the Prolog program
execution (see Subsection [4.5.2)).

4.5.1 Formalizing a coordination scenario

A coordination scenario must follow several restrictions that can be easily
derived from the definitions of a Service Requester, Service Provider and
Data Provider. In total, there are four constraints that must be satisfied by a
coordination scenario:

C1 The coordination scenario must be a proper interaction scenario:

C1.1 The Service Provider can only send data requests or receive data.
C1.2 The Data Provider can only receive data requests or send data.

C2 The Data Provider must provide data (i.e. the Data Provider must send
data to an entity).

C3 The Service Provider must receive data from another entity.
C4 The resulting data flow must be complete:

CHAPTER 4. MANAGING DATA DEPENDENCIES 117

C4.1 The Service Requester must forward any data request to the Data
Provider.

C4.2 An entity can only send data if this entity is the Data Provider or
has received data from another entity.

Based on these constraints we composed a predicate that can be used to
query all possible coordination scenarios (see listing|4.1)). It clearly contains
all constraints discussed above (see comments in listing [4.1)).

coordination_scenario (CoordinationScenario) :—

% C1: A coordination scenario needs to be a proper interaction
scenario

findall (X, interaction_scenario (X),ListOfInteractionScenarios),
member(CoordinationScenario , ListOfInteractionScenarios) ,
% C2: the Service Provider must receive data from another entity
member ((_, service_provider ,data) ,CoordinationScenario),
% C3: the Data Provider must send data to an entity
member ((data_provider ,_,data),CoordinationScenario) ,
% C4: The resulting data flow must be complete
complete_data_flow (CoordinationScenario) ,
% requests or data can only be sent once per participant
not(multiple_requests_or_data_-sent (CoordinationScenario)),
% requests or data can only be received once per participant
not(multiple_requests_or_data_received (CoordinationScenario)) .

Listing 4.1: The coordination_scenario predicate

For a complete Prolog specification of the C1 and C4 constraints, we refer
to Appendix[A] The C1 constraint is mainly based on the possible_message._-
exchange predicate that describes valid interactions with service and Data
Providers, as specified in C1.1 and C1.2 (see listing[4.2).

% C1.1: The Service Provider can only send data requests or receive
data
possible_message_exchange (service_provider ,Y,data_request) :—
message_exchange (service_provider ,Y, data_request).
possible_message_exchange (X, service_provider ,data) :—
message_exchange (X, service_provider ,data).

% C1.2: The Data Provider can only receive data requests or send
data
possible_message_exchange (data_provider ,Y,data) :—
message_exchange (data_provider ,Y, data) .
possible_message_exchange (X, data_provider ,data_request) :—
message_exchange (X, data_provider ,data_request) .

Listing 4.2: Restricting possible message exchanges for a Service Provider
and a Data Provider

1
2

118 4.5. Completeness confirmation

The C4 constraint is specified in the complete_data_flow predicate as the
negation of the incomplete_data_flow predicate. The latter predicate simply
describes coordination scenarios in which C4.1 or C4.2 are not true (see
Listing [4.3]).

% C4: The data flow is complete

% Specification as the negation of not C4.1 or not C4.2

complete_data_flow (Coordination_messages) :—
not(incomplete_data_flow (Coordination_messages)) .

% C4.1: The Service Requester must forward any data request to the
Data Provider.
% Specification of a coordination in which C4.1 is not true
incomplete_data_flow (Coordination_messages) :—
member ((service_provider ,service_.requester ,data_request),
Coordination_messages) ,
not (member ((service_requester ,data_provider ,data_request),
Coordination_messages)) .

% C4.2: An entity can only send data if this entity is the Data
Provider or has received data from another entity.
% Specification of a coordination in which C4.2 is not true
incomplete_data_flow (Coordination_messages) :—
member ((Participantl ,Participant2 ,data),Coordination_messages),
not (member((_, Participantl ,data),Coordination_messages)),
Participantl\=data_provider.

Listing 4.3: The complete_data_flow predicate

4.5.2 Executing the Prolog program

In this subsection we show that the set of solutions generated from con-
straints C1 to C4 (i.e. all coordination scenarios that met the conditions C1-4
above) exactly matches the coordination scenarios that can be composed by
combining our patterns.

When executing the Prolog program, we can query all potential coor-
dination scenarios using the coordination_scenario predicate. Listing
shows such a query. The Prolog program enumerates all valid coordination
scenarios (see variable X). The coordination scenarios found exactly match
the coordination scenarios that can be composed by combining our patterns,
which shows the completeness of our pattern language (cfr. research question
1). Line 2,3,4,5,6,7,8and 9 in Listingmatch respectively scenarios 7
(Figure[4.13), 1 (Figure[4.7), 4 (Figure[4.10), 6 (Figure[4.12)), 2 (Figure[4.8),
3 (Figure[4.9), 5 (Figure[4.11)) and 8 (Figure [4.14).

?— coordination_scenario (X).
X=[(data_provider ,service_provider ,data)];

=

CHAPTER 4. MANAGING DATA DEPENDENCIES 119

X=[(data_provider ,service_provider ,data) ,(service_provider ,
data_provider ,data_request)];

X=[(data_provider ,service_provider ,data) ,(service_provider ,
service_requester ,data_request) ,(service_requester ,data_provider
,data_request)];

X=[(data_provider ,service_provider ,data) ,(service_requester ,
data_provider ,data_request)];

X=[(data_provider ,service_requester ,data) ,(service_provider ,
data_provider ,data_request) ,(service_.requester ,service_provider ,
data)];

X=[(data_provider ,service_requester ,data) ,(service_provider ,
service_requester ,data_request) ,(service_requester ,data_provider
,data_request) ,(service_requester ,service_provider ,data)];

X=[(data_provider ,service_requester ,data) ,(service.requester ,
data_provider ,data_request) ,(service_requester ,service_provider ,
data)];

X=[(data_provider ,service_requester ,data) ,(service.requester ,
service_provider ,data)];

false.

Listing 4.4: Querying the Prolog program

4.6 Conclusion

In this chapter we have presented a pattern language for managing data de-
pendencies. The pattern language consists of three main patterns (DATA FLOW
INITIATION, DIRECT-INDIRECT REQUEST and DIRECT-INDIRECT DATA TRANSMIS-
SION) that can be combined into eight different coordination scenarios to
manage a data dependency. Each pattern is about a specific problem in the
management of a data dependency and describes several solutions to that
problem.

In Section we showed that all potential coordination scenarios for
managing a data dependency can be composed by combining the patterns that
were presented in that chapter. Furthermore, based on a detailed evaluation
of the solutions presented in a pattern, we were able to derive concrete design
guidelines on how to combine the patterns (see Section [4.3). Three decision
trees were presented that help to select the most appropriate patterns when
designing an optimized coordination scenario.

The whole is more than the sum of its parts

— Aristotle (384 BC-322 BC),
Greek philosopher

Combining the pattern languages

In the previous two chapters pattern languages for managing sequence and
data dependencies were presented. However, in practice, both types of
dependencies are present in service compositions. Therefore, in this chapter
it is discussed how the two pattern languages presented in this dissertation
can be combined to construct complete coordination scenarios.

This chapter starts with a discussion on which types of data dependencies
occur in typical service compositions (see Section [5.1). Subsequently, the
patterns presented in Chapter 4| are applied to these different types of data
dependencies to obtain the coordination scenarios presented in Section|[5.2]
Based on these coordination scenarios Section [5.3|describes how the pattern
languages for managing sequence and data dependencies can be combined.

5.1 Data dependencies service compositions

In our pattern language for managing data dependencies (see Section in
Chapter [4)), we defined three participants in each coordination scenario that
manages a data dependency: a Service Requester, a Needy Service Provider
and a Data Provider.

In a service composition we can make a distinction between two sorts of
needy services (i.e. services that require certain data for some reason). First,
the execution of a certain business process task can require data. In terms
of our pattern language for managing sequence dependencies (see Section
in Chapter[3) this means that a Service Provider supporting that business
process task, requires data in order to be able to execute the business process

121

122 5.1. Data dependencies service compositions

task. Second, sometimes data is required in order to decide if a certain
business process task needs to be executed. In terms of our pattern language
for managing sequence dependencies (see Section in Chapter [3) this
means that a controller can possibly require data to decide whether or not this
controller needs to send a business request to the Service Provider it controls.
For the sake of simplicity, we currently make abstraction of whether this
controller is an INDEPENDENT CONTROLLER, CONTROLLING SERVICE PROVIDER
or a part of a SELF-CONTROLLED SERVICE PROVIDER. Hence, for example, it
can occur that a SELF-CONTROLLED SERVICE PROVIDER requires data for both
deciding on the execution of business process task and the execution itself.
Similarly, a CONTROLLING SERVICE PROVIDER possibly requires data for two
reasons.

In a service composition we recognize two sorts of Data Providers. First,
it is possible that a Service Provider provides data as the result of executing
a certain business task. We refer to this data as task data output or data
output. Second, it is also possible that a service only provides data that is
needed in the service composition. Such a service, which does not support
the execution of any business process task, is referred to as (external) Data
Provider.

Based on the fact that there are two kinds of needy services and two sorts
of Data Providers, we identify four types of data dependencies in service
compositions (see Table[5.1)):

Data Dependency We refer to a data dependency between a Service Provider
and a (external) Data Provider as a (external) data dependency. This
means that the Data Provider needs to be consumed so that the Service
Provider can execute the business process task it supports.

Output Input Association This type of data dependency refers to the case in
which a Service Provider needs the data output from another business
process task in order to execute a task. In other words, an output input
association associates the output of one business process task to the
input of another business process task.

Decision Data Dependency A decision data dependency specifies that data
available at a Data Provider is required to decide whether a certain
business process task needs to be executed.

Decision Data Association A decision data association is defined as the case
in which task output data is required to decide whether a certain
business process task needs to executed.

CHAPTER 5. COMBINING THE PATTERN LANGUAGES 123

Data Provider
(external) Data Provider Service Provider
Needy Service (reason)

Service Provider (task execution) (external) Data Dependency Output Input Association

Controller (deciding on task execution) Decision Data Dependency Decision Data Association

Table 5.1: Four types of data dependencies in service compositions

5.2 Managing data dependencies in service com-
positions

For all four data dependencies described in the previous Subsection (see
Subsection [5.1)) our pattern language for managing data dependencies (see
Chapter [4) can be applied to find all possible coordination scenarios. In
order to find the possible set of scenarios, it is important to identify the
role of Service Requester (as defined in our pattern language for managing
data dependencies (see pattern language introduction in Subsection in
Chapter[4) in each type of data dependency.

Data Dependency In case of a data dependency, the Service Requester role
is played by the controller of the Service Provider. This means that,
in theory, all combinations and thus eight scenarios are possible (see
Figures to[4.14]in Chapter[4). However, for the sake of simplicity,
in the rest of this Chapter is assumed that a service composition does
not contain ACTIVE (EXTERNAL) DATA PROVIDERS, which means that we
only consider six ways of managing a(n) (external) data dependency

(see Figures[4.7|to in Chapter [4)).

Output Input Association In a coordination scenario that manages an out-
put input association the Service Requester role is played by the con-
troller of the Needy Service Provider. Since the data involved in an
output input association is the result of a business process task execu-
tion, only coordination scenarios including an ACTIVE DATA PROVIDER
are possible. Indeed, the Service Provider, which plays the role of Data
Provider in an output input association, actively sends task data output.
Hence, only two scenarios are possible: an ACTIVE DATA PROVIDER with
DIRECT (see Figure[5.I]) or INDIRECT DATA TRANSMISSION (see Figure

5.2).

Decision Data Dependency In a coordination scenario that manages a deci-
sion data dependency the role of Service Requester and Needy Service
Provider are both played by the controller. This is so because the con-

124

5.3. Combining sequence and data dependency management

This controller plays the role
Controller of service requester in an
(for the needy Output Input Association
service

provider)

This Service Provider plays the role of Active
Data Provider in an Output Input Association
(i.e. it sends out task data output after
executing a business process task)

Service
request

Neefly Service
Service

. Provider
Provider task data output

Figure 5.1: Managing an Output Input Association using an ACTIVE DATA
PROVIDER (i.e. Service Provider actively sends data) with a DIRECT DATA
TRANSMISSION

troller autonomously decides to process business event notifications
and then needs additional data to decide whether a business process
task needs to be executed. Since we do not consider ACTIVE (EXTERNAL)
DATA PROVIDERS, only one coordination scenario is possible (see Figure

5.3).

Decision Data Association Similar to the management of output input as-

sociations the data involved in a decision data association is the result
of a business process task execution. This means that only coordination
scenarios including an ACTIVE DATA PROVIDER are possible. Since the
role of Service Requester and Needy Service Provider are both played by
the controller, only one coordination scenario remains possible (i.e. an
ACTIVE DATA PROVIDER with DIRECT DATA TRANSMISSION) (see Figure
5.4).

5.3 Combining sequence and data dependency

management

In the previous subsection we applied our pattern language for managing
data dependencies to all four data dependencies that we described in Sub-
section As mentioned in that subsection discussing the four types of

CHAPTER 5. COMBINING THE PATTERN LANGUAGES 125

This Service Provider plays the role of Active
Data Provider in an Output Input Association
(i.e. it sends out task data output after
executing a business process task)

Controller pu

(for the needy task data output Service
service Provider

provider)

task data output

This controller plays the
role of service requester in
an Output Input
Association

Service
request

Needy
Service
Provider

Figure 5.2: Managing an Output Input Association using an ACTIVE DATA
PROVIDER (i.e. Service Provider actively sends data) with an INDIRECT DATA
TRANSMISSION

Data
request
cccccscsces }
Needy Data
Controller Provider

—

Data @

This Needy Controller plays the role of both the (Active) Service Requester
and (Active) Needy Service in a Decision Data Association

(i.e. controller autonomously decides to process business event
notifications and then needs additional data to decide whether a business
process task needs to be executed)

Figure 5.3: Managing a Decision Data Dependency

126 5.3. Combining sequence and data dependency management

This Service Provider plays the role of Active
Data Provider in a Decision Data Association
(i.e. it sends out task data output after
executing a business process task)

— 9

Needy task data output Service
Controller Provider

This Needy Controller plays the role of both the Service Requester
and Needy Service in a Decision Data Association

(i.e. controller autonomously decides to process business event
notifications and then needs additional data to decide whether a
business process task needs to be executed)

Figure 5.4: Managing a Decision Data Association

data dependencies (see Subsection we made abstraction of whether a
controller is an INDEPENDENT CONTROLLER, CONTROLLING SERVICE PROVIDER
or a part of a SELF-CONTROLLED SERVICE PROVIDER. This is exactly what the
pattern language for managing sequence dependencies is about: distributing
the responsibility of controlling the business process tasks.

For all coordination scenarios described in the previous subsection, the
pattern language for managing sequence dependencies can be directly ap-
plied. However, there are some combinations of patterns for managing
sequence and data dependencies that provide potentially additional advan-
tages that were not present separately in each pattern language. In particular,
there are potential advantages that arise when the COORDINATOR pattern
(see Chapter [3) is combined with coordination scenarios that manage Output
Input Associations and/or Decision Data Associations (see Subsection [5.1)).
We distinguish between three kinds of such pattern combinations.

A first combination that can create additional value is the use of the
COORDINATOR pattern combined with two Decision Data associations in which
the same task data output is associated with (possibly) different controllers. In
Figure[5.5|such a combination is shown. The main motivating idea behind this
combination is the fact that the controllers are merged into one COORDINATOR
so that the task data output only should be sent once. This combination is
applicable when the same task data output is required to decide if different
business tasks needs to be executed (e.g. in Figure[5.5 both Controller 1 and
Controller 2 need the same task data output to decide whether or not the
business process tasks that these controllers control need to be executed).

CHAPTER 5. COMBINING THE PATTERN LANGUAGES 127

This is a COORDINATOR in which two
controllers have a common data requirement
(i.e. the task data output sent by the Service
Provider in the Decision Data Associations)

Coordinator 4_@

task data output Service
Needy Needy Provider
Controller Controller

1 2

This Service Provider plays the role of Active Data
Provider in two Decision Data Associations

(i.e. it sends out task data output after executing
a business process task)

Figure 5.5: The use of the COORDINATOR pattern combined with two Decision
Data Associations that are related to the same task data output

The second potentially valuable combination consists of the use of the
COORDINATOR pattern combined with two or more Output Input Associations
that are related to the same task data output and that are all managed using
an INDIRECT DATA TRANSMISSION scenario. In Figure such a combination
is shown. Similar to the previous case the controllers are merged into one
COORDINATOR so that the task data output only should be sent once. This
combination is applicable when the same task data output is required by two
or more different Service Providers in order to execute a business process
task (e.g. in Figure both Needy Service Provider 1 and Needy Service
Provider 2 need the same task data output to execute the business process
task that is supported by that Service Provider).

The third potentially valuable combination consists of a COORDINATOR
combined with a Decision Data Association and an Output Input Association
that are associated to the same task output data and where the Output Input
Association is managed using an INDIRECT DATA TRANSMISSION scenario.
Figure shows such a combination. Similar to the two previous cases the
controllers are merged into one COORDINATOR so that the task data output
only should be sent once. This combination is applicable when the same
task data output is required by both a Service Provider in order to execute a
business process task and a controller to decide whether a business process
task needs to be executed (e.g. in Figure both controllers need the same
task data output).

Note that the advantages described above were situated in coordination

128 5.4. Conclusion

This is a COORDINATOR in which two controllers play
the role of service requester that forwards the task data
output to a needy service provider (i.e. INDIRECT DATA
TRANSMISSION in output input associations)

@

Coordinator e

task data output Service
Controller 1 Controller 2 Provider
(for the needy (for the needy
o n o service service e,

provider 1) provider 2)
*® Service
after @ request

Service * -
.
.
.
.
.
.
.
.
.
.

.
reauest | This Service Provider plays the
role of Active Data Provider in
two Output Input Associations
(i.e. it sends out task data
output after executing a
business process task)

Task
data output

Task
data output

Needy Needy e
Service Service
Provider 1 Provider 2

)

Figure 5.6: The use of the COORDINATOR pattern combined with two Output
Input Associations that are related to the same task data output

scenarios in which Service Providers played the role of Data Providers in
Output Input or Decision Data Associations. We explicitly choose not to
describe such advantages when an external Data Provider is involved (i.e. in
case of an external data dependency or decision data dependency). This is so
because we assumed that data provided by a Data Provider is not necessarily
always the same. For example, when two needy controllers that together
form a COORDINATOR, both request the same data from a common Data
Provider, it is not necessarily possible to limit the data requests sent by the
COORDINATOR. This is so because possibly the controllers request the data at
a different moment in time and as a consequence the Data Provider sends not
the same data to the two controllers. This is in contrast with data provided
by a Service Provider (i.e. task data output), which is per definition only
provided once and cannot change over time.

5.4 Conclusion

In this chapter we have described how the two pattern languages presented
in this dissertation can be combined to construct complete coordination
scenarios.

CHAPTER 5. COMBINING THE PATTERN LANGUAGES 129

This is a COORDINATOR in which one needy controller
requires task data output (Decision Data Association)
and one controller forwards the task data output to the
Needy Service Provider (i.e. INDIRECT DATA
TRANSMISSION in the Output Input Association)

Coordinator 4_:
task data output Service
Controller Provider

(for the needy Needy

service Controller
provider)

@ This Service Provider plays the role

of Active Data Provider in both an

Output Input Association and a

task data output Decision Data Association

(i.e. it sends out task data output

after executing a business process

task)

Service
request

Y

Needy
Service
Provider

Figure 5.7: The use of the COORDINATOR pattern combined with an Output
Input Association and a Decision Data Association that are related to the
same task data output

In Section [5.1] we have described four types of data dependencies that
can occur in typical service compositions. Subsequently, we have applied the
pattern language for managing data dependencies to each of these types (see
Section[5.1). Subsequently, the patterns presented in Chapter [4] are applied
to these different types of data dependencies to obtain the coordination
scenarios presented in Section[5.2] Based on these coordination scenarios
Section [5.3] describes how the pattern languages for managing sequence and
data dependencies can be combined. In particular, it is shown how the use of
patterns for managing sequence dependencies (e.g. COORDINATOR) can be
beneficial in the context of data dependency management.

Knowing is not enough; we must apply.
Willing is not enough; we must do.

- Johann Wolfgang von Goethe (1749-1832),
German writer

Tool support for pattern-based
coordination

In this chapter we describe how we have developed a tool that demonstrates
that it is possible to semi-automate the construction of a coordination sce-
nario. In the tool developers pick out specific patterns for sequence and data
dependencies management and then the tool automatically generates a com-
plete coordination scenario (in the form of BPEL (OASIS| 2007) processes)
from a business process specification (e.g. a BPMN model (OMG, |2010a)).

The chapter starts with a high-level overview of our pattern-based ap-
proach for service composition and coordination (see Section[6.1)). Subse-
quently, in Section [6.2] it is discussed which input models are required to
automatically generate coordination scenarios. Section presents the com-
plete approach and describes the tool that we have developed to automate
the construction of BPEL-based coordination scenarios. In Section the
tool is applied to an extended version of the travel agency process that was
introduced in Chapter 3] Finally, the chapter concludes in Section [6.5]

6.1 From business process modeling to service
composition

In this section we give a high-level overview on our pattern-based approach
for service composition and coordination. The section starts with a brief
discussion on existing BPMN-to-BPEL transformations.

131

132 6.1. From business process modeling to service composition

6.1.1 Existing BPMN-to-BPEL transformations

In the literature one can find several papers discussing a translation of
BPMN (OMG] 2010a) processes to BPEL (OASIS|,|2007)) processes (Recker &
Mendling, |2006; White, [2005;; Fjellheim, Milliner, Dumas, & Vayssiere, 2007
Ouyang, Dumas, Hofstede, & Van der Aalst, [2006). Several techniques de-
scribed in these studies are also implemented in BPM suites tools from major
BPM players such as IBM, Oracle, etc. who use these translation approaches
for a better interoperability between their modeling and development tool.

However, these techniques do not allow to automatically construct coordi-
nation scenarios. Either it is up to the business analyst to include coordination
aspects in their business process model or it is up to the developer to extend
the transformed process model with a coordination model. For example, a
business process task modeled in BPMN typically is only translated in a BPEL
invoke activity (e.g. Whitel |2005)). As such it often is implicitly assumed that
the business process task is also completed when the message is sent to the
service supporting that task (i.e. the invoke activity is done). However, for
example, if the completion of a business process task needs to be confirmed
by the reception of a business event notification message, either business
analysts or developers explicitly need to specify 'receive’ tasks or activities.

Some researchers acknowledge this shortcoming and therefore propose
a translation of BPMN process models to event-based coordination models.
Such translations identify all business events (e.g. the completion of a previ-
ous business process task) that need to be occurred and generate appropriate
'receive’ activities for receiving the necessary business event notifications (e.g.
Fjellheim et al.,[2007)). However, one can still see two weak points in these
studies. First, these approaches fail to manage data dependencies in a system-
atic or automatic way. Receiving task data output and sending task data input
still need to be explicitly modeled by the analyst or added by the developer. If
business analysts need to model data-related tasks, business process models
become too complex. If developers need to specify such activities, it becomes
a challenge to adapt the implemented process to every change in the business
process. Indeed, developers not only need to change the business process
itself, but also need to modify coordination logic and potentially need to
repeatedly implement the same implementation patterns (e.g. a specific
coordination pattern for managing a data dependency). Second, as with
most BPMN-to-BPEL transformations, these approaches target a centralized
coordination. The transformation typically results into one BPEL process that
needs to be deployed to a central BPEL engine. If another composition style
is desired (e.g. decentralized coordination), analysts are supposed to model
several BPMN processes.

CHAPTER 6. TOOL SUPPORT FOR PATTERN-BASED COORDINATION 133

6.1.2 Pattern-based service composition and coordination

Our pattern-based service composition and coordination starts from the idea
that the services in a service composition support business process tasks. This
means that services need to be able to receive business requests and send
out business event notifications about the execution of the business process
task it supports (e.g. the completion of the task). Furthermore, a service
supporting a business process also needs the ability to receive all data that
is necessary to execute a certain business process. Moreover, if the business
process task results into task data output, then the service is supposed to
send out this data. All these expectations concerning a service supporting
a business process task, can be described in an orchestration (e.g. a BPEL
process). A skeleton for this orchestration can be generated automatically
based on the business process. Hence, developers only need to add logic so
that, for example, business requests are translated in the appropriate actions
to start a business process execution. Once, the orchestration for a service
is complete, using our pattern-based service composition and coordination
approach all coordination scenarios can be generated.

In a concrete coordination scenario business requests need to be sent
to the service supporting the business process task. This responsibility is
delegated to the controllers. Such a controller can be defined using an
orchestration too (e.g. a BPEL process). COORDINATORS are also defined in
one orchestration, so that the reception of business event notifications and
data can be shared among all controllers that together form the coordinator.
If a particular service that supports the execution of a business process task is
a SELF-CONTROLLED SERVICE PROVIDER, then the controller BPEL process can
be simply deployed to the same BPEL engine that runs the service provider’s
BPEL process for receiving business requests etc.

The main advantage of this approach is that all orchestrations forming
the global interaction and coordination scenario are automatically generated
from a business process specification after selecting specific coordination
patterns. Therefore, it is relatively easy to apply other patterns for managing
sequence and data dependencies so that a different coordination scenario is
composed.

In the next sections we show how we automatically generate BPEL pro-
cesses, including the corresponding WSDL (W3C, |2001) interfaces for these
processes, that together form a specific coordination scenario.

134 6.2. Input for pattern-based service composition and coordination

It is not possible to model the Decision Data
Associations between ‘Processed Order’ (i.e.
‘Process Order’ output data) and both the
‘Deliver to the customer’ and ‘Deliver to the
customer’s preferred store’ task

This data-based gateway models a
decision, but it cannot be specified that
the ‘processed order’ data object is
required for making a decision

large products

are ordered Deliver to the

customer

Process Order

Deliver to the
customer’s
only small products | preferred store

D are ordered

Processed
order

Figure 6.1: Modeling Decision Data Associations in BPMN (OMG, [2010a)

6.2 Input for pattern-based service composition
and coordination

6.2.1 Representing sequence and data dependencies in BPMN

Since BPMN (OMG, |2010a) is a standard language for modeling business pro-
cesses it is perfectly suited for representing sequence dependencies. However,
as already explained briefly in Chapter [2] (see Subsection[2.5.1)) modeling all
kind of data dependencies is not possible.

Modeling Decision Data Dependencies or Decision Data Associations is
the most problematic in BPMN. As explained in detail in Chapter [2| (see
Subsection[2.5.1)) BPMN does not provide language constructs for modeling
associations between data objects and sequence flow conditions. This implies
that it is not possible to model that certain data is required for deciding
whether a certain task should be executed or not, regardless of whether this
data is available at an external data provider or is the result of the execution
of another business process task. For example, Figure shows a business
process fragment in which two Decision Data Associations (i.e. the ’processed
order’ is required to decide on the execution of the two delivery tasks) could
not be modeled using BPMN constructs.

External Data Dependencies and Output Input Associations can be mod-
eled using data objects that are associated to BPMN tasks as data input or data

CHAPTER 6. TOOL SUPPORT FOR PATTERN-BASED COORDINATION 135

output. An Output Input Association can be modeled by linking an activity’s
data output to another activity’s data input to indicate that the output data of
a certain task is the input for another task (e.g. see Figures[2.5(a)|and [2.5(b)|
in Chapter[2). External Data Dependencies can also be described in BPMN
using a special input marker (i.e. a non-colored arrow) in the data object that
represents the data input (e.g. see Figure [2.6)in Chapter[2]). Nonetheless, it
should be noted that additional specification is necessary to model the data
provider’s interface when one wants to automatically generate a complete
coordination scenario.

6.2.2 An additional data dependencies model

As explained in the previous subsection (see Subsection [6.2.1)), Decision
Data Dependencies and Decision Data Associations cannot be represented
in a BPMN model. Furthermore, External Data Dependencies can only par-
tially be represented in the BPMN model, because BPMN does not provide
the language constructs to specify the data provider in an External Data
Dependency.

Therefore, we have defined an XML Schema (W3C, 2004) for describing
a data dependencies model that consists of External Data Dependencies
(including data providers), Decision Data Dependencies and Decision Data
Associations.

The complex types for an External Data Dependency and a Decision Data
Dependency both are derived from a data dependency complex type that
is defined as shown in Listing The required attributes dataProviderld
and bpmnTaskId refer to the IDs of the data provider (as defined in the data
dependencies model) and the business process task (as defined in the BPMN
model). The optional attribute datalnputAssociationld refers to the ID of a
datalnputAssociation element as defined in a BPMN model. Although we
assume that a data provider defines the data structure of the data object that
it provides, we optionally relate a data dependency to a data object defined
in a BPMN model. Currently, we do not check any consistency between
both data structures. However, in case a coordination scenario that includes
an INDIRECT DATA TRANSMISSION is used we assume that the data object
structure as defined in the BPMN model is the data object structure that the
controller or service provider needs. In that case, the data object structure as
defined in the data provider is only used in the communication with the data
provider.
<complexType name="tDataDependency”>

<attribute name=”"id” type="ID” use="required”/>
<attribute name="name” type="string” use="required”/>

136 6.2. Input for pattern-based service composition and coordination

<attribute name="dataProviderId” type="NCName” use="required”/>
<attribute name="bpmnTaskId” type="NCName” use="required”/>
<attribute name="datalnputAssociationld” type="NCName” use="
optional”/>
</complexType>

Listing 6.1: The complex type for data dependencies

The complex type for a data provider is shown in Listing It has
attributes for specifying the location of the WSDL file, request and receive
operations and BPEL partnerLink information. Using this information it is
defined how a service can interact with that data provider.
<complexType name="tDataProvider”>

<attribute name=”"id” type="ID” use="required”/>

<attribute name="name” type="string” use="required”/>

<attribute name="wsdlLocation” type="string” use="required”/>

<attribute name="requestOperationName” type="string” use="required
7 />

<attribute name="requestRoleName” type="string” use="required”/>

<attribute name="receiveOperationName” type="string” use="required
7 />

<attribute name="partnerLinkTypeName” type="string” use="required”
/>

<attribute name="receiveRoleName” type="string” use="required”/>

</complexType>

Listing 6.2: The complex type for a data provider

The complex type for a Decision Data Association is shown in Listing

It has two important attributes. The sourceRef attribute refers to the ID of
the data object (as defined in the BPMN model) that is required to make the
decision. The targetRef attribute refers to the ID of the business process task
(as defined in the BPMN model) involved in a Decision Data Association.
<complexType name="tDecisionDataAssociation”>

<attribute name="id” type="ID” use="required”/>

<attribute name="sourceRef” type="NCName” use="required”/>

<attribute name="targetRef” type="NCName” use="required”/>
</complexType>

Listing 6.3: The complex type for a Decision Data Association

The complete XML Schema for our data dependencies model can be found
in Appendix [B] (see Section [B.T).

6.2.3 Representing a coordination model

In order to generate a coordination scenario from a business process spec-
ification and a data dependencies model, the user needs to pick patterns

CHAPTER 6. TOOL SUPPORT FOR PATTERN-BASED COORDINATION 137

for managing the sequence and data dependencies. These choices can be
specified in a so called coordination model, for which we defined an XML
Schema (W3C, 2004).

A coordination model consists of two main elements: a sequenceDepen-
denciesManagement and a dataDependenciesManagement element.

The complex type for a sequenceDependenciesManagement element has
one attribute that specifies the location of the BPMN model. In addition it
can have several coordinator elements as child elements (see Listing[6.4).

<complexType name="tSequenceDependenciesManagement”>

<sequence minOccurs="1" maxOccurs="1">

<element name="coordinator” type="cm:tCoordinator” minOccurs="1"
maxOccurs="unbounded” />
</sequence>
<attribute name="bpmnModel” type="string” use="required”></
attribute>

</complexType>

Listing 6.4: The complex type for sequence dependencies management

In line with the COORDINATOR pattern, a coordinator is defined by a set
of BPMN tasks (via the IDs as defined in the BPMN model) (i.e. it controls
several business process tasks) and a name (see Listing[6.5]).

<complexType name="tCoordinator”>
<sequence minOccurs="1" maxOccurs="1">
<element name="bpmnTaskld” type="NCName” minOccurs="1"maxOccurs=
”unbounded”>
</element>
</sequence>
<attribute name="name” type="string” use="required”></attribute>
</complexType>

Listing 6.5: The complex type for a COORDINATOR

The second element in a coordination model is the dataDependenciesMan-
agement element, which has one attribute to specify the data dependencies
model and several dataDepedencyManagement and dataOutputlsDatalnput-
Management elements (see Listing[6.6)).

<complexType name="tDataDependenciesManagement”>
<sequence>
<element name="dataDependencyManagement” type="
cm:tDataDependencyManagement” minOccurs="0” maxOccurs="
unbounded” />
<element name="dataOutputlsDatalnputManagement” type="
cm:tDataOutputlsInputManagement” minOccurs="0" maxOccurs="
unbounded” />
</sequence>

138 6.2. Input for pattern-based service composition and coordination

<attribute name="dataDependenciesModel” type="string” use="
required”/>
</complexType>

Listing 6.6: The complex type for data dependencies management

A dataDependencyManagement element specifies how an External Data
Dependency is managed. In particular it defines which coordination scenario
(of the six that are represented in Figures[4.7|to in Chapter[4) is used
via the pattern attribute (see Listing [6.7). This attribute is of the type dataDe-
pendencyManagementPattern which is nothing else than an enumeration that
let users pick specific patterns for managing the (external) Data Dependency

(see Listing[6.8)).

<complexType name="tDataDependencyManagement”>
<attribute name="id” type="ID"/>
<attribute name="dataDependencyld” type="NCName”/>
<attribute name="pattern” type="cm:dataDependencyManagementPattern
7 />
</complexType>

Listing 6.7: The complex type for Data Dependency management

<simpleType name="dataDependencyManagementPattern”>
<restriction base="string”>
<enumeration value="active_service_provider_with_
direct_request_and_direct_data_transmission” />
<enumeration value="active_service_provider_with_
direct_-request_and_indirect_data_transmission” />
<enumeration value="active_service_provider_with_
indirect_-request_and_direct_data_transmission” />
<enumeration value="active_service_provider_with_
indirect_request_and_indirect_data_transmission” />
<enumeration value="active_service_requester_with_
direct_data_transmission” />
<enumeration value="active_service_requester_with_
indirect_data_transmission” />
</restriction>
</simpleType>

Listing 6.8: The simple type that defines the different coordination scenarios
for managing an External Data Dependency

A dataOutputlsinputManagement element specifies how a Data Input Out-
put Association is managed. In such an element the Data Input Output
Association is specified by referencing the corresponding BPMN outputAsso-
ciation and inputAssocition elements (as defined in the BPMN model) (see
Listing [6.9). The pattern attribute, which is of the dataOutputlsInputMan-
agementPattern type, specifies how the Data Input Output Association is
managed. Similar to the dataDependencyManagementPattern simple type this

CHAPTER 6. TOOL SUPPORT FOR PATTERN-BASED COORDINATION 139

type is defined by an enumeration that let users pick specific patterns for
managing the Output Input Association (see Listing [6.10).
<complexType name="tDataOutputlsInputManagement”>
<attribute name="id” type="ID” use="required”/>
<attribute name="outputAssociationld” type="NCName” use="required”
/>
<attribute name="inputAssociationld” type="NCName” use="required”/
>
<attribute name="pattern” type="
cm:dataOutputlsInputManagementPattern” use="required”/>
</complexType>

Listing 6.9: The complex type for Data Output Input Association management

<simpleType name="dataOutputlsInputManagementPattern”>
<restriction base=”"string”>
<enumeration value="direct_data_transmission” />
<enumeration value="indirect_data_transmission” />
</restriction>
</simpleType>
Listing 6.10: The simple type that defines the different coordination scenarios
for managing a Data Output Input Association

Note that the coordination model does not contain elements for specifying
the patterns required for the management of Decision Data Dependencies or
Decision Data Associations. This makes sense because as we have described
in Subsection [5.2] these type of data dependencies can only be managed in
one way.

The complete XML Schema for our coordination model can be found in

Appendix [B] (see Section [B.2).

6.3 Pattern-based service composition and coor-
dination

In this section we describe the inner working of the tool we developed to
automatically generate coordination scenarios based on a business process
specification and a set of patterns (see Figure[6.2).

In Figure a UML (OMG]| 2010b) class diagram is represented, showing
the most important Java classes that form the tool’s core. As one can see
in this class diagram, there are three sorts of classes: BPEL-related classes
(i.e. BPEL4EventDispatcher, BPEL4TaskExecutionService, BPEL4Coordinator),
WSDL-related classes (i.e. WSDL4EventDispatcher, WSDL4TaskExecutionService

140 6.3. Pattern-based service composition and coordination

Input models specifying sequence and data

dependencies
Data
BPMN Model Dependencies Data Providers
(XML) Model (WSDL)
(XML)

T D[

Tool for pattern-based coordination in Selected patterns for managing
process-based service compositions sequence and data dependencies
Coordination
Model
(XML)
e "
& .?’
o :
Output files
Coordination Scenario
(BPEL and WSDL files)

%ﬁﬁ L

Figure 6.2: Input and output for pattern-based coordination

CHAPTER 6. TOOL SUPPORT FOR PATTERN-BASED COORDINATION 141

~

BPEL4EventDispatcher BPEL4TaskExecutionService BPEL4Coordinator

Generate
J/ 1 J/ 1 J/ 1 > output

files
'WSDL4EventDispatcher ‘WSDL4TaskExecutionService 'WSDL4Coordinator

= bpmnTask : Element bpmnTaskElements : ArrayList

- N

CoordinationModel

> Process
input
¢ 1 ¢ 1 files

BPMNModel 1 DataDependenciesModel DataProvider

Figure 6.3: A UML (OMG], 2010b) class diagram showing the core of our tool

and WSDL4Coordinator), and model-related classes (i.e. CoordinationModel,
BPMNModel, DataDependenciesModel and DataProvider). The model-related
classes, discussed in Subsection [6.3.1] are used for processing the input mod-
els, while the BPEL-related and WSDL-related classes, described in Subsection
are used for generating the output files.

6.3.1 Processing the input models

In this subsection we show how the input models are processed. Before
discussing the processing of each input model, this subsection starts with a
general discussion of how the XML-based input models are processed in the
tool.

XML processing using XOM and XQuery

Since both the input for our tool (i.e. BPMN Model, data dependencies model,
data providers and coordination model) and the generated output (i.e. BPEL
process and WSDL descriptions) are XML files, an API for XML processing
is intensively used in the tool’s implementation. We made use of the XOM

142 6.3. Pattern-based service composition and coordination

parseﬂ for parsing and constructing XML files. The main reason why we used
this API is that there exists another toolkit called NuxE] that provides XQuery
(W3C| 2007b) support for XOM. XQuery is a query language that allows to
easily query XML documents in a declarative way. For example, finding the
BPMN sequenceFlow elements that target a certain BPMN task element can be
relatively easy done using the combination of Java and XQuery code shown
in Listing[6.11] Being able to query BPMN models was extremely valuable in
order to find all relevant business events that need to occur before a business
process task needs to be started.

String query = ”//ns:sequenceFlow [@targetRef=""
getAttributeValue (”id”) + ”’]/ @sourceRef”;

Nodes results = XQueryUtil.xquery(getParsedBPMNFile (),
NAMESPACE DECLARATION + query);

+ bpmnTaskElement.

Listing 6.11: The use of XQuery in Java to find flow elements that target a
certain BPMN task element

Processing the BPMN model

For the processing of a BPMN model we have developed one Java class
(BPMNModel in Figure that reads and searches through a BPMN model
using the XOM parser and XQuery. The most important and frequently used
methods in this class are methods for retrieving BPMN tasks, calculating the
business events that need to occur before a task needs to be executed, getting
data (output and input) objects and corresponding types, and collecting Data
Output Input Associations.

Processing the data dependencies model

Processing a data dependencies model (see Subsection [6.2.2|for a description
of this model) occurs in the DataDependenciesModel class (see Figure|6.3).
Together with the DataProvider class these classes provide several methods
to retrieve External Data Dependencies, Data Providers, Decision Data De-
pendencies and Decision Data Associations. The DataDependenciesModel
also holds a reference to a BPMN Model so that, for example, data objects
as defined in a BPMN model and that are referenced in data dependency
definitions, can be rapidly retrieved.

Thttp://www.xom.nu
2http://acs.lbl.gov/software/nux/

CHAPTER 6. TOOL SUPPORT FOR PATTERN-BASED COORDINATION 143

Processing the coordination model

The CoordinationModel class (see Figure processes a coordination model
(see Subsection for a description of this model) and provides methods
to get information about how sequence and data dependencies are supposed
to be managed in a generated coordination scenario. The Coordination-
Model also holds references to both a BPMN model and a data dependencies
model. Furthermore, it provides methods to find which COORDINATOR (see
WSDL4Coordinator class described in Subsection controls a certain
business process task. Finally, there are also methods included to obtain a
service provider’s WSDL description (see the WSDL4TaskExecutionService
class described in Subsection [6.3.2)).

6.3.2 Generating the output files

As described in Subsection our pattern-based approach for service
composition and coordination consists of the generation of BPEL processes
for both the service providers that support business process tasks and the
COORDINATORS that hold business process knowledge to decide when a
certain business process task needs to be executed. The generation of both
types of BPEL processes and the corresponding WSDL descriptions for these
processes, are presented in the rest of this subsection.

Generating a service provider’s WSDL description

A service provider’s WSDL description is constructed by generating the fol-
lowing WSDL elements:

Import elements If there exists an External Data Dependency in the data
dependencies model that is related to this service provider and the
coordination model specifies that this External Data Dependency is
managed using a DIRECT DATA TRANSMISSION, then an import element
is generated to import the data provider’s WSDL description, which is
required to successfully define the service for receiving the data (see
generation of service elements).

Types element First of all the WSDL types element defines elements for
describing business requests. The main child element in such a business
request is a process_id element that is used to correlate all interactions to
the right process instance. In case of an ACTIVE SERVICE PROVIDER with
an INDIRECT REQUEST the business request also includes an element

144

6.3. Pattern-based service composition and coordination

specifying the UR of the controller’s port to which the ACTIVE SERVICE
PROVIDER can send its INDIRECT REQUESTS. In case of an ACTIVE SERVICE
REQUESTER with a DIRECT DATA TRANSMISSION the business request also
includes a request_id element that is used to correlate messages received
from a data provider. The types element also defines elements for task
data output that the service provider needs to receive in order to execute
the business process (i.e. in case of Data Output Input Associations). In
case of an External Data Dependency that is managed using an INDIRECT
DATA TRANSMISSION the types also defines elements for receiving the
data related to this data dependency. In such a situation we assume
that the data received is a data input object defined in the BPMN
model. In case of a DIRECT DATA TRANSMISSION no data types need to
be defined, because these are already described in the data provider’s
WSDL description. Finally, when the service provider sends INDIRECT
REQUESTS to its controller, the service provider’s WSDL description
also describes the interface that it expects to find in the controller for
sending these INDIRECT REQUESTS and hence also the types of messages
that are used in that interface.

Message elements The generation of these elements is similar to the gener-

ation of the types element that describes several message types.

Port type elements First of all the service provider’s WSDL description needs

a port type for receiving business requests. In case of an External Data
Dependency that is managed using an INDIRECT DATA TRANSMISSION
the service provider’s WSDL description should also define a port type
for receiving the data specified in the data dependency. As explained
in the generation of the types element, if the service provider sends
out INDIRECT REQUESTS to its controller, then the service provider’s
WSDL description also describes the interface that it expects to find in
the controller for sending these INDIRECT REQUESTS. This implies that
the port type for sending these INDIRECT REQUESTS is also defined in
the WSDL description. Finally, if the service provider needs to receive
task data ouput from other service providers, an appropriate port type
for receiving such data is also included. Note that only one port type,
having multiple operations, is defined when the service provider is
involved in multiple Data Output Input Associations.

Binding elements The generation of these elements is similar to the gen-

eration of the portType elements. For each port type generated an
appropriate document-based SOAP (W3C, 2000) binding is generated.

3Uniform Resource Identifier

CHAPTER 6. TOOL SUPPORT FOR PATTERN-BASED COORDINATION 145

Service elements The generation of these elements is also largely similar
to the generation of the port type and binding elements. However, in
case of an External Data Dependency managed using a DIRECT DATA
TRANSMISSION an additional service element is generated. This service
element defines a port associated to a binding that is defined in the
WSDL description of the data provider involved in the data dependency.

Partner Link Type elements The service provider’s WSDL description de-
fines partner link types for three purposes. First, a partner link type is
generated for the receival of business requests. Second, partner link
types for receiving task output data are generated if the service provider
is involved in a Data Output Input Association. Finally, if the service
provider sends out INDIRECT REQUESTS or receives data via INDIRECT
DATA TRANSMISSIONS a partner link type is generated to describe the
necessary interaction between the service provider and its controller.

Property and property alias elements The WSDL description of each ser-
vice provider defines a property that is used to correlate messages to
the right process instance. In case of External Data Dependencies that
are managed using DIRECT DATA TRANSMISSION an additional property
is defined to correlate data that is received to the right data dependency.
For each message that needs to be correlated a corresponding property
alias element is generated.

Generating a service provider’s BPEL process

A service provider’s BPEL process is constructed by generating the following
BPEL elements:

Import elements First of all a service provider’s BPEL process needs to im-
port its own WSDL description (see discussion above). Second, the
WSDL description for the event dispatcher needs to be imported so
that the BPEL process can send out business event notifications. Third,
if the service provider produces task data output, it needs to import
the WSDL descriptions of the COORDINATORS and service providers
that need this task data output. These needy COORDINATORS are in-
volved in an Output Input Association managed using an INDIRECT
DATA TRANSMISSION or a Decision Data Association, while the needy
service providers are involved in an OQutput Input Association using a
DIRECT DATA TRANSMISSION. Finally, if an External Data Dependency is
managed using a DIRECT REQUEST or a DIRECT DATA TRANSMISSION then
an import element is generated to import the data provider’s WSDL
description.

146 6.3. Pattern-based service composition and coordination

Partner Link elements If the service provider is involved in one or more
Output Input Association and needs task data output from one or more
service providers, then a partnerLink element needs to be generated.

Variable elements The BPEL process of every service provider should at
least define variables for storing the business request and preparing
the business event notification message. If the service provider pro-
duces task data output there are also variable elements generated for
the data messages sent to needy COORDINATORS and needy SERVICE
PROVIDERS. Finally, if the service provider is involved in an External
Data Dependency, appropriate variable elements need to be generated
for requesting and/or receiving data.

Correlation set elements The generation of these elements is similar to
the generation of property and propertyAlias elements in the service
provider’s WSDL description.

A sequence element The concrete process that is described in the BPEL
process consists of one sequence element. In this sequence element three
sequential BPEL activities are defined. The first BPEL activity in this
sequence element is a BPEL flow element which we refer to as the pre-
execution flow element. In this flow element for each task data output
that needs to be received a receive activity is defined. Furthermore, this
flow element includes another sequence element which we refer to as the
‘receive business request and manage external data dependencies’ sequence
element. As the name suggests, this sequence element consists of a receive
activity for receiving business requests followed by a flow element in
which for each External Data Dependency the required request and
receive actions are defined. The pre-execution flow element is followed
by the logic to execute the business process task (e.g. invoking another
Web service) and a so called post-execution flow element. In this last flow
element the business event notification is sent to the event dispatcher,
and any produced task data output is sent to the needy COORDINATORS
and needy SERVICE PROVIDERS.

Generating a COORDINATOR’s WSDL description

A COORDINATOR’s WSDL description is constructed by generating the follow-
ing WSDL elements:

Import elements A COORDINATOR’s WSDL description contains import el-
ements for every Decision Data Dependency the COORDINATOR is in-
volved in (i.e. importing the data provider’s WSDL description). Fur-

CHAPTER 6. TOOL SUPPORT FOR PATTERN-BASED COORDINATION 147

thermore, in case of an External Data Dependency between a business
process task controlled by the COORDINATOR and a data provider, that
is managed using an INDIRECT DATA TRANSMISSION, an additional im-
port element is generated for importing the data provider's WSDL
description. In such coordination scenarios the data provider’s WSDL
description is used in the definition of a service element for receiving
the data. If the External Data Dependency is managed using an ACTIVE
SERVICE PROVIDER with an INDIRECT REQUEST the service provider’s
WSDL description needs to be imported, because that WSDL description
describes the interface that the COORDINATOR should provide to receive
INDIRECT REQUESTS.

Types element The types element defines types for all business event notifica-
tions and task data output that are to be received by the COORDINATOR
(either because of an INDIRECT DATA TRANSMISSION in an Qutput Input
Association or because of a Decision Data Dependency).

Message elements The generation of these elements is similar to the types
element generation.

Port type elements In the COORDINATOR’s WSDL description one port type
is generated for receiving business event notifications. If the COOR-
DINATOR needs to receive task output data an additional port type is
generated (either because of an INDIRECT DATA TRANSMISSION in an
Output Input Association or because of a Decision Data Dependency).

Binding elements The generation of these elements is similar to the port
type elements generation.

Service elements In the WSDL description of every service provider a service
element for receiving business event notifications is generated. Fur-
thermore, if necessary, a service element is generated for receiving task
output data (i.e. similar to the generation of the port type element
for receiving task output data). For each Decision Data Dependency
in which the COORDINATOR is involved, a service element is generated
for receiving the data. Similarly, a service element is generated when
an External Data Dependency is managed using an INDIRECT DATA
TRANSMISSION. If the External Data Dependency is managed using an
ACTIVE SERVICE PROVIDER with an INDIRECT REQUEST the COORDINA-
TOR’s WSDL description should also define a service for receiving these
INDIRECT REQUESTS.

Partner Link Type elements The generation of these elements is similar to
the generation of the port type elements.

148 6.3. Pattern-based service composition and coordination

Property and property alias elements The WSDL description of each co-
ORDINATOR defines a property that is used to correlate messages to the
right process instance. In case of External Data Dependencies that are
managed using an INDIRECT DATA TRANSMISSION an additional property
is defined to correlate data that is received to the right data dependency.
For each message that needs to be correlated a corresponding property
alias element is generated.

Generating a COORDINATOR’s BPEL process

A COORDINATOR’s BPEL process is constructed by generating the following
BPEL elements:

Import elements First of all a COORDINATOR’s BPEL process needs to import
its own WSDL description (see discussion above). Second, a COORDI-
NATOR’s BPEL process needs to import the WSDL description of every
service provider the COORDINATOR controls. Furthermore, the WSDL
description of data providers from Decision Data Dependencies and
data providers from External Data Dependencies, that are managed
using ACTIVE SERVICE PROVIDERS with INDIRECT REQUESTS Or ACTIVE
SERVICE REQUESTERS or INDIRECT DATA TRANSMISSIONS, need to be
imported.

Partner link elements A COORDINATOR’s BPEL process typically defines mul-
tiple partner links. Every COORDINATOR needs at least partner links for
receiving business event notifications and sending business requests
to the service providers it controls. Furthermore, for every imported
data provider’s WSDL description, there is also a partner link related
to that data provider (see generation of import elements). In case the
COORDINATOR also needs to receive task data output from other service
providers, the BPEL process also contains an appropriate partner link
for doing so. Similarly, the BPEL process needs to define partner links
for forwarding task data output to a needy service provider. Finally,
if an External Data Dependency is managed using an INDIRECT DATA
TRANSMISSION Or an ACTIVE SERVICE PROVIDER with an INDIRECT RE-
QUEST, an additional partner link is generated to enable the data-related
interactions between the COORDINATOR and the service provider.

Variable elements First of all every COORDINATOR’s BPEL process should
have variables for storing business event notifications and business re-
quests. If the COORDINATOR is involved in a Decision Data Dependency
also variables for requesting and receiving the data required to make a

CHAPTER 6. TOOL SUPPORT FOR PATTERN-BASED COORDINATION 149

decision are generated. In case the COORDINATOR also needs to receive
task data output from other service providers, the BPEL process also
contains variables for storing such data. Similarly, the BPEL process
needs to define variables for forwarding such task data output to a
needy service provider. Finally, if the service provider is involved in an
External Data Dependency, appropriate variable elements need to be
generated for receiving data (i.e. in case of INDIRECT DATA TRANSMIS-
SION), receiving INDIRECT DATA REQUESTS, and sending data requests
(i.e. in case of an ACTIVE SERVICE REQUESTER or an ACTIVE SERVICE
PROVIDER with an INDIRECT REQUEST).

Correlation set elements The generation of these elements is similar to the
generation of property and propertyAlias elements in the COORDINATOR’S
WSDL description.

A flow element The concrete process that is described in the BPEL process
consists of one flow element. This flow element contains BPEL receive
activities for receiving both business event notifications and task data
output from other service providers. Using BPEL links these receive
activities are linked to specific controllers for each business process
task the COORDINATOR controls. These controllers are defined using se-
quence elements in which first potential Decision Data Dependencies are
managed (in a flow element) and then a business request is sent to the
service provider. Subsequently, potential External Data Dependencies
are managed (in a flow element).

Generating a BPEL-based event dispatcher

For the sake of simplicity we did not implement an advanced publish-
subscribe system for publishing and notifying business events among service
composition participants. However, we have implemented a relatively simple
BPEL-based event dispatcher.

This BPEL-based event dispatcher consists of a large flow element in
which for each business event a sequence is specified. Such a sequence element
contains a receive activity for receiving a business event notification and a
flow element in which the business event notification is sent to all interested
parties (i.e. COORDINATORS).

The generation of our BPEL-based event dispatcher directly uses the
BPMN model in which for each business process task it is calculated which
business event need to occur before that business process task can start its
execution.

150 6.4. Demonstration in a concrete example

As an alternative to the BPEL-based event dispatcher one could also
reuse existing Web services eventing specifications (e.g. WS-Events (Hewlett;
Packard, 2003)), WS-Eventing (W3C,|2006) or WS-Notification (OASIS, 2006b;
Niblett & Graham),|2005))) or approaches to integrate an SOA and an Event-
Driven Architecture (EDA) (Monsieur et al., |[2007; Juric, [2010]).

6.4 Demonstration in a concrete example

6.4.1 Sequence and data dependencies in the travel agency
example

The example discussed throughout this section is an extended version of the
introductory example described in Chapter [3] (see Section [3.1)). In particular,
it extends the travel agency example by adding several data dependencies.

Figure shows the adapted BPMN process for this example. The busi-
ness process starts with a data-based gateway which specifies that the business
process should continue with the processing of the customer’s travel request
only if the customer does not have any unpaid invoices. In case there are
still unpaid invoices, the customer should be notified and then the business
process ends. In order to decide on which path needs to be followed, an
overview on the unpaid invoices is required. In this example, we assume that
this information is available at the Finance Data Service.

Once a customer’s travel request is processed the business process contin-
ues with making all necessary bookings. Based on the processed customer
request it is decided whether or not a hotel, flight and/or car should be
booked. Furthermore, as specified in the BPMN model using unidirectional
associations between the ’processed customer request’ data object and the
booking tasks, the processed customer request contains all relevant informa-
tion required to make a hotel booking (e.g. desired number of stars, room
preferences, etc.), flight booking (e.g. destination, passport number, etc.) or
a car rental booking (e.g. driving license number, etc.).

When all bookings are successfully made, the business process continues
with the arrangement of an online payment. If the payment is done, the
payment is registered and the tickets are sent to the customer. As specified in
the BPMN model, a customer’s address is required to send the tickets to the
customer. In this example we assume that the customer’s address is available
at the Customer Data Service.

Based on this description we can identify four different types of data

CHAPTER 6. TOOL SUPPORT FOR PATTERN-BASED COORDINATION 151

s1durexs A>uade [9ABI} PIPULIXa 31 10J [9poW (BQT0Z| [DINO) NINAL V 49 2In31g

9DIAIRS BIB(IDWOISND
9 1k J[qe[IeAe ST 193[qo

SsaIppE BIBD SS2IPPE S IOWOISTD, AT, O fawosny
s JawoisnD Ao s9210AUT
predun
a1owr
10 3UQ

Ied yoog
Ied
B sjuem
Jawioisnd 03 Jawoisnd
$19Y21) pUas
31y
B sjuem

Juawked
Bl i}
a8uerry

1sonbax
$,I9UI0ISND
$53001d

I2WI03SND

Sad10AUT
predun
ON

Kemaied paseq-eiep sIy) ul pafepowr

SI JBY} UOISIDIP 93 e 03 paimbai st pue
9DIAIDS BIR(SOUBUIL] SY3 WOIJ PIASLII 9q UBD
193(qo eIERp SIDT0AUI PrRdUN UO MIIATIAO, Y],

JuswAed
1281394
SID10AUT
predun uo
P MIIAIAO
1sanbax
I9WO3ISTD
Passad0Id

19107 Yoog
P10y
B S)uEM

IawoIsn)

Aemared paseq-eiep Sy Ul pa[epowr
SI JeY3 UOISDIP 3Y3 Xew 03 pasmbax
s1ysel asanbai s owoisnd ssadoid,
9 WOIJ I[NS3I B ST YIYM 109[q0

BIERp Jsonbal 1awoisnd passadoid, ayL

152 6.4. Demonstration in a concrete example

dependencies in the business process:

1. Two Decision Data Dependencies: one between the Finance Data Service
and the ’notify customer’ task, and one between the Finance Data
Service and the ’process customer’s request’ task. Since BPMN does not
provide the appropriate language constructs, these data dependencies
are indicated in Figure by the annotation to the first data-based
gateway.

2. Three Decision Data Associations: the processed customer request is
required to decide whether or not the book hotel, book flight and
book car task needs to be executed. Since BPMN does not provide the
appropriate language constructs, these data dependencies are indicated
in Figure [6.4] by the annotation to the second data-based gateway.

3. Three Data Ouput Input Associations: the processed customer request
is required to execute the book hotel, book flight and book car task.
These data dependencies are shown in Figure |6.4| using BPMN data
output and data input associations.

4. One External Data Dependency between the Customer Data Service and
the ’send tickets to customer’ task, which describes that the customer’s
address is required to send the tickets to the customer. This data
dependency is partially modeled using the BPMN data input association.
An annotation to the data object is used to indicate that the data is
available at the Customer Data Service.

6.4.2 Specifying the input models
Representation of the sequence and data dependencies

We have modeled the business process described in the previous subsection
(Subsection [6.4.1)) in BPMN using Signavid®} a commercial web-based BPMN
modeling application that is built on the Oryx (Decker, Overdick, & Weske,
2008) open-source platform for modeling business processes. In Signavio
we exported the BPMN model to an XML format that after adding data
structureg’|is directly used as input for our toolf]

4http://www.signavio.com

5Data object structures are defined by first adding a itemDefinition element that refers to an
XML Schema (W3C,|2004) document, and then adding ItemSubjectRef attributes (which refer to
the itemDefinition elements) in the dataObject elements.

6This BPMN XML file can be downloaded from:
http://merode.econ.kuleuven.be/phd/monsieur/

CHAPTER 6. TOOL SUPPORT FOR PATTERN-BASED COORDINATION 153

The Decision Data Dependencies, Decision Data Associations and the
complete definition of the External Data Dependency, including the data
providers (i.e. the Finance Data Service and Customer Data Service) were
formally specified in an XML-based data dependencies model (as described

in Subsection of this chapter) (see Listing [6.12)).

<dd:dataDependenciesModel
xmlns:dd="http://servicecoordination.org/dataDependencies”
xmlns:xsi="http://www.w3.org/2001/XMLSchema—instance”
xsi:schemalLocation="http://servicecoordination.org/
dataDependencies.DataDependencies.xsd.”
bpmnLocation="travel_agency .bpmn”>

<dd:dataProviders>
<dd:dataProvider name="FinanceDataService” receiveOperationName=
“receiveData”
receiveRoleName="DataReceiver” requestOperationName="
requestData”
requestRoleName="DataProvider” wsdlLocation="
FinanceDataService . wsdl”
partnerLinkTypeName="FinanceDataProviderLink” id="
FinanceDataServiceld” />
<dd:dataProvider name="CustomerDataService” receiveOperationName
="receiveData”
receiveRoleName="DataReceiver” requestOperationName="
requestData”
requestRoleName="DataProvider” wsdlLocation="
CustomerDataService . wsdl”
partnerLinkTypeName="CustomerDataProviderLink” id="
CustomerDataServiceld” />
</dd:dataProviders>

<dd:dataDependencies>
<dd:decisionDataDependency bpmnTaskld="sid —AF13BF30—1281—43FC—93
DC—1BC1E7E11766”
dataProviderld="FinanceDataServiceld” name="
overview_unpaid_invoices—decides—notify_customer”
id="decisionDD1”/>
<dd:decisionDataDependency bpmnTaskld="sid —1EF2D490—69E2—466E—
A425—-40CCBADF84C0”
dataProviderld="FinanceDataServiceld” name="
overview_unpaid-invoices—decides—process_customer._request”
id="decisionDD2” />
<dd:externalDataDependency datalnputAssociationld="sid —5D2DCB82
—8F7D—4673—B78D—0CDA5B74F3DB” bpmnTaskId="sid —15FBD3B0—6C87
—45FF—A8C6—76FB1B6F5F1D”
dataProviderId="CustomerDataServiceld” name="
send_tickets_to_customer_requires_customer_address”
id="externalDD1”/>
</dd:dataDependencies>

<dd:dataAssociations>
<dd:decisionDataAssociation id="decisionDA1” sourceRef="sid

154 6.4. Demonstration in a concrete example

—40181B3E—04ED—4F1F—BEF6—9AFC96D5C23D” targetRef="sid —8
E812A04—5457—42E3—A860—6357FCB374C6” />
<dd:decisionDataAssociation id="decisionDA2” sourceRef="sid
—40181B3E—04ED—4F1F—BEF6—9AFC96D5C23D” targetRef="sid—
CE833A54—8CEA—4C17—89DF—822FDDBOD4CB” />
<dd:decisionDataAssociation id="decisionDA3” sourceRef="sid
—40181B3E—04ED—4F1F—BEF6—9AFC96D5C23D” targetRef="sid—
D63246E4—15DD—4555—B579—E9DECC8AC3F7” />
</dd:dataAssociations>
</dd:dataDependenciesModel>
Listing 6.12: An XML-based data dependencies model for the travel agency

example

Representation of the coordination model

The choice of patterns for managing the sequence and data dependencies
in the travel agency example was specified in an XML-based coordination
model (as described in Subsection [6.2.3]of this chapter) (see Listing[6.13).
The aim of this example is not to find an optimized coordination scenario,
but the example is supposed to show that using the pattern languages for
managing sequence and data dependencies complete coordination scenar-
ios can be automatically generated. Therefore, we more or less randomly
choose patterns for managing the dependencies, resulting in the following
coordination model:

Sequence dependencies management We choose to manage the sequence
dependencies in the travel agency example using three COORDINATORS.
A first COORDINATOR, named the COORDINATING CUSTOMER SERVICE,
controls two tasks: ’process customer’s request’ and ’send tickets to
customer’. A second COORDINATOR, named the booking COORDINATOR,
controls the three booking tasks. This pattern could, for instance, be
useful because the three controllers for the three booking tasks all
need to react to the same business event (i.e. the customer’s request is
processed). Furthermore, the controllers all use the processed customer
request’ data object in order to decide whether a booking should be
made. The third COORDINATOR, referred to as the COORDINATING
FINANCE SERVICE controls three tasks: 'notify customer’, ’arrange online
payment’ and 'register payment’.

External Data Dependency management We decided to manage the Ex-
ternal Data Dependency between the Customer Data Service and the
’send tickets to customer’ task using an ACTIVE SERVICE REQUESTER
with a DIRECT DATA TRANSMISSION. This means that the COORDINATING

CHAPTER 6. TOOL SUPPORT FOR PATTERN-BASED COORDINATION 155

CUSTOMER SERVICE is responsible for requesting the Customer Data
Service, and the Mail Service (i.e. the service that supports the ’send
tickets to customer’ task) receives the customer’s address directly from
the Customer Data Service.

Data Ouput Input Associations management The ’processed customer re-
quest’ is required to execute the book hotel, book flight and book car
task. All three Data Output Input Associations were managed using
an INDIRECT DATA TRANSMISSION so that the service provider respon-
sible for processing the customer request (e.g. the customer service)
only needs to send the ’process customer request’ once to the booking
COORDINATOR.

Listing [6.13] shows how this coordination model was specified in XML.

<cm:coordinationModel xmlns:cm="http://servicecoordination.org/
coordinationModel” xmlns:xsi="http://www.w3.o0rg/2001/XMLSchema—
instance” xsi:schemalocation="http://servicecoordination.org/
coordinationModel._.coordinationModel . xsd”>
<cm:sequenceDependenciesManagement
bpmnModel="travel _agency .bpmn”>
<cm:coordinator name=”"coordinating_customer_service”>
<!— process customer request —>
<cm:bpmnTaskId>sid —1EF2D490—69E2 —466E—A425—40CCBADF84C0</
cm:bpmnTaskId>
<!— send tickets to customer —>
<cm:bpmnTaskId>sid —15FBD3B0—6C87—45FF—A8C6—76FB1B6F5F1D</
cm:bpmnTaskId>
</cm:coordinator>
<cm:coordinator name="booking_coordinator”>
<!— book hotel —>
<cm:bpmnTaskId>sid —8E812A04—5457—42E3—A860—6357FCB374C6</
cm:bpmnTaskId>
<!— book flight —>
<cm:bpmnTaskld>sid —CE833A54—8CEA—4C17—89DF—822FDDB0OD4CB</
cm:bpmnTaskId>
<!— book car —>
<cm:bpmnTaskId>sid —D63246E4—15DD—4555—B579—E9DECC8AC3F7</
cm:bpmnTaskId>
</cm:coordinator>
<cm:coordinator name="coordinating_finance_service”>
<!— notify customer —>
<cm:bpmnTaskId>sid —AF13BF30—1281—43FC—93DC—1BC1E7E11766</
cm:bpmnTaskId>
<!— arrange online payment —>
<cm:bpmnTaskId>sid —E372E8A5—00D1—-4723—8E47—0A85C8BE7ABO</
cm:bpmnTaskId>
<!— register payment —>
<cm:bpmnTaskld>sid —E7EC9268—5F89—4AA4—A0E2—0D662690F356</
cm:bpmnTaskId>
</cm:coordinator>

156 6.4. Demonstration in a concrete example

</cm:sequenceDependenciesManagement>
<cm:dataDependenciesManagement dataDependenciesModel="
ddmodel_travel_agency .xml”>
<cm:dataDependencyManagement dataDependencyld="externalDD1”
pattern="
active_service_requester_with _direct_data_transmission” />
<cm:dataOutputIsDatalnputManagement outputAssociationId="sid
—0027000C—BAC9—4F96—8B62—39C3847D2FAE” inputAssociationId="
sid —414F33D7—55F0—4A47—8038—6FFCF52AF81A” pattern="
indirect_data_transmission” id="DOIDIM1”/>
<cm:dataOutputIsDatalnputManagement outputAssociationId="sid
—0027000C-BAC9—4F96—8B62—39C3847D2FAE” inputAssociationId="
sid —76194C29—4F71—-4534—8F62—E70B8CB5A272” pattern="
indirect_data_transmission” id="DOIDIM2” />
<cm:dataOutputIsDatalnputManagement outputAssociationld="sid
—0027000C-BAC9—4F96—8B62—39C3847D2FAE” inputAssociationId="
sid —25A06256—C6B6—4C5F—BB1A—3E240D6E1898” pattern="
indirect_data_transmission” id="DOIDIM3” />
</cm:dataDependenciesManagement>
</cm:coordinationModel>

Listing 6.13: An XML-based coordination model for the travel agency example

6.4.3 The generated BPEL and WSDL files

Based on the input models our tool generated 12 BPEL processes and 12
WSDL descriptions. More specifically, one BPEL process and correspond-
ing WSDL description was generated per business process task. For each
COORDINATOR the tool generated also one BPEL process and one correspond-
ing WSDL description. Finally, a BPEL process and WSDL description were
generated for the BPEL-based event dispatcher.

In this section we only present visual representations of a limited set of
generated BPEL processesﬂ In particular, we show how the generated BPEL
processes deal with the different types of data dependencies that are present
in the travel agency example.

The visual representations were generated using the Eclipse BPEL De-

signerf]| (uric, 2006).

7All generated BPEL and WSDL files can be downloaded from:
http://merode.econ.kuleuven.be/phd/monsieur/
8http://www.eclipse.org/bpel

CHAPTER 6. TOOL SUPPORT FOR PATTERN-BASED COORDINATION 157

BPEL process for COORDINATING CUSTOMER SERVICE

In Figure [6.5|a visual representation of the BPEL process for the COORDINAT-
ING CUSTOMER SERVICE is shown. One can clearly see that the COORDINATING
CUSTOMER SERVICE controls two business process tasks: ’process customer
request’ and ’send tickets to customer’.

The controller for ’process customer request’ manages the Decision Data
Dependency by first sending a data request to the Finance Data Received.
Subsequently this controller receives the information about unpaid invoices
and then can decide if it needs to send the business request to the service
supporting the ’process customer request’ task.

The External Data Dependency between ’send tickets to customer’ and
the Customer Data Service is managed using an ACTIVE SERVICE REQUESTER
and an INDIRECT DATA TRANSMISSION. As a consequence in the BPEL process
shown in Figure the controller for ’send tickets to customer’ first sends
a business request to the mail service and then sends a data request to the
Customer Data Service.

BPEL process for the service supporting the ’process customer request’
task

In Figure a visual representation of the BPEL process for the service
provider supporting the ’process customer request’ task is shown.

The BPEL process shown in Figure shows that the data output of
process customer request’ is sent to the booking COORDINATOR. The BPEL
process of the booking COORDINATOR is discussed below.

’.

BPEL process for the booking COORDINATOR

In Figure [6.7| a visual representation of the BPEL process for the booking
COORDINATOR is shown. One can clearly see that the booking COORDINATOR
controls the three booking tasks. When the booking COORDINATOR receives a
business event notification describing that a customer request is processed,
the COORDINATOR decides whether or not a specific booking needs to be
made. This decision is made using the ’processed customer request’ that
is also received by the booking COORDINATOR. In parallel, the booking
COORDINATOR also forwards the ’processed customer request’ to the booking
services.

Although the Eclipse BPEL designer does not succeed in representing all

6.4. Demonstration in a concrete example

158

HDIAYES YHNOLSND DNILVNIAH00D 9y 105 ss9001d (£00¢2| [SISYO) TAdd 9y3 Jo uoneiussaidal [ensiA ¥ :5'9 21nd1g

= =]

H 1sanbar” JawoysnaTss3000d Joy sanbauTssausng puss % _

H 152nDa RW0YSNTT 5530004 0y 353n03S ssausng suedsad mg

=)
H S53U0NET ISW0YSNTT 53INbS T ISWoIST 01T 51300 puSs oy 1s3nbs) %H
=]
H S53.ppeT RW0ISNI 53UNbai™ JBWaIsnyT 0y s} T puss Joy isanbalTelep uedaud =5 g ﬁ 153nba T RW0ISNI T 55320.0-53p03p-Sa010AUT pledun wMalnaAg oy [BARI) _w _
El = = — - —
S2NDa J3W0YSNT $5320.0-52P03P-S300AUT PIRAUMNT M3IAISAT IOy 3S3ND3)
ﬁ S52UpPET JAW0ISNTT s2UNDA T ISWolSNT 03T SN T puas m _ ﬁ g =5 il g e %H

H 153nba. B sNTT 5530040-33p0ap- 33010 AUT pledunT MBI SATT Iy 1sanba T eep” suedsad mi

— JBWESNTT 01 5130 T pUSS Iy 15anbaiTss3UIsNg T puss % _
Fl
H 153M0307 J3WOISNT 5533040 53P03P-5300AUT Hedur MaIAISAD m g

H JaWeysnT 0y s1pR puUas Joy 3sanbasTssauisng suedsid m_

El El

— 13|00 UG- IBWaYENTT 0 SIS pUSS M _ ﬁ 130 uns-153nba TS snTT 553004 m _
H UaAT p13|dwoT IusWARd SU UG SBUS LY SARIS @ _ H UBAST pRISdWoTTIUSAST 1SS SAIRIS) @ _

CHAPTER 6. TOOL SUPPORT FOR PATTERN-BASED COORDINATION 159

yse3 asenbar rowoisnd
ssaoo1d, a1 3unroddns 1apraoiad ad1a19s a3 10§ ssad01d (£007| [SISYO) Tadd 941 Jo uonejuasaidal [ensia ¥ :9°g ain31g

(=]
(=] (=]
3s2nbai” J2weysny” passanold puss % uoneIynouTIUSAST pUas hv
Jopeuipood” Bunoog oy 35snbal swosna” pesssooud o Bupuss suedsud = uonelynonuEAs suedsud =
El El
JoyeulpIo0T Bupooq 0y 3sanbaijswoysnd passanosd o Bupuss = UOREIYRONGUBAD B

sonasstuBboT =8onu ﬁv

BuiBbo] suedud =

=}

UORNI3xE 15=NDal JBW0)snDT 5530044 153nbal 3aE03) @

El
ssnuspusdad s1eq eusmxg sbeusp purTisanbay T ssaUISNG SAE0EY =

El
2ousnbag =

L

160 6.4. Demonstration in a concrete example

BPEL links in a very clear way, one should be able to see that a ’processed
customer request’ is sent to the booking service only if the ’processed customer
request’ is received. Similarly, the BPEL links are organized in a way that
the BPEL sequence for the controller of a booking task is only started when
both the ’processed customer request’ is received and the event notification
’process customer request completed’ is received.

BPEL process for the service supporting the ’book flight’ task

In Figure a visual representation of the BPEL process for the service
provider supporting the ’book flight’ task is shown.

The BPEL process represented in Figure shows that the flight booking
(i.e. the logging activity) is only made when both a business request and a
’processed customer request’ is received (i.e. management of the Data Output
Input Association).

6.4.4 Testing generated BPEL processes

In order to test the correctness of the generated BPEL processes we deployed
several test examples, including the example described in this section, to a
BPEL engine.

It should be noted that today’s BPEL engines do not always completely sup-
port the BPEL specification. For example, the BPEL engine by Sun, currently
does not provide support for BPEL links (Jennings & Salter, 2008)). However,
we intensively use BPEL links in our generated BPEL processes (i.e. to link
business event notifications to controllers), which makes it impossible to test
our generated BPEL processes in the BPEL Engine by Sun. Another issue that
we discovered was the combination of the createlnstance=yes attribute and
the correlation attribute initiate=join to indicate that a new BPEL instance
needs to be created only if the message received cannot be correlated to an
existing BPEL instance. This combination is also frequently used throughout
our generated code (e.g. for correlating several business event notifications
to the same business process in a COORDINATOR). However, although this is
also legal BPEL 2.0 code, it is, for instance, not supported by the Apache ODE
Engine.

Generated BPEL processes were successfully tested using the OW2 Or-
chestra BPEL engineﬂ All BPEL processes were always deployed to the same
BPEL engine running on a single machine. In a real-life business setting

http://orchestra.ow2.org/

YOIVNIQY00D Sunjooq a3 10§ ssa00id (007 [SISYO) Tadd 9y jo uoneiuasaidal [ensiA V /9 21n31]

=)

J0MIIS Jed 008 0y 3s3nbal aweysnd passanoid puss %v

DAIBS JeTTy00g 01 3sanbas T JawolsnIT passanoud o BupuasTauedaud =5

El
32AJ35” BT yo0g 01 3s3nbal Jawoysny passanoud o Duipuas 2
7~
=

MBS |30y jood 01 15anba T Iswo i passsaoud puss %
TOWIBS [RR0LH00g 0y 353nbaJJsweysno pagssoosd Jo bupuss suedsud
El

30113 B0y jo0g 0y 1sanbal T Bwo SNy [passatoud jo Bulpuas =2
7%

=]
18T 400g I 3SIN0SS SSIUISNG pUSS %v
Jeayood oy Tisanbasssausng suedaud =5

El
J3oquo- BT Yoog =

=
[FoLyoog My TIsenbal T ssausng T puss %v

|10y oog Joy1sanbaissausng uedsud =5

=
sajofuc-Royyoos

=]

aUas JyBI yoog 01 153nbas Uswolsnd passsao|d puss %v

FoWJTS DIy H00g 0y 353NDaS ISWoysnDT passs00sd J0 Dapues seeuean

=)

1By 3oog sy isenbas ssauwsng puss mmv

El
anuEsTyBIT Y00 01 1saNbal T UsWwolsnsT passsaoud JoT Bupuss 2
e

4By o0g Joy y{anbai ssauisng Ruedaud =5

El
s3ouos-by oo B
Foy

2P 152NDaS ISW0snT passIo0sd SAEIR) @

U34S pR13|dWaT 153nba0 ISWaSNT S530004 S350 @

CHAPTER 6. TOOL SUPPORT FOR PATTERN-BASED COORDINATION 161

6.4. Demonstration in a concrete example

162

yse1 131y

yooq, a3 3unioddns 1apraoxd a01a19s a3 10§ ssad01d (£00Z| [SISYO) Tadd 2U3 Jo uoneiuasaidal [ensia y :8°9 21n3ig

@

[

(=
UoneEIYIoUTILRATT pLRS %v
uoneayorpusas ssedsud =

El
uogenygopuana B

SoinRsiubboT =oau ﬁv

Buibbo] aJedaud =

|eAR03015anbas Bwoysno passanoud @

(=]

uonnaaxa IybiyTo0g 1sanba aMa0a) @

Bl
sapuspuadag eled (eusmixd abeusly puy1sanbay ssauisng aaR0aY =

El =
Folanbag =

@

CHAPTER 6. TOOL SUPPORT FOR PATTERN-BASED COORDINATION 163

typically services are running on different machines, sometimes in different
BPEL engines and perhaps even in different locations or companies. However,
by simply changing the port locations in the generated WSDL files the BPEL
processes can be easily deployed to different engines in different locations, if
desired.

To facilitate the test process, we mostly generated additional BPEL ac-
tivities that invoke a Web service that simply logged all received messages.
As such we could easily log when, for instance, a business process task was
supposed to start in a service provider.

6.5 Conclusion

In this chapter we have shown that it is possible to automatically generated
coordination scenarios from business process specifications by letting devel-
opers pick specific patterns for dependencies management. We developed
a tool for this generation, which was described in Section The input
for this tool consists of three elements. A first input element is a BPMN
(OMG]/, 2010a) model (serialized in XML) specifying the business process that
needs to be implemented. This BPMN model typically specifies all sequence
dependencies and those data dependencies that can be defined using BPMN
(see Section in Chapter [2]and Subsection in this chapter for more
details on representing data dependencies in BPMN). Other data dependen-
cies are defined in a separate XML file, named the data dependencies model,
which forms the second input element. The third input element is another
XML file, which is referred to as the coordination model and specifies the
choice of patterns for dependencies management that will be used for gener-
ating the desired coordination scenario. Based on these three elements the
tool generates a complete coordination scenario in the form of several BPEL
(OASIS| |2007) processes.

In Section [6.4] the tool for generating coordination scenarios was demon-
strated using a travel agency example.

We must all take time to do enough think-
ing to formulate our own conclusions

— Thomas John Watson, Sr.
(1874-1956),

Former president of International
Business Machines (IBM)

Conclusions

In this chapter we summarize the thesis and its contributions by evaluating
the research objectives (see Section [7.1). We also discuss limitations and
issues for further research (see Section[7.2)).

7.1 Research objectives evaluation

In general, the solution described in this thesis consists of three main parts: a
pattern language for managing sequence dependencies, a pattern language
for managing data dependencies and a tool for pattern-based coordination.
In this section we describe why this solution answers the research questions
that we posed in Chapter [I| (see Section[1.2]). We show this by evaluating
the three research objectives that we formulated in Chapter [I] (see Section
and which were directly derived from the research questions. Figure
gives a high-level view on the relationship between the solution presented
in this dissertation and the research goals, research questions and research
objectives.

The first research objective described that our solution should entail a
set of fundamental building blocks for coordination logic. As explained in our
research methodology (see Section , we followed the coordination defini-
tion by Malone and Crowston| (1994)), who define coordination as managing
dependencies between activities. In Chapter [2] we motivated why we further
decomposed the service coordination problem into managing both sequence
and data dependencies. In Chapter [3|and[4 we proposed a pattern language for
managing sequence dependencies and data dependencies, respectively. The

165

166 7.1. Research objectives evaluation

RESEARCH GOAL
Addressing the lack of rigourous and systematic guidelines on
how to design appropriate coordination logic

Research Question 1 Research Question 2

What are fundamental What are design
building blocks for guidelines for
coordination logic? coordination logic?

! \
i :
'
i Building blocks allow Building blocks make it Design guidelines 1
i one to compose every possible to automate the support developers 1
| possible coordination construction of during the design of 1
| scenario coordination logic coordination logic 1
s 1
i
| Research Objectives E
! 1
s '
i :
! Chapter 6 E
| '
s 1
| Tool for pattern-based coordination i
] 1
: :
! 1
! 1
! 1
: ié} :
! i
s 1
! 1
i :
! Chapter 5 9
! i
i . '
i Combining both pattern languages !
'
i Chapter 3 Chapter 4 1
) : '
i Patterns for sequence : Patterns for data 1 1
! _dependencies management : : dependencies management : q
: :
'
i :
! Key research challenges addressed E
i :
i Precise No ad-hoc Increased E
| translation design reuse !
i :
) Less complex Tool support E
.]
I
! i
i :
! SOLUTION ;

‘Research Objective’ = testable objective derived from ‘Research Question’

<):‘[> [Solution component] accomplishes [research objective]

Figure 7.1: The relationship between the solution and our research goal,
research questions and research objectives

CHAPTER 7. CONCLUSIONS 167

patterns in both pattern languages form the building blocks for coordination
logic.

Based on the pattern-based building blocks we aimed to semi-automate
the construction of a coordination scenario by letting developers pick spe-
cific patterns for dependencies management and automatically generate a
complete coordination scenario from a business process specification. We
developed a tool for achieving this aim, which was presented in Chapter[6]
The input for this tool consists of three elements. A first input element is
a BPMN (OMG, 2010a) model (serialized in XML) specifying the business
process that needs to be implemented. This BPMN model typically specifies
all sequence dependencies and those data dependencies that can be defined
using BPMN (see Section in Chapter [2]and Chapter [f] for more details).
Other data dependencies are defined in a separate XML file, which forms the
second input element. The third input element is another XML file, which
specifies the choice of patterns for dependencies management that will be
used for generating the desired coordination scenario.

Based on these three elements the tool generates a complete coordination
scenario. In other words, thanks to the pattern languages the tool offers a
precise translation between business process design and implementation.
This coordination scenario consists of a set of BPEL (OASIS| |2007) processes.
Although the tool is limited to generating coordination scenarios specified
in BPEL, this does not have to be a downside for two important reasons.
First, BPEL is the most widely used standard for specifying Web service
orchestrations. Second, although BPEL originally only was developed for
specifying Web service orchestrations, in the upcoming standard Service
Component Architecture (Open SOA Collaboration, 2007) BPEL plays the role
of the de facto standard language to combine several components into a
composite application, regardless of the underlying technology used in the
different components (e.g. Java Message Service (JMS), SOAP Web service,
Enterprise Java Beans (EJBs)) (Edwards, |2007).

The successful implementation of the tool described above proves the
value of the pattern languages presented in this dissertation. It shows that
the patterns can be used as building blocks for coordination logic and hence
form the basis for a development tool that supports service composers by
facilitating or even automating the coordination challenges associated with
service composition.

The second research objective focused on the different ways in which
the building blocks or the patterns can be combined. More specifically, we
aimed to construct every potential coordination scenario using the patterns.
In Subsection [3.4.2]in Chapter [3| we first showed that every interaction in a

168 7.1. Research objectives evaluation

service composition can be composed by the patterns described for managing
sequence dependencies. Subsequently, we demonstrated that the pattern
language is also compatible with coordination styles such as centralized
or decentralized coordination. Together with our detailed discussion on
orchestration and choreography in Chapter [2] (see Section [2.2)), that gives
service composers more insight into designing coordination logic and hence
potentially reduces the complexity of message-based service compositions. In
Section [4.5] of Chapter [4 we showed that all potential coordination scenarios
for managing a data dependency can be composed by combining the patterns
that were presented in that chapter. For this completeness confirmation of
our pattern language, we declaratively specified what a coordination scenario
should accomplish and in which message exchanges a service requester,
service provider and data provider can be involved. For example, it is easy
to understand that in every coordination scenario the service provider must
receive data from another entity. All conditions that should be met by a
coordination scenario were specified in Prolog, so that an execution of the
Prolog program (i.e. a query that calculates or derives all solutions) lists
all possible coordination scenarios. As such it turned out that the list of
all possible coordination scenarios exactly matches the set of coordination
scenarios that can be composed by combining our patterns.

The fact that the pattern languages presented in this dissertation are
complete (i.e. every possible coordination scenario to manage sequence
and data dependencies can be composed from the patterns), has important
consequences for the way coordination logic is constructed in the future. In
the past researchers argued that an over-emphasis on service interactions
is at the expense of other aspects like business goals (Ko, Lee, & Lee, |2009;
Koubarakis & Plexousakis, [1999; |Andersson, Bider, Johannesson, & Perjons),
2005)). However, since all potential coordination scenarios can be composed
from the patterns, it makes no sense anymore to spend expensive time design-
ing coordination scenarios at the level of service interactions and message
exchanges. In other words, the design and construction of coordination logic
becomes less complex. The use of the pattern language raises the abstrac-
tion level and in line with the principles of the Model-Driven Architecture
(Kleppe, Warmer, & Bast, [2003) contributes to an efficient (e.g. automatically
generated coordination scenarios) and effective (e.g. less errors and more
consistency) development of service composition. Furthermore, developers
do not need to repeatedly implement the same implementation patterns,
resulting in an increased reuse.

In the third research objective we expected that our solution (i.e. the
two pattern languages) guides developers to choose and combine the build-
ing blocks in a way that an optimized coordination scenario is composed.

CHAPTER 7. CONCLUSIONS 169

Therefore, for each pattern we identified the consequences (e.g. with respect
to loose coupling or data confidentiality) so that service composers can select
patterns on the basis of these consequences and their requirements. Based on
these consequences we have presented concrete guidelines on how to com-
bine the patterns to compose coordination scenarios (see Subsection [3.3.1]in
Chapter [3|and Subsection in Chapter [4). Furthermore, we have applied
the patterns and guidelines for managing sequence dependencies to the basic
control flow patterns (Van der Aalst et al., [2003) (see Subsection. The
patterns and guidelines for data dependencies management were applied in
both a fictive and real-life business case to construct an optimized coordina-
tion scenario (see Subsections and in Chapter[4). Thanks to the
design guidelines it can be more easily avoided that service composition
and coordination are performed in an ad-hoc fashion.

7.2 Limitations and issues for future research

Throughout this thesis we mentioned several assumptions that we made in
the course of our research. For example, when we discussed the different
types of dependencies that can occur in service compositions, we emphasized
the way we defined a data dependency. More specifically, it is important to
know that we defined a data dependency between two services as a situation
in which one service needs data from second service, without the need for
blocking the data in the first service (see Section [2.1] in Chapter [2). In
case data needs to be blocked and cannot be read and/or changed by other
services, coordination scenarios would become even more complex. However,
this is considered to be another research problem that needs to be addressed
by future research.

Another assumption was described in the context of the patterns for
managing sequence dependencies (see Section[3.2.1)). In particular we made
the assumption that business events are generated and published by service
providers and notifications of these events are disseminated by so called
business event dispatchers. However, possibly service providers not always
publish all relevant business events. In such cases, additional patterns (e.g.
event listeners, polling patterns, etc.) could be useful to request business
event information from service providers.

In the rest of this section we discuss several other assumptions, limitations
and issues for future research that were not mentioned earlier in this thesis.

170 7.2. Limitations and issues for future research

7.2.1 Sequence versus action dependencies

When using the pattern language for managing sequence dependencies (see
Chapter [3) business process tasks are triggered by sending so called business
or service requests to a service provider that supports the execution of that
task. These requests are sent when the controller has received all necessary
business event notifications. For instance, in case of a SYNCHRONIZATION
(Van der Aalst et al.l 2003) this means that the controller needs to receive
several business event notifications that indicate that all tasks before the
parallel gateway are completed successfully. Once all relevant event notifi-
cations are received, the controller triggers the business task by sending a
business request to the service provider. Hence, the sequence dependencies
are considered as some kind of trigger or action dependencies, which means
that tasks need to be triggered directly after a specified set of events occurred.

However, in reality, business process tasks do not always need to be
triggered when previous business process task are completed. For instance,
widely-used business process management suites (Mgller, Maack, & Tan,
2008)) (e.g. Oracle BPM Suite (Jellema & Dikmans), [2010]), IBM WebSphere
Process Server (Iyengar et al., |2007), JBoss jBPM (Cumberlidge, 2007))
often provide task inboxes to end-users. Such inboxes list all tasks that an
end-user or employee is responsible for. Typically, tasks enter these inboxes
when previous business process tasks are completed. Then it is up to the
end-user to decide when he or she should start the task execution. Moreover,
additional preconditions for starting the task execution might be present
and need to be checked by the controller. That would mean that the event
notifications are necessary but not sufficient for triggering tasks. In line with
this idea is the use of event-condition-action rules. This kind of rules originated
in active database systems (Paton & Diaz, 1999) but has also its place in
workflow management systems (Lu & Sadiq, /2007 Kappel, Rausch-Schott, &
Retschitzegger, |1998)).

Hence, more research is needed to implement the event-condition-action
principle in the coordination patterns and to make a better distinction be-
tween sequence and trigger or action dependencies. Nevertheless, the pat-
terns presented in this thesis provide a fundamental basis for this extension.
First of all the idea of event-condition-action rules can be relatively easy
implemented by assuming that checking preconditions is modeled as a sepa-
rated business task (as shown in the SEQUENCE (Van der Aalst et al., [2003)
example in Figure[7.2). However, this is probably not the most appropriate
solution because this increases the complexity of the business process model
and business analysts prefer to hide such execution details (Dreiling, Rose{
mann, Van der Aalst, & Sadiq, |2008). Second, assuming that there exists

CHAPTER 7. CONCLUSIONS 171

Preconditions for starting
business task 2 execution
modeled as conditional
flow between the two
business tasks

Business Task 1 (> Business Task 2

Separate task for checking
preconditions for starting
business task 2 execution

Checking
preconditions for
business task 2

Business Task 2

Business Task 1

Figure 7.2: Modeling preconditions in a SEQUENCE (Van der Aalst et al.,
2003)

a way of checking preconditions by consuming a certain service, checking
preconditions can be modeled as an additional data dependency. Indeed, the
controller needs that data (i.e. the result of checking preconditions) in order
to decide when and if it should start the task execution by sending a business
request to a service provider. In that way, the event-condition-action principle
is already (partially) implemented, because data requirements for deciding
on a task execution are included in our demonstration (see Subsection|5.1|in

Chapter [4).

Ultimately, checking if all relevant events have occurred and all (other)
preconditions are met for triggering a task execution can be completely
separated from the entity that triggers tasks, resulting in a STATELESS PROCESS
ENACTMENT (Haesen et al.,|2007). While the controllers as defined in Chapter
[B|hold some process state in the form of received business event notifications,
in STATELESS PROCESS ENACTMENT the state of a process is derived from the
state of the business objects and the triggering and completion of activities
is derived from the state of business objects (Haesen, Snoeck, Lemahieu|
& Poelmans, |2009). Future research should study how STATELESS PROCESS
ENACTMENT can be integrated with the coordination patterns presented in
this thesis.

172 7.2. Limitations and issues for future research

7.2.2 Extending the execution model

As every pattern the patterns for managing sequence dependencies provide a
solution to a problem (i.e. managing sequence dependencies) in a certain
context. In Subsection of Chapter [3] we have described the context
in which our patterns can be applied. In this context we stated that the
execution of business process task can be started by sending a business or
service request to a service provider supporting that task. Throughout this
thesis we assumed that once a controller sends a request to a service provider,
the latter service successfully starts and eventually completes the execution of
the business process task. Hence, there needs to be a contract or agreement
with the service provider that specifies what a controller can expect from the
service provider (e.g. specifying preconditions, postconditions, invariants
and nonfunctional requirements (Jones,|2005))). In practice, this means that
a controller needs to be able to deal with errors or unexpected behavior
that can occur during the task execution. Furthermore, a business process
can specify compensation tasks that need to be triggered in case of concrete
failures. It should also mentioned that a failure is not always defined in an
unique way. What could be successful for a service provider, could perhaps be
not sufficient for a service consumer (e.g. a service consumer possibly desires
a higher level of quality). This all creates new coordination challenges for
coordination patterns. In fact, this all comes down to managing additional
dependencies. For example, as discussed in the chapter on related work
Bhiri et al.| (2005) have described several transactional dependencies, e.g.
compensation, cancellation, etc. dependencies (see Section [2.1]in Chapter
[2). Similarly, BPMN (OMG, [2010a)) offers modeling constructs for exception
handling, transactions, and compensation. Applied to the patterns presented
in this thesis this means that future patterns need to deal with several new
types of business events (e.g. an event indicating a task execution failure)
and several types of service requests (e.g. a request to compensate a task).

In Figure a transaction is represented using BPMN (OMG, [2010a)).
The transaction, which is based on the introductory example presented in
Chapter [3] (see Section [3.1]), consists of three parallel tasks: book hotel, book
car rental and book flight. If one or more bookings fail, all other bookings
need to be compensated using the corresponding compensating tasks.

Since the compensation controller of the hotel booking service and the
compensation controller of the flight booking service both need event infor-
mation about the errors during the car rental booking, it is useful to create
one coordinator that is the compensation controller of both the hotel booking
service and flight booking service. This means that the hotel booking service
and flight booking service are controlled by a COORDINATOR. In a similar

CHAPTER 7. CONCLUSIONS 173

Book hotel

Compensate
hotel booking

«

Book car
rental

| Compensate
e car rental
booking
«

Compensate
hotel booking

«

Figure 7.3: BPMN (OMG, 2010a) representation of transaction consisting of
hotel, car rental and flight booking tasks and corresponding compensating
tasks

way, one can argue that it is useful to have one compensation coordinator
for the car rental booking service and flight booking service. Hence, in order
to minimize the complexity of the coordination scenario (i.e. minimizing
the event communication) it is preferable to combine all compensation con-
trollers. Figure[7.5]shows such a coordination scenario using an INDEPENDENT
COORDINATOR, while Figure shows a more complex coordination scenario
using three INDEPENDENT CONTROLLERS. The dashed arrows represent event
information transfers, while solid arrows denote service requests. In Figure
(simple and optimized) and Figure[7.6] (complex) BPMN (OMG) 2010a)
representations of these scenarios are shown.

7.2.3 Time dimensions in data dependencies management

An important limitation of our pattern language for managing data depen-
dencies is the absence of a time dimension. The patterns can be applied
both before and after a service request is sent to a service provider. However,
this time-related aspect potentially influences other forces (e.g. data can
be out-of-date). In our opinion, including this time dimension would have

174 7.2. Limitations and issues for future research

Controller
compensate
hotel
booking

Controller
compensate
car rental
booking

Controller
compensate
flight

booking

Compensate

Compensate
request

request

Compensate
request

Flight
Booking
Service

Booking
Service

Booking
Service

Figure 7.4: Simplified representation of complex transaction coordination

Coordinator
(compensate hotel, car rental, flight
booking)
e @ @ Business Event:
. Flight booking failed
Business Event: Compensate Compensate Compensate
Hotel booking failed request

request

request

Car Rental
Booking
Service

@ Business Event:
Car rental booking failed

©)

©)

Figure 7.5: Simplified representation of simple (optimized) transaction coor-
dination

175

CHAPTER 7. CONCLUSIONS

UONBUIPI00d uondesuesl xa[dwod jo uonejussaidal (BQ10g/ [DINO) NINAG :9°Z 21n81g

= 0= 23% F—
T &o H 55800 23 oo

I3 Sunjooq E3E8S 8805 §
Sunjooq yS1Yy =] . 2R EE 5 Sunjooq P10y cages
i g£23w3 Teuay 18 LT b FEEE
aresuadwon §8288 2088 nesuaduion g§2=288
S2RSE uadwon SEPSE 258 e
SE° 28] EE3ER §2gR

3 5 gaz® &7 &

B & B8R (<2 R

ey
1) yoog

(12104 %00q)
01198 Bunjoog [910H

(eyuo1 182 300q)
DIAIDS [EIUBY 1ED [10H

(usiy
300q) 210128 B4 [PIOH

Bupjooq @10y aresuaduio)
sanbax ad1Ateg

swana
pajtey Bupjooq
By pue 1)
ssooo1d

suano

poley Supjooq

1oy pue 181
ssav0id

suana

palrey 8upjoog

10y pue 125
ssa01d

Sunjooq 181y awsuaduwon
sanbal IATRG

(8unjooq
[e3ua1 18> dnesuaduion)

J1a[[0nU0)

(Buryooq
[910y aresuaduron)
Io[[onu)

(8unjooq
Sy aresuaduwon)
T[onue)

soynedsiq A ssaursng

PE [PI0H pe 18D e [210H
Ju2Ag SsauISNG. JuaAg SsaulsNg AZ SIS

B s 5urt00q 10K
polte) Sunjooq [aua1 1wy auaNg ssoutsng
pajrey Supjooq [210H

pairey Bunjooq 1L
A3 ssoulsng
Ppalrey 8upjooq [PI0H A ssautsng
paiey Supjooq :_w_u

a1 ssouisng
uaA7 ssauIsng

) Bupjooq W31y
a ssoutsng

porres Bupjooq evwa xe)
3 ssoursng

tations and issues for future research

imi

7.2. L

176

uoneuIpIood uondesuen} (pazrundo) ordurrs jo uoneiussaidar (eQ10g| [OINO) NG :/°Z 2Ind1g

upjooq 1yBiy vesuaduion Bupjooq [e1ua1 10 vesuaduio
sanbai adn19g anbai 2d1ATeg

= = 33¢% g =
g5 2 g ga
B8 LEQ oq E2ERE 88038
upjooq 11y Z5EES v SRELE unjooq P07 cEEE:
aresuadwion e [EIURY 1D g2TFS aresuadwion §BIEE
SERSE awsuaduwion gEgSe $258e
E2°ER ERIER EBCER
® & & ER -2 RAE 2
<) @ BER <3 &

£ o
g g z
= S N =4
= o ~E
= g9 S
&

= 8 = 28

E o 8 zE

25 33 g
2 [y gE g%
8 1 Y00 Eg S
s =3 ES
g

unjooq 1oy atesuaduwon
sanbai 21198

Suan

paire; Sunjooq

oy pue ey
ssa001d

parey Sunjooq BT
uang ssouisng
e [P10H
uang ssouisng ! j00q [e3ua1 18D
SuaAg ssoUISNg
Ppalrey Bunjooq [910F
e 1) ueng ssoursng 481 pue 1ep
JuaAY ssaulsng $520014
e [910H
o112} Sunjooq 1481
Susag ssouisng & ng pupic zﬂ_m; 14
o2y 8upjooq [ewas e
IR o s520MNg Mo ssoueng

pajtey Sunjooq [210H
U ssouISNg

swano

pairey Bunjooq

190y pue B
ss9001d

1078UIPI0O)

s1an0
poltey Sunjooq

(8unjooq 1481y ‘(31 10 10y Avesuaduion)

CHAPTER 7. CONCLUSIONS 177

overloaded the pattern language drastically and the overall message that this
dissertation wants to bring would have moved to the background. Therefore,
more research is needed to investigate time-related issues. Note that the
demonstration described in this thesis (see Chapter @ assumes that data
requests and provisioning always occurs after a service request is sent.

7.2.4 Additional validation

As described in Chapter|[1]a typical challenge that comes with the develop-
ment of service-based systems is to tackle the complexity of message-based
implementations. Service composition too often requires time-consuming
hand coding and low-level programming (see Section[I.1.2). Since our tool
for pattern-based coordination generates a complete coordination scenario
based on a business process specification and a selection of patterns, we claim
that developers need to spend less time designing service interactions. In
other words, by using our tool and a pattern-based coordination approach
we claim a less complex development of the message-based implementation
(see Section [7.1). However, in order to completely prove this claim it is
necessary to share our tool with service engineers so that they could confirm
this strength of our approach. Future research could also include specific
complexity measures for BPEL processes (Cardoso, [2007).

Sharing this tool with service engineers is also necessary to further assess
the value of the design guidelines that are included in our pattern languages.
Although, our patterns were applied to a real-life case (e.g. see Section4.4.2]
in Chapter [4) more research is needed to quantitatively evaluate that the use
of the patterns contributes to a more efficient and effective development of
coordination scenarios.

7.2.5 Joined forces

Both the pattern language for managing sequence dependencies and the pat-
tern language for managing data dependencies, include a list of forces that
together with pattern consequences can be used as a basis for concrete design
guidelines. Since a typical coordination scenario manages both sequence and
data dependencies one needs to follow both sets of design guidelines. How-
ever, although it is not discussed in this thesis, some forces present in both
pattern languages are related to each other (e.g. coupling, access restrictions
and flexibility/robustness change). Hence, potentially it is necessary to better
integrate both sets of design guidelines that were based on the forces and
pattern consequences. Furthermore, some choices in the application of one

178 7.2. Limitations and issues for future research

pattern language possibly limit the potential choices for the application of
the other pattern language. Therefore, future research could focus on the
pattern forces and identify joined forces.

7.2.6 Composite data requests

In the real-life case in which our pattern language for managing data depen-
dencies was applied (see Section in Chapter[4) the final solution for the
management of the data dependencies was constructed by combining several
coordination scenarios, each taking care of a particular set of data. Each
coordination scenario always consists of one data request, one data transmis-
sion and one data provider. However, sometimes a service provider’s data
request can only be fulfilled by combining data from several data providers.
Such scenarios require more complex coordinations scenarios in which, for
example, a service needs to be responsible for splitting up data requests or
combining data. In the future, we intend to extend the patterns described in
Chapter [4 for composing such coordination scenarios.

7.2.7 Patterns for self-adaptive service coordination

As explained in both the introduction of this thesis (see Sections and
in Chapter[I)) and in Section [7.1] of this Chapter, the coordination patterns
presented in this thesis help to make service-based systems more flexible.
This is mainly because the patterns provide guidelines that help service com-
posers to effectively and efficiently design an optimized coordination scenario.
Moreover, the service-based system can more easily and rapidly adapt to any
change in a business process, because implementing coordination logic can
be automated (see Chapter|[6]).

However, future software systems will have to operate in a constantly
evolving environment, requiring self-adaptive service-based systems. Such
systems automatically and autonomously adapt their behavior at runtime to
respond to evolving requirements, changes in its context, as well as failures
of component services (Di Nitto et al., 2008).

In the past several advances are made to achieve run-time adaptability
in service-based systems. We first briefly review some research results and
then discuss how the patterns presented in this thesis can potentially form
the basis for future research on self-adaptive service-based systems.

CHAPTER 7. CONCLUSIONS 179

Current approaches toward adaptive service-based systems

Ardagna, Comuzzi, Mussi, Pernici, and Plebani| (2007) developed PAWS
(Processes with Adaptive Web Services), a framework for flexible and adaptive
execution of managed service-based processes. The main contribution of
PAWS is twofold. PAWS should select the best available services for executing
the process and define the most appropriate quality-of-service (QoS) levels
for delivering them. Second, PAWS should guarantee service provisioning,
even in case of failures, through recovery actions and self-adaptation if the
context changes. To meet these goals, PAWS provides methods and a toolset
to support design-time specification of all information required for automatic
runtime adaptation of processes according to dynamically changing user
preferences and context. In general, PAWS provides flexibility in terms of
optimization, mediation, and self healing functionalities.

In their research Ardagna and Pernici| (2007) proposed an advanced
approach to the QoS constrained Web service selection problem. In their
approach the Web service selection problem is formalized as a mixed integer
linear programming problem, loops peeling is adopted in the optimization,
and constraints posed by stateful Web services are considered. Moreover,
negotiation techniques are exploited to identify a feasible solution of the
problem, if one does not exist.

METEOR-S is a framework for (semi-)automated configuration of service
compositions by addressing the following two issues (Verma, Gomadam|
Sheth, Miller, & Wu, [2005). The first issue is about dynamically selecting
optimal partner Web services for a service composition based on process
constraints. The second aspect aims at facilitating interaction with the optimal
partner Web services in the presence of data and protocol heterogeneities,
as well as, supporting run-time reconfiguration in presence of Web service
invocation errors.

Williams, Battle, and Cuadrado| (2006) have developed a Web services
protocol mediation framework that allows interaction between two services
despite the difference of the protocols they rely on. Their approach is cen-
tered on the identification of common domain specific protocol independent
communicative acts; the description of abstract protocols which constrain the
sequencing of communicative acts; and the description of concrete protocols
that describe the mechanisms by which the client of a web service interface
can utter and perceive communicative acts.

Denaro, Pezze, Tosi, and Schilling (2006) solved similar issues. They pro-
posed an approach that enables clients to automatically adapt their behavior
to alternative Web services that provide compatible functionality through

180 7.2. Limitations and issues for future research

different interaction protocols. It uses an infrastructure that traces the suc-
cessful interactions of the Web services, automatically synthesize models that
approximate the interaction protocols, and steer client-side adaptations at
runtime.

The SCENE platform provides linguistic and infrastructural mechanisms
to support self-configuration of a service composition (Colombo, Di Nitto,
& Mauri, [2006). The idea behind SCENE is that the problem of dynamic
reconfiguration of service compositions has to be tackled at two levels: on
the one side, the runtime platform should be flexible enough to support
the selection of alternative services, the negotiation of their service level
agreements, and the partial replanning of a composition. On the other side,
the language used to develop the composition should support the designer in
defining the constraints and conditions that regulate selection, negotiation,
and replanning actions at runtime. The SCENE platform addresses the
above issues by offering a language for composition design that extends the
standard BPEL language with rules used to guide the execution of binding
and re-binding self-reconfiguration operations.

Cavallaro and Di Nitto| (2008]) have addressed the problem of invoking
services having an interface or protocol different from those originally ex-
pected by the service requester. They have identified a number of possible
mismatches between services and some basic mapping functions that can be
used to solve simple mismatches. Such mapping functions can be combined
in a script to solve complex mismatches. Scripts can be executed by a medi-
ator that receives an operation request, parses it, and eventually performs
the needed adaptations. This approach is implemented as an extension of
the SCENE framework. Originally SCENE was based on the hypothesis that
all concrete services would show an identical interface or protocol. These
researchers overcome this limitation by introducing an adapter in the frame-
work.

Towards adaptive service coordination

Based on the literature discussed above, we conclude that current approaches
for the adaptability of service-based systems mainly focus on the service
infrastructure layer or specific aspects of service composition (Di Nitto et al.,
2008)). Infrastructural solutions towards adaptability often provide support
for the dynamic run-time selection of candidate component services (Ardagna
et al.} 2007} |Ardagna & Pernici, |2007; Verma et al., 2005). Approaches cov-
ering adaptability at the service composition and coordination layer mostly
facilitate run time service (re)binding (Colombo et al., |2006; [Verma et al.,
2005)) or the mediation of interface differences or protocol mismatches be-

CHAPTER 7. CONCLUSIONS 181

tween invoked services (Brogi & Popescu, 2006} (Cavallaro & Di Nitto, [2008;
Denaro et al., |2006; Williams et al., [2006). These approaches can be consid-
ered as necessary but not sufficient for the construction of a truly dynamic
and adaptive service-based system. Approaches covering higher-level aspects
of the service composition and coordination layer and the business process
management layer are still missing, which hampers the development of an
integrated approach to adaptation that spans the concerns in all functional
layers (Di Nitto et al., 2008).

Another key point of difference is that quite some work can also be
characterized as taking the perspective of an individual service. Examples
of such research focus on resolving incompatibilities between collaborating
services at different levels: syntactical (data part of messages), behavioral
(sequences of messages) or semantic (resolving differences in meaning of
data). So, this type of research is mainly concerned with the question of how
a service can adapt itself to changes in the environment in which it is running,
including changes in the interfaces of its collaborating services.

Therefore, in the future more research is needed from the perspective of
the service system, tackling the question how service coordination can be
adapted at runtime. We can derive two important research questions from
these conclusions:

1. How should coordination be organized such that an easy transi-

tion can be made from an as-is situation to a to-be situation, based
on identified changes in the context?
Assuming that a service-based system is more adaptable if less com-
ponent services need to be adapted, it can be of major importance
that the initial coordination scenario is constructed such that potential
context changes can be dealt with in the most efficient way. Therefore,
identifying the relationships between existing coordination patterns
(e.g. the patterns presented in this thesis) and considering several
what-if situations, forms a first step in the path to self-adaptive service
coordination.

Example Consider the switch from a central data flow to a decentral
data flow as shown in Figure (i.e. switch from the scenario
shown in Figure to the scenario shown in Figure [7.8(D)].
Such a switch requires the modification of the interface of the phar-
macist. In the first scenario (Figure[7.8(a)), the pharmacist can
accept one message with combined information on the required
medicine including risk information. In the second scenario, the

1A complete description of this example can be found in Sectionin Chapter

182

7.2. Limitations and issues for future research

@ @ Nurse @
Nurse - .
.= "~ ,
: \ X Requestfor ¢ Request for
\ * the risk for ¥
. stor ing !
for .
leedi

]
.
.
“The risk for 1 M

stomach bleeding . v

.

€oea E0F
<

Doctor
Doctor
@ The risk for
stomach bleeding
(a) Central data flow (b) Decentral data flow

Figure 7.8: Two possible data flows for the hospital example

pharmacist needs to be capable to receive this information in two
separate steps: one step for the risk information, and one step for
the required medicine. A switch from the second scenario (Figure
[7.8(b)) to the first scenario (Figure can however be real-
ized without modifying the pharmacist’s interface as it suffices to
send two consecutive messages to realize the third step in the first

scenario (Figure[7.8(a)).

2. How can a new coordination be made effective at run-time?

Whereas at design time a developer can freely choose between al-
ternative coordination scenarios (i.e. using the patterns and pattern
combinations as presented in this thesis), the service infrastructure
environment will pose restrictions on feasible run-time transitions from
one scenario to another. Therefore, in order to address the second
research question (how can a new coordination be made effective at
run-time), the second aspect that needs to be investigated are the con-
ditions that should be met to enable run-time adaptation. We therefore
need to assess the feasibility of the patterns presented in this thesis
and the patterns that are the result of answers to the previous research
question in relation to available adaptation technology in the service
infrastructure and service composition layer. The available technol-
ogy may pose further restrictions on feasible adaptations of service
coordination, leading to further refinement of the patterns.

Example Suppose for example that the service infrastructure layer
enables the rebinding of services, provided they have the same
interface definitions. In such a case, a coordination can be adapted
by redirecting for example a message from one party to another,
provided the second one offers the same services as the first one.

CHAPTER 7. CONCLUSIONS 183

In the above example, switching from the scenario shown in Fig-
ure to the scenario in Figure requires for example
rebinding such that the message with risk information goes from
the doctor to the pharmacists (as in Figure[7.8(b)) instead of to

the nurse (as in Figure [7.8(a))).

Prolog program for completeness
confirmation

% defining participants in a coordination scenario
participant(service_requester).
participant(service_provider).

participant (data_provider).

% defining two types of messages
message (data_request) .
message (data) .

% defining a message exchange between two participants
message_exchange (Participantl ,Participant2 ,Message) :—
participant (Participantl),
participant (Participant2),
Participantl\=Participant2 ,
message (Message) .

% C1.1: The service provider can only send data requests or receive
data
possible_message_exchange (service_provider ,Y, data_request) :—
message_exchange (service_provider ,Y,data_request) .
possible_message_exchange (X, service_provider ,data) :—
message_exchange (X, service_provider ,data).

% C1.2: The data provider can only receive data requests or send
data
possible_message_exchange (data_provider,Y,data) :—
message_exchange (data_provider ,Y,data) .
possible_message_exchange (X, data_provider ,data_request) :—
message_exchange (X, data_provider ,data_request) .

coordination_scenario (CoordinationScenario) :—

185

186

% C1: A coordination scenario needs to be a proper interaction
scenario

findall (X, interaction_scenario (X),ListOfInteractionScenarios),

member(CoordinationScenario , ListOfInteractionScenarios),

% C2: the service provider must receive data from another entity

member ((_, service_provider ,data),CoordinationScenario),

% C3: the data provider must send data to an entity

member ((data_provider ,_,data),CoordinationScenario) ,

% C4: The resulting data flow must be complete

complete_data_flow (CoordinationScenario) ,

% requests or data can only be sent once per participant

not(multiple_requests_or_data_sent (CoordinationScenario)),

% requests or data can only be received once per participant

not(multiple_requests_or_data_received (CoordinationScenario)) .

interaction_scenario (MessageExchanges) :—
setof ((Participantl , Participant2 ,Message) ,
possible_message_exchange (Participantl ,Participant2 ,Message) ,L

)P
sublist (MessageExchanges,L) .

% C4: The data flow is complete

% Specification as the negation of not C4.1 or not C4.2

complete_data_flow (Coordination_messages) :—
not(incomplete_data_flow (Coordination_messages)) .

% C4.1: The service requester must forward any data request to the
data provider.
% Specification of a coordination in which C4.1 is not true
incomplete_data_flow (Coordination_messages) :—
member ((service_provider ,service_requester ,data_request),
Coordination_messages) ,
not (member ((service_.requester ,data_provider ,data_request),
Coordination_messages)) .

% C4.2: An entity can only send data if this entity is the data
provider or has received data from another entity.
% Specification of a coordination in which C4.2 is not true
incomplete_data_flow (Coordination_messages) :—
member ((Participantl ,Participant2 ,data),Coordination_messages),
not (member ((_, Participantl ,data) ,Coordination_messages)),
Participantl\=data_provider.

multiple_requests_or_data_sent(Coordination.messages) :—
member ((Participantl ,Participant2a , Message) ,Coordination_messages)

member ((Participantl ,Participant2b , Message) ,Coordination_messages)
Participant2a\=Participant2b.

multiple_requests_or_data_received (Coordination_messages) :—
member ((Participantla ,Participant2 ,Message) ,Coordination_messages)

>

APPENDIX A. COMPLETENESS CONFIRMATION IN PROLOG 187

member ((Participantlb ,Participant2 , Message),Coordination_messages)
Participantla\=Participantlb.
sublist ([1, -).
sublist ([A|B],[C|D]) :—
(
A=C,
sublist (B,D)

sublist ([A|B],D)
).

Listing A.1: Prolog program completeness confirmation

XML Schemas

B.1 XML Schema for a data dependencies model

<schema targetNamespace="http://servicecoordination.org/
dataDependencies”
elementFormDefault="qualified” xmlns="http://www.w3.0rg/2001/
XMLSchema” xmlns:dd="http://servicecoordination.org/
dataDependencies”>

<element name="dataDependenciesModel” type="
dd:tDataDependenciesModel ”></element>

<complexType name="tDataDependenciesModel”>
<all>
<element name="dataProviders” type="dd:tDataProviders”/>
<element name="dataDependencies” type="dd:tDataDependencies”
/>
<element name="dataAssociations” type="dd:tDataAssociations”
/>
</ all>
<attribute name="bpmnLocation” type="string” use="required”></
attribute>
</complexType>

<complexType name="tDataDependencies”>
<sequence>
<element name="decisionDataDependency” type="
dd:tDecisionDataDependency” minOccurs="0"” maxOccurs=
”unbounded” />
<element name="externalDataDependency” type="
dd:tExternalDataDependency” minOccurs="0" maxOccurs=
”unbounded” />
</sequence>

189

190 B.1. XML Schema for a data dependencies model

</complexType>

<complexType name="tDataAssociations”>
<sequence>
<element name="decisionDataAssociation” type="
dd:tDecisionDataAssociation” minOccurs="0" maxOccurs="
unbounded” />
<element name="dataOutputToDatalnputAssociation” type="
dd:tDataOutputToDatalnputAssociation” minOccurs="0"
maxOccurs="unbounded” />
</sequence>
</complexType>

<complexType name="tExternalDataDependency”>
<complexContent>
<extension base="dd:tDataDependency”>
<attribute name="datalnputAssociationld” type="NCName” use
="optional”></attribute>
</extension>
</complexContent>
</complexType>

<complexType name="tDecisionDataDependency”>
<complexContent>
<extension base=”"dd:tDataDependency”></extension>
</complexContent>
</complexType>

<complexType name="tDataDependency”>
<attribute name="id” type="ID” use="required”/>
<attribute name="name” type="string” use="required”/>
<attribute name="dataProviderId” type="NCName” use="required
/>
<attribute name="bpmnTaskld” type="NCName” use="required”/>
</complexType>

<complexType name="tDataProviders”>
<sequence>
<element name="dataProvider” type="dd:tDataProvider”
minOccurs="1" maxOccurs="unbounded”></element>
</sequence>
</complexType>

<complexType name="tDataProvider”>

<attribute name="id” type="ID” use="required”/>

<attribute name="name” type="string” use="required”/>

<attribute name="wsdlLocation” type="string” use="required”/>

<attribute name="requestOperationName” type="string” use="
required”/>

<attribute name="requestRoleName” type="string” use="required”
/>

<attribute name="receiveOperationName” type="string” use="
required”/>

APPENDIX B. XML SCHEMAS

<attribute name="partnerLinkTypeName” type="string” use="

required”/>

<attribute name="receiveRoleName” type="string” use="

required”/>
</complexType>

<complexType name="tDecisionDataAssociation”>
<attribute name="id” type="ID” use="required”/>

<attribute name="sourceRef” type="NCName” use="required”/>
<attribute name="targetRef” type="NCName” use="required”/>

</complexType>

<complexType name="tDataOutputToDatalnputAssociation”>
<attribute name="id” type="ID” use="required”></attribute>
<attribute name="dataOutputAssociationld” type="NCName” use=

“required”></attribute>

<attribute name="datalnputAssociationld” type="NCName” use="

required”></attribute>
</complexType>
</schema>

Listing B.1: XML Schema for a data dependencies model

B.2 XML Schema for a coordination model

<schema

targetNamespace="http://servicecoordination.org/coordinationModel”
elementFormDefault="qualified” xmlns="http://www.w3.0rg/2001/

XMLSchema”

xmlns:ecm="http://servicecoordination.org/coordinationModel”
xmlns:dd="http://servicecoordination.org/dataDependencies”>

<element name="coordinationModel” type="cm:tCoordinationModel”></

element>

<complexType name="tCoordinationModel”>
<sequence>
<element name="sequenceDependenciesManagement”
type="cm:tSequenceDependenciesManagement”>
</element>
<element name="dataDependenciesManagement”
type="cm:tDataDependenciesManagement”>
</element>
</sequence>
</complexType>

<complexType name="tSequenceDependenciesManagement”>
<sequence minOccurs="1"” maxOccurs="1">

<element name="coordinator” type="cm:tCoordinator” minOccurs=’

1” maxOccurs="unbounded”></element>

3

192 B.2. XML Schema for a coordination model

</sequence>
<attribute name="bpmnModel” type="string” use="required”></
attribute>
</complexType>

<complexType name="tCoordinator”>
<sequence minOccurs="1"” maxOccurs="1">
<element name="bpmnTaskld” type="NCName” minOccurs="1"
maxOccurs="unbounded”>
</element>
</sequence>
<attribute name="name” type="string” use="required”></attribute>
</complexType>

<complexType name="tDataDependenciesManagement”>
<sequence>
<element name="dataDependencyManagement” type="
cm:tDataDependencyManagement” minOccurs="0" maxOccurs=
”unbounded” />
<element name="dataOutputlsDatalnputManagement” type="
cm:tDataOutputlsInputManagement” minOccurs="0"
maxOccurs="unbounded” />
</sequence>
<attribute name="dataDependenciesModel” type="string” use="
required”/>
</complexType>

<complexType name="tDataDependencyManagement”>
<attribute name="id” type="ID"/>
<attribute name="dataDependencyld” type="NCName”/>
<attribute name="pattern” type="cm:dataDependencyManagementPattern
7 />
</complexType>

<simpleType name="dataDependencyManagementPattern”>
<restriction base="string”>
<enumeration
value="active_service_provider_with_
ceceeeo—direct.-request_and_direct_data_transmission” />
<enumeration
value="active_service_provider_with_
cececooodirect_-request_and_indirect_data_transmission” />
<enumeration
value="active _service_provider_with_
cececeooindirect_-request_and_direct_data_transmission” />
<enumeration
value="active_service_provider_with_
cececoooindirect-request_and_indirect_-data_transmission” />
<enumeration
value="active_service_requester_with_
ceccoeowoodirect_data_transmission” />
<enumeration

APPENDIX B. XML SCHEMAS

193

value="active_service_requester_with_
cececeooindirect_data_transmission” />
</restriction>
</simpleType>

<complexType name="tCoordinator”>
<sequence minOccurs="1" maxOccurs="1">
<element name="bpmnTaskld” type="NCName” minOccurs="1"
maxOccurs="unbounded”>
</element>
</sequence>

<attribute name="name” type="string” use="required”></attribute>

</complexType>

<complexType name="tDataOutputlsInputManagement”>
<attribute name="id” type="ID” use="required”/>
<attribute name="outputAssociationId” type="NCName” use="
required”/>
<attribute name="inputAssociationId” type="NCName” use="
required”/>
<attribute name="pattern” type="
cm:dataOutputlsInputManagementPattern” use="required”/>
</complexType>

<simpleType name="dataOutputlsInputManagementPattern”>
<restriction base="string”>
<enumeration
value="direct_data_transmission” />
<enumeration
value="indirect_data_transmission” />
</restriction>
</simpleType>
</schema>

Listing B.2: XML Schema for a coordination model

List of Figures

1.1 D Process Modell o L. 7
|1.2 The relationship between our research goal, research questions |
and research objectives|. 8

[2.1 Basic concepts in service compositions| 20
[2.2 Two ways of coordinating the pharmacist and doctor] 27
[2.3 Two possible data flows for hospital example| 28
[2.4 An alternative data flow for the scenarios represented in figures |

[23@[and2.3(M) . . . - . v e 31
[2.5 Two ways of modeling that the output data of a certain task is |
the input for another task in BPMN]. 34

[2.6 Modeling external data as input data in BPMN|. 35
[2.7 Modeling that data objects are required to make a decision in |
L BPMN -« v e e e e e e e e e e e e e 36
[2.8 An undefined way of modeling that data objects are required |
isionin BPMN| 36

[3.1 A travel agency business process| 39

[3.2 Independent coordinator managing all sequence dependencies| 41

[3.3 Customer Service managing all sequence dependencies|. . . . 42
3.4 Decentralized coordination (1)| 43
13.5 Decentralized coordination (2)| 44
[3.6 An overview of the pattern language| 48
[3.7 Alegend for the simplified pattern representation| 49
[3.8 A BPMN representation of a CONTROLLED SERVICE PROVIDER|. 50
[3.9 A simplified representation of a CONTROLLED SERVICE|. 50
[3.10 BPMN representation of the Finance Service as a CONTROLLED |
[SERVICEPROVIDER . - « v v v v vt eee e e e e e 52

196 List of Figures

|3.11 A simplified representation of the Finance Service as a CON- |

[TROLLED SERVICEPROVIDER] « « + « v v v v vv v v vee v v 52
[3.12 A BPMN representation of a CONTROLLED SERVICE PROVIDER |
| controlled by an INDEPENDENT CONTROLLER| 54

[3.13 A simplified representation of a CONTROLLED SERVICE cOn- |
| trolled by an INDEPENDENT CONTROLLER| 54

[3.14 A BPMN representation of a CONTROLLED SERVICE PROVIDER |
| controlled by a CONTROLLING SERVICE PROVIDER| 56

[3.15 A simplified representation of a CONTROLLED SERVICE con- |
| trolled by a CONTROLLING SERVICE PROVIDER| 57

[3.16 A BPMN representation of the Finance Service controlling the |
| Online Payment Service| 58

[3.17 A simplified representation of a the Finance Service controlling |
| the Online Payment Service| 59

[3.18 A BPMN representation of a CONTROLLED SERVICE PROVIDER |
| controlled by a COORDINATOR| 60

[3.19 A simplified representation of a CONTROLLED SERVICE con- |
| trolled by a COORDINATOR| 60

[3.20 A BPMN representation of a CONTROLLED SERVICE PROVIDER |
| controlled by a COORDINATOR| 62

[3.21 A simplified representation of a CONTROLLED SERVICE con- |
| trolled by a COORDINATOR| 62

[3.22 A BPMN representation of a SELF-CONTROLLED SERVICE PROVIDER| 63

[3.23 A simplified representation of a SELF-CONTROLLED SERVICE| . . 63

|3.24 A BPMN representation of a SELF-CONTROLLED SERVICE PROVIDER| 65

[3.25 A simplified representation of a SELF-CONTROLLED SERVICE| . . 65

|3.26 PARALLEL SPLIT pattern represented in BPMN| 70

[3.27 Coordinated parallel split using a SELF-CONTROLLED (BEFORE-
[SPLIT) SERVICE and CONTROLLED (AFTER-SPLIT) SERVICES cOn-

| trolled by a COORDINATING (BEFORE-SPLIT) SERVICE[. 71

[3.28 SYNCHRONIZATION pattern represented in BPMN| 73

4.1 A business process for taking care of patients with high fever]. 80

LIST OF FIGURES 197

4.2 Three questions that need to be answered by a specific coordi- |

| nation scenario that manages a data dependency| 83
|4.3 Relationships between the three patterns|. 87
4.4 DATA FLOW INITIATION| v v v v vt v v v i o e o 88
[4.5 DIRECT REQUEST versus INDIRECT REQUEST] 92

4.6 DIRECT DATA TRANSMISSION versus INDIRECT DATA TRANSMISSION| 95

4.7 ACTIVE SERVICE PROVIDER with DIRECT REQUEST and DIRECT |
DATA TRANSMISSION| . . & & v v v v e e e e e e e e e e e e e e 98

4.8 ACTIVE SERVICE PROVIDER with DIRECT REQUEST and INDIRECT |
DATA TRANSMISSION] . + + v v v v o e e e e e e e e e e e e 99

4.9 ACTIVE SERVICE PROVIDER with INDIRECT REQUEST and INDI- |
RECT DATA TRANSMISSION| .+ + + v v v v v v e e e e e e e e e u 99

14.10 ACTIVE SERVICE PROVIDER with INDIRECT REQUEST and DIRECT |

4.11 ACTIVE SERVICE REQUESTER with INDIRECT DATA TRANSMISSION[100

|4.12 ACTIVE SERVICE REQUESTER with DIRECT DATA TRANSMISSION| 101

|4.13 ACTIVE DATA PROVIDER with DIRECT DATA TRANSMISSION| . . . 101
|4.14 Active Data Provider with INDIRECT DATA TRANSMISSION| . . . 102
|4.15 Decision tree DATA FLOW INITIATION|. 103
|4.16 Decision tree DATA REQUEST| . . . « « v v v v v v v v v e e e v 104

17 Decision tree DATA TRANSMISSION| . . . « v v v v v v v v v v W 105

[4.19 Interaction procedure| 114

|4.20 Two coordination scenarios visualized as implementation pat- |

5.1 Managing an Output Input Association using an ACTIVE DATA
PROVIDER (i.e. Service Provider actively sends data) with a
| DIRECT DATA TRANSMISSION] . « « & v v v v v e e e e e e v e 124

[5.2 Managing an Output Input Association using an ACTIVE DATA
PROVIDER (i.e. Service Provider actively sends data) with an

[INDIRECT DATA TRANSMISSION|t o v v vt 125

198 List of Figures
5.3 Managing a Decision Data Dependency|. 125
|5.4 Managing a Decision Data Association| 126

|5.5 The use of the COORDINATOR pattern combined with two

L Decision Data Associations that are related to the same task |

dataoutput] 127

56

The use of the COORDINATOR pattern combined with two

Output Input Associations that are related to the same task

dataoutput] 128

[5.7 The use of the COORDINATOR pattern combined with an Output
Input Association and a Decision Data Association that are
related to the same task dataoutput| 129
|6.1 Modeling Decision Data Associations in BPMN|. 134
|6.2 Input and output for pattern-based coordination|. 140
6.3 A UML class diagram showing the core of our tool|. 141
|6.4 A BPMN model for the extended travel agency example|. . . . 151
[6.5 A visual representation of the BPEL process for the COORDI- |
NATIN OMER SERVICE| v v v v v v v e e e 158
|6.6 A visual representation of the BPEL process for the service |
| provider supporting the ’process customer request’ task| 159
|6.7 A visual representation of the BPEL process for the booking |
[COORDINATOR| v v v s e e 161
|6.8 A visual representation of the BPEL process for the service |
| provider supporting the ’book flight’ taskf 162
[7.1 The relationship between the solution and our research goal, |
| research questions and research objectives| 166
|7.2 Modeling preconditions in a SEQUENCE| 171
|7.3 BPMN representation of transaction consisting of hotel, car

rental and flight booking tasks and corresponding compensat-

ingtasks|. 173

74

Simplified representation of complex transaction coordination| 174

75

Simplified representation of simple (optimized) transaction |

LIST OF FIGURES 199

|7.6 BPMN representation of complex transaction coordination| . . 175
|7.7 BPMN representation of simple (optimized) transaction coor- |

dination| 176
|7.8 Two possible data flows for the hospital example|

List of Tables

[3.1 Combining the patterns to coordinate a SEQUENCE|. 69

[3.2 Combining requests and event notifications in service compo- |

sitions using the patterns|. 75

[4.1 Summary of the consequences of DATA FLOW INITIATION| . .. 91

4.2 Summary of the consequences of DIRECT-INDIRECT REQUEST| . 94

|4.3 Summary of the consequences of DIRECT-INDIRECT DATA TRANS- |

MISSION| & & v v v e e e e e e e e e e e e e e e e e e 97

[5.1 Four types of data dependencies in service compositions| . . . 123

201

List of Code Listings

|4.1 The coordination_scenario predicate] 117
[4.2 Restricting possible message exchanges for a Service Provider |

| and aDataProvider] 117
|4.3 The complete_data_flow predicate|. 118
|4.4 Querying the Prolog program| 118
|6.1 The complex type for data dependencies| 135
|6.2 The complex type for a data provider] 136
|6.3 The complex type for a Decision Data Association| 136
|6.4 The complex type for sequence dependencies management|. . 137
|6.5 The complex type for a COORDINATOR| 137
|6.6 The complex type for data dependencies management| 137
|6.7 The complex type for Data Dependency management| 138
|6.8 The simple type that defines the different coordination scenar- |

| 1os for managing an External Data Dependency| 138
|6.9 The complex type for Data Output Input Association manage- |
MeNt . . . v v v vt e e e e e e e e e 139

|6.10 The simple type that defines the different coordination scenar- |

| ios for managing a Data Output Input Association| 139
|6.11 The use of XQuery in Java to find flow elements that target a |

| certain BPMN task element| 142
|6.12 An XML-based data dependencies model for the travel agency |

| example| 153
|6.13 An XML-based coordination model for the travel agency example[155
IA.1 Prolog program completeness confirmation| 185
B.1 XML Schema for a data dependencies model| 189
B.2 XML Schema for a coordination modell 191

203

Bibliography

Alexander, C. (1979). The timeless way of building. New York, USA: Oxford
University Press.

Alonso, G., Casati, F., Kuno, H., & Machiraju, V. (2004). Web services:
concepts, architectures and applications. New York, NY, USA: Springer-
Verlag Berlin Heidelberg.

Andersson, B., Bider, 1., Johannesson, P., & Perjons, E. (2005). Towards a
formal definition of goal-oriented business process patterns. Business
Process Management Journal, 11(6), 650-662.

Ardagna, D., Comuzzi, M., Mussi, E., Pernici, B., & Plebani, P. (2007). PAWS:
A Framework for Executing Adaptive Web-Service Processes. IEEE
Software, 24(6), 39-46.

Ardagna, D., & Pernici, B. (2007). Adaptive service composition in flexible
processes. IEEE Transactions on Software Engineering, 33(6), 369-384.

Avgeriou, P., & Zdun, U. (2005). Architectural patterns revisited a pattern
language. In Proceedings of the 10th European Conference on Pattern
Languages of Programs (EuroPloP 2005) (pp. 1-39).

Balasooriya, J., Padhye, M., Prasad, S. K., & Navathe, S. B. (2005). Bondflow:
A system for distributed coordination of workflows over web services.
In Proceedings of the 19th IEEE International Parallel and Distributed Pro-
cessing Symposium (IPDPS 2005) - Workshop 1 (p. 121.1). Washington,
DC, USA: IEEE Computer Society.

Bandara, W., Indulska, M., Sadiq, S., Chong, S., Rosemann, M., & Green, P.
(2007). Major issues in Business Process Management: an Expert Per-
spective. In Proceedings of the 15th European Conference on Information
Systems (ECIS 2007).

Barker, A., Weissman, J. B., & Hemert, J. I. (2009). The circulate architecture:
avoiding workflow bottlenecks caused by centralised orchestration.
Cluster Computing, 12(2), 221-235.

Barker, A., Weissman, J. B., & Van Hemert, J. (2008a). Eliminating the mid-
dleman: peer-to-peer dataflow. In Proceedings of the 17th international
symposium on High performance distributed computing (HPDC 2008)
(pp. 55-64). New York, NY, USA: ACM.

Barker, A., Weissman, J. B., & Van Hemert, J. (2008b). Orchestrating data-
centric workflows. In Proceedings of the 2008 Eighth IEEE International
Symposium on Cluster Computing and the Grid (CCGRID 2008) (pp.
210-217). Washington, DC, USA: IEEE Computer Society.

Barros, A., & Borger, E. (2005). A compositional framework for service
interaction patterns and interaction flows. In K.-K. Lau & R. Banach

205

206 Bibliography

(Eds.), Formal methods and software engineering (Vol. 3785, p. 5-35).
Springer-Verlag Berlin Heidelberg.

Barros, A., Dumas, M., & Hofstede, A. H. ter. (2005). Service Interaction
Patterns. In W. M. P. Van der Aalst, B. Benatallah, F. Casati, & F. Curbera
(Eds.), Business Process Management (Vol. 3649, p. 302-318). Springer-
Verlag Berlin Heidelberg.

Barros, A., Dumas, M., & Oaks, P. (2006). Standards for web service
choreography and orchestration: Status and perspectives. In C. Bussler
& A. Haller (Eds.), Business process management workshops (Vol. 3812,
pp. 61-74). Springer-Verlag Berlin Heidelberg.

Beek, M. ter, Bucchiarone, A., & Gnesi, S. (2006). A survey on service
composition approaches: From industrial standards to formal methods
(Tech. Rep. No. 2006-TR-15). Pisa, Italy: Consiglio Nazionale delle
Ricerche.

Bellini, A., Prado, A. F. d., & Zaina, L. A. M. (2010). Top-down approach for
web services development. In Proceedings of the 2010 Fifth International
Conference on Internet and Web Applications and Services (ICIW 2010)
(pp. 426-431). Washington, DC, USA: IEEE Computer Society.

Benatallah, B., Dijkman, R., Dumas, M., & Maamar, Z. (2005). Service
Composition: Concepts, Techniques, Tools and Trends. In Service-
oriented software system engineering: Challenges and practices (pp. 48—
66). IGI Publishing.

Benatallah, B., Sheng, Q., & Dumas, M. (2003). The Self-Serv Environment
for Web Services Composition. IEEE Internet Computing, 7(1), 40-48.

Bhiri, S., Perrin, O., & Godart, C. (2005). Ensuring required failure atomicity
of composite web services. In Proceedings of the 14th international
conference on World Wide Web (WWW 2005) (pp. 138-147). New York,
NY, USA: ACM.

Bhiri, S., Perrin, O., & Godart, C. (2006). Extending workflow patterns with
transactional dependencies to define reliable composite web services.
In Proceedings of the Advanced International Conference on Telecommuni-
cations and International Conference on Internet and Web Applications
and Services (AICT-ICIW 2006) (p. 145). Washington, DC, USA: IEEE
Computer Society.

Binder, W., Constantinescu, I., & Faltings, B. (2006). Decentralized orchestra-
tion of composite web services. In Proceedings of the IEEE International
Conference on Web Services (ICWS 2006) (pp. 869-876). Washington,
DC, USA: IEEE Computer Society.

Brahe, S. (2007). Bpm on top of soa: Experiences from the financial
industry. In G. Alonso, P. Dadam, & M. Rosemann (Eds.), Business
Process Management (Vol. 4714, pp. 96-111). Springer-Verlag Berlin
Heidelberg.

Bibliography 207

Brogi, A., & Popescu, R. (2006). Automated generation of bpel adapters.
In A. Dan & W. Lamersdorf (Eds.), Proceedings of the 4th International
Conference on Service-Oriented Computing (ICSOC 2006) (Vol. 4294, pp.
27-39). Springer-Verlag Berlin Heidelberg.

Buschmann, F., Henney, K., & Schmidt, D. (2007). Pattern-oriented software
architecture: On patterns and pattern languages. The Atrium, Southern
Gate, Chichester, West Sussex, England: John Wiley & Sons Ltd.

Buschmann, F., Meunier, R., Rohnert, H., Sommerlad, P., & Stal, M. (1996).
Pattern-oriented software architecture: A system of patterns. The Atrium,
Southern Gate, Chichester, West Sussex, England: John Wiley & Sons
Ltd.

Busi, N., Gorrieri, R., Guidi, C., Lucchi, R., & Zavattaro, G. (2005). Towards
a formal framework for choreography. In Proceedings of the 14th IEEE
International Workshops on Enabling Technologies: Infrastructure for
Collaborative Enterprise (WETICE 2005) (pp. 107-112). Washington,
DC, USA: IEEE Computer Society.

Cardoso, J. (2007). Complexity analysis of BPEL Web processes. Software
Process: Improvement and Practice, 12(1), 35-49.

Cavallaro, L., & Di Nitto, E. (2008). An approach to adapt service requests
to actual service interfaces. In Proceedings of the 2008 international
workshop on Software engineering for adaptive and self-managing systems
(SEAMS 2008) (pp. 129-136). New York, NY, USA: ACM.

Chang, Y.-C., Mazzoleni, P., Mihaila, G. A., & Cohn, D. (2008). Solving
the service composition puzzle. In Proceedings of the 2008 IEEE Inter-
national Conference on Services Computing (SCC 2008) (pp. 387-394).
Washington, DC, USA: IEEE Computer Society.

Charfi, A., & Mezini, M. (2007). AO4BPEL: An Aspect-oriented Extension to
BPEL. World Wide Web, 10(3), 309-344.

Cherbakov, L., Galambos, G., Harishankar, R., Kalyana, S., & Rackham, G.
(2005). Impact of service orientation at the business level. IBM Systems
Journal, 44(4), 653-668.

Clocksin, W., & Mellish, C. (2003). Programming in PROLOG (Fifth Edition).
New York, NY, USA: Springer-Verlag Berlin Heidelberg.

Colombo, M., Di Nitto, E., & Mauri, M. (2006). SCENE: A Service Composi-
tion Execution Environment Supporting Dynamic Changes Disciplined
Through Rules. In A. Dan & W. Lamersdorf (Eds.), Proceedings of the 4th
International Conference on Service-Oriented Computing (ICSOC 2006)
(Vol. 4294, pp. 191-202). Springer-Verlag Berlin Heidelberg.

Cumberlidge, M. (2007). Business Process Management with JBoss jBPM.
Birmingham, United Kingdom: Packt Publishing.

Decker, G. (2009). Design and analysis of process choreographies. Unpub-
lished doctoral dissertation, Business Process Technology Group, Hasso

208 Bibliography

Plattner Institute, University of Potsdam, Germany.

Decker, G., & Barros, A. (2008). Interaction modeling using bpmn. In Proceed-
ings of the 2007 international conference on Business Process Management
(BPM 2007) (pp. 208-219). Springer-Verlag Berlin Heidelberg.

Decker, G., Kopp, O., Leymann, F., & Weske, M. (2007). BPEL4Chor: Extend-
ing BPEL for Modeling Choreographies. In Proceedings of IEEE 2007
International Conference on Web Services (ICWS 2007) (p. 296 -303).
Washington, DC, USA: IEEE Computer Society.

Decker, G., Kopp, O., Leymann, F., & Weske, M. (2009). Interacting services:
From specification to execution. Data & Knowledge Engineering, 68(10),
946-972.

Decker, G., Overdick, H., & Weske, M. (2008). Oryx - an open modeling
platform for the bpm community. In M. Dumas, M. Reichert, & M.-
C. Shan (Eds.), Business process management (Vol. 5240, pp. 382-385).
Springer-Verlag Berlin Heidelberg.

Decker, G., Overdick, H., & Zaha, J. (2006). On the Suitability of WS-CDL for
Choreography Modeling. In Proceedings of Methoden, Konzepte und Tech-
nologien fiir die Entwicklung von dienstebasierten Informationssystemen
(EMISA 2006). Citeseer.

Decker, G., & Puhlmann, F. (2007). Extending bpmn for modeling complex
choreographies. In Proceedings of the 2007 OTM Confederated interna-
tional conference on On the move to meaningful internet systems (OTM
2007) (pp. 24-40). Springer-Verlag Berlin Heidelberg.

Denaro, G., Pezzé, M., Tosi, D., & Schilling, D. (2006). Towards self-adaptive
service-oriented architectures. In Proceedings of the 2006 workshop
on Testing, analysis, and verification of web services and applications
(TAV-WEB 2006) (pp. 10-16). New York, NY, USA: ACM.

DeRemer, F., & Kron, H. (1975). Programming-in-the large versus
programming-in-the-small. In Proceedings of the international conference
on reliable software (pp. 114-121). New York, NY, USA: ACM.

Di Nitto, E., Ghezzi, C., Metzger, A., Papazoglou, M., & Pohl, K. (2008).
A journey to highly dynamic, self-adaptive service-based applications.
Automated Software Engineering, 15(3-4), 313-341.

Dreiling, A., Rosemann, M., Van der Aalst, W. M. P., & Sadiq, W. (2008). From
conceptual process models to running systems: A holistic approach for
the configuration of enterprise system processes. Decision Support
Systems, 45(2), 189-207.

Dustdar, S., & Schreiner, W. (2005). A survey on web services composition.
International Journal of Web and Grid Services, 1(1), 1-30.

Edwards, M. (2007, March 15th). Relationship between SCA and BPEL. SCA
BPEL White Paper. Available from http://www.osoa.org/display/
Main/SCA+BPEL+White+Paper

http://www.osoa.org/display/Main/SCA+BPEL+White+Paper
http://www.osoa.org/display/Main/SCA+BPEL+White+Paper

Bibliography 209

Emig, C., Momm, C., Weisser, J., & Abeck, S. (2005). Programming in the
Large based on the Business Process Modeling Notation. Lecture Notes
in Informatics (LNI), 68, 627-631.

Erl, T. (2005). Service-oriented architecture: Concepts, technology, and design.
Upper Saddle River, NJ, USA: Prentice Hall PTR.

Erl, T. (2007). SOA Principles of Service Design. Upper Saddle River, NJ, USA:
Prentice Hall PTR.

Erl, T. (2009). SOA Design Patterns. Upper Saddle River, NJ, USA: Prentice
Hall PTR.

Eugster, P. T., Felber, P. A., Guerraoui, R., & Kermarrec, A.-M. (2003).
The many faces of publish/subscribe. ACM Computing Surveys, 35(2),
114-131.

Fielding, R., Gettys, J., Mogul, J., Frystyk, H., Masinter, L., Leach, P., et al.
(1999, June). Hypertext Transfer Protocol — HTTP/1.1. REC 2616. Avail-
able from http://www.w3.org/Protocols/rfc2616/rfc2616.txt

Fjellheim, T., Milliner, S., Dumas, M., & Vayssiere, J. (2007). A process-based
methodology for designing event-based mobile composite applications.
Data & Knowledge Engineering, 61(1), 6-22.

Gabriel, R. P. (2002). Writer’s Workshops and the Work of Making Things.
Boston, MA, USA: Addison-Wesley Longman Publishing Co., Inc.
Gamma, E., Helm, R., Johnson, R., & Vlissides, J. (1995). Design patterns:
elements of reusable object-oriented software. Addison-wesley Reading,

MA.

Goethals, F. (2008). Important Issues for Evaluating Inter-Organizational
Data Integration Configurations. Electronic Journal Information Systems
Evaluation, 11(3), 185-196.

Haesen, R. (2009). Designing Information System Services in Information-
Intensive Organisations. Unpublished doctoral dissertation, Faculty of
Business and Economics, Katholieke Universiteit Leuven.

Haesen, R., De Rore, L., Goedertier, S., Snoeck, M., Lemahieu, W., & Poelmans,
S. (2007). Stateless process enactment. In Proceedings of the 14th
Conference on Pattern Languages of Programs (PLoP 2007) (pp. 1-5).
New York, NY, USA: ACM.

Haesen, R., De Rore, L., Snoeck, M., Lemahieu, W., & Poelmans, S. (2006).
Active-passive hybrid data collection. In Proceedings of the 11th Euro-
pean Conference on Pattern Languages of Programs (EuroPLoP 2006) (pp.
565-577).

Haesen, R., Snoeck, M., Lemahieu, W., & Poelmans, S. (2009). Existence
dependency-based domain modeling for improving stateless process
enactment. In Proceedings of the 2009 Congress on Services - I (SERVICES
2009) (pp. 515-521). Washington, DC, USA: IEEE Computer Society.

Hagel 111, J., & Singer, M. (1999). Unbundling the Corporation. Harvard

http://www.w3.org/Protocols/rfc2616/rfc2616.txt

210 Bibliography

Business Review, 77(2), 133-141.

Henkel, M., Zdravkovic, J., & Johannesson, P. (2004). Service-based pro-
cesses: design for business and technology. In Proceedings of the 2nd
international conference on Service oriented computing (ICSOC 2004)
(pp. 21-29). New York, NY, USA: ACM.

Hens, P., Snoeck, M., Poels, G., & De Backer, M. (2009). The use of the concept
of event in enterprise ontologies and requirements engineering literature
(Tech. Rep. No. KBI 0909). Leuven, Belgium: Faculty of Business and
Economics, Katholieke Universiteit Leuven. Available from http://
www.econ.kuleuven.be/fetew/int_reports.aspx?group_-id=17

Hentrich, C., & Zdun, U. (2006). Patterns for process-oriented integration
in service-oriented architectures. In Proceedings of the 11th European
Conference on Pattern Languages of Programs (EuroPLoP 2006).

Hevner, A. R., March, S. T., Park, J., & Ram, S. (2004). Design science in
information systems research. MIS Quarterly, 28(1), 75-105.

Hewlett-Packard. (2003, July 16th). Web Services Events (WS-Events) (version
2.0).

Hohpe, G., & Woolf, B. (2003). Enterprise integration patterns: Designing,
building, and deploying messaging solutions. Boston, MA, USA: Addison-
Wesley Longman Publishing Co., Inc.

Iyengar, A., Jessani, V., & Chilanti, M. (2007). WebSphere Business Integration
Primer: Process Server, BPEL, SCA, and SOA. IBM Press.

Janssen, M., & Feenstra, R. (2008). Socio-technical design of service com-
positions: a coordination view. In Proceedings of the 2nd International
Conference on Theory and Practice of Electronic Governance (ICEGOV
2008) (pp. 323-330). New York, NY, USA: ACM.

Jellema, L., & Dikmans, L. (2010). Oracle SOA Suite 11g Handbook. New
York, NY, USA: McGraw-Hill, Inc.

Jennings, F., & Salter, D. (2008). Building SOA-Based Composite Applications
Using NetBeans IDE 6. Birmingham, United Kingdom: Packt Publishing.

Jones, S. (2005). Toward an acceptable definition of service. IEEE Software,
22(3), 87-93.

Juric, M. B. (2006). Business Process Execution Language for Web Services
BPEL and BPEL4WS (2nd Edition). Birmingham, United Kingdom: Packt
Publishing, Limited.

Juric, M. B. (2010). Wsdl and bpel extensions for event driven architecture.
Information and Software Technology, 52(10), 1023-1043.

Kappel, G., Rausch-Schott, S., & Retschitzegger, W. (1998). Coordination in
workflow management systems - a rule-based approach. In Coordination
Technology for Collaborative Applications - Organizations, Processes, and
Agents [ASIAN 1996 Workshop] (pp. 99-120). London, UK: Springer-
Verlag.

http://www.econ.kuleuven.be/fetew/int_reports.aspx?group_id=17
http://www.econ.kuleuven.be/fetew/int_reports.aspx?group_id=17

Bibliography 211

Kleppe, A. G., Warmer, J., & Bast, W. (2003). MDA Explained: The Model
Driven Architecture: Practice and Promise. Boston, MA, USA: Addison-
Wesley Longman Publishing Co., Inc.

Ko, R. K. L., Lee, S. S. G., & Lee, E. W. (2009). Business process management
(bpm) standards: a survey. Business Process Management Journal, 15(5),
744-791.

Kohlborn, T., Korthaus, A., Chan, T., & Rosemann, M. (2009). Identifica-
tion and Analysis of Business and Software Services — A Consolidated
Approach. IEEE Transactions on Services Computing, 2(1), 50-64.

Koubarakis, M., & Plexousakis, D. (1999). Business process modelling and
design - a formal model and methodology. BT Technology Journal, 17(4),
23-35.

Leymann, F. (2006). Workflow-based coordination and cooperation in
a service world. In R. Meersman & Z. Tari (Eds.), On the Move to
Meaningful Internet Systems 2006: CooplS, DOA, GADA, and ODBASE
(Vol. 4275, p. 2-16). Springer-Verlag Berlin Heidelberg.

Lin, F.-r., & Chang, H.-c. (2005). The development and evaluation of
exception handling mechanisms for order fulfillment process based on
bpel4ws. In Proceedings of the 7th international conference on Electronic
commerce (ICEC 2005) (pp. 478-484). New York, NY, USA: ACM.

Liu, D., Law, K. H., & Wiederhold, G. (2002a). Analysis of integration models
for service composition. In Proceedings of the 3rd international workshop
on Software and performance (WOSP 2002) (pp. 158-165). New York,
NY, USA: ACM.

Liu, D., Law, K. H., & Wiederhold, G. (2002b). Data-flow distribution in
FICAS service composition infrastructure. In Proceedings of the 15th
International Conference on Parallel and Distributed Computing Systems
(PDCS 2002). Louisville, Kentucky USA: ISCA.

Lu, R., & Sadiq, S. (2007). A survey of comparative business process modeling
approaches. In Proceedings of the 10th international conference on
Business information systems (BIS 2007) (pp. 82-94). Berlin, Heidelberg:
Springer-Verlag.

Malinova, A., & Gocheva-llieva, S. (2008). Using the Business Process
Execution Language for Managing Scientific Processes. International
Journal Information Technologies and Knowledge, 2(3), 257-261.

Malone, T., & Crowston, K. (1994). The interdisciplinary study of coordina-
tion. ACM Computing Surveys (CSUR), 26(1), 119.

Mcafee, A., Sjoman, A., & Dessain, V. (2004). Zara: IT for fast fashion (Case
9-604-081). Harvard Business School.

Metzger, A., & Pohl, K. (2009). Towards the Next Generation of Service-Based
Systems: The S-Cube Research Framework. In P. van Eck, J. Gordijn,
& R. Wieringa (Eds.), Advanced Information Systems Engineering (Vol.

212 Bibliography

5565, pp. 11-16). Springer-Verlag Berlin Heidelberg.

Mitra, S., Kumar, R., & Basu, S. (2008). Optimum decentralized choreography
for web services composition. In Proceedings of the 2008 IEEE Inter-
national Conference on Services Computing (SCC 2008) (pp. 395-402).
Washington, DC, USA: IEEE Computer Society.

Mgller, C., Maack, C., & Tan, R. (2008). What is business process manage-
ment: A two stage literature review of an emerging field. In L. Xu,
A. Tjoa, & S. Chaudhry (Eds.), Research and Practical Issues of Enterprise
Information Systems II Volume 1 (Vol. 254, pp. 19-31). Springer Boston.

Monsieur, G. (2008). Gestructureerd bedrijfsprocessen implementeren (struc-
tured business process implementation). IT Professional, 3(43), 26-27.

Monsieur, G., De Rore, L., Snoeck, M., & Lemahieu, W. (2008). Handling
transactional business services. In Proceedings of the 15th Conference on
Pattern Languages of Programs (PLoP 2008). New York, NY, USA: ACM.

Monsieur, G., Snoeck, M., & Lemahieu, W. (2007). Coordinated Web Services
Orchestration. In Proceedings of IEEE 2007 International Conference on
Web Services (ICWS 2007) (pp. 775-783). Washington, DC, USA: IEEE
Computer Society.

Monsieur, G., Snoeck, M., & Lemahieu, W. (2009). A pattern language for
service input data provisioning. In Proceedings of the 16th Conference on
Pattern Languages of Programs (PLoP 2009). New York, NY, USA: ACM.

Monsieur, G., Snoeck, M., & Lemahieu, W. (2010a). Managing data dependen-
cies in service compositions [Submitted for review]. IEEE Transactions
on Software Engineering.

Monsieur, G., Snoeck, M., & Lemahieu, W. (2010b). Managing sequence de-
pendencies in service compositions. In Proceedings of the 15th European
Conference on Pattern Languages of Programs (EuroPLoP 2010).

Ng, T. H., Cheung, S. C., Chan, W. K., & Yu, Y. T. (2006). Work experi-
ence versus refactoring to design patterns: a controlled experiment.
In Proceedings of the 14th ACM SIGSOFT International Symposium on
Foundations of Software Engineering (SIGSOFT '06/FSE-14) (pp. 12-22).
New York, NY, USA: ACM.

Niblett, P., & Graham, S. (2005). Events and service-oriented architecture:
the OASIS Web services notification specifications. IBM Systems Journal,
44(4), 869-886.

Nitzsche, J., Lessen, T. van, Karastoyanova, D., & Leymann, F. (2007).
BPEL!“"* In G. Alonso, P. Dadam, & M. Rosemann (Eds.), Business
process management (Vol. 4714, pp. 214-229). Springer-Verlag Berlin
Heidelberg.

OASIS. (2006a, October 12th). Reference Model for Service Oriented Architec-
ture 1.0. OASIS Standard. Available from http://docs.oasis-open
.org/soa-rm/v1.0/

http://docs.oasis-open.org/soa-rm/v1.0/
http://docs.oasis-open.org/soa-rm/v1.0/

Bibliography 213

OASIS. (2006b, October 1st). Web Services Brokered Notification 1.3 (WS-
BrokeredNotification). OASIS Standard.

OASIS. (2007, April 11th). Web Services Business Process Execution Language
(WS-BPEL) Version 2.0. OASIS Standard. Available from http://
docs.oasis-open.org/wsbpel/2.0/0S/wsbpel-v2.0-0S.pdf

OMBG. (2010a, June). Business Process Model and Notation (BPMN) Version
2.0. OMG Document (dtc/2010-06-05). Available from http://wuw
.omg.org/spec/BPMN/2.0

OMG. (2010b, May). OMG Unified Modeling Language™ (OMG UML), Super-
structure Version 2.3. OMG Document (formal/2010-05-05). Available
from http://wuw.omg.org/spec/UML/2.3/Superstructure

Open SOA Collaboration. (2007, March 15th). SCA Service Component
Architecture - Assembly Model Specification. Final Version 1.0 Specifica-
tion. Available from http://www.osoa.org/download/attachments/
35/SCA_AssemblyModel _V100.pdf?version=1

Ouyang, C., Dumas, M., Hofstede, A. H. M. ter, & Van der Aalst, W. M. P.
(2006). From bpmn process models to bpel web services. In Proceedings
of the IEEE International Conference on Web Services (ICWS 2006) (pp.
285-292). Washington, DC, USA: IEEE Computer Society.

Paikens, A., & Arnicans, G. (2008). Use of Design Patterns in PHP-Based Web
Application Frameworks. Scientific Papers University of Latvia, Computer
Science and Information Technologies, 733, 53-71.

Papazoglou, M. (2003). Service-oriented computing: Concepts, characteris-
tics and directions. International Conference on Web Information Systems
Engineering (WISE 2003).

Papazoglou, M. (2005). Extending the service-oriented architecture. Business
Integration Journal, 7(1), 18-21.

Papazoglou, M. (2007). Web services: Principles and technology. Harlow,
Essex, England: Pearson Education Limited.

Papazoglou, M., Delis, A., Bouguettaya, A., & Haghjoo, M. (1997). Class
library support for workflow environments and applications. IEEE
Transactions on Computers, 46(6), 673-686.

Papazoglou, M., Traverso, P., Dustdar, S., & Leymann, F. (2007). Service-
Oriented Computing: State of the Art and Research Challenges. Com-
puter, 38-45.

Papazoglou, M., & Van den Heuvel, W.-J. (2003). Service-Oriented Com-
puting: State-of-the-Art and Open Research Issues (Tech. Rep. No.
TI/RS/2003/123). Enschede, The Netherlands: Telematica Insti-
tuut (Novay). Available from https://doc.novay.nl/dsweb/Get/
Document-40060

Papazoglou, M., & Van den Heuvel, W.-J. (2007a). Business process devel-
opment life cycle methodology. Communications of the ACM, 50(10),

http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.pdf
http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.pdf
http://www.omg.org/spec/BPMN/2.0
http://www.omg.org/spec/BPMN/2.0
http://www.omg.org/spec/UML/2.3/Superstructure
http://www.osoa.org/download/attachments/35/SCA_AssemblyModel_V100.pdf?version=1
http://www.osoa.org/download/attachments/35/SCA_AssemblyModel_V100.pdf?version=1
https://doc.novay.nl/dsweb/Get/Document-40060
https://doc.novay.nl/dsweb/Get/Document-40060

214 Bibliography

79-85.

Papazoglou, M., & Van den Heuvel, W.-J. (2007b). Service oriented architec-
tures: approaches, technologies and research issues. The VLDB Journal
- The International Journal on Very Large Data Bases, 16(3), 415.

Parker, D. (2010). Microsoft Visio 2010 Business Process Diagramming and
Validation. Birmingham, United Kingdom: Packt Publishing, Limited.

Paton, N. W., & Diaz, O. (1999). Active database systems. ACM Computing
Surveys, 31(1), 63-103.

Pedraza, G., & Estublier, J. (2009). Distributed Orchestration Versus Chore-
ography: The FOCAS Approach. In Proceedings of the International
Conference on Software Process (ICSP 2009) (pp. 75-86). Berlin, Heidel-
berg: Springer-Verlag Berlin Heidelberg.

Peffers, K., Tuunanen, T., Rothenberger, M., & Chatterjee, S. (2007). A
design science research methodology for information systems research.
Journal of Management Information Systems, 24(3), 45-77.

Peltz, C. (2003). Web services orchestration and choreography. Computer,
36(10), 46-52.

Pessoa, R. M., Silva, E., Sinderen, M. v., Quartel, D. A. C., & Pires, L. F. (2008).
Enterprise interoperability with soa: a survey of service composition
approaches. In Proceedings of the 2008 12th Enterprise Distributed Object
Computing Conference Workshops (EDOCW) (pp. 238-251). Washington,
DC, USA: IEEE Computer Society.

Poppendieck, M., & Poppendieck, T. (2006). Implementing lean software
development: From concept to cash (the addison-wesley signature series).
Addison-Wesley Professional.

Prechelt, L., Unger, B., Tichy, W., Brossler, P., & Votta, L. (2001). A controlled
experiment in maintenance comparing design patterns to simpler solu-
tions. IEEE Transactions on Software Engineering, 1134-1144.

Recker, J. (2008). BPMN Modeling - Who, Where, How and Why. BPTrends,
5(3).

Recker, J., & Mendling, J. (2006). On the Translation between BPMN and
BPEL: Conceptual Mismatch between Process Modeling Languages.
In T. Latour & M. Petit (Eds.), Proceedings of the 18th International
Conference on Advanced Information Systems Engineering. Proceedings of
Workshops and Doctoral Consortiums (pp. 521-532).

RosettaNet. (n.d.). RosettaNet Partner Interface Processes(©)(PIPs(©).
RosettaNet Standard. Retrieved September 12th, 2010,
from http://www.rosettanet.org/dnn_rose/Standards/
RosettaNetStandards/PIPs/tabid/475/Default.aspx

Shaw, M., & Garlan, D. (1996). Software architecture: Perspectives on an
emerging discipline. Upper Saddle River, NJ, USA: Prentice Hall.

Singh, M., Chopra, A., Desai, N., & Mallya, A. (2004). Protocols for processes:

http://www.rosettanet.org/dnn_rose/Standards/RosettaNetStandards/PIPs/tabid/475/Default.aspx
http://www.rosettanet.org/dnn_rose/Standards/RosettaNetStandards/PIPs/tabid/475/Default.aspx

Bibliography 215

programming in the large for open systems. ACM SIGPLAN Notices,
39(12), 73-83.

Snoeck, M., Lemahieu, W., Goethals, F., Dedene, G., & Vandenbulcke, J.
(2004). Events as atomic contracts for component integration. Data &
Knowledge Engineering, 51(1), 81-107.

Tabatabaei, S., Kadir, W., & Ibrahim, S. (2008). Web Service Composition
Approaches to Support Dynamic E-Business Systems. Communications
of the IBIMA, 2, 115-121.

Vaishnavi, V. K., & Kuechler, W., Jr. (2007). Design science research methods
and patterns: Innovating information and communication technology.
Boston, MA, USA: Auerbach Publications.

Van der Aalst, W., Dumas, M., Hofstede, A., Russell, N., Verbeek, H., & Wohed,
P. (2005). Life After BPEL? In M. Bravetti, L. Kloul, & G. Zavattaro
(Eds.), Formal techniques for computer systems and business processes
(Vol. 3670, pp. 35-50). Springer-Verlag Berlin Heidelberg.

Van der Aalst, W., Ter Hofstede, A., Kiepuszewski, B., & Barros, A. (2003).
Workflow patterns. Distributed and parallel databases, 14(1), 5-51.

Verma, K., Gomadam, K., Sheth, A. P., Miller, J. A., & Wu, Z. (2005, June). The
METEOR-S approach for configuring and executing dynamic web processes
(Tech. Rep.). LSDIS Lab, University of Georgia, Athens, Georgia.

W3C. (2000, May 8th). Simple Object Access Protocol (SOAP) 1.1. W3C Note.
Available from http://www.w3.org/TR/soap/

W3C. (2001, March 15th). Web Services Description Language (WSDL) Version
1.1. W3C Note. Available from http://www.w3.org/TR/wsdl

W3C. (2004, October 24th). XML Schema Part 0: Primer Second Edition. W3C
Recommendation. Available from http://www.w3.org/TR/xmlschema
0/

W3C. (2005, November 9th). Web Services Choreography Description Language
(WS-CDL) Version 1.0. W3C Candidate Recommendation. Available
from http://www.w3.org/TR/ws-cd1-10/

W3C. (2006, March 15th). Web Services Eventing (WS-Eventing). W3C Mem-
ber Submission. Available from http://www.w3.org/Submission/
WS-Eventing/

W3C. (2007a, June 26th). Web Services Description Language (WSDL) Version
2.0 Part 1: Core Language. W3C Recommendation. Available from
http://www.w3.org/TR/wsd120/

W3C. (2007b, January 23th). XQuery 1.0: An XML Query Language. W3C
Recommendation. Available from http://www.w3.org/TR/xquery/

Weber, R., Schuler, C., Neukomm, P., Schuldt, H., & Schek, H.-J. (2003). Web
service composition with O’GRAPE and OSIRIS. In Proceedings of the
29th international conference on Very large data bases (VLDB 2003) (pp.
1081-1084). VLDB Endowment.

http://www.w3.org/TR/soap/
http://www.w3.org/TR/wsdl
http://www.w3.org/TR/xmlschema-0/
http://www.w3.org/TR/xmlschema-0/
http://www.w3.org/TR/ws-cdl-10/
http://www.w3.org/Submission/WS-Eventing/
http://www.w3.org/Submission/WS-Eventing/
http://www.w3.org/TR/wsdl20/
http://www.w3.org/TR/xquery/

216 Bibliography

Weigand, H., & Van den Heuvel, W.-J. (2002). Cross-organizational workflow
integration using contracts. Decision Support Systems, 33(3), 247-265.

White, S. (2005, March). Using BPMN to Model a BPEL Process. BPTrends.

Wielemaker, J. (2003). An overview of the SWI-Prolog programming envi-
ronment. In Proceedings of the 13th International Workshop on Logic
Programming Environments (pp. 1-16). Leuven, Belgium: Department
of Computer Science, K.U.Leuven.

Williams, S., Battle, S., & Cuadrado, J. (2006). Protocol mediation for
adaptation in semantic web services. In Y. Sure & J. Domingue (Eds.),
The semantic web: Research and applications (Vol. 4011, p. 635-649).
Springer-Verlag Berlin Heidelberg.

Wohed, P., Van der Aalst, W., Dumas, M., Ter Hofstede, A., & Russell, N.
(2005). Pattern-Based Analysis of the Control-Flow Perspective of UML
Activity Diagrams. In L. Delcambre, C. Kop, H. Mayr, J. Mylopoulos, &
O. Pastor (Eds.), Conceptual Modeling ER 2005 (Vol. 3716, p. 63-78).
Springer-Verlag Berlin Heidelberg.

Wohed, P., Van der Aalst, W., Dumas, M., Ter Hofstede, A., & Russell, N.
(2006). On the Suitability of BPMN for Business Process Modelling. In
S. Dustdar, J. Fiadeiro, & A. Sheth (Eds.), Business Process Management
(Vol. 4102, p. 161-176). Springer-Verlag Berlin Heidelberg.

Yang, J. (2003). Web service componentization. Communications of the ACM,
46(10), 35-40.

Yang, J., Papazoglou, M., & Van den Heuvel, W.-J. (2002). Tackling the
Challenges of Service Composition in E-Marketplaces. In Proceedings
of the 12th International Workshop on Research Issues in Data Engineer-
ing: Engineering E-Commerce/E-Business Systems (RIDE 2002) (p. 125).
Washington, DC, USA: IEEE Computer Society.

Zdun, U., Hentrich, C., & Van der Aalst, W. M. (2006). A survey of patterns for
service-oriented architectures. International Journal of Internet Protocol
Technology, 1(3), 132-143.

Zirpins, C., & Lamersdorf, W. (2004). Service Co-operation Patterns and
their Customised Coordination. In Proceedings of the Second European
Workshop on Object Orientation and Web Service (EOOWS 2004).

Zirpins, C., Lamersdorf, W., & Baier, T. (2004). Flexible coordination of
service interaction patterns. In Proceedings of the 2nd international
conference on Service oriented computing (ICSOC 2004) (pp. 49-56).
New York, NY, USA: ACM.

Doctoral dissertations from the
faculty of business and economics

See http://www.kuleuven.ac.be/doctoraatsverdediging/archief.htm

217

Biography

Geert Monsieur was born on the 9th of April 1983 in Maaseik, Belgium. In
July 2005 he received the degree of Master in Computer Science cum laude
from the Katholieke Universiteit Leuven (K.U.Leuven).

In October 2005, Geert started working as a PhD student at the Leuven In-
stitute for Research on Information Systems (LIRIS) of the K.U.Leuven, under
supervision of prof. dr. Monique Snoeck, prof. dr. Wilfried Lemahieu and prof.
dr. Guido Dedene. In December 2010 he obtained a PhD in Applied Economics
from the Faculty of Business and Economics at K.U.Leuven. His main research
interests include service-based systems, patterns and pattern languages, busi-
ness process management and model-driven software development. As a PhD
student he was involved in several research projects of companies. In 2009
he was a guest lecturer at the IESEG School of Management in Lille, France.

219

	Committee
	Dankwoord
	Samenvatting
	Introduction
	Research context
	Services and service-based systems
	Challenges related to service-based systems

	Research goal and questions
	Research methodology
	Thesis outline

	Related work
	Dependencies in service compositions
	Managing sequence dependencies
	Introduction
	A meta-model for service composition
	Orchestration and choreography as composition viewpoints
	Orchestration and choreography as composition styles
	Conclusion

	Managing data dependencies
	Running example
	Existing techniques for dealing with data dependencies
	Conclusion

	Patterns for Service-Oriented Architectures
	Service interaction patterns
	Pattern-based architectural framework for Service-Oriented Architectures
	Flexible coordination of service interaction patterns

	Related standards
	Business Process Modeling Notation (BPMN)
	Web Services Description Language (WSDL)
	Business Process Execution Language (BPEL)

	Managing sequence dependencies
	Introductory example
	Pattern language
	Introduction
	Pattern overview
	Controlled Service Provider
	Independent Controller
	Controlling Service Provider
	Coordinator
	Self-controlled Service Provider

	Applying the patterns in practice
	Design guidelines
	Coordination in workflow patterns

	Evaluation
	Shepherding and writers' workshop
	Completeness of the pattern language

	Conclusion

	Managing data dependencies
	Introductory example
	Pattern language
	Introduction
	Pattern overview
	Data flow initiation
	Direct-Indirect request
	Direct-Indirect transmission

	Applying the patterns to construct coordination scenarios
	Combining the patterns into coordination scenarios
	Design guidelines for applying the patterns
	Applying the patterns and guidelines to the hospital example

	Demonstrating the practical utility
	Analytical validation: a shepherding process and a writers' workshop
	Observational evaluation: real-life insurance case
	Descriptive evaluation: flexible coordination of service interactions

	Completeness confirmation
	Formalizing a coordination scenario
	Executing the Prolog program

	Conclusion

	Combining the pattern languages
	Data dependencies service compositions
	Managing data dependencies in service compositions
	Combining sequence and data dependency management
	Conclusion

	Tool support for pattern-based coordination
	From business process modeling to service composition
	Existing BPMN-to-BPEL transformations
	Pattern-based service composition and coordination

	Input for pattern-based service composition and coordination
	Representing sequence and data dependencies in BPMN
	An additional data dependencies model
	Representing a coordination model

	Pattern-based service composition and coordination
	Processing the input models
	Generating the output files

	Demonstration in a concrete example
	Sequence and data dependencies in the travel agency example
	Specifying the input models
	The generated BPEL and WSDL files
	Testing generated BPEL processes

	Conclusion

	Conclusions
	Research objectives evaluation
	Limitations and issues for future research
	Sequence versus action dependencies
	Extending the execution model
	Time dimensions in data dependencies management
	Additional validation
	Joined forces
	Composite data requests
	Patterns for self-adaptive service coordination

	Completeness confirmation in Prolog
	XML Schemas
	XML Schema for a data dependencies model
	XML Schema for a coordination model

	List of Figures
	List of Tables
	List of Listings
	Bibliography
	Doctoral dissertations from the Faculty of Business and Economics
	Biography

