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Abstract

Parser combinators are well-known in functional programming

languages such as Haskell. In this paper, we describe how they

are implemented as a library in Scala, a functional object-oriented

language. Thanks to Scala’s flexible syntax, we are able to closely

approximate the EBNF notation supported by dedicated parser gen-

erators. For the uninitiated, we first explain the concept of parser

combinators by developing a minimal library from scratch. We then

turn to the existing Scala library, and discuss its features using vari-

ous examples.



Chapter 1

Introduction

In this paper we describe our Scala [9] implementation of an embedded domain-specific lan-
guage (DSL) for specifying grammars in a EBNF-like notation. We use the parser combinators
approach [11, 5, 2, 10, 7] to implement this language as a Scala library.

The next chapter provides a tutorial on how to implement a library of parser combinators
from scratch. No prior knowledge of functional programming is required. We do assume fa-
miliarity with Scala, and basic notions of parsing. Chapter 3 exemplifies the utility of the actual
library of parser combinators that is part of the standard Scala distribution.

By defining the parser directly in the general-purpose language that is used to process the
parser’s results, the full power of that language is at our disposal when constructing the gram-
mar. There is no need to learn a separate language for things that can already be expressed in
the general-purpose language. Thus, the only bump in the learning curve is understanding the
combinators offered by the library.

Any sufficiently complicated DSL is doomed to re-invent many of the mechanisms already
available in a general-purpose language. For example, Bracha shows how to leverage inher-
itance in his Executable Grammars, so that the concrete grammar and the construction of the
corresponding abstract syntax trees can be decoupled [1] in Newspeak, a unityped [4] language.
It remains an open question to devise a type system that can harness this scheme.

The downsides of not having a special-purpose language for describing the grammar are
limited: essentially, the syntax may be more verbose and performance may be affected. We will
show that our library minimises the syntactical overhead. We leave performance benchmarks
and optimisations for future work. The Parsec library in Haskell was shown to be quite effi-
cient [7], so we expect similar results can be achieved in our library if practical use indicates
optimisation is necessary.

Our parser combinators produce back-tracking top-down parsers that use recursive descent
with arbitrary look-ahead and semantic predicates. The library provides combinators for or-
dered choice and many other high-level constructs for repetition, optionality, easy elimination
of left-recursion, and so on. In Chapter 3, we will show how to incorporate variable scoping in
a grammar.

There are a few known limitations on the expressible grammars. Left-recursion is not
supported directly, although we provide combinators that largely obviate the need for it. In
principle, it is possible to implement a different back-end that adds support for left recursion,
while exposing the same interface. Recent work has shown how to implement support for left-
recursion in Packrat parsers [12]. We have investigated using Packrat parsing [3], but defer a
full implementation until we focus on optimising the performance of our library. Besides the
implementation effort, Packrat parsing assumes parsers are pure (free from effects), but this
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cannot (yet) be enforced in Scala.
Furthermore, the choice operator is sensitive to the order of the alternatives. To get the ex-

pected behaviour, parsers that match “longer” substrings should come first. To increase perfor-
mance, the ordered choice combinator commits to the first alternative that succeeds. In practice,
this seems to work out quite nicely.
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Chapter 2

Parser Combinators from the Ground Up

2.1 Intuitions
As a first approximation, a parser consumes input. In functional programming, we model an
“input consumer” as a function that takes some input and returns the rest of the input that has
not been consumed yet.

Thus, the type of a parser that examines a string (as its input) can be written as String ⇒
String. The identity function represents a parser that does not consume any input. Another

example is a parser that always consumes the first character of its input: (in: String) ⇒
in.substring(1). Now, what should we do when the input is empty? Or, how can we

implement a parser that refuses certain input?
Naturally, a parser does not accept just any input – it has to conform to a certain grammar.

A parser should not just denote how much input it consumed, but also whether it considered the
input valid or not. Furthermore, for valid input, a parser typically returns a result based on that
input. Invalid input gives rise to an error message.

Let us refine our model of a parser so that it meets these criteria: a parser is a function that
takes some input – generalising this to be of the abstract type Input – and that produces a
result, which is modelled by the type Result[T]. Listing 2.1 implements this in Scala.

Given this SimpleResults component, we will model a parser that produces results of
type T as a function of type Input ⇒ Result[T]. First, we examine listing 2.1 more care-
fully.

Listing 2.1: A component for modelling results
trait SimpleResults {
type Input

trait Result[+T] {
def next: Input

}

case class Success[+T](result: T, next: Input) extends Result[T]
case class Failure(msg: String, next: Input)

extends Result[Nothing]
}

5



Listing 2.2: Parsing ‘x’
object XParser extends SimpleResults {
type Input = String
val acceptX: Input ⇒ Result[Char] = {(in: String) ⇒
if(in.charAt(0) == ’x’) Success(’x’, in.substring(1))
else Failure("expected an x", in)

}
}

A result can be a success, and then it contains a result value of type T, or a failure, that
provides an error message. In either case, a result specifies how much input was consumed by
tracking the input that should be supplied to the following parser.

The declaration trait Result[+T] says Result is a type constructor that is covariant
in its first type argument. Because it is a type constructor, we must apply Result to a concrete
type argument, such as String, in order to construct a type that can be instantiated, such as
Result[String] (this is necessary, but not sufficient, as Result is an abstract class).

Because of the covariance annotation (the ‘+’), Result[A] and Result[B] are related
with respect to subtyping in the same way as A and B. That is, Result[A] <: Result[B] if
A <: B and vice versa. Note that Nothing is a subtype of any well-formed type.

Before we study more complicated parsers, consider the parser that only accepts the char-
acter ’x’, as shown in listing 2.2.

Exercise 2.1 (Experimenting) What happens when you apply this parser to the input "xyz"?
(That is, what is the result of acceptX("xyz")?) Try to work out the result on paper before
pasting1 the listings in the Scala interpreter to verify your expectations.

Notice how the parser denotes that it consumed the first character of the input: the next

field of the result is set to the input minus its first character (the substring that starts after the
first character).

Exercise 2.2 (Generalisation and Robustness) Generalise acceptX so that it can be used to
make a parser that matches on other characters than ’x’. Improve it further so that it deals
with the empty input.

2.2 Sequence and Alternation
Now we know how to define parsers that accept a single element of input, we will see how these
can be combined into parsers that recognise more complex grammars. Once it is clear how to
implement the two most typical ways of combining parsers, we shall gradually improve our
implementation.

Listing 2.3 shows a straightforward implementation of alternation and sequencing. A Parser

is a subclass of Input ⇒ Result[T], which is syntactic sugar for Function1[Input,
Result[T]]. Thus, an instance of Parser[T] is (an object that represents) a function that
takes an instance of Input to a Result[T]. As a reminder, the abstract apply method, which
is inherited from Function1, is included explicitly in listing 2.3.

1Note that => is typeset as⇒.
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If p and q are Parser’s, p | q is a Parser that first tries p. If this is successful, it returns
p’s result. q is only tried if p fails. Similarly, p ~ q results in a parser that succeeds if p and
then q succeeds. There is nothing special about ~ and |: they are just methods that happen to
have names that consist solely of symbols. p ~ q | r is syntactic sugar for (p.~(q)).|(r
). The precedence and associativity of method names is defined in the Scala reference [8, Sec.
6.12.3].

The | method takes an argument p, which is a parser that produces results of type U. U must
be a super-type of the type of the results produced by the parser on which the | method is called
(denoted as Parser.this). The method returns a new parser that produces results of type U
by first trying Parser.this, or else p.

When the parser that is returned by |, is applied to input, it passes this input on to Parser.
this (the parser on which | was called originally). The result of this parser is examined using
pattern matching. The first case is selected when Parser.this failed. Then (and only then –
see below), the alternative parser is computed and applied to the same input as Parser.this.
The outcome of this parser determines the result of the combined parser. In case Parser.this
succeeded, this result is simply returned (and p is never computed).

Note that p is passed call-by-name (CBN) 2. When | is called, the compiler silently wraps
a zero-argument function around its argument, so that its value is not yet computed. This is
delayed until p is “forced” in the body of the method.

More concretely, every time p’s actual value is required, the wrapper function is applied (to
the empty list of arguments). Consider the expression q | p. When the | combinator is called
on q, p’s value need not be known, as the method simply returns a new parser. This combined
parser textually contains an occurrence of p, but its actual value does not become relevant until
the combined parser is applied to input and q fails.

The sequence combinator is implemented by the ~ method. The main difference is that we
must be more careful with the input that is passed to each parser: the first one receives the input
supplied to the combined parser, and the second parser (p) is applied to the input that was left
over after the first one. If both parsers succeed, their results are combined in the pair (x, x2).
The first parser to fail determines the unsuccessful outcome of the combined parser.

Exercise 2.3 (Cycles) What happens when you leave off the ‘⇒’ of the types of the arguments
of | and ~? Write down a grammar that relies on the arguments being call-by-name.

With these combinators in place, let us construct our first working parser by combining a
simple parser that accepts a single character into one that accepts the string that consists of one
or more times “oxo”, where subsequent occurrences are separated by a white space.

First, we generalise our acceptX parser generator in listing 2.4. The only non-trivial dif-
ference is that we allow checking for the end of input using the parser generated by the method
eoi. Internally, we use 0 to denote the end of the input has been reached.

Finally, the object OXOParser (listing 2.5) constitutes a valid Scala program whose first
argument must be exactly "oxo", "oxo oxo", or "oxo oxo oxo", and so on.

To emphasise that this grammar is expressed purely as method calls, listing 2.6 reformulates
oxo and oxos in a more traditional syntax.

2Call-by name arguments are denoted by prefixing the argument type with⇒.
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Listing 2.3: Combinators for Alternation and Sequencing
trait SimpleParsers extends SimpleResults {
trait Parser[+T] extends (Input ⇒ Result[T]) {
def apply(in: Input): Result[T]

def | [U >: T](p: ⇒ Parser[U]): Parser[U]
= new Parser[U]{ def apply(in: Input) =

Parser.this(in) match {
case Failure(_, _) ⇒ p(in)
case Success(x, n) ⇒ Success(x, n)

}
}

def ~ [U](p: ⇒ Parser[U]): Parser[Pair[T, U]]
= new Parser[Pair[T, U]]{ def apply(in: Input) =

Parser.this(in) match {
case Success(x, next) ⇒ p(next) match {
case Success(x2, next2) ⇒ Success((x, x2), next2)
case Failure(m, n) ⇒ Failure(m, n)

}
case Failure(m, n) ⇒ Failure(m, n)

}
}

}
}

Listing 2.4: Parsing Strings
trait StringParsers extends SimpleParsers {
type Input = String
private val EOI = 0.toChar

def accept(expected: Char) = new Parser[Char]{
def apply(in: String) =
if(in == "") {
if(expected == EOI)
Success(expected, "")

else
Failure("no more input", in)

} else if(in.charAt(0) == expected)
Success(expected, in.substring(1))

else
Failure("expected \’"+expected+"\’", in)

}

def eoi = accept(EOI)
}
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Listing 2.5: oxo oxo . . . oxo
object OXOParser extends StringParsers {
def oxo = accept(’o’) ~ accept(’x’) ~ accept(’o’)
def oxos: Parser[Any] =
( oxo ~ accept(’ ’) ~ oxos
| oxo
)

def main(args: Array[String]) = println((oxos ~ eoi)(args(0)))
}

Listing 2.6: oxo oxo . . . oxo (hold the syntactic sugar)
def oxo = accept(’o’).~(accept(’x’)).~(accept(’o’))
def oxos: Parser[Any] = oxo.~(accept(’ ’)).~(oxos).|(oxo)

Exercise 2.4 Verify the correctness of listing 2.6 by compiling the version of listing 2.5 using
scalac -Xprint:typer, which prints the compiled source after type checking. At that point,
syntactic sugar has been expanded and the omitted types have been inferred.

Exercise 2.5 Write down the order in which the various parsers are executed for a given input.
Work out at least one example for input on which the parser should fail. Verify your solution
using the log combinator of listing 2.7. What changes when you omit the ~ eoi in the main
method?

2.3 Factoring out the plumbing
We will now improve our first implementation using standard techniques from functional pro-
gramming. Our combinators for alternation and sequencing worked correctly, but were some-
what tricky to get right. More specifically, we had to pay attention to “threading” the input
correctly when combining the parsers. In this section, we will encapsulate this.

Listing 2.7: Logging
def log[T](p: ⇒ Parser[T])(name: String) = new Parser[T]{
def apply(in: Input) : Result[T] = {
println("trying "+ name +" at \’"+ in + "\’")
val r = p(in)
println(name +" -→ "+ r)
r

}
}
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Listing 2.8: Improved Results
trait SimpleResults {
type Input

trait Result[+T] {
def next: Input

def map[U](f: T ⇒ U): Result[U]
def flatMapWithNext[U](f: T ⇒ Input ⇒ Result[U]): Result[U]
def append[U >: T](alt: ⇒ Result[U]): Result[U]

}

case class Success[+T](result: T, next: Input) extends Result[T] {
def map[U](f: T ⇒ U)
= Success(f(result), next)

def flatMapWithNext[U](f: T ⇒ Input ⇒ Result[U])
= f(result)(next)

def append[U >: T](alt: ⇒ Result[U])
= this

}

case class Failure(msg: String, next: Input) extends Result[Nothing] {
def map[U](f: Nothing ⇒ U)
= this

def flatMapWithNext[U](f: Nothing ⇒ Input ⇒ Result[U])
= this

def append[U](alt: ⇒ Result[U])
= alt

}
}
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Listing 2.9: Parsing
trait SimpleParsers extends SimpleResults {
abstract class Parser[+T] extends (Input ⇒ Result[T]) {
def apply(in: Input): Result[T]

def flatMap[U](f: T ⇒ Parser[U]): Parser[U]
= new Parser[U]{def apply(in: Input)

= Parser.this(in) flatMapWithNext(f)}

def map[U](f: T ⇒ U): Parser[U]
= new Parser[U]{def apply(in: Input)

= Parser.this(in) map(f)}

def | [U >: T](p: ⇒ Parser[U]): Parser[U]
= new Parser[U]{def apply(in: Input)

= Parser.this(in) append p(in)}

def ~ [U](p: ⇒ Parser[U]): Parser[Pair[T, U]]
= for(a ← this; b ← p) yield (a,b)

}
}

The new Result, as defined in listing 2.8, provides three simple methods. When called
on a Success, map produces a new Success that contains the transformed result value. The
map method is useful when transforming the result of a combinator. The function passed to
flatMapWithNext produces a new Result based on the result value and next. We will use
this method for chaining combinators. Finally, the only method whose implementation does not
follow directly from its type signature, is append. Our simple model of results does not allow
for multiple successful results, so appending a result to a success is a no-op. However, for more
sophisticated systems that allow multiple results, append would add alt to a collection. Here,
it simply returns the current Result.

For a Failure, the methods behave dually.
These methods may seem a bit arbitrary, but with them, we can re-implement Parser as

shown in listing 2.9. flatMap, map, and | simply create Parser’s that call the corresponding
methods on the results they produce for a given input.

Finally, ~ can now be implemented very naturally using Scala’s for-comprehension syntax.
Its implementation can be read as: “perform parser this and bind its result to a in the next
computation, which performs p and maps its result b to the pair (a, b)”. Note that we do
not have to do any bookkeeping on which input to pass to which parser! (This interpretation of
for-comprehensions explains why flatMap is sometimes also called “bind”.)

For-comprehensions [8, Sec 6.19] are syntactic sugar for nested calls to flatMap, map, and
filter (we do not yet use the latter). More concretely, for(a ← this; b ← p) yield
(a,b) is shorthand for this.flatMap{a ⇒ p.map{b ⇒ (a, b)}}.

Our existing OXOParser can be used as-is with this new version of SimpleParsers.

Exercise 2.6 Implement def flatMap[U](f: T ⇒ Result[U]): Result[U] in the ap-
propriate classes. Experiment with for-comprehensions over Result’s. Can you think of other
applications besides parsing?
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Listing 2.10: Reducing SimpleParsers
trait SimpleParsers extends SimpleResults {
def Parser[T](f: Input ⇒ Result[T])
= new Parser[T]{ def apply(in: Input) = f(in) }

abstract class Parser[+T] extends (Input ⇒ Result[T]) {
def flatMap[U](f: T ⇒ Parser[U]): Parser[U]
= Parser{in ⇒ Parser.this(in) flatMapWithNext(f)}

def map[U](f: T ⇒ U): Parser[U]
= Parser{in ⇒ Parser.this(in) map(f)}

def | [U >: T](p: ⇒ Parser[U]): Parser[U]
= Parser{in ⇒ Parser.this(in) append p(in)}

def ~ [U](p: ⇒ Parser[U]): Parser[Pair[T, U]]
= for(a ← this; b ← p) yield (a,b)

}
}

Exercise 2.7 Convince yourself that the two implementations of ~ and | are indeed equivalent,
without actually executing anything. Inline the method calls made by the new version until you
arrive at our first implementation. (See p. 25 for the solution to this exercise.)

Exercise 2.8 Improve OXOParser so that oxos produces a parser that returns a list of strings
(where each string equals "oxo"). (Hint: use map.)

2.4 More Polish and Advanced Features

2.4.1 Encapsulating Parser Instantiation
Listing 2.10 shows how we can get rid of the repetitive new Parser[U]{def apply(in:

Input) = ... } fragment. We simply define a method Parser that makes a new instance of
Parser given a function that fully defines the parser’s logic. (We’ve also omitted the abstract
apply method – as said before, it is inherited from Function1 anyway.)

2.4.2 Improving accept

As it stands, our oxo-grammar is already pretty close to BNF notation:

def oxo = accept(’o’) ~ accept(’x’) ~ accept(’o’)
def oxos: Parser[Any] =
( oxo ~ accept(’ ’) ~ oxos
| oxo
)

We will now see how we can reduce this to:
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def oxo = ’o’ ~ ’x’ ~ ’o’
def oxos: Parser[Any] =
( oxo ~ ’ ’ ~ oxos
| oxo
)

Without further intervention, this code will not compile, as Char does not have a ~ method.
We can use implicit conversions to remedy this.

Simply adding the implicit keyword to the signature of accept does the trick:

implicit def accept(expected: Char): Parser[Char] = ... // as before

Now, whenever the compiler encounters a value of type Char whereas its expected type is
Parser[Char], it will automatically insert a call to the accept method!

In the following sections we will see how we can express the oxo-grammar even more
succinctly using more advanced combinators. First, we will refactor accept and add initial
machinery to improve error-reporting.

2.4.3 Filtering
It is now time to change the accept we defined in listing 2.4, so that it is less tightly coupled
to the kind of input we are examining.

accept generates a parser that accepts a given element of input. To do this, it suffices
that it can retrieve one element of input as well as the input that follows this element. We
introduce a new abstract type Elem to represent an element of input, which can be retrieved
using def first(in: Input): Elem. The rest of the input is returned by def rest(in:

Input): Input. Given these abstractions, we can implement accept once and for all.
For reference, listing 2.11 shows the simplified StringParsers, which now only contains

the essential methods that deal with the specific kind of input that is supported by this compo-
nent. (Note that first and rest correspond to the typical head and tail functions that are
used to access lists in functional programming.)

Listing 2.11: StringParsers with first and rest
trait StringParsers extends SimpleParsers {
type Input = String
type Elem = Char
private val EOI = 0.toChar

def first(in: Input): Elem = if(in == "") EOI else in(0)
def rest(in: Input): Input = if(in == "") in else in.substring(1)

def eoi = accept(EOI) // accept is now defined in SimpleParsers
}

To further deconstruct accept’s functionality, we define a simple parser that accepts any
given piece of input and passes the rest of the input on to the next parser. We will introduce
another method that decides whether this piece of input is acceptable.
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def consumeFirst: Parser[Elem] = Parser{in ⇒
Success(first(in), rest(in))

}

We need one more standard method in Parser: filter. This method wraps an exist-
ing parser so that it accepts only results that meet a certain predicate (which is modelled as a
function T ⇒ Boolean).

def filter(f: T ⇒ Boolean): Parser[T]
= Parser{in ⇒ this(in) filter(f)}

Finally, we recover accept as the parser that filters the parser that consumes any input, by
checking that the produced result is equal to the expected element.

def acceptIf(p: Elem ⇒ Boolean): Parser[Elem]
= consumeFirst filter(p)

implicit def accept(e: Elem): Parser[Elem] = acceptIf(_ == e)

Exercise 2.9 Implement the corresponding filtermethod in Result and its subclasses. Note
that this is not entirely trivial! Try out your implementation. Compare the resulting accept

method to our original one – where did it go wrong? (See p. 26 for the solution and an
explanation.)

2.4.4 More Combinators
To make it easier to define more advanced combinators, we add three more methods to Parser:

def ~> [U](p: ⇒ Parser[U]): Parser[U] = for(a ← this; b ← p) yield b
def <~ [U](p: ⇒ Parser[U]): Parser[T] = for(a ← this; b ← p) yield a

def ^^ [U](f: T ⇒ U): Parser[U] = map(f)

These methods allow sequencing parsers when we only care about the result of either the
right or the left one. Because the following combinators heavily rely on map, we define a
shorthand for it: ^^.

The combinators in listing 2.12 implement optionality, repetition (zero or more, or one or
more), repetition with a separator, and chaining (to deal with left-recursion). These combinators
were inspired by Hutton and Meijer’s excellent introduction, in which they explain them in more
detail [6]. We will not discuss their implementation, but we will use them later in this paper.

We can leverage these combinators to further shorten our oxo-parser as follows (addition-
ally, we improve the output):

object OXOParser extends StringParsers with MoreCombinators {
def oxo = acceptSeq("oxo") ^^ {x ⇒ x.mkString("")}
def oxos = rep1sep(oxo, ’ ’)

def main(args: Array[String]) = println((oxos <~ eoi)(args(0)))
}
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Listing 2.12: More Advanced Combinators
trait MoreCombinators extends SimpleParsers {
def success[T](v: T): Parser[T]
= Parser{in ⇒ Success(v, in)(Failure("unknown failure", in))}

def opt[T](p: ⇒ Parser[T]): Parser[Option[T]]
= ( p ^^ {x: T ⇒ Some(x)}
| success(None)
)

def rep[T](p: ⇒ Parser[T]): Parser[List[T]]
= rep1(p) | success(List())

def rep1[T](p: ⇒ Parser[T]): Parser[List[T]]
= rep1(p, p)

def rep1[T](first: ⇒ Parser[T], p: ⇒ Parser[T]): Parser[List[T]]
= first ~ rep(p) ^^ mkList

def repsep[T, S](p: ⇒ Parser[T], q: ⇒ Parser[S]): Parser[List[T]]
= rep1sep(p, q) | success(List())

def rep1sep[T, S](p: ⇒ Parser[T], q: ⇒ Parser[S]): Parser[List[T]]
= rep1sep(p, p, q)

def rep1sep[T, S](first: ⇒ Parser[T], p: ⇒ Parser[T], q: ⇒ Parser[S])
: Parser[List[T]]
= first ~ rep(q ~> p) ^^ mkList

def chainl1[T](p: ⇒ Parser[T], q: ⇒ Parser[(T, T) ⇒ T]): Parser[T]
= chainl1(p, p, q)

def chainl1[T, U](first: ⇒ Parser[T], p: ⇒ Parser[U], q: ⇒ Parser[(T,
U) ⇒ T]): Parser[T]
= first ~ rep(q ~ p) ^^ {

case (x, xs) ⇒ xs.foldLeft(x){(_, _) match {case (a, (f, b)) ⇒ f
(a, b)}} }

def acceptSeq[ES <% Iterable[Elem]](es: ES): Parser[List[Elem]] = {
def acceptRec(x: Elem, pxs: Parser[List[Elem]]) = (accept(x) ~ pxs)

^^ mkList
es.foldRight[Parser[List[Elem]]](success(Nil))(acceptRec _ _)

}

private def mkList[T] = (_ : Pair[T, List[T]]) match {case (x, xs) ⇒ x
:: xs }

}
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2.4.5 Controlling Backtracking
To manage the way in which a parser performs backtracking, we introduce a different type of
unsuccessful result, Error, whose append method does not try the alternative. This effectively
disables backtracking. In order to trigger this behaviour, we add the dontBacktrack method
to Parser, which turns failures into errors. The implementation of dontBacktrack is more
subtle than simply turning Failures into Errors, as a Success must also carry with it that
subsequent Failures must be turned into Errors.

We explain the usage of the ~! combinator in section 2.4.6.

Listing 2.13: Error
case class Error(msg: String, next: Input) extends Result[Nothing] {
def map[U](f: Nothing ⇒ U) = this
def flatMap[U](f: Nothing ⇒ Result[U]) = this
def flatMapWithNext[U](f: Nothing ⇒ Input ⇒ Result[U]) = this
def filter(f: Nothing ⇒ Boolean): Result[Nothing] = this
def append[U](alt: ⇒ Result[U]) = this

def explain(ei: String) = Error(ei, next)
}

Listing 2.14: Disabling Backtracking
def dontBacktrack: Parser[T] = ... /* a Parser whose Failures become
Errors.
This behaviour propagates through all other parsers that follow this
one. */

def ~! [U](p: ⇒ Parser[U]): Parser[Pair[T, U]]
= dontBacktrack ~ p

2.4.6 Error Reporting
Better Messages

Until now, the user of our library could not easily influence the error message in case a parser
failed. To solve this, we add three more methods to Parser:

def explainWith(msg: Input ⇒ String): Parser[T] = Parser{in ⇒
this(in) explain msg(in)

}

def explain(msg: String): Parser[T] = Parser{in ⇒
Parser.this(in) explain msg

}

def expected(kind: String): Parser[T]
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= explainWith{in ⇒ ""+ kind +" expected, but \’"+ first(in) +"\’
found."}

As usual, this requires a modest change to Result. This is the implementation for Failure:

def explain(ei: String) = Failure(ei, next)

A parser can now be customised with an appropriate error message by calling one of these
new methods. For example, here is an improved version of accept:

implicit def accept(e: Elem): Parser[Elem] = acceptIf(_ == e).expected(e
.toString)

Failing Better

Besides better error messages, we can also improve the location where parsing breaks down.
Generally, the further down the input, the more informative the input will be. By disabling
backtracking when we know it will not help, the parser is prevented from going back to an
earlier point in the input, thus improving the error message.

For example, consider a simplified parser for a single (Scala-style) member declaration:

def member = ("val" ~! ident | "def" ~! ident)

As soon as we have encountered the val keyword, but fail to parse an identifier, there is no
point in going back to look for the def keyword. Thus, if a branch of the ordered choice signals
an error, the subsequent alternatives are pre-empted.
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Chapter 3

Scala’s Parser Combinators by Example

The library of parser combinators in the standard Scala distribution is very similar to the library
that we developed in the previous chapter. For detailed documentation, please consult the API-
documentation included in the distribution. In this chapter, we discuss a number of interesting
examples.

3.1 Parsing and evaluating simple arithmetic expressions
An introduction to parsing would not be complete without a parser for arithmetic expressions.
Except for the import statements, listing 3.1 is a complete implementation of such a parser.
Let’s dissect this example line by line.

The first line declares an application object ArithmeticParser, which is suitable as a
main class (running it will evaluate the expressions in its body). More importantly, ArithmeticParser
is a StdTokenParsers, which means it contains parsers that operate on a stream of tokens.
StdTokenParsers earned its ‘Std’ prefix by providing a couple of commonly-used tokens
such as keywords, identifiers and literals (strings and numbers). If these defaults don’t suit you,
simply go over its head and use its super class, TokenParsers.

A token parser abstracts from the type of tokens it parses. This abstraction is made concrete
in line 2: we use StdLexical for our lexical analysis. It’s important to note that lexical
analysis is done using the same parsers that we use for syntax analysis. The only difference
is that lexical parsers operate on streams of characters to produce tokens, whereas syntactical
parsers consume streams of tokens and produce yet a more complex type of structured data.
To conclude the lexical aspects of our example, line 3 specifies which characters should be
recognised as delimiters (and returned as keyword tokens).

Now we get to the actual grammar. expr returns a parser that parses a list of term’s,
separated by either a "+" or a "-" and returns an integer, which, unsurprisingly, corresponds
to the evaluation of the expression. An implicit conversion (keyword in StdTokenParsers)
automatically lifts a string to the UnitParser that matches that string and returns nothing.
UnitParser’s are parsers whose results are discarded.

In general, p* means repeat parser p zero or more times and collect the results of p in a
list. p*(q) generalises this to repeating p alternated with q. If q returns a result (i.e., it’s
not a UnitParser), its result must be a function that combines the result of p when called
right before it and that of p when called right after it. In our case, q is "+" ^^ {(x: int,

y: int) ⇒ x + y} | "-" ^^ {(x: int, y: int) ⇒ x - y}, which, when it sees
a "+", returns the function that sums two integers, and similarly when it encounters a "-".
p*(q) uses this function to “fold” the list of results into a single result. Again, in our case, this
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Listing 3.1: Parsing 1+1 etc.
object ArithmeticParser extends StdTokenParsers with Application {
type Tokens = StdLexical ; val lexical = new StdLexical
lexical.delimiters ++= List(’(’, ’)’, ’+’, ’-’, ’*’, ’/’)

def expr = term*("+" ^^ {(x: int, y: int) ⇒ x + y}
| "-" ^^ {(x: int, y: int) ⇒ x - y})

def term = factor*("*" ^^ {(x: int, y: int) ⇒ x * y}
| "/" ^^ {(x: int, y: int) ⇒ x / y})

def factor: Parser[int] = "(" ~ expr ~ ")"
| numericLit ^^ (.toInt)

Console.println(expr(new lexical.Scanner("1+2*3*7-1")))
}

Listing 3.2: Desugared version of listing 3.1.
def expr = chainl1(term, (keyword("+").^^{(x: int, y: int) ⇒ x + y}).|(

keyword("-").^^{(x: int, y: int) ⇒ x - y}))
def term = chainl1(factor, (keyword("*").^^{(x: int, y: int) ⇒ x * y}).|(

keyword("/").^^{(x: int, y: int) ⇒ x / y}))
def factor: Parser[int] = keyword("(").~(expr.~(keyword(")"))).|(

numericLit.^^(x ⇒ x.toInt))

is the sum (or subtraction) of the constituent terms. When q is a UnitParser, it’s freed from
returning such a function and the combinator just collects p’s results in a list.

Let’s pick "+" ^^ {(x: int, y: int) ⇒ x + y} | "-" ^^ {(x: int, y: int)

⇒ x - y} apart a bit further. Because of Scala’s operator precedence, | is the first combina-
tor to be applied. p | q is the parser that first tries p on the input, and if successful, just returns
it result. If its result was Failure (and not Error), the second parser, q is used. Note that this
combinator is sensitive to the ordering of its constituents. It does not try to produce all possible
parses – it stops as soon as it encounters the first successful result.

The ^^ combinator takes a parser and a function and returns a new parser whose result is
the function applied to the original parser’s result. In the case of a UnitParser, the function
can only be a constant function (i.e., a value).

Finally, we create a scanner that does lexical analysis on a string and returns a stream of
tokens, which is then passed on to the expression parser. The latter’s result is then printed on
the console.

To illustrate what all this syntactical sugar really boils down to, listing 3.2 shows what we’d
have to write if Scala’s syntax wasn’t as liberal. In line with the stoic approach, the code also
doesn’t use implicit conversions.

3.2 Context sensitivity in parsing XML
Listing 3.3, which was inspired by [7], shows how to make context-sensitive parsers. It is
a self-contained parser for an extremely minimal subset of XML. Thus, it also demonstrates
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Listing 3.3: A sketch for a context-sensitive parser for XML
import scala.util.parsing.combinator._

object XMLParser extends Parsers with Application {
type Elem = Char

trait Node
case class ContainerNode(name: String, content: List[Node]) extends Node
case class TextNode(content: String) extends Node

def str1(what: String, pred: Char ⇒ Boolean) = rep1(elem(what, pred))
^^ (_.mkString(""))

def openTag: Parser[String] = ’<’ ~> str1("tag name", _.isLetter) <~ ’>’
def endTag(name: String) = (’<’ ~ ’/’) ~> accept(name.toList) <~ ’>’
def xmlText: Parser[Node] = str1("xml text", {c ⇒ !(c == ’<’ || c ==
’>’)}) ^^ TextNode

def xml: Parser[Node] = (
(openTag into {name ⇒ rep(xml) <~ endTag(name) ^^ (ContainerNode(

name, _))})
| xmlText )

import scala.util.parsing.input.CharArrayReader

def phrase[T](p: Parser[T]): Parser[T] = p <~ accept(CharArrayReader.
EofCh)

println(phrase(xml)(new CharArrayReader("<b>bold</b>".toArray)))
}

how combinator parsers can be used for scanner-less parsing. Although it is typically more
convenient to separate lexical and syntactical parsing, they can also be performed by the same
parser.

The essential part of the example is:

openTag into {name ⇒ rep(xml) <~ endTag(name) ^^ (ContainerNode(name, _))
}

This constructs a parser that first tries the openTag parser, and if successful, feeds its result
into the next part:

rep(xml) <~ endTag(name) ^^ (ContainerNode(name, _))

This parser, where name is bound to the tag-name that was parsed by openTag, accepts any
number of nested constructs, and a closing tag with the right name. Thus, the end result is that
this parser recognises when tags are not properly closed.
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Listing 3.4: Parser for the Lambda calculus that tracks variable binding
trait LambdaParser extends Syntax with Lexical with ContextualParsers {
// Context tracks which variables are bound,
// the generic functionality is implemented in ContextualParsers
// Here, we only specify how to create our Context class
object Context extends ContextCompanion {
def apply(f: String ⇒ Option[Name]): Context
= new Context { def apply(n: String) = f(n) }

}

// Since parsing a term depends on the variable bindings that we have
// previously added to the context, we put these parsers in a Context,
// which provides the ‘bind‘, ‘in‘, and ‘bound‘ combinators.
trait Context extends ContextCore {
def term = chainl1(termSingle, ws ^^^ (App(_: Term, _: Term)))
def termSingle: Parser[Term] =
( ’(’ ~> term <~ ’)’
| ’\\’ ~> bind(wss(ident)) >> in{ctx ⇒ ’.’ ~> wss(ctx.term)} ^^ Abs
| bound(ident) ^^ Var
)

}

import scala.util.parsing.input.Reader
def parse(input: Reader[Char]) = (wss(Context.empty.term) <~ eoi)(input)

}

3.3 Tracking variable binding
Listing 3.4 implements a parser for the lambda calculus that also enforces the scoping rules for
variables. Essentially, we nest our productions in a class Context, which models the current
scope. Then, in a given scope, a term is a sequence of applications, where a single term in an
application may be a parenthesized term, an abstraction, or a bound variable. An abstraction
binds an identifier1, and brings it into scope by calling the term production on the context that
is produced by the bind combinator.

The combinators that maintain which variables are bound are show in Listing 3.5. Basically,
a context is a function that takes a variable name (as a String), and returns a (unique) Name
that represents the variable, if it is bound. The bind combinator is parameterised in a parser that
yields a string-representation name, which is then turned into a fresh name n. The result of this
combinator is a pair that consists of a new context that binds name to n, and n. This redundancy
is needed for the implementation of in, which wraps a parser that parses a construct (of type T)
in which a variable is bound, in a \\[T].

The bound combinator succeeds if the given name (as a String) is in scope, and returns
the corresponding Name.

Finally, Listing 3.6 shows the essence of the case classes that model the abstract syntax tree.
The implementation of the Binding trait is out of scope for this paper. It should be clear that

these combinators are amenable to most common approaches to dealing with variable binding.
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Listing 3.5: Infrastructure for dealing with variable binding
trait Binding {
// represents a variable name
type Name
// creates a fresh name
def Name(n: String): Name

// something that contains Name’s
type HasBinder[T]

// some construct of type T in which the Name n is bound
type \\[T]
def \\[T](n: Name, scope: HasBinder[T]): \\[T]

}

trait ContextualParsers extends Parsers with Binding {
type Context <: ContextCore

val Context: ContextCompanion
trait ContextCompanion {
val empty: Context = apply{name ⇒ None}
def apply(f: String ⇒ Option[Name]): Context

}

trait ContextCore extends (String ⇒ Option[Name]) {
def bind(nameParser: Parser[String]): Parser[(Context, Name)]
= (for(name ← nameParser) yield {

val n=Name(name)
(this(name) = n, n)

})

def bound(nameParser: Parser[String]): Parser[Name]
= (for(name ← nameParser;

binder ← lookup(name)) yield binder)

def lookup(name: String): Parser[Name] = this(name) match {
case None ⇒ failure explain("unbound name: "+name)
case Some(b) ⇒ success(b)

}

def in[T](p: Context ⇒ Parser[HasBinder[T]]): Pair[Context, Name] ⇒
Parser[\\[T]] = {case (ctx, n) ⇒ p(ctx) ^^ (\\(n, _))}

def update(rawName: String, binder: Name): Context = Context{name ⇒
if(name == rawName) Some(binder) else this(name) }

}
}
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Listing 3.6: Abstract syntax (details omitted)
trait Term extends HasBinder[Term]
case class Var(name: Name) extends Term
case class Abs(abs: \\[Term]) extends Term
case class App(fun: Term, arg: Term) extends Term

Listing 3.7: Lexical parsing
trait Lexical extends Parsers {
type Elem = Char
import scala.util.parsing.input.CharArrayReader

// these combinators do the lexical analysis, which we have not
separated explicitly from the syntactical analysis

def letter = acceptIf(_.isLetter) expected("letter")
def digit = acceptIf(_.isDigit) expected("digit")
def ws = rep1(accept(’ ’)) expected("whitespace")
// hint: only wrap wss(...) around the parsers that really need it
def wss[T](p: Parser[T]): Parser[T] = opt(ws) ~> p <~ opt(ws)
def ident = rep1(letter, letter | digit) ^^ {_.mkString("")} expected("
identifier")

def eoi = accept(CharArrayReader.EofCh)
}

1The identifier may be surrounded by whitespace – the lexical parsers are shown in Listing 3.7.
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Appendix A

Solutions to Selected Exercises

Solution A.1 (Of exercise 2.7) Listing A.1 details the steps to relate the two implementations
of ~.

Listing A.1: Expansion
// given:
def flatMap[U](f: T ⇒ Parser[U]): Parser[U]
= new Parser[U]{def apply(in: Input) = Parser.this(in) flatMapWithNext(f
)}

def map[U](f: T ⇒ U): Parser[U]
= new Parser[U]{def apply(in: Input) = Parser.this(in) map(f)}

def flatMapWithNext[U](f: T ⇒ Input ⇒ Result[U]): Result[U] = this match
{

case Success(x, i) ⇒ f(x)(i)
case Failure(e, n) ⇒ Failure(e, n)

}
def map[U](f: T ⇒ U): Result[U] = this match {
case Success(x, i) ⇒ Success(f(x), i)
case Failure(e, n) ⇒ Failure(e, n)

}

// expansion:
def ~ [U](p: ⇒ Parser[U]): Parser[Pair[T, U]]
= for(a ← this; b ← p) yield (a,b)
= this.flatMap{a ⇒ p.map{b ⇒ (a, b)}}
= this.flatMap{a ⇒ new Parser[Pair[T, U]]{def apply(in: Input) = p(in)

map{b ⇒ (a, b)}}}
= new Parser{def apply(in: Input) =

Parser.this(in) flatMapWithNext{a ⇒
new Parser[Pair[T, U]]{def apply(in: Input) =
p(in) map{b ⇒ (a, b)}

}
}

}
= new Parser{def apply(in: Input) =

Parser.this(in) match {
case Success(x, i) ⇒ {a ⇒
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new Parser[Pair[T, U]]{def apply(in: Input) =
p(in) map{b ⇒ (a, b)}

}
}(x)(i)
case Failure(e, n) ⇒ Failure(e, n)

}
}

= new Parser{def apply(in: Input) =
Parser.this(in) match {
case Success(x, i) ⇒
new Parser[Pair[T, U]]{def apply(in: Input) =
p(in) map{b ⇒ (x, b)}

}(i)
case Failure(e, n) ⇒ Failure(e, n)

}
}

= new Parser{def apply(in: Input) =
Parser.this(in) match {
case Success(x, i) ⇒ p(i) map{b ⇒ (x, b)}
case Failure(e, n) ⇒ Failure(e, n)

}
}
= new Parser{def apply(in: Input) =

Parser.this(in) match {
case Success(x, i) ⇒ p(i) match {
case Success(x2, i) ⇒ Success({b ⇒ (x, b)}(x2), i)
case Failure(e, n) ⇒ Failure(e, n)

}
case Failure(e, n) ⇒ Failure(e, n)

}
}

= new Parser[Pair[T, U]]{ def apply(in: Input) =
Parser.this(in) match {
case Success(x, next) ⇒ p(next) match {
case Success(x2, next2) ⇒ Success((x, x2), next2)
case Failure(e, n) ⇒ Failure(e, n)

}
case Failure(e, n) ⇒ Failure(e, n)

}
}

Solution A.2 (Of exercise 2.9) Listing A.2 shows the implementation of filter in Success

(in Failure, it simply returns this), as well as the correct version of consumeFirst.

A correct implementation of filter requires each successful result to know what should
happen in case it is filtered out: we cannot simply “invent” the failure that occurs when filter
’s predicate is not met! Therefore, we add a zero member to Success, which determines how
filter on a Success fails.

This way, consumeFirst can produce successes that “un-consume” their input if they are
refuted by filter. The next parser will then be applied to the input that consumeFirst
would have consumed, had it been successful.
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Listing A.2: Filtering with zero
case class Success[+T](result: T, next: Input)(val zero: Failure)
extends Result[T] {
def map[U](f: T ⇒ U)
= Success(f(result), next)(zero)

def flatMap[U](f: T ⇒ Result[U])
= f(result)

def flatMapWithNext[U](f: T ⇒ Input ⇒ Result[U])
= f(result)(next)

def filter(f: T ⇒ Boolean): Result[T]
= if(f(result)) this else zero

def append[U >: T](alt: ⇒ Result[U])
= this

}

def consumeFirst: Parser[Elem] = Parser{in ⇒
Success(first(in), rest(in))(Failure("unknown failure", in))

}
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