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Abstract

One of the key challenges in artificial intelligence is the integration of machine
learning, relational knowledge representation languages and reasoning under
uncertainty. Given its multi-disciplinary nature, this topic has been approached
from different angles, leading to a very active research area known as probabilistic
logic learning or statistical relational learning.

Motivated by the need for a probabilistic logic language with an implementation that
supports reasoning in large networks of uncertain links, as they arise for instance
when integrating information from various databases, this thesis introduces ProbLog,
a simple extension of the logic programming language Prolog with independent
random variables in the form of probabilistic facts. While ProbLog shares its
distribution semantics with other approaches developed in the field of probabilistic
logic learning, its implementation has been the first to allow for scalable inference
in networks of probabilistic links. This is due to the use of advanced data structures
that make it possible to base probabilistic inference on proofs or explanations even
if those are not mutually exclusive in terms of the possible worlds they cover.

As a general purpose probabilistic logic programming language, ProbLog provides
a framework for lifting relational learning approaches to the probabilistic context.
We apply this methodology to obtain three new probabilistic relational learning
techniques. The first one, theory compression, is a form of theory revision that
reduces a ProbLog program to a given maximum size by deleting probabilistic
facts, using example queries that should or should not be provable with high
probability as a guideline. The second example, probabilistic explanation based
learning, naturally extends explanation based learning to a probabilistic setting by
choosing the most likely proof of an example for generalization. The third approach,
probabilistic query mining, combines multi-relational data mining with scoring
functions based on probabilistic databases. The latter two techniques are also used
to illustrate the application of ProbLog as a framework for reasoning by analogy,
where the goal is to identify examples with a high probability of being covered by
logical queries that also assign high probability to given training examples. While
these approaches all rely on ProbLog programs with known probability labels, we
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also introduce a parameter estimation technique for ProbLog that determines those
labels based on examples in the form of queries or proofs augmented with desired
probabilities. Throughout the thesis, we experimentally evaluate the methods we
develop in the context of a large network of uncertain information gathered from
biological databases.

While the main focus of this thesis lies on ProbLog and its applications, we also
contribute a second framework called ωProbLog, which generalizes ProbLog to
weight labels from an arbitrary commutative semiring. We introduce inference
algorithms that calculate weights of derived queries, showing that the ideas
underlying the ProbLog system carry over to more general types of weights.
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Chapter 1

Introduction

Building computer programs that solve specific types of tasks considered to require
intelligence is the driving force behind current progress in the field of artificial
intelligence. While the notion of intelligence is difficult to grasp in formal terms,
from the point of view of solving a certain type of problem or performing a certain
task, it involves abilities such as dealing with possibly large amounts of data of
various types and formats as well as general knowledge about the domain, identifying
those pieces of information relevant for the specific problem instance at hand, coping
with situations that have not been foreseen at the time of programming, and taking
into account uncertainty both in the available knowledge and in the reasoning
process.

A suitable knowledge representation language and corresponding reasoning
mechanisms are key components to achieve those abilities. A prominent choice
are subsets of first order logic, most notably definite clause logic. Such languages
make it easy to integrate heterogeneous types of knowledge about specific entities,
ranging from simple attribute-value descriptions to structured or interrelated
data, with general, abstract knowledge about the domain of interest. Other
relational languages are widely used as well. For instance, graph languages are
a popular choice for collections of binary relations such as links between web
pages, citations between scientific papers, or relations between persons in social
networks. Such relational languages can conveniently be emulated in definite clause
logic, making it an interesting framework for general language comparisons as
well. From a practical perspective, definite clause logic forms the backbone of logic
programming [Lloyd, 1989], a field that has developed optimized algorithms and
implemented corresponding reasoning systems. Inference is typically based on a
form of backward chaining from a given query, which naturally focuses on the
relevant parts of the database. For more details, we refer to Section 2.1.
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4 INTRODUCTION

While logic programming primarily follows a deductive approach to reasoning,
where only explicitly available information is used, machine learning adds an
inductive component, where regularities in the available data are made explicit and
transferred to other instances of the same type. Formally, a computer program is
said to learn if it improves its performance with respect to a class of tasks based
on experience [Mitchell, 1997]. Learning often aims at obtaining a model of the
data or of some process that could have generated the data. Such a model can
then be used for classification of new data points, which in turn provides additional
information for problem solving. Alternatively, the model itself can be analyzed
to obtain new insights into the domain. This is especially true if learning uses a
language understandable for human experts, such as association rules or logical
theories. Finding association rules or other types of local patterns in data is also
studied in the field of data mining as part of the process of knowledge discovery
in databases [Fayyad et al., 1996]. While both machine learning and data mining
traditionally worked with propositional or attribute-value data, the need to deal
with more complex structured or relational data has lead to the growing subfield
known as inductive logic programming (ILP) [Muggleton and De Raedt, 1994],
multi-relational data mining [Džeroski and Lavrač, 2001], or logical and relational
learning [De Raedt, 2008]. Many approaches developed in this field again build on
the computational framework of logic programming and definite clause logic.

While logical and relational languages are rich knowledge representation tools, they
are not able to explicitly deal with the uncertainty inherent in real world data
and problems, whether stemming from imprecision in the data collection process
or contradictory information from different sources, or simply from the fact that
abstract rules often hold in general, but can have exceptions. To deal with this
type of problems, relational languages need to be integrated with some mechanism
to cope with uncertainty based on for instance statistical models or probability
theory. A variety of such approaches and corresponding learning techniques have
been developed in the field known as probabilistic logic learning (PLL) [De Raedt
and Kersting, 2003], statistical relational learning (SRL) [Getoor and Taskar, 2007]
or probabilistic inductive logic programming (PILP) [De Raedt and Kersting,
2004; De Raedt et al., 2008a]; we refer to Section 2.3 for a brief overview. While
these languages are very expressive in general, their implementations often impose
restrictions to increase efficiency, or are tailored towards specific tasks, which,
despite the wide range of languages, can make it difficult to find one that is directly
usable for a new task at hand.

Probabilistic logic languages originating from the areas of machine learning and
knowledge representation often focus on the modeling aspect of the underlying
logical language, even in the case of definite clause languages close to (pure)
Prolog. Recently, the programming view on such languages is receiving increased
attention. Indeed, with probabilistic semantics rooted in the semantics of
logic programming and Prolog, as defined for instance by Sato’s distribution
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semantics [Sato, 1995], languages such as PRISM [Sato and Kameya, 2001] are
general programming languages adapted for probabilistic purposes. They have the
potential to extend probabilistic definite clause languages similarly to how Prolog
as a programming language extends its core definite clause language. Clearly,
probabilistic programming is not restricted to logic programming, but similar
ideas emerge in other areas, including for instance functional languages such as
IBAL [Pfeffer, 2001] and Church [Goodman et al., 2008], or Figaro [Pfeffer, 2009],
which combines functional and object-oriented aspects. Such languages typically
calculate point probabilities; however, probability intervals have been investigated
as well, for instance in probabilistic logic programming as defined by Ng and
Subrahmanian [1992].

Thesis Contributions and Roadmap

This thesis develops and implements a probabilistic logic programming language
that can represent a broad range of problems, including link mining tasks in large
networks of uncertain relationships. Apart from effective and efficient reasoning
algorithms, the resulting system also provides a general framework for lifting
traditional ILP tasks to probabilistic ILP, as will be illustrated for a number of
techniques. Link mining and reasoning in large biological networks are used as a
testbed for all approaches discussed throughout the thesis.

Sato’s distribution semantics [Sato, 1995] provides a thorough theoretical basis for
extending logic programming or definite clause logic with independent probabilistic
facts. Its basic idea is to use logic programs to model discrete probability
distributions over logical interpretations. However, existing PLL systems based on
the distribution semantics, such as the ones for PRISM [Sato and Kameya, 2001]
and ICL [Poole, 2000], have practical limitations. The PRISM system imposes
additional requirements on programs to simplify inference. Specifically, each logical
interpretation can only contain one of a set of so-called observable ground atoms
with a single proof or explanation. While the ICL implementation Ailog2 does
not rely on such additional assumptions, it does not scale very well. In particular,
these limitations prevent the application of those systems in the context of mining
and analyzing large probabilistic networks, which can naturally be represented
– and complemented with background knowledge – in probabilistic logic. An
example of such a network is Sevon’s Biomine network [Sevon et al., 2006] which
contains relationships between various types of biological objects, such as genes,
proteins, tissues, organisms, biological processes, and molecular functions. These
relationships have been extracted from large public databases such as Ensembl
and NCBI Entrez, where weights have been added to reflect uncertainty. Mining
this type of data has been identified as an important and challenging task, see
e.g. [Perez-Iratxeta et al., 2002], but few tools are available to support this process.
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The need to overcome the above mentioned limitations of probabilistic logic
languages for biological network mining has motivated our work on ProbLog,
a probabilistic logic programming language based on the distribution semantics.
Our inference algorithms for ProbLog are based on advanced data structures to
enable probability calculation without additional assumptions. The implementation
of these algorithms uses state-of-the-art Prolog technology as offered by YAP-Prolog,
which drastically improves scalability in the network setting. However, as ProbLog
is a general probabilistic logic programming language, it can not only be used for
mining large networks, but also offers a framework to transfer techniques from
inductive logic programming (ILP) to the probabilistic setting. Such probabilistic
ILP approaches broaden the notion of logical coverage into a gradual one, where
probabilities quantify the degree of truth. As these techniques typically require
the evaluation of large amounts of queries, efficient inference methods as provided
by ProbLog are crucial for their successful application. In this thesis, we employ
ProbLog to develop a number of PILP techniques which either improve probabilistic
theories with respect to given examples, or exploit probabilistic information to
reason by analogy. Furthermore, we show that ProbLog inference can directly be
adapted to domains with different types of fact labels, such as cost networks or
weighted propositional logic, resulting in the introduction of ωProbLog, which
generalizes ProbLog’s probability labels to labels from an arbitrary commutative
semiring.

The core of this thesis is divided into three main parts, discussing the ProbLog
language and its implementation, machine learning techniques that improve
ProbLog theories based on examples, and methods to reason by analogy using
ProbLog, respectively. In all parts, we will use the Biomine network for experiments
demonstrating the applicability of ProbLog techniques in real-world collections
of probabilistic data. An intermezzo after the first part takes a step back and
investigates the question of how to apply ProbLog techniques if probability labels
are replaced by other types of weights. In the following, we give a brief overview of
the main contributions of each part.

Part I is devoted to ProbLog’s syntax and semantics, inference algorithms, and
implementation. In Chapter 3, we lay the foundations by introducing ProbLog,
an extension of Prolog where probabilistic facts are used to define a distribution over
canonical models of logic programs, which serves as the basis to define the success
probability of logical atoms or queries. The semantics of ProbLog is not new: it is
an instance of Sato’s well-known distribution semantics. However, in contrast to
many other languages based on this semantics, ProbLog is targeted at efficient and
scalable inference without making any assumptions beyond independence of basic
random variables. To this aim, Chapter 4 contributes various algorithms for exact
and approximate inference in ProbLog. Our implementation of ProbLog on top of
the state-of-the-art YAP-Prolog system uses binary decision diagrams (BDDs) to
efficiently calculate probabilities. To the best of our knowledge, ProbLog has been
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the first PLL system using BDDs, an approach that currently receives increasing
attention in the fields of probabilistic logic learning and probabilistic databases,
cf. for instance [Riguzzi, 2007; Ishihata et al., 2008; Olteanu and Huang, 2008;
Thon et al., 2008; Riguzzi, 2009]. The techniques exploited in our implementation
enable the use of ProbLog to effectively query Sevon’s Biomine network [Sevon
et al., 2006] containing about 1,000,000 nodes and 6,000,000 edges. ProbLog is
included in the publicly available stable version of YAP.1 Part I is based mainly on
the following publications:

L. De Raedt, A. Kimmig, and H. Toivonen. ProbLog: A probabilistic
Prolog and its application in link discovery, in Proceedings of the 20th
International Joint Conference on Artificial Intelligence (ĲCAI–2007),
Hyderabad, India, 2007.
A. Kimmig, V. Santos Costa, R. Rocha, B. Demoen, and L. De Raedt.
On the efficient execution of ProbLog programs, in Proceedings of the
24th International Conference on Logic Programming (ICLP–2008),
Udine, Italy, 2008.
A. Kimmig, B. Demoen, L. De Raedt, V. Santos Costa, and R. Rocha.
On the Implementation of the Probabilistic Logic Programming Language
ProbLog, Theory and Practice of Logic Programming, accepted, 2010.

Before moving on to learning and mining techniques for ProbLog, the Intermezzo
in Chapter 5 introduces ωProbLog, a generalization of ProbLog where probability
labels are replaced by semiring weight labels, together with a set of algorithms
that correspondingly extend ProbLog’s inference algorithms.

In Part II, we discuss machine learning techniques that improve ProbLog programs
with respect to a set of example queries. Chapter 6 introduces the task of theory
compression, where the size of a ProbLog database is reduced based on queries
that should or should not have a high success probability. It is a form of theory
revision where the only operation allowed is the deletion of probabilistic facts,
which is evaluated in terms of the effect on the probabilities of the example
queries. While deleting a fact can also be seen as setting its probability to 0,
parameter learning as discussed in Chapter 7 allows for arbitrary fine-tuning of
probabilities. In this regard, we introduce a novel setting for parameter learning
in probabilistic databases, which differs from the common setting of parameter
learning for generative models, as such databases do not define a distribution over
example queries. We provide a parameter estimation algorithm based on a gradient
descent method, where examples are labeled with their desired probability. The
approach integrates learning from entailment and learning from proofs, as examples
can be provided in the form of both queries and proofs. The methods discussed in

1http://www.dcc.fc.up.pt/˜vsc/Yap/
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this part directly exploit the BDDs generated by ProbLog’s inference engine to
efficiently evaluate the effect of possible changes. The material presented in Part II
has been published in the following main articles:

L. De Raedt, K. Kersting, A. Kimmig, K. Revoredo, and H. Toivonen.
Compressing probabilistic Prolog programs, Machine learning, 70(2-3),
2008.
B. Gutmann, A. Kimmig, K. Kersting, and L. De Raedt. Parameter
learning in probabilistic databases: A least squares approach, in
Proceedings of the 19th European Conference on Machine Learning
(ECML–2008), Antwerp, Belgium, 2008.

Part III focuses on explanation learning for reasoning by analogy. Explanation
learning is concerned with identifying an abstract explanation with maximal
probability on given example queries. Such an explanation can then be used to
retrieve analogous examples and to rank them by probability. In Chapter 8, we
introduce two alternative approaches to explanation learning. In probabilistic
explanation based learning (PEBL), the problem of multiple explanations as
encountered in classical explanation based learning is resolved by choosing the
most likely explanation. PEBL deductively constructs explanations by generalizing
the logical structure of the most likely proofs of example queries in a domain
theory defining a target predicate. Probabilistic local query mining extends existing
multi-relational data mining techniques to probabilistic databases. It thus follows
an inductive approach, where the pattern language is defined by means of a
language bias and the search for patterns is structured using a refinement operator.
Furthermore, negative examples can be incorporated in the score to find correlated
patterns. The work presented in Part III has been published previously in:

A. Kimmig, L. De Raedt, and H. Toivonen. Probabilistic explanation
based learning, in Proceedings of the 18th European Conference on
Machine Learning (ECML–2007), Warsaw, Poland, 2007. Winner of
the ECML Best Paper Award (592 submissions).
A. Kimmig and L. De Raedt. Local query mining in a probabilistic
Prolog, in Proceedings of the 21st International Joint Conference on
Artificial Intelligence (ĲCAI–2009), Pasadena, California, USA, 2009.

Finally, some of the work performed during my Ph.D. research has not been
included in this text, but will be briefly summarized in Chapter 9 in the context
of related future work; more details can be found in [Kimmig and Costa, 2010]
and [Bruynooghe et al., 2010].



Chapter 2

Foundations

In this chapter, we review a number of important concepts used throughout this
thesis. We start in Section 2.1 with logic programming. Section 2.2 presents Sato’s
distribution semantics, which extends logic programming with probabilistic facts.
Section 2.3 provides a brief overview of probabilistic logic learning. Binary decision
diagrams as introduced in Section 2.4 are one of the key ingredients of our efficient
implementation of ProbLog. Finally, in Section 2.5, we briefly discuss Sevon’s
Biomine network as an example application to be used in our experiments.

2.1 Logic Programming

In this section, we will briefly review the basic concepts of logic programming. For
more details, we refer to [Lloyd, 1989; Flach, 1994]. We use Prolog’s notational
conventions, i.e. variable names start with an upper case letter, names of all other
syntactic entities with lower case letters.

Example 2.1 Using successor notation, the following program defines the set of
natural numbers as well as a relation smaller among them.

nat(0).
nat(s(X)) : − nat(X).

smaller(0, s(X)).
smaller(s(X), s(Y)) : − smaller(X, Y).

9
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In the example, 0 is the only constant, X and Y are variables. The structured term
s(X) is obtained by combining the functor s/1 of arity 1 and the term X. Constants,
variables and structured terms obtained by combining n terms and a functor of
arity n are called terms. Atoms, such as nat(0) or smaller(s(X),s(Y)), consist
of an n-ary predicate (nat/1 or smaller/2 in this case) with n terms as arguments.
Atoms and their negations, e.g. not(nat(0)), are also called positive and negative
literals, respectively.

A definite clause is a formula of the form h ∨ ¬b1 ∨ . . . ∨ ¬bn, where h and all bi
are atoms. In Prolog, such a definite clause is written as

h : − b1, . . . , bn.

where h is called the head and b1, . . . , bn the body of the definite clause. Informally,
it is read as “If all body atoms are true, the head atom is true as well”. In normal
clauses, the body is a conjunction of literals. All variables in clauses are (implicitly)
universally quantified. If the body contains the single constant true, it is omitted,
as for nat(0) in the example, and such clauses are called facts. A definite clause
program or logic program for short is a finite set of definite clauses. A normal
logic program is a finite set of normal clauses. The set of all clauses in a (normal)
logic program with the same predicate in the head is called the definition of this
predicate. We first focus on definite clause programs and discuss normal logic
programs later.

A term or clause is ground if it does not contain variables. A substitution θ =
{V1/t1, . . . , Vm/tm} assigns terms ti to variables Vi. Applying a substitution to a
term or clause means replacing all occurrences of Vi by ti.

Example 2.2 Applying θ = {X/0, Y/s(0)} to t = smaller(s(X), s(Y)) results in
tθ = smaller(s(0), s(s(0))).

Two terms (or clauses) t1 and t2 can be unified if there exist substitutions θ1 and
θ2 such that t1θ1 = t2θ2. A substitution θ is the most general unifier mgu(a, b)
of atoms a and b if and only if aθ = bθ and for each substitution θ′ such that
aθ′ = bθ′, there exists a substitution γ such that θ′ = θγ and γ maps at least one
variable to a term different from itself.

The Herbrand base of a logic program is the set of ground atoms that can be
constructed using the predicates, functors and constants occurring in the program1.
Subsets of the Herbrand base are called Herbrand interpretations. A Herbrand
interpretation is a model of a clause h : − b1, . . . , bn. if for every substitution θ
such that all biθ are in the interpretation, hθ is in the interpretation as well. It is a
model of a logic program if it is a model of all clauses in the program. The model-
theoretic semantics of a definite clause program is given by its smallest Herbrand

1If the program does not contain constants, one arbitrary constant is added.
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model with respect to set inclusion, the so-called least Herbrand model. The least
Herbrand model can be generated iteratively starting from the groundings of all
facts in the program and adding the head hθ of each clause (h : − b1, . . . , bn)θ for
which all biθ are already known to be true until no further atoms can be derived.
We say that a logic program P entails an atom a, denoted P |= a, if and only if a
is true in the least Herbrand model of P .

Example 2.3 The Herbrand base hb of the definite clause program in Example 2.1
contains all atoms that can be built from predicates nat/1, smaller/2, functor s/1
and constant 0, that is,

hb ={nat(0), smaller(0, 0), nat(s(0)), smaller(0, s(0)), smaller(s(0), 0),
smaller(s(0), s(0)), nat(s(s(0))), smaller(0, s(s(0))), . . .}

It also is a non-minimal Herbrand model of the program. The least Herbrand
model is the subset of the Herbrand base containing all atoms for nat/1 as well as
those for smaller/2 whose first argument contains less occurrences of s/1 than
the second.

The main inference task of a logic programming system is to determine whether a
given atom, also called query, is true in the least Herbrand model of a logic program.
In our example, the query smaller(0,s(0)) has answer yes, while smaller(0,0)
has answer no, in which case we also say that the query fails. If such a query is
not ground, inference asks for the existence of an answer substitution, that is, a
substitution that grounds the query into an atom that is part of the least Herbrand
model. For example, {X/0} is an answer substitution for query nat(X).

Prolog answers queries using refutation, that is, the negation of the query is added
to the program and resolution is used to derive the empty clause. More specifically,
SLD-resolution takes a goal of the form

?− g, g1, . . . , gn,

a clause

h : − b1, . . . , bm

such that g and h unify with most general unifier θ, and produces the resolvent

?− b1θ, . . . , bmθ, g1θ, . . . , gnθ.

This process, which continues until the empty goal is reached, can be depicted
by means of an SLD-tree. The root of such a tree corresponds to the query, each
branch to a derivation, that is, a sequence of resolution steps. Derivations ending
in the empty clause are also called proofs.
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?- path(a,b).

:- edge(a,b). :- edge(a,A),path(A,b).

[] :- path(b,b). :- path(c,b).

:- edge(b,b). :- edge(b,B),path(B,b). :- edge(c,b). :- edge(c,D),path(D,b).

:- path(c,b).

:- edge(c,b). :- edge(c,C),path(C,b).

Figure 2.1: SLD-tree for query path(a, b) in Example 2.4.

Example 2.4 The following program encodes a graph with three nodes and defines
paths between nodes in terms of edges.

edge(a, b). edge(a, c). edge(b, c).
path(X, Y) : − edge(X, Y).
path(X, Y) : − edge(X, Z), path(Z, Y).

Figure 2.1 shows the SLD-tree for query path(a, b), where the empty clause is
depicted by [].

By default, Prolog uses depth-first search to traverse the SLD-tree during proving,
meaning that it can get trapped in infinite loops; however, this can be avoided
by using alternative search strategies such as iterative deepening. Backtracking
forces the proving mechanism to undo previous steps to find alternative solutions.
For example, nat(X) first returns answer substitution {X/0} as said above, but on
backtracking will also produce {X/s(0)}, {X/s(s(0))}, and so forth.
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Normal logic programs use the notion of negation as failure, that is, for a ground
atom a, not(a) is true exactly if a cannot be proven in the program. They are
not guaranteed to have a unique minimal Herbrand model. Various ways to define
the canonical model of such programs have been studied; here, we follow the
well-founded semantics of Van Gelder et al. [1991]. It uses three-valued logic and
partial models, that is, if the truth value of a literal is not determined by the
program, it is considered undefined. Similarly to the least Herbrand model of
definite clause programs, the well-founded model can be constructed iteratively
by considering all clauses whose body is true in the current partial interpretation.
However, during this construction, certain literals are also inferred to be false. The
underlying idea is to set a set of literals to false if this makes it impossible to derive
the value true for any of them. This is formalized using the concept of unfounded
sets.

Given a normal logic program P with Herbrand base hb and a partial
interpretation I, a subset A ⊆ hb is unfounded if for each atom a ∈ A and
each grounded rule a : −b1, . . . , bn in P , some positive or negative body literal bi is
false in I or some positive body literal bi occurs in A. In the first case, the rule body
is false in the current partial interpretation and thus also in all interpretations that
could be obtained by specifying truth values for additional literals, meaning that
the clause cannot be used to derive a. In the second case, using the clause to derive
a would require the positive literal bi to be true. However, if we simultaneously set
all literals in A to false, the bodies of all such clauses are false and they could thus
not be used to derive any literal in A as true.

The iterative construction of the well-founded model extends the current
interpretation Ik into Ik+1 using two steps. First, for each ground rule whose
body is true in Ik, the head is set true in Ik+1. Second, all atoms in the greatest
unfounded set with respect to Ik are set false in Ik+1. These steps are repeated
until the least fixed point is reached.

The well-founded model has been shown to be two-valued for several restricted
classes of normal logic programs, including stratified and locally stratified programs.
A program P is stratified if and only if each of its predicates p can be assigned a
rank j such that it only depends positively on predicates of rank at most j and
negatively on predicates of rank at most j − 1. It is locally stratified if all atoms
a in its Herbrand base can be assigned a rank j such that for any grounded rule
a : −b1, . . . , bm, the rank of positive literals bi is at most j, that of negative ones
at most j − 1.

Prolog uses SLDNF-resolution, a combination of SLD-resolution with negation as
finite failure, for inference in normal logic programs. Negated atoms are commonly
required not to flounder, that is, their variables need to be bound on calling.
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2.2 Distribution Semantics

The distribution semantics as rigorously defined by Sato [1995] provides a formal
basis for extending logic programming with probabilistic elements. It is a
generalization of the least Herbrand model semantics, where the main difference
is that logic programs contain a set of dedicated facts whose truth values are not
directly set to true as in the least Herbrand model of a usual logic program, but
determined probabilistically. Once these truth values are fixed, the program again
has a unique least model extending the partial interpretation, which of course
can be different depending on the initially chosen assignments. The distribution
semantics now defines a distribution over these least Herbrand models of the
program by extending a joint probability distribution over the set of dedicated facts.
In its basic form, where the joint distribution is defined using a set of independent
random events, it is a well-known semantics for probabilistic logics that has been
(re)defined multiple times in the literature, often under other names or in a more
limited database setting; cf. for instance [Dantsin, 1991; Poole, 1993b; Fuhr, 2000;
Poole, 2000; Dalvi and Suciu, 2004]. Sato has, however, formalized a more general
setting, including the case of a countably infinite set of random variables and using
arbitrary discrete distributions over these basic random variables, in his well-known
distribution semantics. We briefly repeat the basic ideas in the following; for more
details, the interested reader is referred to [Sato, 1995].

We assume a first order language with denumerably many predicate, constant and
functor symbols. Let DB = F ∪R be a definite clause program, where F is a set
of unit clauses, called facts, and R is a set of (possibly non-unit) clauses, called
rules. For simplicity, it is assumed that DB is ground and denumerably infinite,
and no fact in F unifies with the head of a rule in R. The distribution semantics
can be viewed as a possible worlds semantics, where ground atoms are treated as
random variables, and worlds thus correspond to interpretations assigning truth
values to all ground atoms in DB.

The key idea of the distribution semantics is to extend a basic distribution PF over
subsets or interpretations F ′ ⊆ F into a distribution PDB over the least Herbrand
models of DB, exploiting the uniqueness of the least Herbrand model of F ′ ∪R for
each such F ′. We first illustrate this for the finite case by means of an example.

Example 2.5 Given the definite clause program DB = F ∪R with

F = {a(0), a(1)}

R = {(b(0) : −a(0)), (b(1) : −a(1), b(0))}

we enumerate ground atoms in F and DB as 〈a(0), a(1)〉 and 〈a(0), b(0), a(1), b(1)〉,
respectively. This allows us to denote interpretations as binary vectors, where the
i-th bit denotes the truth value of the i-th atom in the corresponding enumeration.
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Based on this notation, we define the basic distribution PF over ΩF = {0, 1}2 as

PF (00) = 0.21 PF (01)= 0.04 PF (10) = 0.58 PF (11)= 0.17

PF is now extended to a distribution PDB over ΩDB = {0, 1}4 by setting

PDB(ω̂) = PF (ω)

if ω̂ corresponds to the least Herbrand model of DB extending ω, and PDB(ω̂) = 0
otherwise, that is

PDB(0000) = 0.21 PDB(0010)= 0.04

PDB(1100) = 0.58 PDB(1111)= 0.17

For an arbitrary sentence G using the vocabulary of DB we define the set of
possible worlds ω̂ ∈ ΩDB where G is true as

[G] = {ω̂ ∈ ΩDB | ω̂ |= G}.

Given a distribution PDB over ΩDB , the probability ofG is defined as the probability
of the set [G], which in the finite case is

PDB([G]) =
∑
ω̂∈[G]

PDB(ω̂) (2.1)

Example 2.6 Continuing our example, the probability of b(0) is

PDB([b(0)]) = PDB({1100, 1111}) = 0.58 + 0.17 = 0.75,

while that of ∀x.b(x) is

PDB([∀x.b(x)]) = PDB([b(0) ∧ b(1)]) = PDB({1111}) = 0.17.

While for finitely many basic facts, PF and thus PDB can be defined by exhaustive
enumeration of ΩF , this is no longer possible for infinite F . Sato showed how to
define PDB based on a series of finite distributions P (n)

F over interpretations ωn
of the first n variables in F . For this to be possible, these distributions have to
satisfy the compatibility condition, that is

P
(n)
F (ωn) = P

(n+1)
F (ωn1) + P

(n+1)
F (ωn0) (2.2)

Intuitively, this condition ensures that if a sentence G satisfies the finite support
condition, that is, there are finitely many minimal subsets F ′ ⊆ F such that
F ′ ∪ R |= G, we can fix a suitable enumeration of F and restrict probability
calculations to a finite prefix of this enumeration covering all facts appearing in
these minimal subsets. We do not go into further technical detail here, but instead
illustrate one basic and popular choice of such distributions P (n)

F by means of an
example.
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Example 2.7 We extend our example switching to successor notation for natural
numbers.

F = {a(0), a(s(0)), a(s(s(0))), a(s(s(s(0)))), . . .}

R = {(b(0) : −a(0)), (b(s(N)) : −a(s(N)), b(N))}

The basic sample space is now ΩF = {0, 1}∞, that is, the space of countably infinite
Boolean vectors. We fix enumerations for ground atoms in F and DB extending
the ones used above, that is, following the order of arguments and iterating between
a and b in the case of DB. Again, an interpretation of F , for example ω = 110∞,
leads to a unique model of DB, in this case ω̂ = 11110∞.

We consider all random variables corresponding to ground facts in F to be mutually
independent, and assign a probability of being true to each of them. For the sake
of simplicity, we use the same probability p for each fact. Consider now a finite
prefix ωn of an interpretation ω ∈ ΩF , where m variables are assigned 1. Given
the independence assumption, the joint probability of the first n random variables
taking value ωn is thus

P
(n)
F (ωn) = pm · (1− p)n−m.

Clearly, this series of distributions respects the compatibility condition of
Equation (2.2). To calculate the probability of b(s(s(0)) in our example, it is
sufficient to use P (3)

F , as the first three elements of F already determine the truth
value of the query, that is

PDB([b(s(s(0))]) = PDB({ω̂ ∈ ΩDB |ω̂6 = 111111}) = P
(3)
F (111) = p3

Finally, let us remark that the key to the distribution semantics is the existence
of a unique canonical model of the entire program given an interpretation of the
basic facts. While in the original distribution semantics, R is a definite clause
program and thus has a unique least Herbrand model, it is equally possible to use
the well-founded semantics as discussed in Section 2.1, but parameterized by the set
of basic facts, and restrict the set of rules R in such a way that for each two-valued
interpretation of the basic facts, the well-founded model of DB is two-valued as
well. In this view, R is closely related to the definitions in FO(ID) [Denecker and
Vennekens, 2007; Vennekens et al., 2009], but restricts rule bodies to conjunctions
of literals instead of arbitrary first order formulae.

2.3 Probabilistic Logic Learning

The core concept of statistical relational learning (SRL) or probabilistic logic
learning (PLL) is the combination of machine learning, statistical techniques and
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reasoning in first order logic. Many variants of this theme have been studied,
differing both in their logical and in their probabilistic language. Here, we
will distinguish two main streams by means of the basic probabilistic framework
they employ. We start with the framework we will use throughout this thesis,
namely the addition of independent probabilistic alternatives to relational languages,
and afterwards discuss relational extensions of graphical models, which encode
dependencies between random variables by means of their underlying graphical
structure.

2.3.1 Using Independent Probabilistic Alternatives

A probabilistic alternative2 is a basic random event with a finite number of different
outcomes, such as tossing a coin or rolling a die. Sets of mutually independent
probabilistic alternatives are commonly used to define joint distributions over such
events. A simple probabilistic model following this idea are probabilistic context
free grammars (PCFGs) [Manning and Schütze, 1999]. Formally, a PCFG is a
tuple (Σ, N, S,R) where Σ, the alphabet of the language defined by the grammar,
is a finite set of symbols called terminal symbols, N is a finite set of so-called
nonterminal symbols, S ∈ N is the designated start symbol, R a set of rules of the
form P : A→ β with left hand side A ∈ N and right hand side β ∈ (Σ ∪N)∗, that
is, a finite sequence of symbols from Σ ∪N , where ε denotes the empty sequence,
and P ∈ [0, 1] such that the sum over all rules in R with the same left hand side A
is 1. As common for such grammars, we denote terminal and non-terminal symbols
by lower and upper case letters, respectively, and simply write a PCFG as the set
of rules R with start symbol S, leaving Σ and N implicit. Sentences are derived
starting from S by replacing the leftmost nonterminal symbol A in the current
intermediate sentence by some β with P : A→ β ∈ R, until no more replacements
are possible, where replacement by ε corresponds to simply deleting A. The choice
of rule for given A is governed by the probability distribution over A’s rules given
by their labels P , and is independent of everything else, including replacements of
further occurrences of A. Thus, the independent probabilistic alternatives of PCFGs
are the choices of rules during derivations, and the probability of a derivation is
given as the product of the probability of all its rule applications. Furthermore, the
probability of a sentence ω ∈ (Σ ∪N)∗ is the sum of probabilities of all derivations
ending in ω.

2terminology inspired by [Poole, 2000]
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Example 2.8 The following grammar defines a probability distribution over all
finite non-empty strings over the alphabet {a, b}.

0.3 : S → aX 0.5 : X → aX 0.6 : Y → aX

0.7 : S → bY 0.1 : X → bY 0.2 : Y → bY (2.3)
0.4 : X → ε 0.2 : Y → ε

Note that the grammar does not contain ambiguities, that is, each sentence can be
obtained by a single derivation only. For instance, the sentence aab is generated by
the derivation

S
0.3−→ aX

0.5−→ aaX
0.1−→ aabY

0.2−→ aab

and thus has probability

0.3 · 0.5 · 0.1 · 0.2 = 0.003.

Stochastic Logic Programs (SLPs) [Muggleton, 1995] directly upgrade the idea
of PCFGs to definite clauses, that is, instead of probability distributions over
all rules with the same left hand side, they use probability distributions over all
definite clauses with the same head predicate. Further probabilistic logic languages
using independent probabilistic alternatives include the probabilistic logic programs
of Dantsin [1991], PHA and ICL [Poole, 1993b, 2000], probabilistic Datalog [Fuhr,
2000], PRISM [Sato and Kameya, 2001], LPADs and CP-logic [Vennekens et al.,
2004; Vennekens, 2007] and ProbLog as presented in Chapter 3 of this thesis; we
will discuss this group of languages in more detail in Section 3.4. While most other
formalisms use rule-based logical languages, FOProbLog [Bruynooghe et al., 2010]
combines arbitrary first order formulae with independent probabilistic alternatives.

2.3.2 Using Graphical Models

While the probabilistic languages discussed in the previous section define joint
distributions in terms of mutually independent random variables, in Bayesian
Networks (BNs) [Pearl, 1988], a joint probability distribution over a finite set of
random variables with finite domains is defined in terms of a conditional distribution
for each variable given a subset of the others. More specifically, a BN is a directed
acyclic graph whose nodes correspond to the random variables and whose edges
represent direct dependencies between random variables. Each node in the network
has an associated probability distribution over its values given the values of its
parents, the starting nodes of the node’s incoming edges. The full joint distribution
over all variables is then given by the product of the individual distributions.
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Earthquake

Alarm

JohnCalls MaryCalls

Burglary P(E) 0.002 P(B) 0.001

E E ¬ E ¬ E
B ¬ B B ¬ B

P(A) 0.95 0.29 0.94 0.001

A ¬ A
P(J) 0.9 0.05

A ¬ A
P(M) 0.7 0.01

Figure 2.2: Bayesian network

Example 2.9 Figure 2.2 shows the well-known alarm Bayesian network [Pearl,
1988; Russell and Norvig, 2004], where all random variables have domain {0, 1}.
It defines the joint distribution

P (E,B,A, J,M) = P (E) · P (B) · P (A|E,B) · P (J |A) · P (M |A) (2.4)

For instance, the probability of {E = 1, B = 0, A = 1, J = 1,M = 1} thus is

P (1, 0, 1, 1, 1) = 0.002 · (1− 0.001) · 0.29 · 0.9 · 0.7 = 0.000365

While Bayesian networks can be mirrored in terms of independent alternatives, as
we will see in Section 3.4.1, inference for special purpose languages can directly
exploit the underlying independencies.

Relational extensions of Bayesian networks typically specify the graph structure
at an abstract level in some relational language and use this specification as
a kind of template, from which concrete instances of Bayesian networks can be
obtained by grounding out logical variables. Prominent examples of such extensions
include Relational Bayesian Networks [Jäger, 1997], Probabilistic Relational
Models [Friedman et al., 1999], CLP(BN ) [Santos Costa et al., 2003], Logical
Bayesian Networks [Fierens et al., 2005], Bayesian Logic Programs [Kersting and
De Raedt, 2008], and P-log [Baral et al., 2009]. In contrast to these languages,
Markov Logic Networks [Richardson and Domingos, 2006] are a first order variant of
undirected graphical models, using weighted first order logic formulae as templates
to construct Markov Networks, thereby defining probability distributions over
possible worlds.
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Figure 2.3: Full binary decision tree and corresponding BDD for formula x∨ (y∧z);
dotted edges correspond to value 0, solid ones to 1.

2.4 Binary Decision Diagrams

A binary decision diagram (BDD) [Bryant, 1986] is a data structure that graphically
represents a Boolean function. Roughly speaking, a BDD is a rooted directed
acyclic graph, where nodes correspond to Boolean variables, edges to truth value
assignments to their source node’s variable, and the two designated sink nodes,
called 0- and 1-terminal node (or 0- and 1-leaf), to the function values 1 (or
true) and 0 (or false), respectively. Each path through such a diagram thus
encodes a truth value assignment together with the corresponding function value.
While various variants of such diagrams exist, in this thesis, we will use the term
BDD to refer to reduced ordered binary decision diagrams. As the name states,
in this variant, all paths through the diagram respect the same variable ordering,
and furthermore, the diagram is reduced as much as possible to achieve maximal
compression. We will now discuss the basics of BDDs by means of an example.

Example 2.10 Consider the propositional formula x∨ (y ∧ z), defining a Boolean
function over three variables. Alternatively, this function could be specified by means
of a truth table, that is, by listing all truth assignments to the variables together
with the truth value of the formula. In Figure 2.3(a), such an explicit encoding
is graphically depicted as a Boolean decision tree, where each branch corresponds
to one assignment. Leaves are labeled with the truth value of the formula under
the branch’s assignment. All edges are implicitly directed top-down. Dotted edges
denote the assignment of 0 to the variable of their source node, solid ones that
of 1. Corresponding child nodes are called low and high child, respectively. The
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leftmost branch thus assigns 0 to all three variables, the next one assigns 0 to both
x and y, but 1 to z, and so forth. Clearly, already for such a small example, this
encoding contains redundant information. For instance, once x is set to 1, the
truth value of the entire formula is determined and the remaining tests listed in the
corresponding subtree are unnecessary. The key idea of BDDs is to remove such
redundancies by dropping nodes or sharing identical subtrees, which will transform
the tree into a directed acyclic graph. For our example, this graph – which is a
canonical representation given the variable ordering – is shown in Figure 2.3(b).

Two BDDs g1 and g2 are isomorphic if there exists a one-to-one mapping σ from
edges in g1 to edges in g2 such that if σ(s1, t1) = (s2, t2), the edges (s1, t1) and
(s2, t2) are of the same type and each of the associated node pairs (s1, s2) and
(t1, t2) shares the same label. Starting from a full binary tree with the same variable
ordering on all branches, a BDD can be obtained using the following two reduction
operators:

Subgraph Merging If two subgraphs g1 and g2 are isomorphic, all edges leading
from some node outside g2 to some node in g2 are redirected to the
corresponding node in g1, and g2 is removed from the graph.

Node Deletion If both outgoing edges of a node n lead to the same node c, all
incoming edges of n are redirected to c and n is removed from the graph.

Example 2.11 In Figure 2.3(a), the two rightmost trees with root label z are
isomorphic and can thus be merged, resulting in both outgoing edges of their parent
node y leading to the same node. Thus, this parent node can be deleted.

BDDs are one of the most popular data structures used within many branches of
computer science, such as computer architecture and verification, even though their
use is perhaps not yet so widespread in artificial intelligence and machine learning
(but see [Chavira and Darwiche, 2007] and [Minato et al., 2007] for recent work
on Bayesian networks using variants of BDDs). ProbLog is the first probabilistic
logic programming system using BDDs as a basic data structure for probability
calculation, a principle that receives increased interest in the fields of probabilistic
logic learning and probabilistic databases, cf. for instance [Riguzzi, 2007; Ishihata
et al., 2008; Olteanu and Huang, 2008; Thon et al., 2008; Riguzzi, 2009]. Since
their introduction by Bryant [1986], there has been a lot of research on BDDs and
their computation, leading to many variants of BDDs and off the shelf systems.

The reduction approach to BDD construction described above is clearly impractical,
as it starts from an exponential encoding of the Boolean formula. However, BDDs
can also be constructed by applying Boolean operators to smaller BDDs, starting
with BDDs corresponding to single variables and following the structure of the
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Figure 2.4: Example illustrating the effect of variable ordering on BDD size for
formula (a ∧ b) ∨ (c ∧ d) ∨ (e ∧ f), taken from [Bryant, 1986].

formula to be encoded, where reduction operators are applied on intermediate
results. Denoting the number of nodes in a BDD g as |g|, reducing g has
time complexity O(|g| · log(|g|)), while combining g1 and g2 has time complexity
O(|g1| · |g2|); for further details, we refer to [Bryant, 1986]. BDD tools construct
BDDs following a user-defined sequence of operations. The size of a BDD is
highly dependent on its variable ordering, as this determines the amount of
structure sharing that can be exploited for reduction; see Figure 2.4 for an example.
As computing the order that minimizes the size of a BDD is a coNP-complete
problem [Bryant, 1986], BDD packages include heuristics to reduce the size by
reordering variables. While reordering is often necessary to handle large BDDs,
it can be quite expensive. To control the complexity of BDD construction, it is
therefore crucial to aim at small intermediate BDDs and to avoid redundant steps
when specifying the sequence of operations to be performed by the BDD tool.
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2.5 Probabilistic Networks of Biological Concepts

Molecular biological data is available from public sources, such as Ensembl3, NCBI
Entrez4, and many others. They contain information about various types of objects,
such as genes, proteins, tissues, organisms, biological processes, and molecular
functions. Information about their known or predicted relationships is also available,
e.g., that gene A of organism B codes for protein C, which is expressed in tissue D,
or that genes E and F are likely to be related since they co-occur often in scientific
articles. Mining such data has been identified as an important and challenging
task [Perez-Iratxeta et al., 2002].

In the Biomine project5, such data is viewed as a network with nodes and edges
corresponding to objects and relations, respectively. Furthermore, Sevon et al. [2006]
associate weights to edges, indicating the probability that the corresponding nodes
are related. These weights are obtained as the product of three factors, indicating
the reliability, the relevance as well as the rarity (specificity) of the information.
Graph-based algorithms can be used to analyze and predict connections in such
networks. Sevon et al. use two-terminal network reliability to estimate the strength
of connection between two entities and also consider finding strongest paths. Finding
reliable subgraphs involving a given set of nodes has been studied in [Hintsanen,
2007; Hintsanen and Toivonen, 2008; Kasari et al., 2010]. Further approaches to
simplify such networks include methods to identify representative nodes [Langohr
and Toivonen, 2009] and to prune edges whilst maintaining the quality of strongest
paths between any pairs of nodes [Toivonen et al., 2010].

Combining the Biomine network with a language that makes it easy to add
background knowledge and to formulate complex queries has been a key
motivation for the development of our probabilistic programming language ProbLog.
Throughout this thesis, we report on experiments evaluating the learning and mining
techniques introduced for ProbLog in the context of the Biomine network; see
Appendix A for details on the datasets.

3www.ensembl.org
4www.ncbi.nlm.nih.gov/Entrez/
5http://www.cs.helsinki.fi/group/biomine/
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Outline Part I

This part is devoted to the probabilistic logic programming language
ProbLog, which lies at the basis of the learning and mining techniques discussed
in later parts of this thesis. The development of ProbLog has been motivated
by the need to combine the simple model of a probabilistic graph or database
with independent edges or tuples with the deductive power of definite clause logic
or, more generally, logic programming. Probabilistic graphs provide a natural
framework to reason about uncertainty in collections of databases, such as the
biological databases integrated in the Biomine network of Sevon et al. [2006]. Logic,
on the other hand, makes it easy to reason about properties and parts of large
networks, as those can be defined on an abstract level. However, as reasoning in
probabilistic logics comes with a high cost, existing probabilistic logic systems often
do not scale to large databases or simplify probabilistic inference by restricting
the logical language to theories where atoms have mutually exclusive explanations
only, which makes it impossible to e.g. query for the existence of some connection
between two nodes in a probabilistic graph by simply defining a path predicate,
which is one of the basic queries when exploring networks such as Biomine. The
aim of ProbLog therefore is to overcome these limitations and to develop a scalable
system for inference in probabilistic databases without simplifying assumptions.

In Chapter 3, we lay the grounds by introducing the language ProbLog, an
extension of Prolog where probabilistic facts are used to define a distribution over
canonical models of logic programs, which serves as the basis to define the success
probability of logical atoms or queries. The semantics of ProbLog is not new: it
is an instance of Sato’s well-known distribution semantics. However, in contrast
to many other languages based on this semantics, ProbLog is targeted at efficient
and scalable inference without making any assumptions beyond independence of
basic random variables. We present a reduction to DNF formulae that forms the
core to inference in ProbLog, and discuss ProbLog’s relationship to a number of
alternative languages based on the distribution semantics.

We turn to the algorithmic side in Chapter 4, where we contribute various
algorithms for exact and approximate inference in ProbLog. Furthermore, we
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discuss their implementation on top of the state-of-the-art YAP-Prolog system,
where we use binary decision diagrams (BDDs) to efficiently calculate probabilities.
To the best of our knowledge, ProbLog has been the first probabilistic logic system
using BDDs, an approach that currently receives increasing attention in the field.
The techniques exploited in our implementation enable the use of ProbLog to
effectively query Sevon’s Biomine network containing about 1,000,000 nodes and
6,000,000 edges. This implementation is included in the publicly available stable
version of YAP.



Chapter 3

The ProbLog Language∗

This chapter introduces ProbLog, the probabilistic logic programming language
used throughout this thesis. We start by defining the ProbLog language and its
semantics in Section 3.1. Sections 3.2 and 3.3 discuss the key elements of ProbLog
inference and introduce additional language concepts, respectively. In Section 3.4,
we discuss other probabilistic languages using the distribution semantics.

3.1 ProbLog

ProbLog closely follows the ideas of the distribution semantics as summarized
in Section 2.2: a set of ground facts is used to specify a basic distribution over
interpretations of these facts, this distribution is extended towards interpretations
including additional logical atoms by adding a set of rules, and this extended
distribution is used to calculate probabilities of arbitrary logical atoms appearing
in the interpretations.1

The following example is a simplified variant of the probabilistic graph model used
for the Biomine network throughout this thesis.

Example 3.1 Figure 3.1 shows a small probabilistic graph that we shall use as
running example in the text. In ProbLog, the graph is encoded by means of
∗This chapter builds on [De Raedt et al., 2007b; Kimmig et al., 2008, 2009, 2010]
1While in early work on ProbLog probabilities were attached to arbitrary definite clauses and

all groundings of such a clause were treated as a single random event, we later on switched to a
clear separation of logical and probabilistic part and random events corresponding to ground facts.
This is often more natural and convenient, but can be used to model the original type of clauses
(by adding a special ground probabilistic fact to the clause body) if desired, cf. also Section 3.3.1.

29



30 THE PROBLOG LANGUAGE
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Figure 3.1: Example of a probabilistic graph, where edge labels indicate the
probability that the edge is part of the graph.

probabilistic facts:

0. 8 :: edge(a, c). 0. 7 :: edge(a, b). 0. 8 :: edge(c, e).
0. 6 :: edge(b, c). 0. 9 :: edge(c, d). 0. 5 :: edge(e, d).

For each fact, the attached label specifies the probability that the edge is actually
present in the graph, that is, such a probabilistic graph can be used to sample
subgraphs by tossing a coin for each edge. Such a model can for instance be used to
analyze network reliability, where two nodes are able to communicate if they are
connected via at least one sequence of edges. Connectivity can be expressed by the
following background knowledge:

path(X, Y) : − edge(X, Y).
path(X, Y) : − edge(X, Z), path(Z, Y).

We can then ask for the probability that two nodes, say c and d, are connected in
our probabilistic graph by posing query path(c,d) to the ProbLog program. This
probability corresponds to the probability that a randomly sampled subgraph contains
the edge from c to d, or the path from c to d via e (or both of these). Denoting the
random variable corresponding to edge(x,y) by xy, the set of subgraphs containing
the longer path can be described by the conjunction ce ∧ ed.

A ProbLog program thus has two parts: a set of so-called probabilistic facts, and
a set of rules, called background knowledge (BK). Probabilistic facts are written
as pi :: fi, where fi is a logical atom and pi the probability of a grounding of fi
being assigned true in an interpretation, that is, if fi contains logical variables,
each grounding corresponds to a different random variable. To ensure a natural
interpretation of these random variables, no two different facts fi, fj are allowed
to unify, as otherwise, probabilities of ground facts would be higher than the
individual probability given by different non-ground facts. We assume all random
variables corresponding to ground probabilistic facts to be mutually independent,
and define the basic distribution as their joint distribution. We denote random
variables by bi and use conjunctions of corresponding literals to compactly write
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(partial) interpretations of the set of ground probabilistic facts. We also view
interpretations as specifications of logic programs, where the logic program contains
exactly those facts whose random variables are assigned true in the interpretation.

A background knowledge clause in ProbLog is of the form

h : − b1, . . . bn. (3.1)

where h is a positive literal not unifying with any probabilistic fact and each bj
is either a probabilistic fact fi, the negation not(fi) of such a fact without free
variables, or a positive literal not unifying with any probabilistic fact.2 Due to
these conditions, each ProbLog program is locally stratified and thus has a unique
two-valued well-founded model, cf. Section 2.1. Therefore, each interpretation of
the probabilistic facts can be extended into a unique minimal Herbrand model
of the program. Intuitively, once the truth values of probabilistic facts are fixed
in an interpretation I, the background knowledge could be simplified into an
equivalent definite clause program by deleting body literals that are true in I
and removing clauses containing body literals that are false in I. The minimal
Herbrand model of this program then uniquely determines the truth values of
remaining atoms. Alternatively, ProbLog’s background knowledge can be viewed as
a syntactically restricted form of the definitions in FO(ID) [Denecker and Vennekens,
2007; Vennekens et al., 2009], where the probabilistic facts are the open symbols
parameterizing the well-founded semantics and rule bodies are conjunctions of
literals instead of first order formulae.

Note that negation of probabilistic facts is used merely for convenience: within the
distribution semantics, this form of negation could alternatively be modeled by
introducing a new fact not f for each probabilistic fact p :: f and defining the joint
probability of the facts as PF (f = 1, not f = 0) = p, PF (f = 0, not f = 1) = 1− p,
and 0 otherwise.

The set of probabilistic facts can also be seen as a probabilistic database with
independent tuples [Suciu, 2008]. To emphasize this view of uncertainty in the
data as opposed to uncertainty in the background knowledge, we will sometimes
also refer to a ProbLog program as a ProbLog database or probabilistic database.

The following example illustrates that ProbLog, while initially inspired by the
biological network application, is not limited to this setting, but a general purpose
probabilistic programming language. Specifically, it is an example for the use of
negated probabilistic facts in clause bodies as well as the specification of an infinite
set of random variables by means of non-ground facts.

2While the restriction to positive non-probabilistic literals is not necessary, it simplifies
presentation of the core concepts. We will discuss dropping this requirement in Section 3.3.3.
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Example 3.2 The following ProbLog program encodes the grammar of Exam-
ple 2.8, which we briefly repeat here:

0.3 : S → aX 0.5 : X → aX 0.6 : Y → aX

0.7 : S → bY 0.1 : X → bY 0.2 : Y → bY

0.4 : X → ε 0.2 : Y → ε

s([F|R]) : − rule(s, ax, 0), a(F), x(R, 1).
s([F|R]) : − rule(s, by, 0), b(F), y(R, 1).

x([F|R], N) : − rule(x, ax, N), NN is N + 1, a(F), x(R, NN).
x([F|R], N) : − rule(x, by, N), NN is N + 1, b(F), y(R, NN).
x([], N) : − rule(x, e, N).

y([F|R], N) : − rule(y, ax, N), NN is N + 1, a(F), x(R, NN).
y([F|R], N) : − rule(y, by, N), NN is N + 1, b(F), y(R, NN).
y([], N) : − rule(y, e, N).

a(a). b(b).

rule(s, ax, N) : − use(s, ax, N).
rule(s, by, N) : − not(use(s, ax, N)).
0.3 :: use(s, ax, ).

rule(x, ax, N) : − use(x, ax, N).
rule(x, by, N) : − not(use(x, ax, N)), use(x, by, N).
rule(x, e, N) : − not(use(x, ax, N)), not(use(x, by, N)).
0.5 :: use(x, ax, ). 0.2 :: use(x, by, ).

rule(y, ax, N) : − use(y, ax, N).
rule(y, by, N) : − not(use(y, ax, N)), use(y, by, N).
rule(y, e, N) : − not(use(y, ax, N)), not(use(y, by, N)).
0.6 :: use(y, ax, ). 0.5 :: use(y, by, ).

Apart from the rule/3 literals and the counter passed along by the recursive
nonterminals X and Y , the first three blocks directly translate the grammar rules
into Prolog, introducing one predicate per rule symbol and combining results into
lists as done for DCGs in Prolog. The rule/3 literals as defined in the second
half of the program are responsible for the probabilistic choice of rules. Their
truth values are decided by corresponding probabilistic facts with predicate use/3,
ensuring that only one rule for the same left hand side can be applied at any point of
the derivation. Note that the probabilities of these facts have been adjusted such that
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the probability of for instance use(x,ax,N) being false and use(x,by,N) being
true, that is, (1 − 0.5) · 0.2, equals the probability of the corresponding grammar
rule 0.1 : X → bY .3 The third argument indicating the current position in the
sentence ensures that all applications of the same rule within a derivation are
independent random events, and that derivations differing at some position belong
to mutually exclusive partial interpretations. Each complete interpretation of the
probabilistic facts permits a derivation of exactly one s/1 atom. For instance, as
each interpretation extending the partial interpretation

{use(s, ax, 0) = 1, use(x, ax, 1) = 1, use(x, by, 2) = 1,

use(x, ax, 2) = 0, use(y, by, 3) = 0, use(y, ax, 3) = 0} (3.2)

covers the only derivation of s([a,a,b]), cf. Example 2.8, the probability of
s([a,a,b]) is

0.3 · 0.5 · ((1− 0.5) · 0.2) · ((1− 0.6) · (1− 0.5)) = 0.3 · 0.5 · 0.1 · 0.2 = 0.003.
(3.3)

Note that without the third argument of the probabilistic facts, this query could not
be proven, as it requires use(x, ax, 1) = 1 but use(x, ax, 2) = 0, a distinction that
could not be made using a single fact use(x, ax).

Non-ground facts allow one to specify models with countably infinitely many random
variables in ProbLog. As discussed in Section 2.2, thanks to the compatibility
condition of Equation (2.2) and the finite support condition, finite subsets of
random variables and thus finitely many groundings of such facts are sufficient to
compute probabilities in practice, though the actual number of groundings needed
might be determined by the query only, as in Equation (3.2). We therefore restrict
the discussion to the finite case in the following. Formally, a ProbLog program is of
the form

T = {p1 :: f1, · · · , pn :: fn} ∪BK (3.4)

where BK contains rules as given in Equation (3.1). Given such a program T and
a finite set of possible grounding substitutions {θj1, . . . θjij} for each probabilistic
fact pj :: fj , we define the set LT of logical facts as the maximal set of ground facts
fiθij that can be added to BK, that is,

LT = {f1θ11, . . . , f1θ1i1 , · · · , fnθn1, . . . , fnθnin}. (3.5)

Correspondingly, we use FT to denote the set of ground probabilistic facts

FT = {p1 :: f1θ11, . . . , p1 :: f1θ1i1 , · · · , pn :: fnθn1, . . . , pn :: fnθnin}. (3.6)
3Obviously, manually encoding such dependencies is tedious; we will therefore introduce a

specific language construct for this type of choices in Section 3.3.1.
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For ease of readability, in the remainder of this section we will assume that all
probabilistic facts in a ProbLog program are ground, such that substitutions need
not be written explicitly. We write partial interpretations I of LT as a tuple (I1, I0)
with I1 ∪ I0 ⊆ LT , where I1 and I0 correspond to the sets of facts assigned true
and false in I, respectively:

I1 = {fi ∈ LT |fi = 1 ∈ I} (3.7)

I0 = {fi ∈ LT |fi = 0 ∈ I} (3.8)

We denote the set of facts whose truth values are not specified in I by I?, that is,

I? = LT \ (I1 ∪ I0) (3.9)

If I? is empty, the interpretation is complete. We say that a partial interpretation
J extends a partial interpretation I, written as I ⊆ J , if J agrees on all truth
values assigned in I. The set of completions of a partial interpretation I contains
all complete interpretations J extending I, that is,

ComplT (I) = {(J1, J0) | I ⊆ J ∧ J1 ∪ J0 = LT } (3.10)

For complete interpretations, I1 can also be seen as a subprogram L of LT , a
point of view taken in most papers on ProbLog so far. As the random variables
corresponding to facts in LT are mutually independent, the ProbLog program
defines a probability distribution over interpretations I of LT as follows

PT (I) =
∏
fi∈I1

pi
∏
fi∈I0

(1− pi). (3.11)

Since the background knowledge BK is fixed and probabilistic facts cannot unify
with rule heads, each interpretation I of LT gives rise to exactly one least Herbrand
model MI(T ) of LT ∪BK, and a ProbLog program thus defines a distribution over
its least Herbrand models as in the general version of the distribution semantics
presented in Section 2.2.

The probability of a partial interpretation I can easily be obtained from PT by
marginalizing out all random variables whose truth values are not fixed, that is, by
summing the probabilities of all complete interpretations J extending I:

PT (I) =
∑

J∈ComplT (I)

PT (J) =
∏
fi∈J1

pi
∏
fi∈J0

(1− pi) (3.12)

A partial interpretation I of LT supports a query q, written as I |=T q, if and
only if for all J ∈ ComplT (I) there exists a substitution θ such that MJ(T ) |= qθ.
Intuitively, such a partial interpretation provides sufficient information to prove an
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instance of the query independently of the truth values of remaining probabilistic
facts.4 The set of explanations (sometimes also called proofs) of a query q contains
all minimal partial interpretations E of LT (w.r.t. ⊆) supporting q:5

ExplT (q) = {E | E |=T q ∧ ¬∃I : I 6= E ∧ I ⊆ E ∧ I |=T q} (3.13)

We also write explanations as conjunctions

E =
∧
fi∈E1

bi ∧
∧
fi∈E0

¬bi (3.14)

where bi denotes the random variable corresponding to ground fact fi. As an
explanation is a partial interpretation, its probability is given by Equation (3.12).

The explanation probability PTx (q) is now defined as the probability of the most
likely explanation of the query q

PTx (q) = maxE∈ExplT (q) P
T (E). (3.15)

Example 3.3 In Example 3.1, E0 is always empty, as the background knowledge
does not contain clauses with negated facts in the body. In the following, we denote
random variables corresponding to facts of type edge(x, y) by xy. There are two
possible explanations for path(c, d): the edge from c to d, that is E = cd (with
probability 0.9) as well as the path consisting of the edges from c to e and from e to
d, that is E = ce ∧ ed (with probability 0. 8 · 0. 5 = 0. 4). Thus, PTx (path(c, d)) =
0. 9. In Example 3.2, on the other hand, queries have unique explanations, that
is, the explanation probability of s([a,a,b]) is PTx (s([a, a, b])) = 0. 003, as its
only explanation is use(s, ax, 0) ∧ use(x, ax, 1) ∧ use(x, by, 2) ∧ ¬use(x, ax, 2) ∧
¬use(y, by, 3) ∧ ¬use(y, ax, 3).

The success probability PTs (q) of a query q in a ProbLog program T is defined as
the sum of the probabilities of all complete interpretations of T supporting q:

PTs (q) =
∑
I|=T q

PT (I). (3.16)

Formulated differently, the success probability of query q is the probability that
the query q is provable in a randomly sampled logic program, where free variables
are considered existentially quantified as in Prolog.

4I typically fixes truth values of all literals needed for some proof of q and thus also determines
the substitution θ. However, if q cannot be proven from I alone, but in all its completions, θ can
also depend on the completion. For instance, if q(a) is true whenever probabilistic fact f is true,
and q(b) is true whenever f is false, the empty partial interpretation supports q(X), as some
instance of the query is guaranteed to be true independently of the truth value of f . Similar
situations also occur in ground programs, cf. [Poole, 2000].

5The distribution semantics [Sato, 1995] calls explanations minimal support sets and restricts
them to positive assignments, as it does not use negated probabilistic facts to encode binary
choices.
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Example 3.4 In Example 3.1, 40 of the 64 possible subprograms allow one
to prove path(c, d), namely all those that contain at least edge(c,d) or both
edge(c,e) and edge(e,d), so the success probability of that query is the sum of
the probabilities of these programs: PTs (path(c, d)) = PT ({ab, ac, bc, cd, ce, ed}) +
. . . + PT ({cd}) = 0. 94. Clearly, listing all subprograms is infeasible in practice;
an alternative approach based on explanations will be discussed in Section 3.2.
In Example 3.2, the success probability of query s([a, a, ]) takes into account two
complete interpretations or possible worlds: one containing s([a,a,a]), the other
s([a,a,b]), with total probability PTs (s([a, a, ])) = 0.03 + 0.003 = 0.033.

We omit the superscript T and simply write P , Px and Ps if T is clear from the
context.

3.2 The Core of ProbLog Inference

This section discusses the reduction to a formula in disjunctive normal form, or
DNF for short, that forms the key to inference in ProbLog. Concrete inference
algorithms based on this reduction will be presented in Chapter 4.

Calculating the success probability of a query using Equation (3.16) directly is
infeasible for all but the tiniest programs, as the number of subprograms to be
considered is exponential in the number of probabilistic facts. However, as we
have seen in Example 3.1, we can describe all complete interpretations extending a
specific explanation by means of all ground probabilistic facts used – positively or
negatively – in that explanation, denoted by conjunctions of corresponding random
variables and their negations.

Example 3.5 In Example 3.3, we have seen the two explanations of query
path(c, d): cd and ce ∧ ed. The set of all complete interpretations extending
some explanation can be described by the disjunction of all possible explanations,
in our case, cd ∨ (ce ∧ ed). Note that in all interpretations assigning true to
variables cd, ce and ed, both explanations are true, and the explanations are thus
not mutually exclusive, an issue we will come back to at the end of this section.

This idea, which will be elaborated in more detail below, forms the basis for
ProbLog’s two-step inference method:

1. Compute the explanations of the query q using the logical part of the theory
T , that is, BK ∪ LT . The result will be a DNF formula.

2. Compute the probability of this formula.
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Similar approaches are used for PRISM [Sato and Kameya, 2001], ICL [Poole, 2000]
and pD [Fuhr, 2000], cf. also Section 4.5. In the following, we discuss the reduction
to DNF in more detail. Constructing the formula using Prolog inference as well as
computing its probability will be elaborated in Section 4.1.

As we have seen in Equation (3.14), a particular explanation E of a query q is a
conjunctive formula

∧
fi∈E1 bi ∧

∧
fi∈E0 ¬bi, which at the same time represents the

set of all interpretations extending E. Furthermore, the set of all interpretations
extending some explanation of q can be denoted by

DTx (q) =
∨

E∈ExplT (q)

 ∧
fi∈E1

bi ∧
∧
fi∈E0

¬bi

 , (3.17)

as the following derivation shows:

∨
E∈ExplT (q)

 ∧
fi∈E1

bi ∧
∧
fi∈E0

¬bi

 (3.18)

=
∨

E∈ExplT (q)

 ∧
fi∈E1

bi ∧
∧
fi∈E0

¬bi ∧
∧
fi∈E?

(bi ∨ ¬bi)

 (3.19)

=
∨

E∈ExplT (q)

∨
I∈ComplT (E)

 ∧
fi∈I1

bi ∧
∧
fi∈I0

¬bi

 (3.20)

=
∨
I|=T q

 ∧
fi∈I1

bi ∧
∧
fi∈I0

¬bi

 (3.21)

Starting from the DNF in (3.18), the first step (3.19) adds all possible ways of
extending an explanation E to a complete interpretation by considering each fact
whose truth value is not specified by E in turn. We then note that combinations
of these fact-wise extensions lead to complete interpretations extending E, leading
to the transformation in (3.20). Finally, in (3.21), we rewrite the condition of
the disjunction in the terms of Equation (3.16). As shown in Section 3.1, even
in the presence of negated probabilistic facts in background clause bodies, for
each interpretation of LT , there is a unique least Herbrand model extending this
interpretation to the full Herbrand base of the program. Thus, the least Herbrand
model based on an interpretation extending an explanation of q contains some
ground instance of q, and vice versa, if such a least Herbrand model includes q, the
underlying interpretation of LT is an extension of some explanation of q.6 As the

6This is not a one-to-one mapping, but redundant notation does not influence the truth value
of the formula.
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DNF now contains conjunctions representing complete interpretations for LT , its
probability is a sum of products, which directly corresponds to Equation (3.16):

P

 ∨
I|=T q

 ∧
fi∈I1

bi ∧
∧
fi∈I0

¬bi

 (3.22)

=
∑
I|=T q

 ∏
fi∈I1

pi ·
∏
fi∈I0

(1− pi)

 (3.23)

=
∑
I|=T q

PT (I) (3.24)

We thus obtain the following alternative characterisation of the success probability:

PTs (q) = P

 ∨
E∈ExplT (q)

 ∧
fi∈E1

bi ∧
∧
fi∈E0

¬bi

 (3.25)

Thus, the problem of computing the success probability of a ProbLog query can
be reduced to that of computing the probability of a DNF formula. Note that
we here rely on the DNF formula being finite, or the finite support condition in
terms of [Sato, 1995]. This is a reasonable assumption in practice: as explanations
are minimal partial interpretations, an infinite DNF would require infinitely many
random variables, in which case the sum over interpretations in Equation (3.16)
would be infinite as well.

If all conjunctions in a DNF are mutually exclusive, that is, at most one such
conjunction is true for each interpretation of the underlying Boolean variables, the
probability of the DNF is the sum of the probabilities of these conjunctions.
However, as we have seen in Example 3.5, the explanation-based DNF of
Equation (3.25) typically contains overlap, that is, there are interpretations
extending multiple explanations. In this case, the sum of these probabilities
exceeds the probability of the DNF. The problem of transforming such a DNF
into an equivalent DNF with mutually exclusive conjunctions only is known as
the disjoint-sum-problem or the two-terminal network reliability problem, which
is #P-complete [Valiant, 1979]. We will discuss this problem in more detail in
Section 4.1.1.

3.3 Additional Language Concepts

This section highlights three general concepts for probabilistic programming that
are covered by ProbLog’s semantics, but not directly visible in the basic definitions
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as outlined so far. The aim of making these concepts explicit language elements
is twofold: from a practical point of view, they often allow for more convenient
modeling; from a theoretical point of view, they provide insights into the relationship
to closely related languages. The latter will be elaborated in Section 3.4.

3.3.1 Annotated Disjunctions

An annotated disjunction (AD) is an expression of the form

p1 :: h1 ; . . . ; pn :: hn : − b1, . . . , bm. (3.26)

where b1, . . . , bm is a possibly empty conjunction of literals, the pi are probabilities
and

∑n
i=1 pi ≤ 1. It states that if the body b1, . . . , bm is true at most one of the hi

is true as well, where the choice is governed by the probabilities. As for probabilistic
facts, a non-ground AD denotes the set of all its groundings, and for each such
grounding, choosing one of its head atoms to be true is seen as an independent
random event. Alternatively, this can again be viewed as adding one Horn clause
per grounding to a sampled program. If the pi in an annotated disjunction do not
sum to one, with probability 1−

∑n
i=1 pi none of the head atoms is proven by this

clause.

Example 3.6 The following set of ADs defines the rule/3 predicate used in
Example 3.2:

0.3 :: rule(s, ax, N) ; 0.7 :: rule(s, by, N).
0.5 :: rule(x, ax, N) ; 0.1 :: rule(x, by, N) ; 0.4 :: rule(x, e, N).
0.6 :: rule(y, ax, N) ; 0.2 :: rule(y, by, N) ; 0.2 :: rule(y, e, N).

Annotated disjunctions were introduced in LPADs [Vennekens et al., 2004] and
are used as well in CP-logic [Vennekens, 2007], where they are named clauses with
annotated disjunctions and CP-events, respectively. They are closely related to
probabilistic facts (annotated disjunctions with a single atom in the head and an
empty body), the alternatives used in ICL (unconditional annotated disjunctions,
that is, annotated disjunctions with empty body), and the switches used in PRISM
(unconditional annotated disjunctions where all atoms share the same predicate,
but using implicit trial identifiers to distinguish repeated occurrences); cf. also
Section 3.4.

Annotated disjunctions can be automatically transformed into the core primitives
of ProbLog. However, as ProbLog’s probabilistic facts are independent random
variables, but head atoms of ADs are dependent in the sense that at most one of
them can be true in each possible world, these dependencies have to be modeled on
top of the probabilistic facts, as was done in Example 3.2. For non-ground ADs, all
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variables of the AD have to be included as arguments of the probabilistic facts to
ensure that different groundings of the AD correspond to different random events.
This includes the case of variables occurring only in the body of the AD, as in the
following example.

Example 3.7 This AD models the fact that the probability that some window
breaks increases with the number of balls hitting it:

0.3 :: broken(Window) : − hits(Ball, Window). (3.27)

Using probabilistic facts, it can be written as

broken(Window) : − hits(Ball, Window), breaks(Ball, Window).

0. 3 :: breaks(Ball, Window).

In general, an annotated disjunction p1 :: h1 ; . . . ; pn :: hn : − b1, . . . , bm.
can be written in terms of ProbLog’s probabilistic facts as the set of probabilistic
facts {p̃i :: x(hi,v)|1 ≤ i ≤ n} and corresponding clauses

hi : − b1, · · · , bm, not(x(h1,v)), . . . , not(x(hi−1,v)), x(hi,v). (3.28)

where x is a new predicate not appearing elsewhere in the ProbLog program and
v = v1, . . . , va are the variables in the AD. If the pi sum to 1, it is possible to drop
the last probabilistic fact x(hn,v), since the last option has to be chosen if it is
reached in the sequential decision process. The probability p̃1 is defined as p1, for
i > 1, the following transformation applies:

p̃i :=
{

pi ·
(
1−

∑i−1
j=1 pj

)−1
if pi > 0

0 if pi = 0
. (3.29)

One can recover the original probabilities from p̃ by setting p1 := p̃1 and iteratively
applying the following transformation for i = 2, 3, . . . , n

pi := p̃i ·

1−
i−1∑
j=1

pj

 . (3.30)

Equations (3.29) and (3.30) together define a bĳection between p and p̃.

Since the translation process can be completely automated, we will use ADs as a
basic language construct in ProbLog from now on whenever this is more convenient
than probabilistic facts.
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3.3.2 Repeated Trials

In ProbLog, ground facts directly correspond to random variables, that is, once
the truth value of such a fact is fixed, it can be used an arbitrary number of times
to derive the truth values of further facts in the interpretation without changing
the probability of the interpretation. In contrast, in probabilistic grammars,
each application of a rule lowers the probability of a derived sentence. In our
earlier grammar examples, we therefore introduced an extra index argument for
probabilistic facts or annotated disjunctions to generate a different ground instance
for each repeated use of a rule.

Example 3.8 The following is a variant of Example 3.6 without indexing:

0.3 :: rule(s, ax) ; 0.7 :: rule(s, by).
0.5 :: rule(x, ax) ; 0.1 :: rule(x, by) ; 0.4 :: rule(x, e).
0.6 :: rule(y, ax) ; 0.2 :: rule(y, by) ; 0.2 :: rule(y, e).

s([F|R]) : − rule(s, ax), a(F), x(R).
s([F|R]) : − rule(s, by), b(F), y(R).

x([F|R]) : − rule(x, ax), a(F), x(R).
x([F|R]) : − rule(x, by), b(F), y(R).
x([]) : − rule(x, e).

y([F|R]) : − rule(y, ax), a(F), x(R).
y([F|R]) : − rule(y, by), b(F), y(R).
y([]) : − rule(y, e).

a(a). b(b).

In this program, PT (s([a, a, b])) = 0, as opposed to 0.003 in the original example.
The reason is that deriving aab requires two different outcomes of the second AD:
rule(x,ax) to generate the second letter, and rule(x,by) to obtain the third.
However, as each interpretation contains exactly one of these, s([a,a,b]) is false
in all possible interpretations.

While the distribution semantics as introduced in [Sato, 1995] follows the ProbLog
view, PRISM [Sato and Kameya, 2001] follows the grammar view of implicitly
distinguishing repeated calls to the same probabilistic alternative as independent
identically distributed events.
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Maintaining trial identifiers as done in our grammar examples can be completely
automated. To this aim, we introduce a declaration :- repeated pred/arity to
indicate that the corresponding predicate has to be treated as a different random
event each time it occurs.7 We require such predicates to be defined by one or
more unconditional ADs whose head elements all use this predicate, where for each
AD, the set of variables is the same in all elements.8

Formally, the following declaration of a group of m ADs for a predicate q/n

: −repeated q/n.

p11 :: q(t11);. . .; p1k1 :: q(t1k1).

· · ·

pm1 :: q(tm1);. . .; pmkm :: q(tmkm
).

will be extended using a new predicate qx/n:

q(X) : −next id(q(X), ID), qx(ID,X).

p11 :: qx(ID, t11); ...; p1k1 :: qx(ID, t1k1).

· · ·

pm1 :: qx(ID, tm1); ...; pmkm :: qx(ID, tmkm
).

The transformation replaces the original ADs defining predicate q/n by ADs that
use a new head predicate of arity n+1, where we introduce an extra argument
corresponding to the trial identifier. A wrapper clause for the original predicate
q/n is used to generate unique identifiers and call the new AD.9

Example 3.9 Declaring rule/2 repeated in Example 3.8 would again lead to an
encoding of the original grammar, as it automatically introduces a distinguishing
argument. For instance,

: −repeated rule/2.

0.5 :: rule(x, ax) ; 0.1 :: rule(x, by) ; 0.4 :: rule(x, e).
7Using declarations on predicate level allows programs mixing standard and repeated

probabilistic events and simplifies automatic transformation.
8This ensures that all relevant groundings can be identified during proving; conditional ADs

could be used under the additional requirement of all variables in the body appearing in each
head element.

9While it is in principle possible to transform the entire program such that ID information
for all predicates is passed around as extra argument, interfacing this information by means of
the next id predicate makes the transformation clearer to present. The implementation of this
predicate uses backtrackable global variables to ensure correct interaction with our ProbLog
implementation.
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will be transformed into

rule(L, R) : −next id(rule(L, R), ID), r(ID, L, R).

0.5 :: r(ID, x, xa); 0.1 :: r(ID, x, by); 0.4 :: r(ID, x, e).

3.3.3 Negation

As we have seen in Section 2.2, the distribution semantics relies on the fact that
each model of the basic set of facts can be extended into a unique canonical model
for the entire program. We can thus generalize background knowledge clauses to
normal clauses, as long as the resulting program still has a total well-founded model
for each interpretation of the probabilistic facts. Viewing background knowledge
clauses as syntactically restricted definitions in the spirit of FO(ID) [Denecker
and Vennekens, 2007; Vennekens et al., 2009], a partial well-founded model for
some choice of probabilistic facts would indicate ambiguity in a definition due
to some non well-founded use of negation, which is undesirable from both the
computational and the modeling perspective. We thus require ProbLog programs
to have a total well-founded model for each interpretation of probabilistic facts
without committing to a particular class of such programs.

In this case, and again assuming finite support, ProbLog’s DNF-based inference
as described in Section 3.2 can be extended to construct a nested formula instead
of a DNF [Kimmig et al., 2009]. While the DNF DTx (g) corresponding to a
goal g encodes the set of all interpretations entailing g, the formula ¬DTx (g)
encodes the complement of this set. Under negation as failure, this is exactly
the set of interpretations where the corresponding negated subgoal not(g) is true.
Following a lazy approach, we therefore describe sets of interpretations where
a goal is true by generalized explanations, which in addition to positive and
negative literals representing probabilistic facts also contain negated subformulae
corresponding to generalized explanations of negated subgoals. Note that such
generalized explanations can contain logical contradictions if different truth values
for probabilistic facts are required in different subformulae, in which case the set
of interpretations is empty.



44 THE PROBLOG LANGUAGE

Example 3.10 The following is a ProbLog encoding of the alarm Bayesian network
of Example 2.9:

alarm : − burglary, earthquake, alarm(b, e).
alarm : − burglary, not(earthquake), alarm(b, not e).
alarm : − not(burglary), earthquake, alarm(not b, e).
alarm : − not(burglary), not(earthquake), alarm(not b, not e).

johnCalls : − alarm, johnCalls(a).
johnCalls : − not(alarm), johnCalls(not a).

maryCalls : − alarm, maryCalls(a).
maryCalls : − not(alarm), maryCalls(not a).

0.001 :: burglary. 0.002 :: earthquake.

0.95 :: alarm(b, e). 0.94 :: alarm(b, not e).
0.29 :: alarm(not b, e). 0.001 :: alarm(not b, not e).

0.9 :: johnCalls(a). 0.05 :: johnCalls(not a).

0.7 :: maryCalls(a). 0.01 :: maryCalls(not a).

The following formulae describe the conditions under which the nodes in the BN
evaluate to true (Dx(maryCalls) is analogous to Dx(johnCalls)):

Dx(burglary) = b

Dx(earthquake) = e

Dx(alarm) = (b ∧ e ∧ a(b, e)) ∨ (b ∧ ¬e ∧ a(b, ne))

∨ (¬b ∧ e ∧ a(nb, e)) ∨ (¬b ∧ ¬e ∧ a(nb, ne))

Dx(johnCalls) = (b ∧ e ∧ a(b, e) ∧ j(a)) ∨ (b ∧ ¬e ∧ a(b, ne) ∧ j(a))

∨ (¬b ∧ e ∧ a(nb, e) ∧ j(a)) ∨ (¬b ∧ ¬e ∧ a(nb, ne) ∧ j(a))

∨ (¬Dx(alarm) ∧ j(na))

Here, Dx(alarm) is still in DNF, as all its negated subgoals correspond to
probabilistic facts. However, the last conjunction of Dx(johnCalls) no longer
corresponds to an individual explanation or partial interpretation, as ¬Dx(alarm)
is not a conjunction of literals. Indeed, negating Dx(alarm) results in a conjunctive
formula which has models extending each possible truth value assignment to variables
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b and e, as given by the four mutually exclusive explanations

(b ∧ e ∧ ¬a(b, e)) ∨ (b ∧ ¬e ∧ ¬a(b, ne))

∨ (¬b ∧ e ∧ ¬a(nb, e)) ∨ (¬b ∧ ¬e ∧ ¬a(nb, ne))

Obviously, the formula describing the generalized explanations of a query could be
transformed in DNF using the standard laws of logic. However, as we will see in
Section 4.3.4, this is not necessary for ProbLog’s approach to probability calculation.
Furthermore, the approach can be generalized by also including subformulae for
(selected) positive subgoals, as done in tabled inference for ProbLog [Mantadelis
and Janssens, 2010].

3.4 Related Languages

In this section, we briefly discuss ProbLog’s relationship to a number of alternative
probabilistic logic languages. We start with some general remarks concerning
relational extensions of Bayesian networks, cf. Section 2.3.2, and then focus on
languages that add independent alternatives to logical languages, cf. Section 2.3.1,
and thus can be viewed as instances of the distribution semantics. While these
languages share their core semantics, they originate from different fields, ranging
from logic programming to probabilistic information retrieval and knowledge
representation.

3.4.1 Relational Extensions of Bayesian Networks

As their propositional counterpart, probabilistic logic languages extending Bayesian
networks essentially encode a joint probability distribution over a set of random
variables by means of a set of conditional distributions over subsets of those
variables. The key difference, however, is that in the relational case, the graph
structure specifying independencies is typically parameterized by logical variables.
As already indicated in Example 3.10, Bayesian networks with binary domains can
be modeled in ProbLog by introducing a logical atom for each random variable
in the network and directly encoding probability tables using a combination of
background knowledge clauses and probabilistic facts. In the following example,
we generalize this to both larger domains and relational extensions of Bayesian
networks.

Example 3.11 Figure 3.2 shows a fragment of the school CLP(BN ) program
of [Santos Costa et al., 2003], where for any given student and course taken by
the student, the grade of the student for this course depends on the difficulty
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Int(S)

Grade(S,C)

Diff(C)

Int high medium low
Diff high med low high med low high med low
a 0.20 0.70 0.85 0.10 0.20 0.50 0.01 0.05 0.10
b 0.60 0.25 0.12 0.30 0.60 0.35 0.04 0.15 0.40
c 0.15 0.04 0.02 0.40 0.15 0.12 0.50 0.60 0.40
d 0.05 0.01 0.01 0.20 0.05 0.03 0.45 0.20 0.10

Figure 3.2: A fragment of the school example encoding the dependency of a
student’s grade for a course on the student’s intelligence and the course’s difficulty.

of the course as well as on the student’s intelligence. The following ProbLog
encoding of this fragment directly follows the original encoding in CLP(BN ).
Which student is following which course is defined by the background knowledge
predicate registration(ID,Course,Student). As in the figure, we omit the
definitions of this predicate as well as the predicates corresponding to the parent
nodes course difficulty(CKey, Dif) and student intelligence(SKey, Int) for
brevity. The graph structure is encoded by the following background knowledge
clause:

registration grade(Key, Grade) : − registration(Key, CKey, SKey),
course difficulty(CKey, Dif),
student intelligence(SKey, Int),
grade(Key, [Int, Dif], Grade).

Furthermore, given domains {high, medium, low} for both intelligence and difficulty
and {a, b, c, d} for grade, we get one AD for each grounding of parent variables
Intelligence and Difficulty, i.e. for each column of the CPT:

0.20 :: grade(Key, [high, high], a) ; 0.60 :: grade(Key, [high, high], b) ;
0.15 :: grade(Key, [high, high], c) ; 0.05 :: grade(Key, [high, high], d).

0.70 :: grade(Key, [high, medium], a) ; 0.25 :: grade(Key, [high, medium], b) ;
0.04 :: grade(Key, [high, medium], c) ; 0.01 :: grade(Key, [high, medium], d).
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0.85 :: grade(Key, [high, low], a) ; 0.12 :: grade(Key, [high, low], b) ;
0.02 :: grade(Key, [high, low], c) ; 0.01 :: grade(Key, [high, low], d).

. . .

We refer to [Sato and Kameya, 2001] for a more in-depth discussion on modeling
Bayesian networks in PRISM, and to Section 3.4.4 for a mapping of PRISM
programs into ProbLog.

3.4.2 Probabilistic Logic Programs

The probabilistic logic programs of Dantsin [1991] correspond exactly to finite,
stratified ProbLog programs: a probability is assigned to each element of a finite
set of facts, and a finite set of clauses is added such that no probabilistic fact is an
instance of a head of any such clause. To correctly deal with negation, programs
are required to be stratified. However, it seems that this approach has neither been
implemented nor pursued any further.

3.4.3 Independent Choice Logic

The Independent Choice Logic (ICL) [Poole, 2000] builds on probabilistic Horn
abduction (PHA) [Poole, 1993b], but generalizes PHA in two aspects, namely by
including negation as failure and by dropping the requirement of mutually exclusive
explanations. The key difference between ProbLog and ICL is the choice of basic
probabilistic entities: while ProbLog uses probabilistic facts that are either true or
false, ICL uses probabilistic alternatives that are added to an acyclic normal logic
program. An alternative is a set of ground atoms that are called atomic choices.
Possible worlds or total choices contain exactly one atom from each alternative.
Different alternatives are probabilistically independent.

Example 3.12 The following ICL theory is taken from [Poole, 2008]. We use the
syntax of Poole’s ICL implementation AILog2 for alternatives.

prob c1 : 0.5, c2 : 0.3, c3 : 0.2.
prob b1 : 0.9, b2 : 0.1.

f← c1 ∧ b1. d← c1. e← f.
f← c2 ∧ b2. d← ¬c2 ∧ b1. e← ¬d.

The first two lines define the set of alternatives, that is, each possible world contains
one of the ci and one of the bj. The remaining two lines define the acyclic logic
program (the facts in ICL terminology).
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In general, the core language constructs of ICL are normal clauses and alternatives
of the form

prob a1 : p1, . . . , an : pn.

Atomic choices ai in the same or different alternatives can neither unify with each
other nor with any head hk of a clause in the logic program. For each alternative,
the probabilities pi of its atomic choices ai sum to one.

Given the additional language constructs of Section 3.3, ICL theories can therefore
directly be mapped into ProbLog: the logic program is kept as is (modulo syntax),
and each alternative

prob a1 : p1, . . . , an : pn.

corresponds to an annotated disjunction with empty body

p1 :: a1 ; · · · ; pn :: an.

Example 3.13 Example 3.12 thus corresponds to the following ProbLog program:

0.5 :: c1 ; 0.3 :: c2 ; 0.2 :: c3.

0.9 :: b1 ; 0.1 :: b2.

f : − c1, b1. d : − c1. e : − f.
f : − c2, b2. d : − not(c2), b1. e : − not(d).

ProbLog’s probabilistic facts correspond to alternatives with two atomic choices:
the fact itself and some fact that is not used anywhere else (as probabilities need
to sum to one). To encode conditional ADs in ICL, a similar approach as in the
transformation to basic ProbLog can be used, where we use one clause per head
element and introduce an extra body element carrying the probability. In contrast
to Equation (3.28), atomic choices are used instead of sequences of facts. That is,
an AD

p1 :: h1 ; . . . ; pn :: hn : − b1, . . . , bm.

can be expressed in ICL as:

h1 ← b1 ∧ . . . ∧ bm ∧ a1.

. . .

hn ← b1 ∧ . . . ∧ bm ∧ an.

prob a1 : p1, . . . , an : pn.
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Example 3.14 The AD

0.3 :: word([a|X]) ; 0.7 :: word([b|X]) : − word(X).

can be written in ICL as

word([a|X]) : − word(X), next(a, X).
word([b|X]) : − word(X), next(b, X).

prob next(a, X) : 0.3, next(b, X) : 0.7.

As ProbLog, AILog2 allows non-ground alternatives to compactly encode sets of
independent ground alternatives as in the last line.

As in ProbLog, the use of negation in ICL has to be restricted to guarantee a
single canonical model for each total choice. Poole [2000] therefore considers
acyclic ICL programs under the stable model semantics [Gelfond and Lifschitz,
1988], which for this class of programs coincides with the well-founded semantics.
A program is acyclic if there is a function num from the Herbrand base to the
natural numbers such that for each grounding h : −b1, . . . , bn of a program clause,
num(h) > num(bi) for all i. This is then further relaxed to contingently acyclic
programs, where those groundings whose body directly fails10 given the current
database are not considered when checking the order constraint. Riguzzi [2009]
introduces an inference procedure for bounded queries in modularly acyclic ICL
programs. Boundedness essentially ensures the finite support condition, while
modular acyclicity generalizes acyclicity while still guaranteeing the well-founded
model to be total; we refer to [Riguzzi, 2009] for the technical details.

3.4.4 PRISM

In [Sato, 1995], so-called BS-programs are introduced as a simple type of programs
covered by the distribution semantics. In BS-programs, random events are atoms
of the form bs(i,n, ). Given a group identifier i and an event identifier n, the
third argument probabilistically takes value 0 or 1, that is, such atoms can be seen
as binary switches. Given i, atoms bs(i,n, ) with different n are independent
random events with identical probability distribution over the outcomes. This
idea is generalized into events with more than two outcomes, or multi-ary random
switches msw(i, ), in PRISM [Sato and Kameya, 2001], where n is no longer an
explicit argument, but still implicitly used for inference. Strictly speaking, an atom
msw(i, ) thus corresponds to a group of switches, but we refer to it as a switch for
simplicity.

10due to semantic constraints such as inequality, or because there is no rule to resolve some
body atom with
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Example 3.15 We illustrate PRISM using our grammar example:

s([F|R]) : − msw(s, RHS),
(RHS == ax − > a(F), x(R); b(F), y(R)).

x(S) : − msw(x, RHS),
(RHS == e − > S = [];
S = [F|R], (RHS == ax − > a(F), x(R); b(F), y(R))).

y(S) : − msw(y, RHS),
(RHS == e − > S = [];
S = [F|R], (RHS == ax − > a(F), x(R); b(F), y(R))).

values(s, [ax, by]).
values(x, [ax, by, e]).
values(y, [ax, by, e]).

: − set sw(s, [0.3, 0.7]).
: − set sw(x, [0.5, 0.1, 0.4]).
: − set sw(y, [0.6, 0.2, 0.2]).

As sampling execution in the PRISM system requires programs to be written in a
purely generative manner [Sato et al., 2010], the clauses use Prolog’s if-then-else
to continue depending on the random trial. Due to implicit trial identifiers, the
program is syntactically closer to the (wrong) ProbLog program in Example 3.8,
but in fact directly corresponds to Example 3.6. Switches in PRISM are identified
by names in the form of atoms. The example contains three switches called s, x
and y, respectively. Switches and their possible outcomes are declared using the
predicate value/2, where the first argument is the name of the switch, the second
an ordered list of values; for instance, switch s returns either ax or by. To evaluate
a switch in a clause body, the predicate msw/2 is used. Again, the first argument is
the name of the switch, whereas the second will be unified randomly with one of
the possible values. The probabilities of a switch are set using set sw/2, where the
second argument is the list of probabilities associated to the outcomes, using the
same order as in the values declaration.

In general, the important language constructs of PRISM are thus the following:

values(name(t1, . . . , tn), [v1, . . . , vm]).

: −set sw(name(t1, . . . , tn), [p1, . . . , pm]). (3.31)

h : −b1, . . . , bi−1, msw(name(t1, . . . , tn), Value), bi+1, . . . , bk.

where the bj are atoms (including msw-atoms), name is an atom, the vj are ground
terms and the pj are probabilities summing to 1, meaning that querying any
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instance of the switch name using msw(name, Value) will bind Value to vj with
probability pj.

A multi-valued switch in PRISM is closely related to an unconditional annotated
disjunction in terms of ProbLog: in both cases, a probabilistic choice from a finite
set of alternatives is specified by attaching a probability to each possible value,
where probabilities sum to one. However, in PRISM, repeated calls to the same
switch are considered independent random events. To achieve this behaviour in
ProbLog, the repeated declaration introduced in Section 3.3.2 can be used.

PRISM programs can be translated to ProbLog by mapping each multi-ary switch
to an AD with predicate msw/2, which is declared repeated. The structure of the
Prolog program remains unchanged.

Example 3.16 Mapping the PRISM program of Example 3.15 to ProbLog does
not affect the clauses for s/1, x/1 and y/1. Switch definitions are mapped to

: − repeated msw/2.

0.3 :: msw(s, ax) ; 0.7 :: msw(s, by).
0.5 :: msw(x, ax) ; 0.1 :: msw(x, by) ; 0.4 :: msw(x, e).
0.6 :: msw(y, ax) ; 0.2 :: msw(y, by) ; 0.2 :: msw(y, e).

The general fragment in Equation (3.31) is mapped to:

: − repeated msw/2.

p1 :: msw(name(t1, . . . , tn), v1) ; . . . ; pm :: msw(name(t1, . . . , tn), vm). (3.32)

h : − b1, . . . , bi−1, msw(name(t1, . . . , tn), Value), bi+1, . . . , bk.

It might be possible to simulate the default behaviour of ProbLog within PRISM
by storing the outcome of the first call msw(i,X) and only calling msw/2 atoms if
their outcome has not been stored yet.11 A simple way to realize such a store would
be to introduce a dynamic predicate sampled/2 and to replace each occurrence of
an atom msw(i,X) in the body of some clause by

(sampled(i, X) − > true; msw(i, X), assert(sampled(i, X)).

In practice, this simple approach seems to miss alternative explanations for
non-ground queries, presumably due to interactions between asserting and
backtracking.12 However, alternative implementations might solve this problem.

11Taisuke Sato (personal communication).
12Querying the corresponding transformation of Example 3.15 for the probability of s([ , ])

only takes into account [a, b] and ignores [b, a] even with a new top level predicate that clears
sampled/2 before (or after) calling s/1.
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In terms of inference, PRISM follows a similar two-step approach as described
for ProbLog in Section 3.2. However, PRISM requires programs to be written in
such a way that each query has at most one explanation in each possible world.
The system thus avoids solving the disjoint-sum-problem (cf. Section 4.1.1) by
restricting the class of possible programs. Our ProbLog implementation discussed
in Chapter 4 does not impose such restrictions.

3.4.5 Probabilistic Datalog

Probabilistic Datalog (pD) [Fuhr, 2000] is motivated by the need to combine
logical and probabilistic information for information retrieval. Probabilities are
attached to clauses in modularly stratified Datalog programs (under the well-
founded semantics), denoting for each grounding of the clause the probability that
it holds in a model. Independence between all random events is assumed, but
choices between multiple alternative clauses (defining the same predicate) can be
specified by means of so-called disjointness keys. Such a key is a subset of the
arguments of the predicate, denoting that for each grounding of the key, only one
grounding of the remaining arguments can be true in every model. Disjointness keys
for predicates p/n are declared in the beginning of a program as #p(t1,...,tn)
with ti=dk denoting key arguments, ti=av denoting attribute value arguments,
where declarations without av arguments are omitted.

Example 3.17 The following pD program is an information retrieval example
inspired by [Fuhr, 2000].

#year(dk, av).
#weight(av).

0.7 year(d1, 2006). 0.3 year(d2, 2007).
0.3 year(d1, 2007). 0.6 year(d2, 2008).

0.1 year(d2, 2009).

0.8 keyword(d1, ml). 0.7 keyword(d1, lp).
0.5 keyword(d2, ml). 0.9 keyword(d2, lp).

0.7 weight(ml). 0.3 weight(lp).

0.9 relevant(D) ← year(D, Y), Y >= 2008, keyword(D, T), weight(T).
0.6 relevant(D) ← year(D, Y), Y > 2006, Y < 2008,

keyword(D, T), weight(T).
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For two documents d1 and d2, there is uncertainty over their publication year.
For each document, only one year is possible, but years are independent for
different documents, thus, the document is the disjointness key for predicate year/2.
Keywords are assigned probabilistically to each document, all these assignments are
independent (the default). To use probabilistic query term weighting for retrieval,
weights are associated to keywords, such that in each model only one keyword is
relevant. Finally, a document is considered relevant if it contains at least one
keyword, and more recent documents are more relevant. Documents can thus be
ranked using the probabilities of ground instances of query relevant(D).

The key differences between pD and ProbLog lie in the use of functors, which is
not supported in pD, and the way choices between exclusive events are specified.
While ProbLog’s ADs explicitly impose a shared condition on such choices, but
do not restrict the form of elements in the choice, pD specifies exclusiveness on
the predicate level by means of disjointness keys, but does not impose further
restrictions on clauses defining the predicate. More specifically, two instantiated
clause heads with the same predicate are considered disjoint if they agree on the
key arguments, but differ in at least one attribute value argument, and independent
else, which includes the case of identical such heads. To deal with negation, pD
programs need to be modularly stratified, a requirement that generalizes local
stratification while still guaranteeing the well-founded model to be total; we refer
to [Fuhr, 2000] for the technical details.

3.4.6 CP-Logic

The key syntactical construct of both LPADs [Vennekens et al., 2004] and CP-
logic [Vennekens, 2007] are rules of the form

(p1 : α1) ∨ . . . ∨ (pn : αn)← ϕ

with ϕ a first order sentence, pi ground atoms, and αi non-zero probabilities with∑n
i=1 αi ≤ 1. Non-ground rules can be used as a compact notation of all their

groundings, provided that constants, predicate and function symbols are typed
in a way that assures a finite number of groundings for each such rule, as the
semantics is defined in terms of finite ground theories. While the definition of the
semantics follows different routes in both formalisms, their equivalence has been
established [Vennekens, 2007]. ProbLog’s ADs directly follow the idea of these rules,
but restrict rule bodies to conjunctions of literals. Furthermore, ProbLog requires
rules to ensure that the well-founded model is total, cf. Section 3.3.3. However,
ProbLog does not restrict non-ground ADs to finitely many groundings, as the
distribution semantics also covers the case of infinitely many random variables.
Characterizing the semantics of CP-logic in terms of the distribution semantics
might thus be a way to drop the requirement of finitely many groundings.
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3.5 Conclusions

In this chapter, we have introduced ProbLog, a simple yet expressive extension of
Prolog with a distribution semantics. The key to inference in ProbLog is a DNF
encoding of all explanations of a query; techniques to construct and evaluate such
DNFs will be presented in Chapter 4. We also discussed the relations between
ProbLog and a number of probabilistic logic languages with related semantics.



Chapter 4

The ProbLog System∗

While the previous chapter has introduced the ProbLog language and the reduction
to DNF at the core of inference in ProbLog, in this chapter, we discuss various
ProbLog inference algorithms as well as their tight integration in the state-of-the-art
YAP-Prolog system.

Section 4.1 on exact inference starts with the generation of explanations during
SLD-resolution, which is then used to introduce algorithms for finding the most
likely explanation or all explanations, respectively. This section is completed by
discussing the disjoint-sum-problem faced in the second step of calculating the
success probability. Section 4.2 introduces two groups of methods to approximate
success probabilities. While bounded approximation and k-best use subsets of
explanations to obtain DNFs of tractable size, both program sampling and DNF
sampling estimate probabilities based on randomly generated interpretations. They
differ in that program sampling interleaves searching for explanations with sample
generation, whereas DNF sampling first constructs the DNF corresponding to all
explanations and then uses it as basis for sampling.

Section 4.3 is devoted to the details of our implementation, covering the
representation of labeled facts, explanations and sets of explanations, the encoding
of DNFs as BDDs, and lazy sampling techniques. The different inference algorithms
are experimentally compared on probabilistic networks of varying size in Section 4.4.

Finally, we discuss related work in Section 4.5, and conclude in Section 4.6.
∗This chapter includes work published in [Kimmig et al., 2008, 2009, 2010; Mantadelis et al.,

2010; Shterionov et al., 2010].
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4.1 Exact Inference

In this section, we discuss exact inference methods to calculate both explanation and
success probabilities based on the reduction to DNF introduced in Section 3.2. From
a logic programming perspective, this DNF can be viewed as a concise representation
of the successful branches in the SLD-tree. Following Prolog, we thus employ SLD-
resolution to obtain all different explanations. Each successful branch in the
SLD-tree relies on a set of ground probabilistic facts {p1 :: f1, · · · , pk :: fk} ⊆ LT
being true and a set of ground probabilistic facts {pk+1 :: fk+1, · · · , pl :: fl} ⊆ LT
being false and thus gives rise to an explanation E =

∧
1≤i≤k bi∧

∧
k<i≤l ¬bi. These

truth value assignments are necessary for the explanation, but the explanation is
independent of truth value assignments to other probabilistic facts in LT , that is,
those in E?.

Example 4.1 Figure 4.1 depicts the SLD-tree for the query ?− path(c, d). in
Example 3.1, where branches corresponding to resolution steps involving probabilistic
facts are labeled with the corresponding random variable. The corresponding DNF
cd ∨ (ce ∧ ed) is obtained by collecting these labels on succeeding branches of the
tree.

To construct explanations during SLD-resolution, we thus keep track of partial
explanations as well as their probabilities. The basic resolution step is detailed
in Algorithm 4.1, which distinguishes negated probabilistic facts (lines 3-10) and
positive literals (lines 12-20). In both cases, the first two lines correspond to a
regular SLD-resolution step. If a probabilistic fact was used, the algorithm checks
whether the explanation already contains this fact with opposite sign, which would
lead to inconsistency and therefore requires backtracking to alternative choices. If
this is not the case, and the fact has not been used previously, the explanation
and its probability are updated. Algorithm 4.2 constructs a complete explanation
by repeating such resolution steps until reaching the empty goal. As for Prolog,
backtracking will result in additional answers being returned, and the algorithm
can thus be used to generate all explanations of a query. This algorithm is the core
of ProbLog inference.

The explanation probability Px as given in Equation (3.15) can be calculated by
successively generating all explanations using Algorithm 4.2, keeping the one with
highest probability found so far1. However, as Px exclusively depends on the
probabilistic facts used in one explanation, this potentially large search space can
be pruned using a simple branch-and-bound approach based on the SLD-tree,

1Algorithm 4.2 could also be used to construct the DNF corresponding to the query, on
which Viterbi-like dynamic programming techniques could be used to calculate the explanation
probability. However, this often requires significantly more memory and should thus only be
considered if the DNF is needed for other purposes as well.
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?- path(c,d).

:- edge(c,d). :- edge(c,A),path(A,d).

[]

[]

:- edge(d,d).

:- edge(d,d).

:- edge(e,d).

  ed

  cd

:- path(d,d).

:- edge(d,B),path(B,d).

:- path(d,d).

:- edge(d,D),path(D,d).

:- path(e,d).

:- edge(e,C),path(C,d).

  cd   ce

  ed

Figure 4.1: SLD-tree for query path(c, d). in Example 3.1

where partial explanations are discarded if their probability drops below that of
the best explanation found so far.

Example 4.2 Assuming that the successful leftmost branch of the SLD-tree in
Figure 4.1 has already been considered, the derivations in the rightmost branch can
be stopped at subgoal : − path(e, d), as the partial explanation ce has probability
0.8 and thus cannot lead to a complete explanation with probability higher than 0.9,
the current best value corresponding to explanation cd.

Instead of traversing the entire SLD-tree to find all explanations, the algorithm
uses iterative deepening with a probability threshold γ to find the most likely
one. Algorithm 4.3 extends Algorithm 4.2 to return a partial explanation if its
probability falls below the current threshold γ (lines 7-8). The iterative deepening
search is detailed in Algorithm 4.4. Its central loop backtracks over the SLD-tree up
to the current threshold, updating the current best explanation and its probability,
and recording whether any stopped derivation occurred which could justify another
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Algorithm 4.1 Performing an SLD-resolution step and updating the current
partial explanation and its probability.
1: function ResolutionStep(goal (g0, g), probability p, explanation E)
2: if g0 = not(g1) then
3: select next probabilistic fact f matching g1
4: θ := mgu(g1, f); g′ := gθ
5: if fθ ∈ E then
6: backtrack to fact selection
7: else if ¬fθ /∈ E then
8: E := E ∧ ¬fθ
9: p := p · (1− prob(f))

10: return (g′, p, E)
11: else
12: select next clause c matching g0
13: θ := mgu(g0, head(c)); g′ := (body(c)θ, gθ)
14: if c probabilistic fact then
15: if ¬cθ ∈ E then
16: backtrack to clause selection
17: else if cθ /∈ E then
18: E := E ∧ cθ
19: p := p · prob(c)
20: return (g′, p, E)

Algorithm 4.2 SLD-resolution in ProbLog.
1: function Resolve(query q)
2: p := 1; E :=True
3: repeat
4: (q, p, E) :=ResolutionStep(q, p, E)
5: if q = ∅ then
6: return (success,E, p)
7: until no further resolution possible
8: return (fail,False, 0)

iteration. The algorithm stops after the first iteration where an explanation has
been found, as all stopped derivations could only lead to explanations with lower
probability. The minimum threshold ε avoids exploring infinite SLD-trees without
solution.

Calculating the success probability Ps, on the other hand, is more complex. As
sketched in Section 3.2, we first construct the DNF formula corresponding to the
set of explanations and then calculate the probability of this DNF, which involves
dealing with the disjoint-sum-problem as discussed in the next section. The first
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Algorithm 4.3 SLD-resolution in ProbLog using minimal probability γ.
1: function ResolveThreshold(query q, threshold γ)
2: p := 1; E :=True
3: repeat
4: (q, p, E) :=ResolutionStep(q, p, E)
5: if q = ∅ then
6: return (success,E, p)
7: else if p < γ then
8: return (stop,E, p)
9: until no further resolution possible

10: return (fail,False, 0)

Algorithm 4.4 Calculating the most likely explanation by iterative deepening
search in the SLD-tree.
1: function BestProb(query q, thresholds γ and ε, constant β ∈ (0, 1))
2: max = −1; best := False; continue := True
3: while (γ > ε) ∧ continue do
4: continue := False
5: repeat
6: (result, E, p) := ResolveThreshold(q, γ)
7: if (result = success) ∧ (p > max) then
8: max := p; best := E
9: else

10: if result = stop then
11: continue := True
12: backtrack to the remaining choice points of ResolveThreshold
13: until ResolveThreshold has no choice points remaining
14: if max > −1 then
15: return (max, best)
16: else
17: γ := β · γ
18: if γ ≤ ε then
19: return (−1, stop)
20: else
21: return (0, unprovable)

step simply uses backtracking to obtain all explanations from Algorithm 4.2.



60 THE PROBLOG SYSTEM

4.1.1 The Disjoint-Sum-Problem

As already stated in Section 3.2, the disjoint-sum-problem is the problem
of transforming an arbitrary DNF formula into one with mutually exclusive
conjunctions only. In the context of ProbLog, the latter type of DNF could
be used to calculate its probability as a sum of products mirroring the structure of
the DNF. This is closely related to the two-terminal network reliability problem,
which asks for the probability of two nodes being connected in a communication
network with probabilistically failing components. This type of problem has been
shown to be #P-complete [Valiant, 1979].

Example 4.3 In the case of the two explanations ce ∧ ed and cd of Example 3.4,
the set of complete interpretations where cd∨ (ce∧ ed) is true can be split into three
disjoint sets: those interpretations where cd is true and ce∧ ed is false, those where
cd is false and ce∧ ed is true, and those where both explanations are true. This last
set contributes to the probabilities of both explanations, which are PT (cd) = 0.9 and
PT (ce ∧ ed) = 0.8 · 0.5 = 0.4. Summing the probabilities of the explanations would
thus count the contribution of the third set twice, while it is only counted once in
the success probability. Indeed, the difference between the sum of the probabilities of
the two explanations and the success probability is (0.4 + 0.9)− 0.94 = 0.36, which
is exactly the probability of the last set, P (ce ∧ ed ∧ cd) = 0.4 · 0.9.

Example 4.3 indicates one way of tackling the disjoint-sum-problem, namely the
inclusion-exclusion-principle, which calculates the probability by taking into account
all combinations of conjunctions:

P (E1 ∨ . . . ∨ En) =
∑

1≤j≤n

∑
S⊆{1,...,n}
|S|=j

(−1)j+1 · P

(∧
i∈S

Ei

)
(4.1)

While this approach is followed for instance in the implementation of pD,
cf. Section 4.5, it clearly does not scale to larger DNF. An alternative solution
strategy is to add additional literals to a conjunction, thereby explicitly excluding
interpretations covered by another part of the formula from the corresponding part
of the sum.

Example 4.4 In Example 4.3, extending ce∧ed to ce∧ed∧¬cd reduces the second
part of the sum to those interpretations not covered by the first:

PTs (path(c, d)) = PT (cd ∨ (ce ∧ ed))

= PT (cd) + PT (ce ∧ ed ∧ ¬cd)

= 0. 9 + 0. 8 · 0. 5 · (1− 0. 9) = 0. 94
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Algorithm 4.5 Calculating the probability of a BDD.
1: function Probability(BDD node n)
2: if n is the 1-terminal then
3: return 1
4: if n is the 0-terminal then
5: return 0
6: let h and l be the high and low children of n
7: prob(h) := Probability(h)
8: prob(l) := Probability(l)
9: return pn · prob(h) + (1− pn) · prob(l)

However, as the number of explanations grows, disjoining them gets more involved,
as the overlap between complete interpretations has to be considered for each pair
of explanations: once the first two explanations are disjoint, the third one needs
to be made disjoint with respect to both of them, the fourth one with respect to
the first three, and so forth. A variety of methods based on this idea has been
studied especially in the field of network reliability. Poole [2000] introduces one
such technique for ICL.

For ProbLog, we typically are not interested in the resulting formula, but only in
its probability. We therefore follow an alternative approach that avoids explicit
manipulation of the formula, but instead encodes it as binary decision diagram
(BDD, cf. Section 2.4). BDDs encode Boolean formulae in a way that implicitly
solves the disjoint-sum-problem. Given such a BDD, the probability is calculated
by traversing the BDD, in each node summing the probability of the high and
low child, weighted by the probability of the node’s variable being assigned true
and false respectively, cf. Algorithm 4.5. Intermediate results are cached, and the
algorithm has a time and space complexity linear in the size of the BDD.

Example 4.5 Figure 4.2 shows the BDD corresponding to the DNF formula cd ∨
(ce∧ ed) of Example 4.3. The algorithm starts by assigning probabilities 0 and 1 to
the 0- and 1-leaf respectively. The node labeled ed has probability 0. 5·1+0. 5·0 = 0. 5,
node ce has probability 0. 8 · 0. 5+0. 2 · 0 = 0. 4; finally, node cd, and thus the entire
formula, has probability 0. 9 · 1 + 0. 1 · 0. 4 = 0. 94.

In Section 4.2.2, we will discuss a Monte Carlo approach addressing the disjoint-
sum-problem.
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cd

ce
0.1

10.9

ed0.8

00.2
0.5

0.5

Figure 4.2: Binary decision diagram encoding the DNF formula cd ∨ (ce ∧ ed),
corresponding to the two explanations of query path(c, d) in the example graph of
Figure 3.1. An internal node labeled xy represents the Boolean variable for the
edge between x and y, solid/dashed edges correspond to values true/false and are
labeled with the probability that the variable takes this value.

4.2 Approximative Inference

As the size of the DNF formula grows with the number of explanations, its evaluation
can become quite expensive, and ultimately infeasible. For instance, in the context
of analyzing networks, even in small networks with a few dozen edges there are easily
hundreds of thousands of possible paths between two nodes. ProbLog therefore
includes several approximation methods that rely either on reducing the size of the
DNF or on Monte Carlo techniques.

4.2.1 Using Less Explanations

We first discuss approximation techniques that reduce the size of the DNF by
considering a subset of all possible explanations. We here exploit the fact that the
DNF formula describing sets of explanations is monotone, meaning that adding
more explanations will never decrease the probability of the formula being true.
Thus, formulae describing subsets of the full set of explanations of a query will
always give a lower bound on the query’s success probability.

Example 4.6 In Example 3.1, the lower bound obtained from the shorter
explanation would be PT (cd) = 0. 9, while that from the longer one would be
PT (ce ∧ ed) = 0. 4.
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Bounded Approximation

The first approximation algorithm, a slight variant of the one proposed in [De
Raedt et al., 2007b], uses DNF formulae to obtain both an upper and a lower
bound on the probability of a query. It is closely related to work by Poole [1993a]
in the context of PHA, but adapted towards ProbLog.

We observe that the probability of an explanation l1 ∧ . . . ∧ ln, where the li are
positive or negative literals involving random variables bi, will always be at most
the probability of an arbitrary prefix l1 ∧ . . . ∧ li, i ≤ n.

Example 4.7 In the graph example, the probability of the second explanation will
be at most the probability of its first edge from c to e, i.e., PT (ce) = 0. 8 ≥ 0. 4.

As disjoining sets of explanations, i.e., including information on additional facts,
can only decrease the contribution of single explanations, this upper bound carries
over to a set of explanations or partial explanations, as long as prefixes for all
possible explanations are included. Such sets can be obtained from an incomplete
SLD-tree, i.e., an SLD-tree where branches are only extended up to a certain point.

These observations motivate ProbLog’s bounded approximation algorithm. The
algorithm relies on a probability threshold γ to stop growing the SLD-tree and thus
obtain DNF formulae for the two bounds2. The lower bound formula D1 represents
all explanations with a probability above the current threshold. The upper bound
formula D2 additionally includes all derivations that have been stopped due to
reaching the threshold, as these still may succeed. Our goal is therefore to refine
D1 and D2 in order to decrease PT (D2)− PT (D1).

Bounded approximation as outlined in Algorithm 4.6 proceeds in an iterative-
deepening manner similar to Algorithm 4.4, but collecting explanations in the two
DNF formulae D1 and D2 instead of remembering the most likely explanation
only. Initially, both D1 and D2 are set to False, the neutral element with
respect to disjunction, and the probability bounds are 0 and 1, as we have no full
explanations yet, and the empty partial explanation holds in any model. After each
iteration, BDDs for both formulae are constructed to calculate their probabilities
using Algorithm 4.5, and iterative deepening stops once their difference falls
below the stopping threshold δ. It should be clear that PT (D1) monotonically
increases, as the number of explanations never decreases. On the other hand,
as explained above, if D2 changes from one iteration to the next, this is always
because a partial explanation E is either removed from D2 and therefore no longer
contributes to the probability, or it is replaced by explanations E1, . . . , En that
extend E by additional literals, that is, Ei = E ∧ Si for conjunctions Si, hence

2Using a probability threshold instead of the depth bound of [De Raedt et al., 2007b] has been
found to speed up convergence, as upper bounds have been found to be tighter on initial levels.
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Algorithm 4.6 Bounded approximation using iterative deepening with probability
thresholds.
1: function Bounds(query q, interval width δ, initial threshold γ, constant
β ∈ (0, 1))

2: D1 := False; P1 := 0; P2 := 1
3: repeat
4: D2 := False
5: repeat
6: (result, E, p) := ResolveThreshold(q, γ)
7: if result = success then
8: D1 := D1 ∨ E ; D2 := D2 ∨ E
9: if result = stop then

10: D2 := D2 ∨ E
11: backtrack to the remaining choice points of ResolveThreshold
12: until ResolveThreshold has no choice points remaining
13: Construct BDDs B1 and B2 corresponding to D1 and D2
14: P1 := Probability(root(B1))
15: P2 := Probability(root(B2))
16: γ := γ · β
17: until P2 − P1 ≤ δ
18: return [P1, P2]

PT (E1 ∨ . . . ∨ En) = PT (E ∧ S1 ∨ . . . ∨ E ∧ Sn) = PT (E ∧ (S1 ∨ . . . ∨ Sn)). As
explanations are partial interpretations of the probabilistic facts in the ProbLog
program, each literal’s random variable appears at most once in the conjunction
representing an explanation, even if the corresponding subgoal is called multiple
times during construction. We therefore know that the literals in the prefix E
cannot be in any suffix Si, hence, given ProbLog’s independence assumption,
PT (E ∧ (S1 ∨ . . . ∨ Sn)) = PT (E)PT (S1 ∨ . . . ∨ Sn) ≤ PT (E). Therefore, P (D2)
monotonically decreases.

Example 4.8 Consider a probability threshold γ = 0. 9 for the SLD-tree in
Figure 4.1. In this case, D1 encodes the left success path while D2 additionally
encodes the path up to path(e, d), i.e., D1 = cd and D2 = cd ∨ ce, whereas the
formula for the full SLD-tree is D = cd ∨ (ce ∧ ed). The lower bound thus is 0. 9,
the upper bound (obtained by disjoining D2 to cd∨ (ce∧¬cd)) is 0. 98, whereas the
true probability is 0. 94.

K-Best

Using a fixed number of explanations to approximate the probability allows better
control of the overall complexity, which is crucial if large numbers of queries have
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to be evaluated, e.g., in the context of parameter learning as discussed in Chapter 7.
We therefore introduce the k-probability PTk (q), which approximates the success
probability by using the k-best (that is, the k most likely) explanations instead of
all explanations when building the DNF formula used in Equation (3.25):

PTk (q) = P

 ∨
E∈Explk(q)

∧
fi∈E1

bi ∧
∧
fi∈E0

¬bi

 (4.2)

where Explk(q) = {E ∈ ExplT (q)|PT (E) ≥ PT (Ek)} with Ek the kth element of
ExplT (q) sorted by non-increasing probability. Setting k =∞ leads to the success
probability, whereas k = 1 corresponds to the explanation probability provided
that there is a single best explanation. The branch-and-bound approach used to
calculate the explanation probability can directly be generalized to finding the
k-best explanations; cf. also [Poole, 1993a].

Example 4.9 Consider again our example graph, but this time with query
path(a, d). This query has four explanations ac∧ cd, ab∧ bc∧ cd, ac∧ ce∧ ed and
ab ∧ bc ∧ ce ∧ ed, with probabilities 0. 72, 0. 378, 0. 32 and 0. 168 respectively. As
P1 corresponds to the explanation probability Px, we obtain P1(path(a, d)) = 0. 72.
For k = 2, the overlap between the best two explanations has to be taken into
account: the second explanation only adds information if the first one is absent.
As they share edge cd, this means that edge ac has to be missing, leading to
P2(path(a, d)) = P ((ac∧cd)∨(¬ac∧ab∧bc∧cd)) = 0. 72+(1−0. 8)·0. 378 = 0. 7956.
Similarly, we obtain P3(path(a, d)) = 0. 8276 and Pk(path(a, d)) = 0. 83096 for
k ≥ 4.

4.2.2 Monte Carlo Methods

In this section, we discuss two basic sampling methods for ProbLog inference. In
both cases, the success probability is estimated as the fraction of “positives” among
a large number of independently sampled possible worlds, that is, interpretations
of the probabilistic facts. While the first approach directly uses the ProbLog
program to sample interpretations and to check whether the query is entailed,
the second approach first builds the DNF corresponding to the query as for exact
inference, and then uses sampling to address the disjoint-sum-problem, that is, as
an alternative to BDD construction.

Program Sampling

In [Kimmig et al., 2008], we proposed a first Monte Carlo method based on the
basic distribution over interpretations. Here, we call this method program sampling
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Algorithm 4.7 Program sampling.
1: function ProgramSampling(query q, interval width δ, constant m)
2: c = 0; i = 0; p = 0; ∆ = 1
3: while ∆ > δ do
4: Generate a sample I using Equation (3.11)
5: if I |= q then
6: c := c+ 1
7: i := i+ 1
8: if i mod m == 0 then
9: p := c/i

10: ∆ := 2×
√
p·(1−p)
i

11: return p

to distinguish it from the second Monte Carlo method introduced in [Shterionov
et al., 2010] and discussed below. Given a query q, program sampling repeats the
following steps until convergence:

1. Sample an interpretation I of LT from the distribution defined in
Equation (3.11)

2. Consider I a positive sample if q is true in the canonical model extending I

3. Estimate the query probability P as the fraction of positive samples

We estimate convergence by computing the 95% confidence interval at each m
samples. Given a large number N of samples, we can use the standard normal
approximation interval to the binomial distribution:

δ ≈ 2×
√
P · (1− P )

N
(4.3)

Notice that confidence intervals do not directly correspond to the exact bounds
used in bounded approximation. Still, we employ the same stopping criterion, that
is, we run the Monte Carlo simulation until the width of the confidence interval is
at most δ. The algorithm is summarized in Algorithm 4.7.

A similar algorithm (without the use of confidence intervals) was also used in the
context of biological networks (not represented as Prolog programs) by Sevon et al.
[2006]. The use of a Monte Carlo method for probabilistic logic programs was
suggested already in [Dantsin, 1991], although Dantsin neither provides details nor
reports on an implementation. Our approach differs from the MCMC method for
Stochastic Logic Programs (SLPs) introduced by Cussens [2000] in that we do not
use a Markov chain, but restart from scratch for each sample. Furthermore, SLPs
are different in that they directly define a distribution over all explanations of a
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query. Investigating similar probabilistic backtracking approaches for ProbLog is a
promising future research direction.

DNF Sampling

In this section, we introduce a second Monte Carlo method for ProbLog using
the DNF to focus sampling on those interpretations where the query is true. It
builds upon the Monte Carlo algorithm of Karp and Luby [1983]. The key idea is
to first obtain the DNF as for exact inference, but to then use sampling to tackle
the disjoint-sum-problem. To do so, each interpretation making the query true is
assigned to exactly one of the explanations it extends. A sample then is a pair of
an explanation and a complete interpretation extending this explanation, where
those samples that respect the assignment are considered positive. The fraction of
positive samples is an estimate of the ratio of the success probability to the sum of
the probabilities of all explanations. We will first illustrate the idea by means of
an example.

Example 4.10 Consider the DNF

F = (a ∧ b ∧ c) ∨ (b ∧ c ∧ d) ∨ (b ∧ d ∧ e)

with a probability of 0.5 for each random variable. Figure 4.3 shows the
interpretations extending each of the three explanations. The sum of the
explanations’ probabilities is S(F ) = 3 · 0.125 = 0.375. However, the explanations
are not mutually exclusive: all of them are true in world {a, b, c, d, e}, and two of
them are true in worlds {a, b, c, d} and {b, c, d, e}. In total, there are 8 different
interpretations to be taken into account for the probability of F , which therefore is
only P (F ) = 8 · 0.03125 = 0.25.

Most worlds extend only a single explanation and hence are associated with it.
For the others, an arbitrary choice is made, e.g. for the first explanation they
extend. This associates worlds {a, b, c, d, e} and {a, b, c, d} with a∧ b∧ c, and world
{b, c, d, e} with b∧ c∧ d. Samples are generated by first sampling an explanation Ei
with probability P (Ei)/S(F ) = 1/3, and then extending Ei by sampling truth values
for remaining variables. For instance, we could obtain b∧c∧d and world {a, b, c, d}
in this way, but as world {a, b, c, d} is associated to a ∧ b ∧ c, this sample would
be considered negative, whereas a ∧ b ∧ c together with world {a, b, c, d} would be
considered positive. Informally speaking, the sampling procedure thus rejects half of
the contribution of world {a, b, c, d}, thereby compensating for the two explanations
it contains.

The first phase of DNF sampling constructs the DNF as done in exact inference.
From now on, we assume this DNF to be D = E1 ∨ . . . ∨ En. A key concept in
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Figure 4.3: Possible worlds where the conjunctions of the DNF of Example 4.10
are true. Each column corresponds to one conjunction, whose variables are marked
in bold.

DNF sampling is the sum of probabilities for a DNF E1 ∨ . . .∨En, which is defined
as

STx (E1 ∨ . . . ∨ En) =
n∑
i=0

∏
fj∈E1

i

pj
∏
fj∈E0

i

(1− pj) (4.4)

Note that if explanations are mutually exclusive, STx (D) is equal to the probability
of D being true, but it can be much higher in general. One way to remove overlap
between explanations is to extend the corresponding formulae with additional terms.
Here, we will use the following extension that assigns each complete interpretation
to the first explanation it extends:

E1 ∨ . . . ∨ En =
n∨
i=1

Ei ∧ ¬ i−1∨
j=1

Ej

 (4.5)

The success probability thus corresponds to the sum of the probabilities of these
formulae. However, calculating those again involves the disjoint-sum-problem,
while the sum of probabilities can be calculated easily. We therefore use sampling
to instead estimate the ratio

PT (E1 ∨ . . . ∨ En)
STx (E1 ∨ . . . ∨ En)

=

∑n
i=0 P

T
(
Ei ∧ ¬

∨i−1
j=1 Ej

)
∑n
i=0 P

T (Ei)
(4.6)

To do so, we sample from the set U containing all pairs of explanations Ei and
their completions, cf. Equation (3.10), that is,

U(E1 ∨ . . . ∨ En) = {(I, i) | I ∈ ComplT (Ei)} = {(I, i) | I |= Ei}. (4.7)

We accept those samples that combine interpretations with the first explanation
they extend, that is, those from

A(E1 ∨ . . . ∨ En) = {(I, i) | I |= Ei ∧ ∀j < i : I 6|= Ej} (4.8)

= {(I, i) | I |= (Ei ∧ ¬
i−1∨
j=1

Ej)} (4.9)
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Algorithm 4.8 DNF sampling, where A and STx are given by Equations (4.8)
and (4.4), respectively, and Dnf backtracks over Algorithm 4.2 to generate the
DNF.
1: function DnfSampling(query q, interval width δ, constant m)
2: E1 ∨ . . . ∨ En := Dnf(q)
3: S := STx (E1 ∨ . . . ∨ En)
4: c = 0; i = 0; p = 0; ∆ = 1
5: while ∆ > δ do
6: Sample Ei according to PT (Ei)/S
7: Sample I ∈ ComplT (Ei) using Equation (3.11)
8: if (I, i) ∈ A(E1 ∨ . . . ∨ En) then
9: c := c+ 1

10: i := i+ 1
11: if i mod m == 0 then
12: p := c/i · S
13: ∆ := 2×

√
p·(1−p)
i

14: return p

DNF sampling as outlined in Algorithm 4.8 thus first constructs the DNF D
corresponding to the query’s explanations and calculates the corresponding sum of
probabilities STx (D). The sampling phase then uses the same convergence criteria
as Algorithm 4.7. A sample is generated by sampling an explanation Ei from
D using the normalized distribution PT (Ei)/STx (D) and randomly extending it
into an interpretation I from ComplT (Ei) according to the distribution over the
remaining probabilistic facts, that is,

PU ((I, i)) = P (Ei)
STx (E1 ∨ . . . ∨ En)

·
∏

fj∈I1\E1
i

pj
∏

fj∈I0\E0
i

(1− pj). (4.10)

The sample is accepted if it belongs to A. Based on Equation (4.6), after N samples,
Npos of which are positive, the probability of formula D is estimated as

PTDNF (q) = STx (D) · Npos
N

(4.11)

Note that depending on the structure of the problem and the value of STx (D),
estimates based on small numbers of samples may not be probabilities yet, that is,
may be larger than one, especially if the actual probability is close to one. This is
due to the fact that a sufficient number of samples is needed to identify overlap
between conjunctions by means of sampling and to accordingly scale down the
overestimate STx (D).

The probability PU ((I, i)) of sampling an interpretation I based on the ith
explanation is proportional to the probability PT (I) of sampling I from the
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ProbLog program. By construction of A, the probability of sampling a positive
pair (I, i) is

PA((I, i)) =
PT (Ei ∧ ¬

∨
j=1...i−1 Ej)

STx (E1 ∨ . . . ∨ En)
. (4.12)

As each interpretation is positive for exactly one explanation, the probability of
accepting a sample is the sum of this probability over all explanations

PA = P (E1) + P (E2 ∧ ¬E1) + . . .+ P (En ∧ ¬(E1 ∨ . . . ∨ En−1))
STx (E1 ∨ . . . ∨ En))

(4.13)

For a sufficiently large number N of samples we thus expect the estimate of
Equation (4.11) to be

PDNF =N · PA
N

· STx (E1 ∨ . . . ∨ En)

=P (E1) + P (E2 ∧ ¬E1) + . . .+ P (En ∧ ¬(E1 ∨ . . . ∨ En−1)),

which indeed is the disjoint sum corresponding to Equation (4.5). As mentioned
above, DNF sampling is an instance of the fully polynomial approximation scheme
of Karp and Luby [1983], that is, the number of samples required for a given
level of certainty is polynomial in the input length (the DNF in our case), and a
corresponding stopping criterion could thus be used; for formal detail, we refer
to [Karp and Luby, 1983]. For ease of comparison, we have chosen to use the same
stopping criterion for both sampling approaches presented here.

4.3 Implementation

This section discusses the main building blocks used to implement ProbLog on top
of the YAP-Prolog system. An overview is shown in Figure 4.4, with a typical
ProbLog program, including ProbLog facts and background knowledge, at the top.

The implementation requires ProbLog programs to use the problog module. Each
program consists of a set of labeled facts and of unlabeled background knowledge,
a generic Prolog program. Labeled facts are preprocessed as described below.
Notice that the implementation requires all queries to non-ground probabilistic
facts to be ground on calling. Furthermore, while the semantics of ProbLog requires
that probabilistic facts cannot unify with each other or with heads of background
knowledge clauses, cf. Section 3.1, this is not enforced in the implementation.

In contrast to standard Prolog queries, where one is interested in answer
substitutions, in ProbLog one is primarily interested in a probability. As discussed
before, two common ProbLog queries ask for the most likely explanation and
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Figure 4.4: ProbLog implementation: A ProbLog program (top) requires the
ProbLog library which in turn relies on functionality from the tries and array
libraries. ProbLog queries (bottom-left) are sent to the YAP engine, and may
require calling the BDD library CUDD via SimpleCUDD.

its probability, and the probability of whether a query would have an answer
substitution. We have discussed two very different approaches to the problem:

• In exact inference, k-best and bounded approximation, the engine explicitly
reasons about probabilities of proofs. The challenge is how to compute the
probability of each individual proof, store a large number of proofs, and
compute the probability of sets of proofs.

• In Monte Carlo, the probabilities of facts are used to sample from ProbLog
programs. The challenge is how to compute a sample quickly, in a way that
inference can be as efficient as possible.

ProbLog programs execute from a top-level query and are driven through a ProbLog
query. The inference algorithms discussed above can be abstracted as follows:

• Initialise the inference algorithm;

• While probabilistic inference did not converge:

– execute the query, instrumenting every ProbLog call in the current
proof, cf. Algorithm 4.1. Instrumentation is required for recording the
ProbLog facts required by a proof, but may also be used by the inference
algorithm to stop proofs (e.g. if the current probability is lower than a
bound);
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– process result (e.g. add current proof to set of proofs);
– backtrack to alternative proofs;

• Proceed to the next step of the algorithm: this may be trivial or may require
calling an external solver, such as a BDD tool, to compute a probability.

Notice that the current ProbLog implementation relies on the Prolog engine
to efficiently execute goals. On the other hand, and in contrast to most other
probabilistic language implementations, in ProbLog there is no clear separation
between logical and probabilistic inference: in a fashion similar to constraint logic
programming, probabilistic inference can drive logical inference.

From a Prolog implementation perspective, ProbLog poses a number of interesting
challenges. First, labeled facts have to be efficiently compiled to allow mutual calls
between the Prolog program and the ProbLog engine. Second, for exact inference,
k-best and bounded approximation, sets of explanations have to be manipulated
and transformed into BDDs for probability calculation. Finally, Monte Carlo
simulation requires representing and manipulating samples. We discuss these issues
next.

4.3.1 Labeled Facts

Following the approach of source-to-source transformation, we use the term expansion
mechanism to allow Prolog calls to labeled facts, and for labeled facts to call the
ProbLog engine.

Example 4.11 As an example, the program:

0. 715 :: edge(′PubMed 2196878′,′ MIM 609065′).
0. 659 :: edge(′PubMed 8764571′,′ HGNC 5014′).

would be compiled as:

edge(A, B) : − problog edge(ID, A, B, LogProb),
grounding id(edge(A, B), ID, GroundID),
add to explanation(GroundID, LogProb).

problog edge(0,′ PubMed 2196878′,′ MIM 609065′,−0. 3348).
problog edge(1,′ PubMed 8764571′,′ HGNC 5014′,−0. 4166).

Thus, the internal representation of each fact contains an identifier, the original
arguments, and the logarithm of the probability3. The grounding id procedure

3We use the logarithm to avoid numerical problems when calculating the probability of a
derivation, which is used to drive inference.
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will create and store a grounding specific identifier for each new grounding of
a non-ground probabilistic fact encountered during proving, and retrieve it on
repeated use. For ground probabilistic facts, it simply returns the identifier itself.
The add to explanation procedure updates the data structure representing the
current path through the search space, that is, a queue of identifiers ordered by
first use, together with its probability. It thus implements the updates of E and p
in Algorithm 4.1. Compared to the original meta-interpreter based implementation
of [De Raedt et al., 2007b], the main benefit of source-to-source transformation
is better scalability, namely by having a compact representation of the facts for
the YAP engine [Santos Costa, 2007] and by allowing access to the YAP indexing
mechanism [Santos Costa et al., 2007].

4.3.2 Explanations

Manipulating explanations is critical in ProbLog. We represent each explanation
as a queue containing the identifier of each different ground probabilistic fact
used in the explanation, ordered by first use. The implementation requires calls
to non-ground probabilistic facts to be ground, and during proving maintains a
table of groundings used within the current query together with their identifiers.
Grounding identifiers are based on the fact’s identifier extended with a grounding
number, i.e. 5 1 and 5 2 would refer to different groundings of the non-ground fact
with identifier 5. Extending this to negated probabilistic facts is straightforward:
the negated identifier is included in the set in this case, and proving fails if both
cases occur for the same fact. In our implementation, the queue is stored in a
backtrackable global variable, which is updated by calling add to explanation
with an identifier for the current ProbLog fact. We thus exploit Prolog’s
backtracking mechanism to avoid recomputation of shared explanation prefixes
when exploring the space of proofs using Algorithm 4.2. Storing an explanation is
simply a question of adding the value of the variable to a store.

As we have discussed above, the actual number of explanations can grow very
quickly. ProbLog compactly represents an explanation as a list of numbers. To
calculate or approximate the success probability, we would further like to have a
scalable implementation of sets of explanations, such that we can compute the
joint probability of large sets of explanations efficiently. Our representation for sets
of explanations and our algorithm for encoding such sets as BDDs for probability
calculation are discussed next.

4.3.3 Sets of Explanations

Storing and manipulating explanations is critical in ProbLog. When manipulating
explanations, the key operation is often insertion: we would like to add an
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explanation to an existing set of explanations. Some algorithms, such as exact
inference or Monte Carlo, only manipulate complete explanations. Others, such as
bounded approximation, require adding partial derivations too. The nature of the
SLD-tree means that explanations tend to share both a prefix and a suffix. Partial
explanations tend to share prefixes only. This suggests using tries to maintain the
set of explanations. We use the YAP implementation of tries for this task, based
itself on XSB Prolog’s work on tries of terms [Ramakrishnan et al., 1999], which
we briefly summarize here.

Tries [Fredkin, 1962] were originally invented to index dictionaries, and have since
been generalised to index recursive data structures such as terms. They have
for instance been used in automated theorem proving, term rewriting and tabled
logic programs [Bachmair et al., 1993; Graf, 1996; Ramakrishnan et al., 1999]. An
essential property of the trie data structure is that common prefixes are stored
only once. A trie is a tree structure where each different path through the trie
data units, the trie nodes, corresponds to a term described by the tokens labelling
the nodes traversed. For example, the tokenized form of the term f(g(a), 1) is the
sequence of 4 tokens: f/2, g/1, a and 1. Two terms with common prefixes will
branch off from each other at the first distinguishing token.

Tries’ internal nodes are four field data structures, storing the node’s token, a
pointer to the node’s first child, a pointer to the node’s parent and a pointer to
the node’s next sibling, respectively. Each internal node’s outgoing transitions
may be determined by following the child pointer to the first child node and,
from there, continuing sequentially through the list of sibling pointers. If a list of
sibling nodes becomes larger than a threshold value (8 in our implementation), we
dynamically index the nodes through a hash table to provide direct node access and
therefore optimise the search. Further hash collisions are reduced by dynamically
expanding the hash tables. Inserting a term requires in the worst case allocating
as many nodes as necessary to represent its complete path. On the other hand,
inserting repeated terms requires traversing the trie structure until reaching the
corresponding leaf node, without allocating any new node.

In order to minimize the number of nodes when storing explanations in a trie, we
use Prolog lists to represent explanations. List elements in explanations are always
either integers (for ground facts), two integers with an underscore in between (for
groundings of facts), or the negation not(i) of such an identifier i.

Example 4.12 Figure 4.5 presents an example of a trie storing three explanations.
Initially, the trie contains the root node only. Next, we store the explanation
[3, 5 1, 7, 5 2] containing ground facts 3 and 7 as well as two groundings of the fact 5.
Six nodes (corresponding to six tokens) are added to represent it (Figure 4.5(a)).
The explanation [3, 5 1, 9, 7, 5 2] is then stored which requires seven nodes. As it
shares a common prefix with the previous explanation, we save the three initial
nodes common to both representations (Figure 4.5(b)). The explanation [3, 4, 7] is
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Figure 4.5: Using tries to store explanations. Initially, the trie contains the root
node only. Next, we store the explanations: (a) [3, 5 1, 7, 5 2]; (b) [3, 5 1, 9, 7, 5 2];
and (c) [3, 4, 7].

stored next and we save again the two initial nodes common to all explanations
(Figure 4.5(c)).

To adapt exact inference for negation beyond probabilistic facts using the idea
of negated subformulae as sketched in Section 3.3.3, the single trie is replaced
by a hierarchy of tries [Kimmig et al., 2009]. Trie nodes are labeled either with
a (possibly negated) fact identifier as before, or with a negated reference to
another trie. Basically, on encountering a ground subgoal not(Q), where Q is not
a probabilistic fact, the current state of proving is suspended, and a new trie is
used to solve Q as if it was an independent query. Once this trie is completed,
the proof of the calling goal is resumed with a negated reference to Q’s trie added.
To avoid repeated building of such subformulae, we use the same reference for
reoccurring subgoals, thereby realising a simple restricted form of tabling. Note
that such a trie no longer directly represents a DNF. However, as BDDs represent
arbitrary propositional formulae, this is not a problem in practice. Using formulae
that are not in DNF makes the first step conceptually simple, although further
investigation is needed to obtain a clear idea of the price to be paid in the form of
memory requirements. Mantadelis and Janssens [2010] follow a similar approach of
nested tries for tabled ProbLog, where each tabled subgoal has its own trie which
is referenced from other proofs requiring the subgoal.

Example 4.13 Figure 4.6 illustrates nested tries in the context of Example 3.10.
Figure 4.6(a) shows the trie for query alarm. Figure 4.6(c) shows the trie for query
johnCalls if nesting is only used for negated subgoals, Figure 4.6(b) additionally
reuses the trie for the positive subgoal as in tabled ProbLog.
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b not(b)

e not(e) e not(e)

a(b,e) a(b,ne) a(nb,e) a(nb,ne)

(a)

alarm not(alarm)

j(a) j(na)

(b)

b not(b)

not(alarm)

e not(e) e not(e)

a(b,e) a(b,ne) a(nb,e) a(nb,ne)

j(a) j(a) j(a) j(a) j(na)

(c)

Figure 4.6: Nested tries for Example 4.13.
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Algorithm 4.9 Recursive node merging: generating a sequence of BDD definitions
from a trie. replace(T,C, ni) replaces each occurrence of C in T by ni.
1: function RecursiveNodeMerging(trie T , index i)
2: if ¬leaf(T ) then
3: S∧ := {(C,P ) | leaf C is the only child of P in T}
4: for all (C,P ) ∈ S∧ do
5: write ni = P ∧ C
6: T := replace(T, (C,P ), ni)
7: i := i+ 1
8: S∨ := {[C1, . . . , Cn] | leaves Cj are all the children of P in T, n > 1}
9: for all [C1, . . . , Cn] ∈ S∨ do

10: write ni = C1 ∨ . . . ∨ Cn
11: T := replace(T, [C1, . . . , Cn], ni)
12: i := i+ 1
13: RecursiveNodeMerging(T, i)

4.3.4 From DNFs to BDDs

As outlined in Section 4.1.1, to efficiently compute the probability of a DNF formula
representing a set of explanations, our implementation represents this formula as a
binary decision diagram (BDD). We use SimpleCUDD [Mantadelis et al., 2008]
as a wrapper tool for the state-of-the-art BDD package CUDD4 to construct and
evaluate BDDs. More precisely, the trie representation of the DNF is translated
into a sequence of definitions, which is afterwards processed by SimpleCUDD to
build the BDD using CUDD primitives. It is executed via Prolog’s shell utility, and
results are reported via shared files. In [Mantadelis et al., 2010], where this part of
ProbLog inference is studied in more detail, these steps are called preprocessing and
BDD construction respectively. Here, we will restrict the presentation to the basic
preprocessing method, recursive node merging, as already given in [Kimmig et al.,
2008, 2010]; for a comparison to alternative approaches and further optimizations
we refer to [Mantadelis et al., 2010].

During preprocessing, it is crucial to exploit the structure sharing (prefixes and
suffixes) already in the trie representation of a DNF formula, otherwise CUDD
computation time becomes extremely long or memory overflows quickly. Since
CUDD builds BDDs by joining smaller BDDs using logical operations, recursive
node merging traverses the trie bottom-up to successively generate definitions for
all its subtrees. Algorithm 4.9 gives the details of this procedure. In each iteration
it applies two different operations that reduce the trie by merging nodes. The first
operation (depth reduction, lines 3-7) creates the conjunction of a leaf node with its
parent, provided that the leaf is the only child of the parent. The second operation

4http://vlsi.colorado.edu/˜fabio/CUDD
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(breadth reduction, lines 8-12) creates the disjunction of all child nodes of a node,
provided that these child nodes are all leaves. After writing the definition ni for a
new subtree, the leaves of the trie (and their parents in the case of depth reduction)
are scanned, replacing each occurrence of the subtree with a new node labeled ni,
thus avoiding repeated definitions. Because of the optimizations in CUDD, the
final BDD can have a very different structure than the trie.

Example 4.14 The translation for query path(a, d) in our example graph is
illustrated in Figure 4.7; it results in the following sequence of definitions:

n1 = ce ∧ ed
n2 = cd ∨ n1
n3 = ac ∧ n2
n4 = bc ∧ n2
n5 = ab ∧ n4
n6 = n3 ∨ n5

The complexity of recursive node merging strongly depends on the amount of prefix
sharing in the initial trie. As using the function replace in Algorithm 4.9 is
rather expensive due to repeated scanning of the trie, in [Mantadelis et al., 2010]
we introduced a new data structure called depth breadth trie to store definitions of
already processed subtries. Using this optimization, the complexity of recursive
node merging is O(N ·M), where N and M denote the number of explanations and
the number of probabilistic facts or Boolean variables, respectively. In practice,
due to sharing in the trie structure, recursive node merging is often significantly
less complex. For more details, we refer to [Mantadelis et al., 2010].

To deal with the non-DNF formulae stemming from negation on derived subgoals,
cf. Section 4.3.3, the preprocessing method needs to be adapted. We first determine
a total order T1, . . . , Tn of the tries such that each trie Ti only contains references
to other tries Tj with j < i. We then run recursive node merging on the tries in
this order using a consecutive sequence of references to obtain a single sequence of
definitions for the entire formula.

4.3.5 Program Sampling

Program sampling is quite different from the approaches discussed before, as the
two main steps are (a) generating a sample program and (b) performing standard
refutation on the sample. Thus, instead of combining large numbers of explanations,
we need to manipulate large numbers of different programs or samples.

Our first approach was to generate a complete sample and to check for an
explanation. In order to accelerate the process, explanations were cached in
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Figure 4.7: Recursive node merging for path(a, d)

a trie to skip inference on a new sample. If no explanations exist on a cache, we call
the standard Prolog refutation procedure. Although this approach works rather
well for small databases, it does not scale to larger databases where just generating
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a new sample requires walking through millions of facts.

We observed that even in large programs explanations are often quite short, i.e.,
we only need to verify whether facts from a small fragment of the database are
in the sample. This suggests that it may be a good idea to take advantage of the
independence between facts and generate the sample lazily: our implementation of
Algorithm 4.7 only verifies whether a fact is in the sample once it is needed in a
proof. YAP represents samples compactly as a three-valued array with one field for
each fact, where 0 means the fact was not yet sampled, 1 it was already sampled
and belongs to the sample, 2 it was already sampled and does not belong to the
sample. In this implementation:

1. New samples are generated by resetting the sampling array.

2. At every call to add to explanation, given the current ProbLog literal f :

(a) if s[f ] == 0, s[f ] = sample(f);
(b) if s[f ] == 1, succeed;
(c) if s[f ] == 2, fail;

Note that as fact identifiers are used to access the array, whose size needs to be
fixed beforehand, the approach cannot directly be used for non-ground facts, where
grounding-specific identifiers are generated on demand. The current implementation
of program sampling therefore uses the internal database to store the result of
sampling different groundings of such facts.

Program sampling can directly handle negation in ProbLog programs that
have a total well-founded model for each interpretation of probabilistic facts
(cf. Section 3.3.3) without need for adaptations, as it simply exploits Prolog’s
mechanisms for SLD-resolution including negation as failure.

In [Kimmig et al., 2009], we showed that using YAP’s tabling mechanism can
speed up program sampling execution in cases where subgoals have to be proven
repeatedly.

4.3.6 DNF Sampling

Our implementation of DNF sampling as outlined in Algorithm 4.8 first builds
the trie representing the DNF as for exact inference. This determines the order
of explanations used to check whether a sampled interpretation-explanation pair
(I, i) is positive, that is, whether no Ej with j < i is true in I, cf. Equation (4.8).
As for program sampling, the sampling phase follows a lazy approach, recording
truth values in an array as either true, false, or undetermined. We first sample an
explanation Ei from the list of trie leaves. If i = 1, the sample is directly accepted,
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else, we initialize the current sample by setting corresponding truth values for
facts used by Ei and check truth values of explanations Ei−1, . . . , E1 successively,
sampling additional facts as needed. As soon as some Ej is determined to be
false in the current partial interpretation, we continue with the next explanation
Ej−1. If an explanation Ej with j < i turns out to be true in the current partial
interpretation, we know that the sample will not be accepted, and the algorithm
terminates the current iteration. If E1 is reached and determined to be false in the
current interpretation, the sample is positive.

4.4 Experiments

We performed experiments with our implementation of ProbLog in the context of
the biological network obtained from the Biomine project [Sevon et al., 2006] to
answer the following questions:

Q1 How do the approximation methods compare in terms of probability estimates
and in terms of runtime?

Q2 Does ProbLog inference scale to large databases?

We used two subgraphs extracted around genes known to be connected to the
Alzheimer disease as well as the full network. Details of the datasets are given in
Appendix A. For a first comparison of our algorithms on a small scale network
where success probabilities can be calculated exactly, we used Small, a graph
with around 150 edges. Scalability was evaluated using both Medium (roughly
12,000 edges) and the entire Biomine network with roughly 1,000,000 nodes and
6,000,000 edges. In all experiments, we queried for the probability that two of the
gene nodes with HGNC ids 620, 582, 983 are connected, that is, we used queries
such as path(’HGNC 983’,’HGNC 620’,Path). We used the following definition of
an acyclic path in our background knowledge:

path(X, Y, A) : − path(X, Y, [X], A).
path(X, X, A, A).
path(X, Y, A, R) : − X \ == Y, (4.14)

edge(X, Z),
absent(Z, A),
path(Z, Y, [Z|A], R).

As list operations to check for the absence of a node get expensive for long paths,
we consider an alternative definition for use in program sampling. It provides
cheaper testing by using the internal database of YAP to store nodes on the current
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path under key visited, but cannot be used by inference methods relying on
backtracking to find multiple proofs:

memopath(X, Y, A) : − eraseall(visited),
memopath(X, Y, [X], A).

memopath(X, X, A, A).
memopath(X, Y, A, R) : − X \ == Y, (4.15)

edge(X, Z),
recordzifnot(visited, Z, ),
memopath(Z, Y, [Z|A], R).

Finally, to assess performance on the full network for queries with smaller
probabilities, we use the following definition of paths with limited length:

lenpath(N, X, Y, Path) : − lenpath(N, X, Y, [X], Path).
lenpath(N, X, X, A, A) : − N >= 0.
lenpath(N, X, Y, A, P) : − X\ == Y,

N > 0, (4.16)
edge(X, Z),
absent(Z, A),
NN is N− 1,
lenpath(NN, Z, Y, [Z|A], P).

All experiments were performed on a Core 2 Duo 2.4 GHz 4 GB machine running
Linux. All times reported are in msec and do not include the time to load the graph
into Prolog. The latter takes 20, 200 and 78140 msec for Small, Medium and
Biomine respectively. Furthermore, as YAP indexes the database at query time,
we query for the explanation probability of path(’HGNC 620’,’HGNC 582’,Path)
before starting runtime measurements. This takes 0, 50 and 25900 msec for
Small, Medium and Biomine respectively. We report TP , the time spent by
ProbLog to search for explanations, as well as TB , the time spent to execute BDD
scripts (whenever meaningful). We also report the estimated probability P . For
approximate inference using bounds, we report exact intervals for P , and also
include the number n of BDDs constructed. We set both the initial threshold and
the shrinking factor to 0. 5. We computed k-probability for k = 1, 2, . . . , 1024.5
In the bounding algorithms, the error interval ranged between 10% and 1%. For
the Monte Carlo methods, we also report the number i of iterations, where each
iteration generates m = 1000 samples.

Small Sized Sample We first compared our algorithms on Small. Table 4.1
shows the results for k-probability and exact inference. Note that nodes 620

5Note that k = 1 corresponds to the explanation probability.
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path 983− 620 983− 582 620− 582
k TP TB P TP TB P TP TB P
1 0 13 0.07 0 7 0.05 0 26 0.66
2 0 12 0.08 0 6 0.05 0 6 0.66
4 0 12 0.10 10 6 0.06 0 6 0.86
8 10 12 0.11 0 6 0.06 0 6 0.92
16 0 12 0.11 10 6 0.06 0 6 0.92
32 20 34 0.11 10 17 0.07 0 7 0.96
64 20 74 0.11 10 46 0.09 10 38 0.99
128 50 121 0.11 40 161 0.10 20 257 1.00
256 140 104 0.11 80 215 0.10 90 246 1.00
512 450 118 0.11 370 455 0.11 230 345 1.00
1024 1310 537 0.11 950 494 0.11 920 237 1.00
exact 670 450 0.11 8060 659 0.11 630 721 1.00

Table 4.1: k-probability on Small.

983− 620 983− 582 620− 582
TP TB n P TP TB n P TP TB n P
0 48 4 [0.07,0.12] 10 74 6 [0.06,0.11] 0 25 2 [0.91,1.00]
0 71 6 [0.07,0.11] 0 75 6 [0.06,0.11] 0 486 4 [0.98,1.00]
0 83 7 [0.11,0.11] 140 3364 10 [0.10,0.11] 60 1886 6 [1.00,1.00]

Table 4.2: Inference using bounded approximation on Small; rows correspond to
δ = 0.1, 0.05, 0.01.

and 582 are close to each other, whereas node 983 is farther apart. Therefore,
connections involving the latter are less likely. In this graph, we obtained good
approximations using a small fraction of explanations (the queries have 13136,
155695 and 16048 explanations respectively). Our results also show a significant
increase in runtimes as ProbLog explores more paths in the graph, both within the
Prolog code and within the BDD code. The BDD runtimes can vary widely, we
may actually have large runtimes for smaller BDDs, depending on BDD structure
and the amount of variable reordering performed. However, using SimpleCUDD
instead of the C++ interface used in [Kimmig et al., 2008] typically decreases BDD
time by one or two orders of magnitude.

Table 4.2 gives corresponding results for bounded approximation. The algorithm
converges quickly, as few explanations are needed and BDDs remain small. Note
however that exact inference is competitive for this problem size. Moreover, we
observe large speedups compared to the implementation with meta-interpreters
used in [De Raedt et al., 2007b], where total runtimes to reach δ = 0. 01 for these
queries were 46234, 206400 and 307966 msec respectively. Table 4.3 shows the
performance of the program sampling estimator. On Small, program sampling is
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path 983− 620 983− 582 620− 582
δ i TP P i TP P i TP P

0.10 1 10 0.11 1 10 0.11 1 30 1.00
0.05 1 10 0.11 1 10 0.10 1 20 1.00
0.01 16 130 0.11 16 170 0.11 1 30 1.00

Table 4.3: Program sampling inference on Small.

path 983− 620 983− 582 620− 582
k TP TB P TP TB P TP TB P
1 180 6 0.33 1620 6 0.30 10 6 0.92
2 180 6 0.33 1620 6 0.30 20 6 0.92
4 180 6 0.33 1630 6 0.30 10 6 0.92
8 220 6 0.33 1630 6 0.30 20 6 0.92
16 260 6 0.33 1660 6 0.30 30 6 0.99
32 710 6 0.40 1710 7 0.30 110 6 1.00
64 1540 7 0.42 1910 6 0.30 200 6 1.00
128 1680 6 0.42 2230 6 0.30 240 9 1.00
256 2190 7 0.55 2720 6 0.49 290 196 1.00
512 2650 7 0.64 3730 7 0.53 1310 327 1.00
1024 8100 41 0.70 5080 8 0.56 3070 1357 1.00

Table 4.4: k-probability on Medium.

the fastest approach. Already within the first 1000 samples a good approximation
is obtained. When using the default stopping criterion for DNF sampling, roughly
the same number of samples are generated, but runtimes are at least one order of
magnitude higher as the full DNF needs to be constructed first. Given the DNF,
generating 1000 samples takes about 770, 1900 and 230 msec for the three queries
respectively. Furthermore, for larger δ, probability estimates can be far off the
true value (for instance 0.39 instead of 1.0), as 1000 samples are not sufficient to
explore DNFs of this size.

As a first answer to question Q1, we note that, with the exception of DNF
sampling, the approximation algorithms quickly produce close approximations on
Small, with program sampling being fastest and exact inference being competitive
among methods using BDDs. The first set of experiments thus confirms that the
implementation on top of YAP-Prolog enables efficient probabilistic inference on
small sized graphs.

Medium Sized Sample For graph Medium with around 11000 edges, exact
inference is no longer feasible. Table 4.4 again shows results for the k-probability.
Comparing these results with the corresponding values from Table 4.1, we observe
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memo 983− 620 983− 582 620− 582
δ i TP P i TP P i TP P

0.10 1 1180 0.78 1 2130 0.76 1 1640 1.00
0.05 2 2320 0.77 2 4230 0.74 1 1640 1.00
0.01 29 33220 0.77 29 61140 0.77 1 1670 1.00

Table 4.5: Program sampling inference using memopath/3 on Medium.

that the estimated probability is higher now: this is natural, as the graph has
both more nodes and is more connected, therefore leading to many more possible
explanations. This also explains the increase in runtimes. Approximate inference
using bounds only reached loose bounds (with differences> 0. 2) on queries involving
node ’HGNC 983’, as upper bound formulae with more than 10 million conjunctions
were encountered, which could not be processed.

The program sampling estimator using the standard definition of path/3 on
Medium did not complete the first 1000 samples within one hour. A detailed
analysis shows that this is caused by some queries backtracking too heavily.
Table 4.5 therefore reports results using the memorising version memopath/3. With
this improved definition, program sampling performs well: it obtains a good
approximation in a few seconds. Requiring tighter bounds however can increase
runtimes significantly. DNF sampling on Medium did not complete the resolution
phase within 30 minutes.

Concerning Q1, this second set of experiments thus confirms that program sampling
is fastest and most accurate among the approximation methods, though some
programming effort is required to adapt the background knowledge for the larger
database. As a first answer to Q2, we note that while inference techniques relying
on the full DNF cannot be applied on Medium, other approximation methods do
scale to medium sized graphs.

Biomine Database The Biomine Database covers hundreds of thousands of
entities and millions of links. On Biomine, we therefore restricted our experiments
to the approximations given by k-probability and program sampling. Given the
results on Medium, we directly used memopath/3 for program sampling. Tables 4.6
and 4.7 show the results on the large network. We observe that on this large graph,
the number of possible paths is tremendous, which implies success probabilities
practically equal to 1. Still, we observe that ProbLog’s branch-and-bound search to
find the best solutions performs reasonably also on this size of network. However,
runtimes for obtaining tight confidence intervals with program sampling explode
quickly even with the improved path definition.

Given that sampling a program that does not entail the query is extremely unlikely
for the setting considered so far, we performed an additional experiment on Biomine,
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983− 620 983− 582 620− 582
TP TB P TP TB P TP TB P
5,760 49 0.16 8,910 48 0.11 10 48 0.59
5,800 48 0.16 10,340 48 0.17 180 48 0.63
6,200 48 0.16 13,640 48 0.28 360 48 0.65
7,480 48 0.16 15,550 49 0.38 500 48 0.66

11,470 49 0.50 58,050 49 0.53 630 48 0.92
15,100 49 0.57 106,300 49 0.56 2,220 167 0.95
53,760 84 0.80 146,380 101 0.65 3,690 167 0.95
71,560 126 0.88 230,290 354 0.76 7,360 369 0.98

138,300 277 0.95 336,410 520 0.85 13,520 1,106 1.00
242,210 730 0.98 501,870 2,744 0.88 23,910 3,444 1.00
364,490 10,597 0.99 1,809,680 100,468 0.93 146,890 10,675 1.00

Table 4.6: k-probability on Biomine; rows correspond to k = 1, 2, 4, . . . , 1024.

memo 983− 620 983− 582 620− 582
δ i TP P i TP P i TP P

0.10 1 100,700 1.00 1 1,656,660 1.00 1 1,696,420 1.00
0.05 1 100,230 1.00 1 1,671,880 1.00 1 1,690,830 1.00
0.01 1 93,120 1.00 1 1,710,200 1.00 1 1,637,320 1.00

Table 4.7: Program sampling inference using memopath/3 on Biomine.

where we restrict the number of edges on the path connecting two nodes to a
maximum of 2 or 3. Results are reported in Table 4.8. As none of the resulting
queries have more than 50 explanations, exact inference is much faster than program
sampling, which needs a higher number of samples to reliably estimate probabilities
that are not close to 1. Table 4.9 shows the results of the same experiment for DNF
sampling. While runtimes are significantly shorter than for program sampling, they
clearly exceed those for exact inference, as for this problem size, building BDDs is
very fast and the sampling phase thus causes large overhead.

Concerning question Q2 on scalability, this last set of experiments shows that the
k-probability and especially program sampling perform well for queries in large
sized graphs. Furthermore, it illustrates that performance does not solely depend
on the size of the database, but also on the set of explanations for a specific query.

We briefly summarize the experiments with respect to the different inference
methods now.

• The explanation probability can efficiently be calculated even for large
databases.
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len 983− 620 983− 582 620− 582
δ i T P i T P i T P

0.10 1 21,400 0.04 1 18,720 0.11 1 19,150 0.58
0.05 1 19,770 0.05 1 20,980 0.10 2 35,100 0.55
0.01 6 112,740 0.04 16 307,520 0.11 40 764,700 0.55
exact - 477 0.04 - 456 0.11 - 581 0.55
0.10 1 106,730 0.14 1 105,350 0.33 1 45,400 0.96
0.05 1 107,920 0.14 2 198,930 0.34 1 49,950 0.96
0.01 19 2,065,030 0.14 37 3,828,520 0.35 6 282,400 0.96
exact - 9,413 0.14 - 9,485 0.35 - 15,806 0.96

Table 4.8: Program sampling inference for different values of δ and exact inference
using lenpath/4 with length at most 2 (top) or 3 (bottom) on Biomine. For exact
inference, runtimes include both Prolog and BDD time.

len 983− 620 983− 582 620− 582
δ i T P i T P i T P

0.10 1 10,993 0.04 1 11,112 0.11 1 14,985 0.55
0.05 1 10,990 0.04 1 11,087 0.11 2 21,158 0.55
0.01 7 74,530 0.04 17 182,214 0.11 40 412,799 0.55
0.10 1 24,994 0.14 1 24,995 0.35 1 34,551 0.90
0.05 1 25,026 0.16 2 35,602 0.36 1 33,112 1.04
0.01 19 216,212 0.14 37 408,374 0.36 5 76,098 0.97

Table 4.9: DNF sampling inference for different values of δ using lenpath/4 with
length at most 2 (top) or 3 (bottom) on Biomine.

• The performance of exact inference for the success probability depends on
the DNF; it is competitive on smaller databases, but also for queries with
explanations from a restricted region of large databases.

• Bounded Approximation suffers from large DNFs for upper bounds. While it
was the first practical inference technique for ProbLog, improvements of the
implementation have made exact inference competitive since.

• The k-probability scales to large databases, but higher values of k need to be
considered with increasing query complexity, and the quality of approximation
cannot directly be determined.

• Program sampling consistently provides the best performance in terms of
approximation quality and runtime, though some programming effort can be
needed to adapt the background knowledge for larger databases.

• DNF sampling is not competitive for the type of problem considered in these
experiments; however, it might still be a valuable replacement of BDDs in the
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context of tabled ProbLog, where the bottleneck of exact inference is often
shifted from SLD-resolution to BDD construction [Mantadelis and Janssens,
2010].

Altogether, the experiments confirm that our implementation provides efficient
inference algorithms for ProbLog that scale to large databases. Furthermore,
compared to the original implementation of [De Raedt et al., 2007b], we obtain large
speedups in both the Prolog and the BDD part, thereby opening new perspectives
for applications of ProbLog.

4.5 Related Work

As discussed in Section 3.4, ProbLog is closely related to other probabilistic
languages such as ICL, pD and PRISM, which are all based on Sato’s distribution
semantics. However, ProbLog is – to the best of the author’s knowledge – the first
implementation that tightly integrates Sato’s original distribution semantics in
a state-of-the-art Prolog system without making additional restrictions (such as
the exclusive explanation assumption made in PHA and PRISM). Furthermore,
ProbLog is the first probabilistic logic programming system using BDDs as a
basic data structure for probability calculation, a principle that receives increased
interest in the fields of probabilistic logic learning and probabilistic databases,
cf. for instance [Riguzzi, 2007; Ishihata et al., 2008; Olteanu and Huang, 2008;
Thon et al., 2008; Riguzzi, 2009].

As ProbLog, implementations of closely related languages typically use a two-step
approach to inference, where explanations are collected in the first phase, and
probabilities are calculated once all explanations are known.

Poole’s ICL implementation AILog2 is a meta-interpreter implemented in SWI-
Prolog for didactical purposes, where the disjoint-sum-problem is tackled using a
symbolic disjoining technique [Poole, 2000]. Inspired on ProbLog, Riguzzi [2009]
introduces an inference algorithm and its implementation for modularly acyclic
ICL theories combining SLDNF-resolution and BDDs.

PRISM, built on top of B-Prolog, requires programs to be written such that
alternative explanations for queries are mutually exclusive. PRISM uses a meta-
interpreter to collect explanations in a hierarchical data structure called explanation
graph. As explanations are mutually exclusive, the explanation graph directly
mirrors the sum-of-products structure of probability calculation [Sato and Kameya,
2001]. These explanation graphs are also used to calculate most likely proofs using
a Viterbi algorithm. To model failing derivations for parameter learning, the system
uses a technique called First Order Compiler (FOC) to eliminate negation from
PRISM programs. One of the keys to PRISM’s efficiency is the use of tabling during
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the first phase of exact inference. Mantadelis and Janssens [2009, 2010] introduce
tabling for exact inference in ProbLog, replacing the single trie holding the DNF
by a nested trie structure with single tries corresponding to tabled subgoals. The
nested tries discussed for negated subgoals in Section 4.3.3 are a special case of
their nested tries restricting subtries to negated goals.

Based on early work on ProbLog, Riguzzi [2007] introduces corresponding inference
techniques for LPADs and CP-Logic, again using BDDs for probability calculation,
but with a different encoding of probabilistic choices.

Fuhr’s pD implementation HySpirit [Fuhr, 2000] uses a magic sets method for
modularly stratified Datalog to construct so-called event expressions, that is,
Boolean combinations of event keys corresponding to basic probabilistic events.
The second step then uses the inclusion-exclusion principle, cf. Equation (4.1), to
calculate the probability of such an expression, which is reported to scale to about
ten conjuncts.

4.6 Conclusions

In this chapter, we presented a number of both exact and approximative inference
algorithms together with an efficient implementation of the ProbLog language on
top of the YAP-Prolog system that is designed to scale to large sized problems. We
showed that ProbLog can be used to obtain both explanation and (approximations
of) success probabilities for queries on a large database of independent probabilistic
facts. To the best of our knowledge, ProbLog is the first example of a probabilistic
logic programming system that can execute queries on such large databases. Due to
the use of BDDs for addressing the disjoint-sum-problem, the initial implementation
of ProbLog used in [De Raedt et al., 2007b] already scaled up much better than
alternative implementations such as Fuhr’s pD engine HySpirit [Fuhr, 2000]. The
tight integration in YAP-Prolog presented here leads to further speedups in runtime
of several orders of magnitude.

Although we focused on connectivity queries and Biomine here, similar problems
are found across many domains; we believe that the techniques presented apply to a
wide variety of queries and databases because ProbLog provides a clean separation
between background knowledge and what is specific to the engine. As shown
for program sampling inference, such an interface can be very useful to improve
performance as it allows incremental refinement of background knowledge.

Thanks to the efficient implementation presented here, ProbLog can also serve as a
vehicle for lifting traditional ILP approaches to probabilistic languages, and for
developing new learning and mining algorithms and tools, as we will elaborate on
a number of examples in Parts II and III of this thesis.





Conclusions Part I

In this first part of the thesis, we have introduced ProbLog, a simple extension
of the logic programming language Prolog with probabilistic facts representing
independent random variables. Although ProbLog has originally been motivated
by the need to combine probabilistic graphs with the deductive power of logic
programming, it is a general probabilistic programming language and by no means
restricted to the network setting.

We started in Chapter 3 by defining the language ProbLog and its semantics,
which is an instance of Sato’s distribution semantics. We then formalized the core
of probabilistic inference in ProbLog, which encodes the set of explanations of
a query as a DNF formula. After introducing additional language concepts to
simplify modeling in ProbLog, we completed this first chapter with a discussion
of ProbLog’s relationship to probabilistic logic programs, the Independent Choice
Logic, PRISM, probabilistic Datalog, and CP-Logic.

Chapter 4 then provided details on both exact and approximate inference algorithms
for ProbLog. The key to exact inference in ProbLog is the use of binary decision
diagrams to tackle the disjoint-sum-problem, that is, the problem of multiple
explanations covering the same possible world. We introduced approximations
based on either using restricted sets of explanations or sampling techniques and
discussed our implementation of ProbLog combining YAP-Prolog with the BDD
package CUDD. Finally, we reported on experiments in the context of the Biomine
network, demonstrating that ProbLog can be used to query a probabilistic database
with several millions of facts.

The ProbLog language and system as presented here form the core of an increasing
body of work, ranging from technical improvements such as the inclusion of
tabling [Mantadelis and Janssens, 2010] to extensions of the language with decision-
theory [Van den Broeck et al., 2010] or continuous random variables [Gutmann
et al., 2010a]. An important line of future work therefore lies in further developing
the system to facilitate such extensions. From the perspective of probabilistic
programming, MCMC-methods as used by other probabilistic programming
languages as well as specialized algorithms for situations not requiring the full
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power of BDD-based inference (such as grammars, where the disjoint-sum-problem
does not occur) are promising directions for future work.
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Chapter 5

ωProbLog∗

In propositional logic, formulae in disjunctive normal form (DNF) are well suited
for satisfiability checking, while binary decision diagrams (BDDs) [Bryant, 1986]
facilitate model counting. Associating weights, such as for instance probabilities,
costs or utilities, to propositional variables and defining weights of partial
interpretations in terms of these basic weights makes it possible to use the same
representations and algorithms to answer a variety of queries about models of
logical formulae, ranging from finding partial models with minimal accumulated
cost or maximal probability to identifying the models where the maximal cost
associated to any positive literal is minimal or calculating the probability of the
underlying formula being true. In ProbLog as introduced in Part I of this thesis, a
logic program where some facts are labeled with probabilities is used to generate a
DNF corresponding to all proofs or explanations of a query, and this DNF or an
equivalent BDD is used to calculate explanation and success probabilities. While
probabilities cover many interesting domains, for instance networks of uncertain
relationships or probabilistic grammars, other types of weights are more natural in
other domains. For instance, imagine a road network with edge labels denoting
distance or expected travel time. In such a network, one might want to query
for the shortest travel route between two given locations or the shortest round
trip through a set of locations. To determine the best location for some new
facility, one might query for the location for which the sum of distances to a
number of given locations is smallest. Using weighted networks as an abstract
representation of relationships with positive or negative value, a subgraph with
maximum value connecting a given set of nodes could be extracted to reduce
the size of the network for ease of inspection. In natural language processing,
weights can be used to find the most likely derivation or to construct the derivation
∗This chapter presents unpublished work. The author thanks Guy Van den Broeck for valuable

comments.
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forest of a sentence with respect to a probabilistic grammar [Goodman, 1999].
Similarly, constructing ProbLog’s DNF representation of sets of explanations or the
corresponding BDD (for a given variable order) can be seen as a task in a labeled
program, where labels are propositional variables. Also in the context of ProbLog,
using vectors of probabilities instead of single probabilities allows one to compare
success probabilities for several sets of probability labels within a single query.

In this chapter, we introduce ωProbLog, a generalization of ProbLog to commutative
weight semirings, where both proof-based and model-based weights can be
calculated. The latter type of weights requires dealing with implicit information in
the form of truth values of variables not appearing in an explanation, and thus often
involves tackling the disjoint-sum-problem. We identify the semiring characteristics
that require dealing with the disjoint-sum-problem for model-based weights and
introduce corresponding inference algorithms for ωProbLog that generalize the
ones of ProbLog. The Dyna system of Eisner et al. [2005] uses a similar approach
of adding semiring weights to definite clause programs. However, given its origin
in natural language processing, this system calculates proof- or derivation-based
weights only and does not deal with model-based weights that require addressing
the disjoint-sum-problem, such as ProbLog’s success probability.

The chapter is organized as follows: based on a review of ProbLog inference in
Section 5.1, we introduce ωProbLog and develop corresponding inference algorithms
in Section 5.2. After discussing related work in Section 5.3, we conclude in
Section 5.4.

5.1 A Generalized View on ProbLog Inference

Inference in ProbLog addresses questions about the proofs or explanations of a
query q in program T , or about the complete interpretations or possible worlds
where the query is true. In the light of the distribution over interpretations defined
by a ProbLog program, questions about proofs can be thought of as ignoring the
probabilities of facts used neither positively nor negatively in the proof, while
those are taken into account when querying about interpretations. While ProbLog
inference algorithms for the explanation probability PTx (q) (the probability of
the most likely explanation of q), the sum of probabilities STx (q) and the success
probability PTs (q) (the probability of q being true in a random interpretation) have
been introduced in Chapter 4, in this section, we present a slightly different view
on these algorithms to highlight their commonalities as well as their differences.
We additionally consider the MAP (maximum a posteriori) probability PTMAP (q),
that is, the probability of the most likely complete interpretation or possible
world in which the query is true, another type of query considered frequently in
probabilistic models. The definitions of these values illustrate their underlying
common structure, using either maximization or summation to aggregate over
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explanations or interpretations, respectively:

PTx (q) = max
E∈ExplT (q)

 ∏
fi∈E1

pi
∏
fi∈E0

(1− pi)

 (5.1)

STx (q) =
∑

E∈ExplT (q)

 ∏
fi∈E1

pi
∏
fi∈E0

(1− pi)

 (5.2)

PTMAP (q) = max
I|=T q

 ∏
fi∈I1

pi
∏
fi∈I0

(1− pi)

 (5.3)

PTs (q) =
∑
I|=T q

 ∏
fi∈I1

pi
∏
fi∈I0

(1− pi)

 (5.4)

While the success probability is defined in terms of the set of complete
interpretations supporting the query, represented by the DNF formula

DTs (q) =
∨
I|=T q

 ∧
fi∈I1

bi ∧
∧
fi∈I0

¬bi

 , (5.5)

it is calculated in ProbLog based on the set of all explanations of the query,
represented as the logically equivalent1 DNF formula

DTx (q) =
∨

E∈ExplT (q)

 ∧
fi∈E1

bi ∧
∧
fi∈E0

¬bi

 . (5.6)

This explanation DNF can be obtained by backtracking over Algorithm 4.2 to
enumerate explanations, where logically equivalent explanations are filtered out.

All four definitions as well as evaluating the truth value of the underlying DNF
formulae can be seen as calculations in semirings, an observation that underlies the
more general definitions and algorithms provided in Section 5.2. These semirings
are listed in Table 5.1 together with a number of characteristics of the corresponding
definitions; the latter will be discussed in more detail in Section 5.2. Let us now
discuss algorithms to compute (5.1)–(5.4) based on DTx (q), where the aim is to
illustrate common principles, not to provide optimized algorithms.

The definition of the explanation probability in Equation (5.1) exactly mirrors
the structure of DTx (q), where negation is replaced by inverting the probability,

1We refer to Section 3.2 for more details on the relationship of these encodings.
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Semiring and complement ⊕
Query Ω ⊕ ⊗ ω0 ω1 ω Int. idp. cp. Alg.
Dx(q) {0, 1} ∨ ∧ 0 1 ¬ω p yes yes 5.2
Ds(q) {0, 1} ∨ ∧ 0 1 ¬ω c yes yes 5.2
Px(q) R≥0 max

∏
0 1 1− ω p yes no 5.2

Sx(q) R≥0
∑ ∏

0 1 1− ω p no yes 5.2
PMAP (q) R≥0 max

∏
0 1 1− ω c yes no 5.3

Ps(q) R≥0
∑ ∏

0 1 1− ω c no yes 5.4

Table 5.1: Semirings for evaluating truth values as well as probabilistic queries
(over p(artial) or c(omplete) interpretations), properties of semiring addition
(idempotence and complementarity, cf. Equation (5.13)), and corresponding
ωProbLog algorithm.

conjunction by multiplication, and disjunction by maximization. Consequently,
it can be calculated by one pass over the DNF, calculating the probability of the
current conjunction and updating the maximum seen so far if needed. The sum
of probabilities in (5.2) can be calculated with the same algorithm using addition
instead of maximization. To calculate explanation probabilities in ProbLog, we
implemented an optimized algorithm that avoids explicit DNF construction and
uses best first search based on probabilities of partial derivations, cf. Algorithm 4.4.
Note that as summation is not idempotent, explicit DNF construction could not
be avoided when calculating STx (q), as repeated occurrences of explanations need
to be filtered out.

The MAP probability of Equation (5.3) and the success probability of Equation (5.4)
perform aggregation over all complete interpretations as given by DTs (q), which is
impractical for all but the tiniest programs. However, the explanation DNF DTx (q)
can easily be extended into the equivalent DNF

DTxs(q) =
∨

E∈ExplT (q)

 ∨
I∈ComplT (E)

 ∧
fi∈I1

bi ∧
∧
fi∈I0

¬bi

 , (5.7)

where each explanation E is replaced by the disjunction over its set of completions
ComplT (E), cf. Equation (3.10) on page 34. In contrast to the logically
equivalent DTs (q), DTxs(q) may contain the same interpretation multiple times,
as interpretations can extend multiple explanations, which is known as the disjoint-
sum-problem, cf. Section 4.1.1. The algorithms for calculating PMAP and Ps exploit
this idea, but without explicitly constructing the fully expanded formula.

Using the algorithm sketched for the explanation probability, PTMAP (q) could
directly be calculated on either DTs (q) or DTxs(q). However, the grouping of
interpretations in DTxs(q) can be exploited to instead base this calculation on DTx (q)
by maximizing over the maximum of each group. As multiplication distributes over
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Algorithm 5.1 ProbLog MAP inference: calculating the probability of the most
likely interpretation satisfying a DNF (restricted to variables of DNF literals lij).
1: function Map(DNF DTx (q) =

∨n
i=1
∧mi
j=1 lij)

2: maxp := 0; var = ∅
3: for i = 1, . . . , n do
4: pi := 1; vari = ∅
5: for j = 1, . . . ,mi do
6: pi := pi · p(lij)
7: vari := vari ∪ {var(lij)}
8: pi := pi ·

∏
fk∈var\vari max(pk, 1− pk)

9: maxp := maxp ·
∏
fk∈vari\varmax(pk, 1− pk)

10: maxp := max(maxp, pi)
11: var := var ∪ vari
12: return maxp

maximization, the most likely interpretation extending a given explanation E is
the one that sets each variable not occurring in the explanation to its most likely
truth value, and its probability is thus given by:

max
I∈ComplT (E)

P (I) = P (E) ·
∏
fi∈E?

max(pi, (1− pi)) (5.8)

The basic algorithm thus considers one explanation at a time, comparing the
probability of the most likely interpretation extending it to the probability of
the most likely interpretation extending any of the previous explanations, using
Equation (5.8) to perform the maximization corresponding to the inner disjunction
of Equation (5.7). As maximization is idempotent, repeated occurrences of the
same interpretation as extensions of different explanations do not influence the
result. A variant of this algorithm is detailed in Algorithm 5.1. It incorporates
one simple optimization: to avoid setting a potentially large number of variables
to their more likely truth value, it maintains the set of variables that appeared
in the DNF as processed so far and only performs maximization with respect to
interpretations of this set. This is possible as each unseen variable will be set to
its more likely value in the most likely interpretation extending such a partial
interpretation. Lines 8 and 9 therefore update the probabilities to be compared
in line 10 to take into account the same set of variables. Note that this does only
take into account variables occurring in the DNF; if there are other variables, the
same type of correction has to be applied to the result for each of them.

While the definition of the success probability in Equation (5.4) only differs
from that of the MAP probability in using summation instead of maximization,
Algorithm 5.1 cannot directly be adapted for its calculation, as summation is not
idempotent and repeated occurrences of the same interpretation due to different
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explanations need to be filtered out. This cannot be done by simply maintaining
the set of variables seen, but would require one to disjoin each new explanation from
the entire formula processed so far. As this quickly becomes impractical, ProbLog
instead uses binary decision diagrams (BDDs, [Bryant, 1986], cf. Section 2.4) to
address the disjoint-sum-problem. Basically, a BDD repeatedly splits a DNF
according to the truth value of a single variable n, leading to two new DNFs h
and l (corresponding to high and low children in the BDD), exploiting the following
recursive equation to calculate probabilities:

P ((n ∧ h) ∨ (¬n ∧ l)) = pn · P (h) + (1− pn) · P (l) (5.9)

For more details, we refer to the discussion of Algorithm 4.5 in Section 4.1.1.
Reduced BDDs as used in ProbLog omit nodes whose low and high children are
isomorphic, meaning that those nodes are also left out from the calculation. Such
nodes would require one to calculate pn ·P (h)+(1−pn)·P (h), which by distributivity
equals (pn + (1− pn)) · P (h) = 1 · P (h) = P (h) and thus can safely be dropped.

5.2 From ProbLog to ωProbLog

The inference tasks for ProbLog discussed in the previous section are all rooted
in the same framework that assigns probabilities to (partial) interpretations by
multiplying probabilities of basic facts. However, similar questions could be asked
in different contexts, where basic facts are labeled with weights that are not
probabilities, or where labels are combined differently to obtain weights of partial
interpretations. For instance, the number of satisfying interpretations could be
determined in this way, or one could ask for proofs or interpretations of lowest
cost if costs are associated to positive and negative literals. This general idea is
formalized in ωProbLog using commutative semirings. ωProbLog is related to
DTProbLog [Van den Broeck et al., 2010] in that it extends ProbLog beyond the
use of probability labels. However, while DTProbLog uses different types of labelled
facts to integrate probabilistic information and decision theory, ωProbLog uses a
single type of general weight labels and also tackles different types of problems.

A semiring is a structure (Ω,⊕,⊗, ω0, ω1) where addition ⊕ and multiplication ⊗
are binary operations over the set Ω such that both operators are associative, ⊕
is commutative, ⊗ distributes over ⊕, ω0 ∈ Ω is the neutral element with respect
to ⊕, ω1 ∈ Ω that of ⊗, and for all ω ∈ Ω, ω0⊗ω = ω⊗ω0 = ω0. In a commutative
semiring, ⊗ is commutative as well.

A ωProbLog program T consists of a commutative semiring (Ω,⊕,⊗, ω0, ω1), a finite
set of labeled ground facts {ω1 :: f1, . . . , ωn :: fn} with ωi ∈ Ω, a set of background
knowledge clauses as in ProbLog, cf. Equation (3.1) (p. 31), and a complement
function that assigns weight ω to the negation of a labeled fact with weight ω. The
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weight of a (partial) interpretation J is defined as the multiplication of the weights
of its literals:

WT (J) =
⊗
fi∈J1

ωi
⊗
fi∈J0

ωi (5.10)

Each ωProbLog program T defines two different weights of a query q, the explanation
weight

WTx (q) =
⊕

E∈ExplT (q)

 ⊗
fi∈E1

ωi
⊗
fi∈E0

ωi

 , (5.11)

and the interpretation weight

WTs (q) =
⊕
I|=T q

⊗
fi∈I1

ωi
⊗
fi∈I0

ωi

 . (5.12)

As both multiplication and addition are commutative and associative in a
commutative semiring, the following property holds for all ωProbLog programs.

Property 5.1 The explanation and interpretation weight are independent of the
order of both literals and conjunctions.

An addition operator ⊕ is idempotent if ω ⊕ ω = ω for all ω ∈ Ω. We will call an
addition operator ⊕ complementary (w.r.t. a given complement function) if the
following (one of the complement axioms of Boolean algebras) holds for all ω ∈ Ω:

ω ⊕ ω = ω1 (5.13)

Property 5.2 For any commutative ring (Ω,⊕,⊗, ω0, ω1) with additive inverse
−ω, addition ⊕ is complementary for the complement function ω = −ω ⊕ ω1.

While the ring setting is covered by ωProbLog, combining a semiring with an
arbitrary complement function is more flexible.

Property 5.3 The weight of the set Compl(E) of all completions of an explanation
E can be calculated as⊕

I∈ComplT (E)

WT (I) = WT (E)⊗
⊗
fi∈E?

(ωi ⊕ ωi) .



102 ωPROBLOG

This is due to distributivity of multiplication over addition in semirings.

Property 5.4 If semiring addition ⊕ is complementary, the weight of a given
explanation E equals the sum of the weights of all its completions, that is

WT (E) =
⊕

I∈ComplT (E)

WT (I)

This is a direct consequence of Property 5.3.

Property 5.5 If the addition operator ⊕ is idempotent and complementary, the
explanation weight and the interpretation weight coincide.

Given Property 5.4, WTx (q) can be rewritten as⊕
E∈ExplT (q)

WT (E) =
⊕

E∈ExplT (q)

⊕
I∈ComplT (E)

WT (I),

which, given commutativity and associativity of ⊕, equals WTs (q) for idempotent ⊕.
An instance of such a semiring is that of truth values as given for both DTx (q) and
DTs (q) in Table 5.1.

Example 5.1 Consider the following weighted variant of Example 3.1

1 :: edge(a, c). −2 :: edge(a, b). 2 :: edge(c, e).
3 :: edge(b, c). 3 :: edge(c, d). 1 :: edge(e, d).

together with background knowledge clauses defining a spanning tree predicate st/0,
semiring (R ∪ {∞},min,+,∞, 0) and complement function ω = 0. The set of all
spanning trees is given by

Dx(st) = (ab ∧ ac ∧ cd ∧ ce) ∨ (ab ∧ ac ∧ ce ∧ ed) ∨ (ab ∧ ac ∧ cd ∧ ed)

∨ (ac ∧ bc ∧ cd ∧ ce) ∨ (ac ∧ bc ∧ ce ∧ ed) ∨ (ac ∧ bc ∧ cd ∧ ed)

∨ (ab ∧ bc ∧ cd ∧ ce) ∨ (ab ∧ bc ∧ ce ∧ ed) ∨ (ab ∧ bc ∧ cd ∧ ed)

Wx(st) corresponds to the weight of the minimum spanning tree, Ws(st) to the
minimum weight of any subgraph connecting all nodes.

As for ProbLog, inference in ωProbLog first constructs the explanation DNF DTx (q)
as defined in Equation (5.6), which is then used in the second phase to calculate the
weight of interest. In fact, ProbLog inference can be seen as inference in ωProbLog
using the semirings and complement functions summarized in Table 5.1. The third



FROM PROBLOG TO ωPROBLOG 103

Algorithm 5.2 Calculating the explanation weight WTx (q) for query q and
ωProbLog program T given the explanation DNF DTx (q).
1: function ExplanationWeight(DNF DTx (q) =

∨n
i=1
∧mi
j=1 lij)

2: weight := ω0

3: for i = 1, . . . , n do
4: ωi := ω1

5: for j = 1, . . . ,mi do
6: ωi := ωi ⊗ ω(lij)
7: weight := weight⊕ ωi
8: return weight

and fourth column of this table list characteristics that determine the choice of
inference algorithm for the given type of query, while the last column refers to the
corresponding algorithm used in the second phase of ωProbLog inference. These
algorithms generalize the ones sketched for ProbLog above; we will now discuss
them in turn.

Algorithm 5.2 formalizes the calculation of WTx (q), generalizing the DNF algorithm
for the explanation probability. It simply iterates over all conjunctions, multiplying
literal weights for each conjunction and summing the results.

Example 5.2 In Example 5.1, the weight of the first explanation ab∧ ac∧ cd∧ ce
is −2+1+3+2 = 4, that of ab∧ac∧ce∧ed is −2+1+2+1 = 2. The intermediate
weight after seeing two explanations thus is 2, which will be confirmed to be the
overall minimum when processing the rest of the DNF.

Algorithm 5.3 generalizes Algorithm 5.1 for MAP inference in ProbLog to calculate
the interpretation weight WTs (q) on DTx (q) for idempotent semiring addition ⊕. The
weight updates in lines 8 and 9 exploit Property 5.4, analogously to Equation (5.8).
Again, the result needs to be corrected in the same way to take into account
variables not appearing in the DNF.

Example 5.3 Consider again Example 5.2, but this time to calculate Ws(st). To
do so, one could explicitly expand Dx(st) to Dxs(st) as in the following fragment
restricted to the first two explanations:

Dxs(st) = (ab ∧ ac ∧ cd ∧ ce ∧ ¬bc ∧ ¬ed) ∨ (ab ∧ ac ∧ cd ∧ ce ∧ ¬bc ∧ ed)

∨ (ab ∧ ac ∧ cd ∧ ce ∧ bc ∧ ¬ed) ∨ (ab ∧ ac ∧ cd ∧ ce ∧ bc ∧ ed)

∨ (ab ∧ ac ∧ ce ∧ ed ∧ ¬bc ∧ ¬cd) ∨ (ab ∧ ac ∧ ce ∧ ed ∧ ¬bc ∧ cd)

∨ (ab ∧ ac ∧ ce ∧ ed ∧ bc ∧ ¬cd) ∨ (ab ∧ ac ∧ ce ∧ ed ∧ bc ∧ cd) ∨ . . .
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Algorithm 5.3 Calculating the interpretation weight WTs (q) for query q and
ωProbLog program T with idempotent addition operator ⊕ given the explanation
DNF DTx (q) (restricted to variables of DNF literals lij).
1: function InterpretationWeight(DNF DTx (q) =

∨n
i=1
∧mi
j=1 lij)

2: weight := ω0; var = ∅
3: for i = 1, . . . , n do
4: ωi := ω1; vari = ∅
5: for j = 1, . . . ,mi do
6: ωi := ωi ⊗ ω(lij)
7: vari := vari ∪ {var(lij)}
8: ωi := ωi

⊗
fk∈var\vari(ωk ⊕ ωk)

9: weight := weight
⊗
fk∈vari\var(ωk ⊕ ωk)

10: weight := weight⊕ ωi
11: var := var ∪ vari
12: return weight

Algorithm 5.4 Calculating the interpretation weight WTs (q) for query q and
ωProbLog program T with complementary addition operator ⊕ given a BDD
representation of the explanation DNF DTx (q).
1: function InterpretationWeightBdd(BDD node n)
2: if n is the 1-terminal then
3: return ω1

4: if n is the 0-terminal then
5: return ω0

6: let h and l be the high and low children of n
7: weight(h) := InterpretationWeightBdd(h)
8: weight(l) := InterpretationWeightBdd(l)
9: return (ωn ⊗ weight(h))⊕ (ωn ⊗ weight(l))

Algorithm 5.3 instead updates the weights of these explanations by additionally
considering ed and cd, respectively, leading to values 4 + min(1, 0) = 4 and
2 + min(3, 0) = 2 and thus to an intermediate result of 2 based on variable set
{ab, ac, cd, ce, ed}. bc will only be taken into account when processing the fourth
explanation.

If semiring addition is not idempotent, calculating WTs (q) based on DTx (q) involves
solving the disjoint-sum-problem and is therefore done on the BDD encoding of
DTx (q). The algorithm as given in Algorithm 5.4 generalizes Algorithm 4.5 for
ProbLog’s success probability.
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Figure 5.1: BDD used to calculate Ws(st) in Examples 5.4 and 5.5.

Property 5.6 If semiring addition is complementary, the interpretation weight
WTs (q) can be calculated on the BDD representation of DTx (q).

Calculating the weight on the BDD instead of on the disjunction of all
interpretations making the query true exploits associativity and commutativity of
both semiring operations (as variables need to be brought in the same order
on all paths through the BDD, and paths are sorted according to variable
values) as well as distributivity (to obtain a tree-shaped representation of the
formula). Merging redundant subtrees does not affect the calculation, as all
ingoing edges are maintained. However, dropping redundant nodes is only safe
for complementary addition operators, as only in this case the omitted update
(ωn ⊗W (h))⊕ (ωn ⊗W (h)) equals W (h).

Example 5.4 If we set all fact weights ω as well as their complements ω to 0.5 in
the program of Example 5.1 and use semiring (R≥0,+, ·, 0, 1), Ws(st) is the fraction
of interpretations making the query true. Figure 5.1 shows the corresponding BDD,
on which Algorithm 5.4 will calculate the interpretation weight. Note that this
corresponds to calculating the success probability in a ProbLog program where all
facts have probability 0.5.

Based on Property 5.3, Algorithm 5.5 generalizes Algorithm 5.4 to non-
complementary addition operators. As in Algorithm 5.3, lines 9 and 10 extend
the results for the two subtrees to take into account the same set of variables
before they are combined in line 11. Again, the same type of correction is required
for variables not appearing in the BDD. The algorithm could be used instead of
Algorithm 5.3, but for idempotent ⊕, it introduces the unnecessary extra cost of
building the BDD.

Example 5.5 Reconsider Example 5.4, but with semiring (N0,+, ·, 0, 1) and with
all fact weights ω as well as their complements ω being 1. In this case, Ws(st)
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Algorithm 5.5 Calculating the interpretation weight WTs (q) for query q and
ωProbLog program T given a BDD representation of the explanation DNF DTx (q)
(restricted to BDD variables).

1: function InterpretationWeightBddGeneral(BDD node n)
2: if n is the 1-terminal then
3: return (ω1, ∅)
4: if n is the 0-terminal then
5: return (ω0, ∅)
6: let h and l be the high and low children of n
7: (weight(h), var(h)) := InterpretationWeightBddGeneral(h)
8: (weight(l), var(l)) := InterpretationWeightBddGeneral(l)
9: extended(h) := weight(h)⊗

⊗
fi∈var(l)\var(h)(ωi ⊕ ωi)

10: extended(l) := weight(l)⊗
⊗
fi∈var(h)\var(l)(ωi ⊕ ωi)

11: weight(n) := (ωn ⊗ extended(h))⊕ (ωn ⊗ extended(l))
12: return (weight(n), {n} ∪ var(h) ∪ var(l))

Semiring, labels and complement ⊕
Ex. Ω ⊕ ⊗ ω0 ω1 ω ∈ ω Int. idp. cp. Alg.
5.1 R ∪ {∞} min + ∞ 0 R 0 p yes no 5.2
5.1 R ∪ {∞} min + ∞ 0 R 0 c yes no 5.3
5.4 R≥0 + · 0 1 {0.5} 0.5 c no yes 5.4
5.5 N + · 0 1 {1} 1 c no no 5.5

Table 5.2: Semirings used in Examples 5.1–5.5.

corresponds to the number of different connected subgraphs and thus performs model
counting. The BDD is the same as in the previous example; however, as addition
is not complementary here, Algorithm 5.5 needs to be used to calculate Ws(st).
For instance, at the lower node labeled ce, we need to take into account that its
high child has not considered ed, while the low child has. The weight 1 of the high
child thus needs to be extended to 1 · (1 + 1) = 2, resulting in weight 1 · 2 + 1 · 1 = 3
based on variables {ce, ed} for the current node.

Table 5.2 summarizes the example instances of ωProbLog used in Examples 5.1–5.5
in analogy to Table 5.1. We conclude this section with some examples of ωProbLog
programs with more complex weight domains.

Example 5.6 Consider the path predicate and the graph of Example 3.1 with the
following labels

(0. 8, 1) :: edge(a, c). (0. 7, 1) :: edge(a, b). (0. 8, 1) :: edge(c, e).
(0. 6, 1) :: edge(b, c). (0. 9, 1) :: edge(c, d). (0. 5, 1) :: edge(e, d).
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semiring (R≥0×N,⊕a,⊗a, (0, 0), (1, 1)) and complement function (p, c) = (1−p, c),
where the binary operators are defined as follows:

(p1, c1)⊕a (p2, c2) = (p1 + p2, c1 + c2)

(p1, c1)⊗a (p2, c2) = (p1 · p2, c1 · c2)

In this case, query weights simultaneously sum probabilities and count the number of
explanations or models. The result can thus be used to calculate average probabilities
in an additional step. Such averages cannot be calculated directly, as they correspond
to n-ary operations that cannot be broken down to use an associative binary addition
operator. Note that while WTs (q) can be calculated using Algorithm 5.5 in this
example, this would not be possible if interpretation weights were defined as sum,
as the resulting multiplication (p1, c1)⊗′a (p2, c2) = (p1 + p2, c1 · c2) would no longer
distribute over summation ⊕a, thus violating the semiring conditions. However,
one could still use DTs (q) to calculate the value.

Example 5.7 We extend the ProbLog path example to explicitly include the set of
partial interpretations leading to the explanation or MAP probability:

(0. 8, {{ac}}) :: edge(a, c). (0. 7, {{ab}}) :: edge(a, b).
(0. 8, {{ce}}) :: edge(c, e). (0. 6, {{bc}}) :: edge(b, c).
(0. 9, {{cd}}) :: edge(c, d). (0. 5, {{ed}}) :: edge(e, d).

The second argument of the weight is the set of interpretations where the fact is true,
which consists of the single partial interpretation containing a unique propositional
variable. We denote the set of literals using the variables occurring in fact labels
by L. The complement function is defined as (p, {{v}}) = (1 − p, {{¬v}}). The
binary operators of the semiring (R≥0 × 22L ,⊕MAP ,⊗MAP , (0, ∅), (1, {∅})) are
defined as follows:

(p1, S1)⊗MAP (p2, S2) = (p1 · p2, {i1 ∪ i2 | i1 ∈ S1, i2 ∈ S2}) (5.14)

(p1, S1)⊕MAP (p2, S2) =


(p1, S1) if p1 > p2

(p2, S2) if p1 < p2

(p1, S1 ∪ S2) if p1 = p2

(5.15)

On the first argument denoting the probability, the operators thus correspond to
those of calculating the explanation or MAP probability, while the second argument
maintains corresponding sets of interpretations. Note that multiplication is only
well-defined if the resulting interpretations are consistent; however, this is the case
when evaluating on DNF formulae.

Given Dx(path(a, c)) = ac ∨ (ab ∧ bc), we obtain Wx(path(a, c)) = (0. 8, {{ac}})
as W (ac) = (0. 8, {{ac}}), W (ab ∧ bc) = (0.7 · 0.6, {{ab, bc}}), and 0.8 >
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0.42. When evaluating Wx(path(a, c)), both explanations are extended into
(0.336, {{ab, ac, bc}}), which is the most likely interpretation of relevant facts
supporting the query. Taking remaining facts into account as well, we obtain
(0.12096, {{ab, ac, bc, cd, ce, ed}, {ab, ac, bc, cd, ce,¬ed}}), as there are two equally
likely interpretations with MAP probability.

Example 5.8 Consider the semiring (BDD(V),∨,∧, 0, 1) with complement func-
tion ω = ¬ ω, where BDD(V) is the set of reduced ordered BDDs over variables
V = {ab, ac, bc, cd, ce, ed} (in this order), 0 and 1 are BDD terminal nodes and the
operators the usual BDD operators. We label facts with BDDs corresponding to
logical variables:

ac :: edge(a, c). ab :: edge(a, b). ce :: edge(c, e).
bc :: edge(b, c). cd :: edge(c, d). ed :: edge(e, d).

Using background knowledge defining a spanning tree predicate st/0 as in
Example 5.1, WTx (st) is the BDD shown in Figure 5.1.

Example 5.9 Labelling basic facts with polynomials, e.g.

x :: edge(a, c). (x− 3) :: edge(a, b). (−x + 1) :: edge(c, e).
2x :: edge(b, c). x2 :: edge(c, d). −x3 :: edge(e, d).

and using the corresponding ring of polynomials (P(x),+, ·, 0, 1) and complement
function ω = −ω, we can use ωProbLog to construct polynomials describing the
query weights in terms of the input parameter x. For instance, WTx (path(a, c)) =
x+ (x− 3) · 2x = 2x2 − 5x.

5.3 Related Work

As ωProbLog, the weighted logic programs of Eisner and Blatz [2007] associate
weights to basic facts and use a logic program to derive weights of other atoms.
However, the weight of a derived atom is obtained by aggregating the weights of
the bodies of all ground clauses whose head is the atom, where body weights in
turn aggregate weights of their atoms using a second type of aggregation operator.
Different types of aggregation over clauses can be used within a program, as long
as unifiable heads all use the same type. The semiring-weighted dynamic programs
employed by the Dyna system of Eisner et al. [2005] (called Dyna programs in
the following) are a special case of this framework. The Dyna system originates
from work in natural language processing and is closely related to the general
framework of semiring parsing introduced by Goodman [1999]. Dyna programs use
“Horn equations”, that is, range-restricted definite clauses where conjunction in the
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body is replaced by the semiring’s multiplication operator ⊗ and the consequence
operator :- is replaced by the same update operator ⊕ = in all clauses. Values for
axioms (atoms not appearing in clause heads) are asserted as part of the input of
a Dyna program. Furthermore, clauses can have side conditions, which essentially
are conjunctions of logical atoms without assigned semiring value whose truth
values decide on the applicability of a clause. To allow for uniform treatment in
practice, these atoms are assigned the semiring’s ω0 or ω1 element depending on
their truth values. In contrast to ωProbLog, Dyna programs do not use negated
atoms in clause bodies, and do not require multiplication to be commutative as
the evaluation order is fixed by the program. Apart from this, the key difference
between Dyna programs and ωProbLog programs is that Dyna directly uses the
program structure to calculate weights, while ωProbLog uses the explanation
DNF, which corresponds to a reduced form of the program structure. More
specifically, the DNF filters repeated occurrences of the same basic literal in a
proof as well as repeated occurrences of the same explanation (independent of
fact order in the underlying proof), while all these contribute to weights in Dyna
programs. At the level of literals in proofs, this is closely related to repeated
occurrences of the same probabilistic fact being considered different random events
in PRISM [Sato and Kameya, 2001], but a single one in ProbLog, cf. Sections 3.3.2
and 3.4.4. Furthermore, ωProbLog offers a second type of weight defined in terms
of interpretations, which is not possible in Dyna programs unless the program
explicitly generates complete interpretations as proofs. As ProbLog’s success
probability falls into this latter category, it cannot directly be calculated in Dyna.
In contrast, PRISM programs directly correspond to Dyna programs calculating the
probability of an atom as the sum of the probabilities of all its mutually exclusive
derivations.

Dyna’s basic inference algorithm is an iterative forward reasoning algorithm that
maintains an agenda of atoms to be processed (initially the ones whose value was
asserted) and a chart of current values associated to atoms. Changes of values
for each atom are propagated along all groundings of clauses having the atom in
the body, until no more changes need propagation or a user-defined convergence
criterion is met. The use of forward reasoning is motivated by the need to deal
with phenomena such as unary rule cycles and ε-productions, which are known
to be problematic in backward reasoning. However, in principle, the backward
reasoning algorithm which constructs the explanation DNF in ωProbLog could be
adapted to this type of weight calculation by dropping any filtering operations and
directly performing semiring operations in parallel with logical operations during
resolution.

Wachter et al. [2007] have identified ordered BDDs as the most appropriate
representation language for local computations in semiring valuation algebras,
where the main inference task is to eliminate a set of variables from a semiring
product whose factors can have overlapping domains. An example of such a
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product is the joint probability in Bayesian networks, where factors correspond to
conditional probability distributions. For optimization tasks in semiring valuation
algebras, Pouly et al. [2007] follow a similar approach using propositional DAGs,
another graphical representation of Boolean functions. While ωProbLog shares the
underlying compilation idea of these approaches, it addresses a different inference
task and also provides a framework to define concrete problem instances by means
of logic programs.

5.4 Conclusions

We have introduced ωProbLog, a generalization of ProbLog where basic facts are
labeled with weights from an arbitrary commutative semiring and a complement
function associates weights to corresponding negated literals. Defining weights of
partial interpretations as multiplication of literal weights, two types of weights
are defined for derived queries, based on summing over either all explanations
of the query, or over all complete interpretations where the query is true. We
have generalized ProbLog inference algorithms to calculate both types of weights
based on the explanation DNF, using binary decision diagrams to tackle the
disjoint-sum-problem when needed.

While ωProbLog is closely related to the semiring-weighted dynamic programs of
the Dyna system [Eisner et al., 2005], both approaches cover cases that cannot be
represented in the other one. ωProbLog defines two types of weights based on the
set of explanations or the set of interpretations, respectively, while Dyna defines a
single type of weight based on the set of proofs. This difference implies that Dyna
can use semirings with non-idempotent operators to take into account duplicate
proof weights, which is not possible in ωProbLog, but cannot calculate ProbLog
success probabilities, which is possible in ωProbLog.

The work presented in this chapter opens several directions for future work. While
we have provided some first example problems that can be addressed within
ωProbLog, a more systematic overview should be attempted. Implementing
the basic inference algorithms discussed here and experimenting with various
types of semirings will be another step towards fully exploring the potential
of the framework. Furthermore, extending the algorithms to work with nested
representations as obtained in tabled ProbLog [Mantadelis and Janssens, 2010] and
to pruning techniques that avoid building the full explanation DNF needs to be
investigated.
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Outline Part II

In the first part of the thesis, we have introduced ProbLog as a tool for modeling
and reasoning in probabilistic databases. However, manually inspecting large
probabilistic databases or assigning probabilities can be tedious, while providing
example queries of interest is often easier. In this part of the thesis, we therefore
discuss two different Machine Learning techniques targeted at improving
ProbLog programs with respect to a set of example queries. Both methods directly
exploit the binary decision diagrams generated by ProbLog’s inference engine to
efficiently evaluate the effect of possible changes, but differ in the type of changes
they consider. Both methods will be experimentally evaluated in the context of
the Biomine network.

In Chapter 6, we study how to condense a large ProbLog database to a subset
covering the most relevant information for the current context. We introduce the
task of Theory Compression as the reduction of a ProbLog database to at most
k probabilistic facts – without changing their parameters – based on queries that
should or should not have a high success probability, which is a form of theory
revision with a single operator that deletes probabilistic facts. We develop a greedy
compression algorithm that removes one fact at a time, choosing the one with
maximal improvement of the likelihood of examples.

While theory compression is restricted to deleting facts or setting their (known)
probabilities to 0, in Chapter 7, we consider the task of automatically inferring
labels for probabilistic facts. To this aim, we introduce a novel setting for
Parameter Learning in probabilistic databases. Probabilistic databases such as
ProbLog differ from the generative models widely used in parameter learning, as
they do not define a distribution over possible example queries, but a distribution
over truth values for each query. We therefore consider training examples labeled
with their desired probability and develop a gradient descent method to minimize
the mean squared error. The approach integrates learning from entailment and
learning from proofs, as proofs can conveniently be regarded as conjunctive queries
in ProbLog.
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Chapter 6

Theory Compression∗

In this chapter, we introduce the task of compressing a ProbLog theory using
a set of positive and negative examples, and develop an algorithm for realizing
this. Theory compression refers to the process of removing as many clauses as
possible from the theory in such a manner that the compressed theory explains
the examples as well as possible. The compressed theory should be a lot smaller,
and therefore easier to understand and employ. It will also contain the essential
components of the theory needed to explain the data. The theory compression
problem is motivated by the biological application as outlined in Section 2.5. In
this application, scientists try to analyze large networks of links in order to obtain
an understanding of the relationships amongst a typically small number of nodes.
A biologist may for instance be interested in the potential relationships between
a given set of proteins. If the original graph contains more than some dozens
of nodes, manual and visual analysis is difficult. Within this setting, our goal is
to automatically extract a relevant subgraph which contains the most important
connections between the given proteins. This result can then be used by the
biologist to study the potential relationships much more efficiently. The idea thus
is to remove as many links from these networks as possible using a set of positive
and negative examples. The examples take the form of relationships that are
either interesting or uninteresting to the scientist. The result should ideally be a
small network that contains the essential links and assigns high probabilities to
the positive and low probabilities to the negative examples. This task is analogous
to a form of theory revision [Wrobel et al., 1996] where the only operation allowed
is the deletion of facts. The analogy explains why we have formalized the theory
∗This chapter presents joint work with Kate Revoredo, Kristian Kersting, Hannu Toivonen and

Luc De Raedt published in [De Raedt et al., 2006, 2007a] and, in most detail, in [De Raedt et al.,
2008b]. Main contributions of the author are the ProbLog-related part of the implementation as
well as parts of the experiments.
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compression task within the ProbLog framework. Within this framework, examples
are true and false ground facts, and the task is to find a small subset of a given
ProbLog program that maximizes the likelihood of the examples.

We proceed as follows: in Section 6.1, the task of probabilistic theory compression
is defined; an algorithm for tackling the compression problem is presented in
Section 6.2. Experiments that evaluate the effectiveness of the approach are
presented in Section 6.3. Finally, in Sections 6.4 and 6.5, we touch upon related
work and conclude.

6.1 Compressing ProbLog Theories

Before introducing the ProbLog theory compression problem, it is helpful to
consider the corresponding problem in a purely logical setting1. Assume that, as in
traditional theory revision [Wrobel et al., 1996; Richards and Mooney, 1995], one
is given a set of positive and negative examples in the form of true and false facts.
The problem then is to find a theory that best explains the examples, i.e., one that
scores best w.r.t. a function such as accuracy. At the same time, the theory should
be small, that is it should contain less than k clauses. Rather than allowing any
type of revision on the original theory, compression only allows for clause deletion.
So, logical theory compression aims at finding a small theory that best explains
the examples. As a result the compressed theory should be a better fit w.r.t. the
data but should also be much easier to understand and to interpret. This holds in
particular when starting with large networks containing thousands of nodes and
edges and then obtaining a small compressed graph that consists of say 20 edges.
In biological databases such as the Biomine network, cf. Section 2.5, scientists can
easily analyse the interactions in such small networks but have a very hard time
with the large networks.

The ProbLog theory compression problem is now an adaptation of the traditional
theory revision (or compression) problem towards probabilistic Prolog programs.
We are interested in finding a small theory that maximizes the likelihood of a set
X = P∪N of positive and negative examples. Here, small means that the number of
probabilistic facts should be at most k. Also, rather than maximizing the accuracy
as in purely logical approaches, in ProbLog we maximize the likelihood of the data.
Here, a ProbLog theory T is used to determine a relative class distribution: it
gives the probability PT (x) that any given example x is positive. (This is subtly
different from specifying the distribution of (positive) examples.) We define the
likelihood of an example as

LLT (x) =
{
PT (x) if x ∈ P
1− PT (x) if x ∈ N. (6.1)

1This can – of course – be modeled within ProbLog by setting all probability labels to 1.
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The examples are assumed to be mutually independent, so the total likelihood is
obtained as a simple product:

LLT (X) =
∏
x∈X

LLT (x) (6.2)

For an optimal ProbLog theory T , the probability of the positives is as close to 1
as possible, and for the negatives as close to 0 as possible. However, in order to
avoid overfitting, to effectively handle noisy data, and to obtain smaller theories,
we slightly redefine PT (x) in Equation (6.1) to allow misclassifications at a high
cost:

P̂T (x) = max
(
min[1− ε, PT (x)], ε

)
(6.3)

for some constant ε > 0 specified by the user. This avoids the possibility that the
likelihood function becomes 0 due to a positive example not covered by the theory
at all or a negative example covered with probability 1.

The ProbLog Theory Compression Problem can therefore be formalized as follows:

Task 6.1 (ProbLog Theory Compression)

Given • a ProbLog theory T = FT ∪BK,

• sets P and N of positive and negative examples in the form of
independent and identically-distributed ground facts, and

• a constant k ∈ N,

find a theory R ⊆ T of size at most k (i.e. |FR| ≤ k) that has a maximum
likelihood w.r.t. the examples X = P ∪N , i.e.,

R = arg max
R⊆T∧|FR|≤k

LLR(X) (6.4)

Example 6.1 Within bibliographic data analysis, the similarity structure among
items can improve information retrieval results. Consider a collection of papers
{a,b, c,d, e, f} and some pairwise similarities similar(a, c), e.g., based on
keyword analysis. Uncertainty in the data can elegantly be represented by the
attached probabilities:

0.9 :: similar(a, c). 0.9 :: similar(b, d). 0.6 :: similar(d, e).
0.8 :: similar(a, e). 0.8 :: similar(b, f). 0.7 :: similar(d, f).
0.7 :: similar(b, c). 0.6 :: similar(c, d). 0.7 :: similar(e, f).

The corresponding graph is depicted in Figure 6.1(a). We only list pairs of similar
facts in one order and encode symmetry in the background knowledge. Two items
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Figure 6.1: Illustration of Examples 6.1 and 6.2: (a) Initial related theory.
(b) Result of compression using positive example related(a, b) and negative
example related(d, b), where edges are removed greedily (in order of increasing
thickness). (c) Likelihoods obtained as edges are removed in the indicated order.

X and Y are related(X, Y) if they are similar (such as a and c) or if X is similar
to some item Z which is related to Y:

sim(X, Y) : − similar(X, Y).
sim(X, Y) : − similar(Y, X).
related(X, Y) : − sim(X, Y).
related(X, Y) : − sim(X, Z), related(Z, Y).

Assume we are interested in items related to item b, and user feedback revealed that
item a is indeed related to item b, but d is actually not. We might then use those
examples to compress our initial theory to the most relevant parts, giving k as the
maximal acceptable size.

6.2 The ProbLog Theory Compression Algorithm

The ProbLog compression algorithm removes one fact at a time from the theory,
and chooses the fact greedily to be the one whose removal results in the largest
likelihood.

Example 6.2 Reconsider the related theory from Example 6.1, Figure 6.1(a),
where a positive example related(a, b) as well as a negative example related(d, b)
are given. With default probability ε = 0.005, the initial likelihood of those
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Algorithm 6.1 ProbLog theory compression. lowBDD is akin to Bounds
(cf. Algorithm 4.6), but returns the last lower bound BDD.

1: function Compress(ProbLog program T = {p1 :: f1, . . . , pn :: fn} ∪ BK,
Examples E, constants k and ε)

2: for all e ∈ E do
3: BDD(e) := lowBDD(e, T, δ)
4: R := {pi :: fi | bi occurs in a BDD(e)}
5: BDD(E) :=

⋃
e∈E{BDD(e)}

6: improves := True
7: while (|R| > k or improves) and R 6= ∅ do
8: ll := Likelihood(R,BDD(E), ε)
9: f := arg maxf∈R Likelihood(R− {f}, BDD(E), ε)

10: improves := (ll ≤ Likelihood(R− {f}, BDD(E), ε))
11: if improves or |R| > k then
12: R := R− {f}
13: return R ∪BK

two examples is 0.014. The greedy approach first deletes 0.9 :: similar(d, b)
and thereby increases the likelihood to 0.127. The probability of the positive
example related(a, b) is now 0.863 (was 0.928), and that of the negative example
related(d, b) is 0.853 (was 0.985). The theory will be compressed to just the two
edges similar(a, c) and similar(c, b), which is the smallest theory with maximal
likelihood 0.627. The sequence of deletions is illustrated in Figures 6.1(b) and 6.1(c).

The ProbLog compression algorithm as given in Algorithm 6.1 works in two phases.
First, it constructs BDDs for explanations of the examples using the standard
ProbLog inference engine. These BDDs then play a key role in the second step
where facts are greedily removed, as they make it very efficient to test the effect of
removing a fact.

More precisely, the algorithm starts by calling ProbLog’s inference engine using
e as a query. In principle, any BDD-based method could be used. Here, we use
bounded approximation, cf. Section 4.2, which computes the BDDs for lower and
upper bounds. The compression algorithm only employs the lower bound BDDs,
since they are simpler and, hence, more efficient to use. All facts used in at least
one explanation occurring in the (lower bound) BDD of some example constitute
the set R of possible revision points. All other probabilistic facts do not contribute
to probability computation, and can therefore be immediately removed; this step
alone often gives high compression factors. Alternatively, if the goal is to minimize
the changes to the theory, rather than the size of the resulting theory, then all
these other facts should be left intact.
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After the set R of revision points has been determined — and the other facts
potentially removed — the ProbLog theory compression algorithm performs a
greedy search in the space of subsets of R. At each step, the algorithm finds that
fact whose deletion results in the best likelihood score, and then deletes it. This
process is continued until both |R| ≤ k and deleting further facts does not improve
the likelihood.

Compression is efficient, since the (expensive) construction of the BDDs is performed
only once per example. Given a BDD for a query q (from bounded approximation)
one can easily evaluate (in the revision phase) conditional probabilities of the form
PT (q|b′1 ∧ · · · ∧ b′k), where the b′is are possibly negated Booleans representing the
truth-values of facts. To compute the answer using the BDD-based probability
calculation of Algorithm 4.5, one only needs to reset the probabilities p′i of the b′is.
If b′j is a positive literal, the probability of the corresponding variable is set to 1, if
b′j is a negative literal, it is set to 0. The structure of the BDD remains the same.
When compressing theories by only deleting facts, the b′is will be negative, so one
has to set p′i = 0 for all b′is.

Example 6.3 To illustrate fact deletion on a small BDD, we restrict our graph
to the nodes {b, c,d}. Figure 6.2 shows the effect of deleting similar(c, d) on
the probability of query related(d,b). On the original BDD, the probability is
PT (related(d, b)) = 0.9+0.1 ·0.7 ·0.6 = 0.942. After deleting the fact by setting its
probability to 0, the probability is lowered to PT (related(d, b)|¬similar(c, d)) =
0.9 + 0.1 · 0 · 0.6 = 0.9.

6.3 Experiments

We performed a number of experiments to study both the quality and the complexity
of ProbLog theory compression. The quality issues that we address empirically
concern (1) the relationship between the amount of compression and the resulting
likelihood of the examples, and (2) the impact of compression on facts or hold-out
test examples, where desired or expected results are known. We next describe two
central components of the experiment setting: data and algorithm implementation.

6.3.1 Data

We performed tests primarily with real biological data. For some statistical analyses
we needed a large number of experiments, and for these we used simulated data,
i.e., random graphs with better controlled properties.
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Figure 6.2: BDDs illustrating Example 6.3, (a) before and (b) after deleting
similar(c, d).

Real Data: To obtain a realistic test setting with natural example queries, we
base positive examples on the random Alzheimer genes used to extract Biomine
datasets, cf. Appendix A. All our tests use Small (144 edges). Three pairs of
genes (from HGNC ids 620, 582, 983) are used as positive examples, in the form
path(gene 620, gene 582) unless otherwise stated. Since the genes all relate to
Alzheimer disease, they are likely to be connected via nodes of shared relevance,
and the connections are likely to be stronger than for random pairs of nodes.

The larger graph Medium (11530 edges) was used for scalability experiments. As
default parameter values we used probability ε = 10−8 and interval width δ = 0.1.

Simulated Data: Synthetic graphs with a given number of nodes and a given average
degree were produced by generating edges randomly and uniformly between nodes.
This was done under the constraint that the resulting graph must be connected,
and that there can be at most one edge between any pair of nodes. The resulting
graph structures tend to be much more challenging than in the real data, due to
the lack of structure in the data. The default values for parameters were ε = 0.001
and δ = 0.2.
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Figure 6.3: Evolvement of log-likelihood for 10 test runs with positive examples
only (a) and with both positive and negative examples (b). Different starting
points of lines reflect the number of facts in the BDDs used in theory compression.

6.3.2 Implementation

We implemented the inference and compression algorithms in Prolog (Yap-5.1.0).
The experiments presented in this chapter were performed with the initial
implementation of ProbLog, which used a meta-interpreter instead of the source-
to-source transformation discussed in Section 4.3.1, stored sets of explanations
in trie-like nested terms instead of YAP’s tries, and used the C++ interface of
CUDD instead of SimpleCUDD. The compiled BDD results were saved for use in
the revision phase.

6.3.3 Quality of ProbLog Theory Compression

The quality of compressed ProbLog theories is hard to judge using a single objective.
We therefore carried out a number of experiments investigating different aspects of
quality, summarized by the following set of questions:

Q1 How does the likelihood evolve during compression?

Q2 How appropriately are edges of known positive and negative effects handled?

Q3 How does compression affect unknown test examples?

We will now address these questions in turn.

Q1: How does the likelihood evolve during compression? Figure 6.3(a)
shows how the log-likelihood evolves during compression in the real data, using
positive examples only, where all revision points are eventually removed. In one
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Figure 6.4: Evolvement of log-likelihood for 10 test runs with both positive and
negative examples (a). Evolvement of log-likelihood for settings with artificially
implanted edges with negative and positive effects (b). In (b), linestyle indicates
the type of edge that was removed in the corresponding revision step. Likelihoods
in the middle reflect the probability on artificial edges: topmost curve is for p = 0.9,
going down in steps of size 0.1 .

setting (black line), we used the three original paths connecting Alzheimer gene pairs
as examples. This means that for each gene pair (g1, g2) we provided the example
path(g1,g2). To obtain a larger number of results, we artificially generated ten
other test settings (grey lines), each time by randomly picking three nodes from
the graph and using paths between them as positive examples, i.e., we had three
path examples in each of the ten settings. Very high compression rates can be
achieved: starting from a theory of 144 facts, compressing to less than 20 facts
has only a minor effect on the likelihood. The radical drops in the end occur once
examples cannot be proven anymore.

To test and illustrate the effect of negative examples (undesired paths), we created
10 new settings with both positive and negative examples. This time the above
mentioned 10 sets of random paths were used as negative examples. Each test
setting uses the paths of one such set as negative examples together with the
original positive examples (paths between Alzheimer genes). Figure 6.3(b) shows
how the total log-likelihood curves have a nice convex shape, quickly reaching high
likelihoods, and only dropping with very small theories. A factorization of the
log-likelihood to the positive and negative components (Figure 6.4(a)) explains
this: facts that affect the negative examples mostly are removed first (resulting
in an improvement of the likelihood). Only if no other alternatives exist, facts
important for the positive examples are removed (resulting in a decrease in the
likelihood). This suggests that negative examples can be used effectively to guide
the compression process, an issue to be studied shortly in a cross-validation setting.
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Q2: How appropriately are edges of known positive and negative
effects handled? Next we inserted new nodes and edges into the real
biological graph, with clearly intended positive or negative effects. We forced
the algorithm to remove all generated revision points and obtained a ranking
of edges. To get edges with a negative effect, we added a new “negative” node
neg and edges edge(gene 620,neg), edge(gene 582,neg), edge(gene 983,neg).
Negative examples were then specified as paths between the new negative node
and each of the three genes. For a positive effect, we added a new “positive” node
and three edges in the same way, to get short artificial connections between the
three genes. As positive examples, we again used path(g1,g2) for the three pairs
of genes. All artificial edges were given the same probability p.

We note that different values of p lead to different sets of revision points. This
depends on how many explanations are needed to reach the probability interval δ.
To obtain comparable results, we computed in a first step the revision points
using p = 0.5 and interval width 0.2. All facts not appearing as a revision point
were excluded from the experiments. On the resulting theory, we then re-ran
the compression algorithm for p = 0.1, 0.2, . . . , 0.9 using δ = 0.0, i.e., using exact
inference.

Figure 6.4(b) shows the log-likelihood of the examples as a function of the number
of facts remaining in the theory during compression; the types of removed edges
are coded by linestyle. In all cases, the artificial negative edges were removed early,
as expected. For probabilities p ≥ 0.5, the artificial positive edges were always the
last ones to be removed. This also corresponds to the expectations, as these edges
can contribute quite a lot to the positive examples. Results with different values
of p indicate how sensitive the method is to recognize the artificial edges. Their
influence drops together with p, but negative edges are always removed before
positive ones.

Q3: How does compression affect unknown test examples? We next study
generalization beyond the (training) examples used in compression. We illustrate
this in an alternative setting for ProbLog theory revision, where the goal is to
minimize changes to the theory. More specifically, we do not modify those parts of
the initial theory that are not relevant to the training examples. This is motivated
by the desire to apply the revised theory also on unseen test examples that may be
located outside the subgraph relevant to training examples, otherwise they would
all be simply removed. Technically this is easily implemented: facts that are not
used in any of the training example BDDs are kept in the compressed theory.

Since the difficulty of compression varies greatly between different graphs and
different examples, we used a large number of controlled random graphs and
constructed positive and negative examples as follows. First, three nodes were
randomly selected: a target node (“disease”) from the middle of the graph, a center
for a positive cluster (“disease genes”) closer to the perimeter, and a center for a
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Figure 6.5: Evolvement of log-likelihoods in test sets for 10 random runs: total
log-likelihood (a) and log-likelihoods of positive and negative test examples
separately (b).

negative cluster (“irrelevant genes”) at random. Then a set of positive nodes was
picked around the positive center, and for each of them a positive example was
specified as a path to the target node. In the same way, a cluster of negative nodes
and a set of negative examples were constructed. A cluster of nodes is likely to
share subpaths to the target node, resulting in a concept that can potentially be
learnt. By varying the tightness of the clusters, we can tune the difficulty of the
task. In the following experiments, negative nodes were clustered but the tightness
of the positive cluster was varied. We generated 1000 random graphs. Each of our
random graphs had 20 nodes of average degree 3. There were 3 positive and 3
negative examples, and one of each was always in the hold-out dataset, leaving 2 +
2 examples in the training set. This obviously is a challenging setting.

We compressed each of the ProbLog theories based on the training set only;
Figure 6.5 shows 10 random traces of the log-likelihoods in the hold-out test
examples. The figure also gives a break-down to separate log-likelihoods of positive
and negative examples. The behavior is much more mixed than in the training
set (cf. Figures 6.3(b) and 6.4(a)), but there is a clear tendency to first improve
likelihood (using negative examples) before it drops for very small theories (because
positive examples become unprovable).

To study the relationship between likelihood in the training and test sets more
systematically, we took for each random graph the compressed theory that gave
the maximum likelihood in the training set. A summary over the 1000 runs, using
3-fold cross-validation for each, is given in Figure 6.6(a). The first observation is
that compression is on average useful for the test set. The improvement over the
original likelihood is on average about 30% (0.27 in log-likelihood scale), but the
variance is large. The large variance is primarily caused by cases where the positive
test example was completely disconnected from the target node, resulting in the
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Figure 6.6: Log-likelihoods of the test sets before and after compression (a).
Distributions of differences of log-likelihoods in test examples before and after
compression, for three different densities of positive nodes (b) (thick line: 90%
confidence interval; thin line: 95% confidence interval; for negative test examples,
differences in log(1−likelihood) are reported to make results comparable with
positive examples).

use of probability ε = 0.001 for the example, and probabilities ≤ 0.001 for the
pair of examples. These cases are visible as a cloud of points below log-likelihood
log(0.001) = −6.9. The joint likelihood of test examples was improved in 68% of
the cases, and decreased only in about 17% of the cases (and stayed the same in
15%). Statistical tests of either the improvement of the log-likelihood (paired t-test)
or the proportion of cases of increased likelihood (binomial test) show that the
improvement is statistically extremely significant (note that there are N = 3000
data points).

Another illustration of the powerful behaviour of theory compression is given
in Figure 6.6(b). It shows the effect of compression, i.e., the change in test set
likelihood that resulted from maximum-likelihood theory compression for three
different densities of positive examples; it also shows separately the result for
positive and negative test examples. Negative test examples experience on average
a much clearer change in likelihood than the positive ones, demonstrating that
ProbLog compression does indeed learn. Further, in all these settings, the median
change in positive test examples is zero, i.e., more than one half of the cases
experienced no drop in the probability of positive examples, and for clustered
positive examples 90% of the cases are relatively close to zero. Results for the
negative examples are markedly different, with much larger proportions of large
differences in log-likelihood.

To summarize, all experiments show that our method yields good compression
results. The likelihood is improving, known positive and negative examples are
respected, and the result generalizes nicely to unknown examples. Does this,
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Figure 6.7: Runtime as a function of graph size (number of edges) (a) and as a
function of interval width δ (b). Note that in (b) the y axis is in log-scale and the
x axis is discretized in 0.1 steps for [0.5,0.1] and in 0.01 steps in [0.1,0.01].

however, come at the expense of very high runtimes? This question will be
investigated in the following subsection.

6.3.4 Complexity of ProbLog Theory Compression

We now investigate scalability and runtimes of our compression approach, focusing
on the following questions:

Q4 How do the methods scale up to large graphs?

Q5 What is the effect of the probability approximation interval δ?

Q6 What are the crucial technical factors for runtimes?

Q4: How do the methods scale up to large graphs? To study the scalability
of the methods, we randomly subsampled edges from the larger biological graph,
to obtain subgraphs G1 ⊂ G2 ⊂ . . . with 200, 400, ... edges. Each Gi contains the
three genes and consists of one connected component. Average degree of nodes
ranges in Gis approximately from 2 to 3. The ProbLog compression algorithm was
then run on the data sets, with k, the maximum size of the compressed theory, set
to 15.

Runtimes are given in Figure 6.7(a). Graphs of 200 to 1400 edges were compressed
in 3 to 40 minutes, which indicates that the methods can be useful in practical,
large link mining tasks. The results also nicely illustrate how difficult it is to predict
the problem complexity: up to 600 edges the runtimes increase, but then drop when
increasing the graph size to 1000 edges. Larger graphs can be computationally
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easier to handle, if they have additional edges that result in good explanations and
remove the need of deep search for obtaining tight bounds.

Q5: What is the effect of the probability approximation interval δ?
Smaller values of δ obviously are more demanding. To study the relationship, we
ran the method on the smaller biological graph with the three positive examples
using varying δ values. Figure 6.7(b) shows the total runtime as well as its
decomposition to two phases, finding revision points and removing them. The
interval width δ has a major effect on runtime; in particular, the complexity of the
revision step is greatly affected by δ.

Q6: What are the crucial technical factors for runtimes?

We address the two phases, finding revision points and removing them, separately.

Given an interval δ, resources needed for running bounded approximation to obtain
the revision points are hard to predict, as those are extremely dependent on the sets
of explanations and especially stopped derivations encountered until the stopping
criterion is reached. This is not only influenced by the structure of the theory
and δ, but also by the presentation of examples. (In one case, reversing the order
of nodes in some path atoms decreased runtime by several orders of magnitude.)
Based on our experiments, a relatively good indicator of the complexity is the total
size of the BDDs used.

The complexity of the revision phase is more directly related to the number of
revision points. Assuming a constant time for using a given BDD to compute a
probability, the time complexity is quadratic in the number of revision points. In
practice, the cost of using a BDD depends of course on its size, but compared to
the building time, calling times are relatively small. One obvious way of improving
the efficiency of the revision phase is to greedily remove more than one fact at a
time.

Although in Figure 6.7(b) the revision time almost always dominates the total
time, we have found in our experiments that there is a lot of variance here, too,
and in practice either phase can strongly dominate the total time.

Given a fixed value for δ, we have little influence on the size of the BDDs or the
number of revision points. However, these observations may be useful for designing
alternative parameterizations for the revision algorithm that have more predictable
runtimes (with the cost of less predictable probability intervals). One option would
be to use the k-probability as done in parameter learning, cf. Chapter 7.
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6.4 Related Work

The problem of theory compression as introduced in this chapter is closely
related to the traditional theory revision problem studied in inductive logic
programming [Wrobel et al., 1996]. It allows particular operations on a theory (in
this case only deletions) on the basis of positive and negative examples, but differs
in that it aims at finding a small theory. Furthermore, it is grounded in a sound
probabilistic framework. This framework bears some relationships to the PTR
approach by Koppel et al. [1994] in that possible revisions in PTR are annotated
with weights or probabilities. Still, PTR interprets the theory in a purely logical
fashion to classify examples. It only uses the weights as bias during the revision
process in which it also updates them using examples in a kind of propagation
algorithm. Once the weights become close to 0, clauses are deleted. ProbLog
compression is also somewhat related to Zelle and Mooney’s work on Chill [Zelle
and Mooney, 1994] in that it specializes an overly general theory but differs again in
the use of a probabilistic framework. In the context of probabilistic logic languages,
PFORTE [Paes et al., 2005] is a theory revision system using BLPs [Kersting and
De Raedt, 2008] that follows a hill-climbing approach similar to the one used here,
but with a wider choice of revision operators.

Several related approaches to reduce the size of a probabilistic network have been
developed in the context of Biomine. One line of work aims at finding the most
reliable subgraph connecting a set of query nodes. The algorithm introduced in
[Hintsanen, 2007] for the case of two query nodes is similar to ProbLog theory
compression in that it also removes edges in order of relevance. However, relevance
for all edges is estimated using Monte Carlo simulation in a first phase, and values
are not updated during edge removal. Methods that construct reliable subgraphs
for two or more query nodes by adding edges to an initially empty subgraph instead
of deleting them from the full graph are presented in [Hintsanen and Toivonen,
2008] and [Kasari et al., 2010]. Finally, the general framework to simplify networks
by removing edges introduced in [Toivonen et al., 2010] differs from the approaches
discussed so far in that it is not based on examples, but prunes edges that do not
affect the quality of the best path between any pair of nodes in the network.

6.5 Conclusions

Using ProbLog, we have introduced a novel framework for theory compression in
large probabilistic databases. We defined a new type of theory compression problem,
namely finding a small subset of a given program that maximizes the likelihood
w.r.t. a set of positive and negative examples. A solution to the ProbLog theory
compression problem has then been developed. As for ProbLog inference, BDDs
play a central role in making theory compression efficient. Theory compression as
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discussed here is a restricted form of theory revision with a single operator that
deletes facts by setting their probabilities to 0. However, the setting and algorithm
could easily be extended to other operators, such as turning probabilistic facts into
logical ones by setting their probabilities to 1. Finally, we have shown that ProbLog
theory compression is not only theoretically interesting, but is also applicable on
various realistic problems in a biological link discovery domain.



Chapter 7

Parameter Learning∗

In the past few years, the statistical relational learning community has devoted
a lot of attention to learning both the structure and parameters of probabilistic
logics, cf. [Getoor and Taskar, 2007; De Raedt et al., 2008a], but so far seems to
have devoted little attention to the learning of probabilistic database formalisms.
Probabilistic databases such as ProbLog and the formalism of Dalvi and Suciu [2004]
associate probabilities to facts, indicating the probabilities with which these facts
hold. This information is then used to define and compute the success probability
of queries or derived facts or tuples, which are defined using background knowledge
(in the form of predicate definitions). As one example, imagine a life scientist
mining a large network of biological entities in an interactive querying session, such
as the Biomine network of Sevon et al. [2006], cf. Section 2.5. Interesting questions
can then be asked about the probability of the existence of a connection between
two nodes, or the most reliable path between them.

The key contribution of the present chapter is the introduction of a novel setting
for learning the parameters of a probabilistic database from examples together
with their target probability. The task then is to find those parameters that
minimize the least squared error w.r.t. these examples. The examples themselves
can either be queries or proofs, that is, explanations in terms of ProbLog. This
learning setting is then incorporated in the probabilistic database ProbLog, though
it can easily be integrated in other probabilistic databases as well. This yields
the second key contribution of the chapter, namely an effective learning algorithm.
It performs gradient-based optimization utilizing advanced data-structures for
∗This chapter presents joint work with Bernd Gutmann, Kristian Kersting and Luc De Raedt

published in [Gutmann et al., 2008]. The author has contributed to the development of the
learning setting and the algorithms. As the implementation and experiments, the extensions of
this work appearing in the technical report [Gutmann et al., 2010b] are mostly contributions of
Bernd Gutmann. We therefore do not discuss these extensions here.
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efficiently computing the gradient. This efficient computation of the gradient allows
us to estimate a ProbLog program from a large real-world network of biological
entities in our experiments, which can then be used for example by a life scientist
in interactive querying sessions.

We proceed as follows. After reviewing related work in Section 7.1, we
formally introduce the parameter estimation problem for probabilistic databases in
Section 7.2. Section 7.4 presents our least-squares approach for solving it, based
on the gradient derived in Section 7.3. Before concluding, we present the results of
an extensive set of experiments on a real-world data set in Section 7.5.

7.1 Related Work

The distinguishing features of the new learning setting introduced in this chapter
are the use of probabilistic databases, the integration of learning from entailment
and learning from proofs, and the fact that examples are labeled with their desired
probabilities.

This learning setting is in line with the general theory of probabilistic logic learning
[De Raedt and Kersting, 2003] and inductive logic programming. From an inductive
logic programming perspective, a query corresponds to a formula that is entailed
by the database, and hence, learning from queries corresponds to the well-known
learning from entailment setting. On the other hand, a proof does not only show
what was proven but also how this was realized. An analogy with a probabilistic
context-free grammar is useful here. One can learn the parameters of such
a grammar starting from sentences belonging to the grammar (learning from
entailment / from queries), or alternatively, one could learn them from parse-trees
(learning from proofs), cf. the work on tree-bank grammars [Charniak, 1996; De
Raedt et al., 2005]. The former setting is typically a lot harder than the latter one
because one query may have multiple proofs, thus introducing hidden parameters
into the learning setting, which are not present when learning from parse-trees.
In this chapter, both types of examples can be combined, and to the best of
our knowledge, it is the first time within relational learning and inductive logic
programming that learning from proofs is integrated with learning from entailment.

However, statistical relational learning approaches usually assume a generative
model defining a distribution over training examples. For stochastic logic programs
(SLPs) [Cussens, 2001] (and probabilistic context-free grammars) as well as for
PRISM [Sato and Kameya, 2001], the learning procedure assumes that ground
atoms for a single predicate (or in the grammar case, sentences belonging to the
language) are sampled and that the sum of the probabilities of all different atoms
obtainable in this way is at most 1. Recently, Chen et al. [2008] proposed a learning
setting where examples are labeled with probabilities in the context of SLPs. The



RELATED WORK 133

probabilities associated with examples, however, are viewed as specifying the degree
of being sampled from some distribution given by a generative model, which does
not hold in our case. Furthermore, they only provide an algorithm for learning from
facts and not from both queries and proofs as we do. Probabilistic relational models
(PRMs) [Friedman et al., 1999] and Bayesian logic programs (BLPs) [Kersting
and De Raedt, 2008] are relational extensions of Bayesian networks using entity
relationship models or logic programming respectively. In both frameworks, possible
worlds, i.e. interpretations, are sampled, and the sum of the probabilities of such
worlds is 1. Consider now learning in the context of probabilistic networks. It
is unclear how different paths could be sampled and, clearly, the sum of the
probabilities of such paths need not be equal to 1. Probabilistic databases define
a generative model at the level of interpretations. However, as an interpretation
states the truth-value of all ground atoms in an example, this is a challenging
setting. When considering substructures or paths in a network, the sheer number of
them makes explicitly listing interpretations virtually impossible. These difficulties
explain – in part – why so far only few learning techniques for probabilistic databases
have been developed. As we aim at applying our learning approach to biological
network mining, we focus on learning from entailment and from proofs in this
chapter. However, Gutmann et al. [2010c] recently introduced an algorithm for
learning ProbLog parameters from partial interpretations, where BDDs are used
to compactly encode all interpretations extending a partial interpretation without
explicitly generating all true atoms of each such interpretation.

Within the probabilistic database community, parameter estimation has received
surprisingly few attention. Nottelmann and Fuhr [2001] consider learning
probabilistic Datalog rules in a similar setting also based on the distribution
semantics. However, their setting and approach also significantly differ from ours.
First, a single probabilistic target predicate only is estimated whereas we consider
estimating the probabilities attached to definitions of multiple predicates. Second,
their approach employs the training probabilities only to generate training examples
labeled with 0/1 randomly according to the observed probabilities whereas we
use the observed probabilities directly. Finally, while our algorithm follows a
principled gradient approach employing (in principle) all combinations of proofs
or explanations, they follow a two-step bootstrapping approach first estimating
parameters as empirical frequencies among matching rules and then selecting the
subset of rules with the lowest expected quadratic loss on an hold-out validation
set. Gupta and Sarawagi [2006] also consider a closely related learning setting but
only extract probabilistic facts from data.

Finally, the new setting and algorithm are a natural and interesting addition to the
existing learning algorithms for ProbLog. It is most closely related to the theory
compression setting discussed in Chapter 6, where the task is to remove all but the
k best facts from the database (that is to set the probability of such facts to 0),
which realizes an elementary form of theory revision. The present task extends the
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compression setting in that parameters of all facts can now be tuned starting from
evidence. This realizes a more general form of theory revision [Wrobel et al., 1996],
albeit that only the parameters are changed and not the structure.

7.2 Parameter Learning in Probabilistic Databases

Within probabilistic logical and relational learning [De Raedt and Kersting, 2003;
De Raedt, 2008], the task of parameter estimation can be defined as follows:

Task 7.1 (Parameter Estimation)

Given • a set of examples X,

• a probabilistic database or probabilistic logic theory D,

• a probabilistic coverage relation PD(e) that denotes the probability that
the database D covers the example x ∈ X, and

• a scoring function score,

find parameters of D such that the scoring is optimal.

The key difference with logical learning approaches is that the coverage relation
becomes probabilistic. Furthermore, we explicitly target probabilistic examples,
that is, the examples themselves will have associated probabilities. The reason
is that such examples naturally arise in various applications. For instance, text
extraction algorithms return the confidence, experimental data is often averaged over
several runs, and so forth. As one illustration consider populating a probabilistic
database of genes from MEDLINE1 abstracts using off-the-shelf information
extraction tools, where one might extract from a paper that gene a is located in
region b and interacting with gene c with a particular probability denoting the
degree of belief; cf. [Gupta and Sarawagi, 2006]. This requires one to deal with
probabilistic examples such as 0.6 : locatedIn(a, b) and 0.7 : interacting(a, c).
Also in the context of the life sciences, Chen et al. [2008] report on the use of such
probabilistic examples, where the probabilities indicate the percentage of successes
in an experiment that is repeated several times.

Let us now investigate how we can integrate those two ideas, that is, the notion
of a probabilistic example and learning from entailment and proofs, within the
ProbLog formalism. When learning from entailment, examples are atoms or clauses
that are logically entailed by a theory. Transforming this setting to ProbLog
leads to examples that are logical queries, and given that we want to work with

1http://medline.cos.com/
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probabilistic examples, these queries will have associated target probabilities. When
learning from proofs in ProbLog, a proof corresponds to an explanation, that is,
a conjunction of facts, cf. Equation (3.14), page 35, again with associated target
probabilities. It is easy to integrate both learning settings in ProbLog because the
logical form of the example will be translated to a DNF formula and it is this last
form that will be employed by the learning algorithm anyway. The key difference
between learning from entailment and learning from proofs in ProbLog is that the
DNF formula is a conjunction when learning from proofs and a more general DNF
formula when learning from queries.

Example 7.1 In Example 3.1, using the query path(a, c) as example results in
ac∨ (ab∧ bc), whereas the explanation edge(a, b), edge(b, c) results in ab∧ bc only.

To the best of our knowledge, this is the first time that learning from proofs and
learning from entailment are integrated in one setting.

By now we are able to formally define the learning setting addressed in this chapter:

Task 7.2 (Parameter Learning in ProbLog)

Given • a ProbLog program T and

• a set of training examples {qi, p̃i}Mi=1, M > 0, where each qi ∈ Q is a
query or proof and p̃i is the k-probability of qi,

find a function h ∈ H with low approximation error on the training examples
as well as on unseen examples, where H = {h : Q → [0, 1]|h(.) = PT

′

k (.)}
comprises all parameter assignments T ′ for T .

Note that in this definition we have chosen the k-probability as probabilistic
coverage relation as this allows for maximal flexibility. The definition also leaves
the question open how to measure a “low approximation error”. In this chapter,
we propose to use the mean squared error as error function

MSE(T ) = 1
M

∑
1≤i≤M

(
PTs (qi)− p̃i

)2
. (7.1)

Our setting is related to the one considered by Kwoh and Gillies [1996] in that
we learn from examples where not everything is observable and that we assume
a distribution over the result (that is, whether a query fails or succeeds) and the
examples are independent of one another. While in our case, all the observations
are binary, Kwoh and Gillies use training examples which contain several variables.
They show that minimizing the squared error for this type of problem corresponds
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to finding a maximum likelihood hypothesis, provided that each training example
(qi, p̃i) is disturbed by an error term. The actual distribution of this error is such
that the observed query probability is still in the interval [0, 1].

Gradient descent is a standard way of minimizing a given error function. The
tunable parameters are initialized randomly. Then, as long as the error does not
converge, the gradient of the error function is calculated, scaled by the learning
rate η, and subtracted from the current parameters. In the following sections, we
derive the gradient of the MSE and show how it can be computed efficiently.

7.3 Gradient of the Mean Squared Error

Applying the sum and chain rule to Equation (7.1) yields the partial derivative

∂MSE(T )
∂pj

= 2
M

∑
1≤i≤M

(
PTs (qi)− p̃i

)︸ ︷︷ ︸
Part 1

· ∂ P
T
s (qi)
∂pj︸ ︷︷ ︸

Part 2

. (7.2)

Part 1 can be calculated by a ProbLog inference call computing the success
probability of Equation (3.16) (p. 35). It does not depend on j and has to be
calculated only once in every iteration of a gradient descent algorithm. Part 2 can
be calculated as

∂PTs (qi)
∂pj

=
∑
I|=qi

δjI
∏
fx∈I1

x 6=j

px
∏
fx∈I0

x 6=j

(1− px) , (7.3)

where δjI := 1 if fj ∈ I1 and δjI := −1 if fj ∈ I0. It is derived by first deriving the
gradient ∂PT (I)/∂pj for a fixed interpretation I of LT , which is straight-forward,
and then summing over all interpretations I where qi can be proven.

To ensure that all pj stay probabilities during gradient descent, we reparameterize
the search space and express each pj ∈ ]0, 1[ in terms of the sigmoid function2

pj = σ(aj) := 1/(1 + exp(−aj)) applied to aj ∈ R. This technique has been used
for Bayesian networks and in particular for sigmoid belief networks [Saul et al.,
1996]. We derive the partial derivative ∂PTs (qi)/∂aj in the same way as (7.3) but
we have to apply the chain rule once more due to the σ function

σ(aj) · (1− σ(aj)) ·
∑
I|=qi

δjI
∏
fx∈I1

x 6=j

σ(ax)
∏
fx∈I0

x 6=j

(1− σ(ax)). (7.4)

2The sigmoid function can induce plateaus which might slow down a gradient-based search.
However, it is unlikely that a plateau will spread out over several dimensions and we did not
observe such a behavior in our experiments. If it happens though, one can take standard counter
measures like simulated annealing or random restarts.
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Algorithm 7.1 Evaluating the gradient of a query efficiently by traversing the
corresponding BDD, calculating partial sums, and adding only relevant ones.
1: function Gradient(BDD b, variable vj)
2: (val, seen) = GradientEval(root(b), vj)
3: if seen = 1 then
4: return val · σ(aj) · (1− σ(aj))
5: else
6: return 0
7: function GradientEval(node n, variable vj)
8: if n is the 1-terminal then
9: return (1, 0)

10: if n is the 0-terminal then
11: return (0, 0)
12: Let h and l be the high and low children of n
13: (val(h), seen(h)) = GradientEval(h, vj)
14: (val(l), seen(l)) = GradientEval(l, vj)
15: if variable(n) = vj then
16: return (val(h)− val(l), 1)
17: else if seen(h) = seen(l) then
18: return (σ(an) · val(h) + (1− σ(an)) · val(l), seen(h)))
19: else if seen(h) = 1 then
20: return (σ(an) · val(h), 1)
21: else if seen(l) = 1 then
22: return ((1− σ(an)) · val(l), 1)

We also have to replace every pj in Equation (3.16) by σ(pj). Going over all
interpretations I in the last equation is infeasible. In the following section, we
discuss how to calculate the gradient on BDDs instead and introduce the gradient
descent algorithm for ProbLog.

7.4 Parameter Learning Using BDDs

We now extend Algorithm 4.5 for probability calculation on BDDs to the
computation of the gradient (7.3). Both algorithms have a time and space
complexity of O(number of nodes in the BDD) if intermediate results are cached.

Let us first consider a full decision tree instead of a BDD. Each branch in the
tree represents a full interpretation, and thus a product n1 · n2 · . . . · ni, where
the ni are the probabilities associated to the corresponding variable assignment
of nodes on the branch. The gradient of such a branch b with respect to nj is
gb = n1 · n2 · . . . nj−1 · nj+1 · . . . · ni if nj is true, and −gb if nj is false in b. As
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Algorithm 7.2 Gradient descent parameter learning. kBestBDD returns the
k-probability and the corresponding BDD.
1: function GradientDescent(program LT ∪ BK, training set {(qj , p̃j) 1 ≤
j ≤M}, constants η and k)

2: initialize all aj randomly
3: while not converged do
4: T := {σ(aj) :: cj | cj ∈ LT } ∪BK
5: ∆a := 0
6: for 1 ≤ i ≤M do
7: (pi, BDDi) := kBestBDD(qi,T ,k)
8: y := 2

M ·
(
pi − p̃i

)
9: for 1 ≤ j ≤ n do

10: ∆aj := ∆aj + y· Gradient(BDDi, nodej)
11: a := a − η ·∆a
12: return {σ(aj) :: cj | cj ∈ LT }

all branches in a full decision tree are mutually exclusive, the gradient w.r.t. nj
can be obtained by simply summing the gradients of all branches ending in a
leaf labeled 1. This literally corresponds to Equation (7.3). In BDDs however,
isomorphic sub-parts are merged, and obsolete parts are left out. This implies that
some paths from the root to the 1-terminal may not contain nj , therefore having a
gradient of 0. So, when calculating the gradient on the BDD, we have to keep track
of whether nj appeared on a path or not. Given that the variable order is the same
on all paths, we can easily propagate this information in our bottom-up algorithm,
as described in Algorithm 7.1. Specifically, GradientEval(n, nj) calculates the
gradient w.r.t. nj in the sub-BDD rooted at n. It returns two values: the gradient
on the sub-BDD and a Boolean indicating whether or not the target node nj
appears in the sub-BDD. If at some node n the indicator values for the two children
differ, we know that nj does not appear above the current node, and we can drop
the partial result from the child with indicator 0. The indicator variable is also
used on the top level: Gradient returns the value calculated by the bottom-up
algorithm if nj occurred in the BDD and 0 otherwise.

The learning algorithm as shown in Algorithm 7.2 combines the BDD-based gradient
calculation with a standard gradient descent search. Starting from parameters
a = a1, . . . , an initialized randomly, the gradient ∆a = ∆a1, . . . ,∆an is calculated,
parameters are updated by subtracting the gradient, and updating is repeated until
convergence. When using the k-probability with finite k, the set of k best proofs
may change due to parameter updates. After each update, we therefore recompute
the set of proofs and the corresponding BDD.
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7.5 Experiments

We set up experiments to investigate the following questions:

Q1 Does our approach reduce the mean squared error on training and test data?

Q2 Is our approach able to recover the original parameters?

Answering these first questions serves as a sanity check for the algorithm and our
implementation.

Q3 Is it necessary to update the set of k best proofs in each iteration?

As building BDDs for all examples is expensive, building BDDs once and using
them during the entire learning process can save significant amounts of resources
and time. We are therefore interested in the effects this strategy has on the results.

Q4 Can we obtain good results approximating Ps by Pk for finite (small) k?

Given that using BDDs to calculate Ps is infeasible for huge sets of proofs, as they
occur in our application, where we easily get hundreds of thousands of proofs, we
are interested in fast, reliable approximations.

Q5 Do the results improve if parts of the training examples are given as proof?

Here we are interested in exploring the effects of providing more information in the
form of proofs, which is one of the main distinguishing features of our algorithm.

To answer these questions, we use the Biomine subgraphs Alzheimer1 and
Asthma1, cf. Appendix A. From these graphs we generated 3 sorts of training
sets:

1. We sampled 500 random node pairs (a, b) from each graph and estimated
the query probability for path(a,b) using P5, the probability of the 5 best
proofs. These two sets are used to answer Q1, Q2, and Q3.

2. We sampled 200 random node pairs (a, b) from Asthma1 and estimated
Ps(path(a, b)) using the lower bound of bounded approximation (Algo-
rithm 4.6) with interval width δ = 0.01. This set is used to answer Q4.

3. We sampled 300 random node pairs (a, b) and calculated Px(path(a, b)), the
probability of the best path between a and b. We then build several sets
where different fractions of the examples where given as the best explanation
of path(a,b), instead of the query itself, and used them to answer Q5.
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To assess results, we use the root mean squared error on the test data
√
MSEtest,

cf. Equation (7.1), and the mean absolute difference MADfacts between learned pj
and original fact probabilities ptrue

j :

MADfacts := n−1
∑n

j=1
|pj − ptrue

j |. (7.5)

We always sampled the initial fact parameters uniformly in the interval [−0.5, 0.5].
Applying the sigmoid function yields probability values with mean 0.5± 0.07. The
datasets used had fact probabilities in this range and we therefore got lower initial
errors than by completely random initialization. In general, one can utilize prior
knowledge to initialize the parameters. We performed 10-fold cross-validation in
all experiments. The learning rate η was always set to the number of training
examples, as this has been found to speed up convergence. The algorithm was
implemented in Prolog (Yap-5.1.3) using CUDD for BDD operations.

Q1, Q2: Sanity Check We attached probabilities to queries in the training set
based on the best k = 5 proofs. The same approximation was used in the gradient
descent algorithm, where the set of proofs to build the BDD was determined
anew in every iteration as stated in Algorithm 7.2. We repeated the experiment
using a total of 100, 300, and 500 examples, which we each split in ten folds for
cross-validation. We thus used 90, 270, and 450 training examples. The more
training examples are used, the more time each iteration takes. In the same amount
of time, the algorithm therefore performs less iterations when using more training
examples. The right column of Figure 7.1 shows the root mean squared error on
the test data during learning. The gradient descent algorithm reduces the MSE
on both training and test data, with significant differences in all cases (two-tailed
t-test, α = 0.05). These results affirmatively answer Q1.

The MADfacts error is reduced as can be seen in the right column of Figure 7.2.
Again, all differences are significant (two-tailed t-test, α = 0.05). Using more
training examples results in faster error reduction. This answers Q2 affirmatively.
It should be noted however that in other domains, especially with limited or noisy
training examples, minimizing the MSE might not reduce MADfacts, as the MSE
is a non-convex non-concave function with local minima.

Q3: Error made if the best proofs are not updated We repeated the same
series of experiments, but without updating the set of proofs used for constructing
the BDDs. The evolvement of

√
MSEtest as well as of MADFacts is plotted in the

left column of Figures 7.1 and 7.2 respectively.

The plots for Asthma1 are hardly distinguishable and there is indeed no significant
difference (two-tailed t-test, α = 0.05). However, the runtime decreases by orders of
magnitude, since searching for proofs and building BDDs are expensive operations
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Figure 7.1:
√
MSEtest for Asthma1 and Alzheimer1 using the 5 best proofs

(k = 5); if the BDDs and proofs are not updated (left column); if they are updated
every iteration (right column) (Q2 and Q3)

which had to be done only once in the current experiments. Not updating the
BDDs results in a speedup of 10 for Alzheimer1. For Alzheimer1 there is no
significant difference for the MSEtest (two-tailed t-test, α = 0.05), but MADfacts
is reduced a little slower (in terms of iterations) when the BDDs are kept constant.
However, in terms of time this is not the case. These results indicate that BDDs can
safely be kept fixed during learning in this domain, which affirmatively answers Q3.

Q4: Less proofs, more speed, and still the right results? In the next
experiment, we studied the influence of the number k of best proofs used during
learning on the results. We considered Asthma1 with the second dataset,
where training example probabilities are lower bounds obtained from bounded
approximation with interval width 0.01. During learning, Pk was employed to
approximate probabilities.

We ran the learning algorithm on this dataset and used different values of k ranging
from 10 to 5000. We thus learned parameters using an underestimate of the true
function, as k best proofs may ignore a potentially large number of proofs used
originally. Figure 7.3 shows the results for this experiment after 50 iterations of
gradient descent. As can be seen, the average absolute error per fact (MADfacts)
goes down slightly with higher k. The difference is statistically significant for
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Figure 7.2: MADfacts for Asthma1 and Alzheimer1 using the 5 best proofs
(k = 5); if the BDDs and proofs are not updated (left column); if they are updated
every iteration (right column) (Q2 and Q3)
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Figure 7.3: MADfacts and
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MSEtest after 50 iterations for different k (number

of best proofs used) on Asthma1 where training examples carry Ps probabilities
(Q4)

k = 10 and k = 100 (two-tailed t-test, α = 0.05), but using more than 200 proofs
has no significant influence on the error. The MSE also decreases significantly
(two-tailed t-test, α = 0.05) comparing the values for k = 10 and k = 200, but
using more proofs has no significant influence. It takes more time to search for
more proofs and to build the corresponding BDDs. These results indicate that
using only 100 proofs is a sufficient approximation in this domain and affirmatively
answer Q4.
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fractions of the data are given as proof (Q5)

Q5: Learning from Proofs and Queries To investigate the effect of using
both proofs and queries as examples, we computed the most likely explanation
and its probability for 300 examples per graph. For each example, we either used
the query or the most likely explanation, both with the explanation probability.
Learning used k = 1. We used proofs for 0, 50, . . . , 300 examples and queries for
the remaining ones, and performed stratified 10-fold cross-validation, that is the
ratio of examples given as queries and as proofs was the same in every fold. We
updated BDDs in every iteration. Figure 7.4 shows the results of this experiment.
The curve on the left side indicates that the error per fact (MADfacts) goes down
faster in terms of iterations when increasing the fraction of proofs. Furthermore,
the plot on the right side shows that the root MSE on the test set decreases. These
results answer Q5 affirmatively.

7.6 Conclusions

We have introduced a setting for learning the parameters of probabilistic databases
that unifies learning from entailment and learning from proofs. We instantiated
this general setting for ProbLog and developed a gradient-based algorithm to learn
ProbLog parameters. The effectiveness of the method has been demonstrated on
real biological datasets. Interesting directions for future research include conjugate
gradient techniques and regularization-based cost functions. Those enable domain
experts to successively refine probabilities of a database by specifying training
examples.





Conclusions Part II

This part of the thesis has studied the use of machine learning techniques to improve
ProbLog programs based on example queries.

In Chapter 6, we introduced the task of theory compression, a form of theory
revision restricted to the deletion of probabilistic facts, which aims at reducing a
ProbLog database to a size that allows for inspection by a human expert while
focusing on the part of the database most relevant for a set of example queries. We
presented a greedy algorithm for solving this task that relies on ProbLog’s BDD
representation of explanation sets for efficient scoring of candidate deletions, which
subsequently has been evaluated in the context of both real and artificial network
data, demonstrating its practical applicability on various realistic problems in a
biological link discovery domain. Extending theory compression with additional
revision operators to realize a more general form of theory revision for probabilistic
theories is a promising direction for future work.

In Chapter 7, we introduced a new parameter learning setting for probabilistic
databases. As such databases do not define a distribution over all ground atoms,
but distributions over the truth values of individual ground atoms, example
queries in this setting are labeled with their desired probability. We presented
a gradient descent method to minimize the mean squared error which exploits
BDDs to calculate the gradient. The approach has been experimentally validated
on real biological datasets. Interesting directions for future research include more
sophisticated approaches to parameter learning in the new setting, such as conjugate
gradient techniques and regularization-based cost functions.
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Part III

Reasoning by Analogy

147





Outline Part III

This part is devoted to the task of Reasoning by Analogy. The notion of analogy
employed here is based on explanations in a relational language. In a probabilistic
logic setting, such explanations can be used to rank examples by probability, and
hence, analogy. While obtaining such a ranking corresponds to basic probabilistic
inference in ProbLog, we contribute two new methods to learn explanations in
probabilistic settings with or without domain knowledge, both based on well-known
relational learning techniques, thereby further illustrating the use of ProbLog as a
framework for lifting traditional ILP tasks to the probabilistic setting.

We introduce Probabilistic Explanation Based Learning (PEBL), where the
problem of multiple explanations as encountered in classical explanation based
learning is resolved by choosing the most likely explanation. PEBL deductively
constructs explanations by generalizing the logical structure of proofs of example
queries in a domain theory defining a target predicate.

Probabilistic Local Query Mining extends existing multi-relational data
mining techniques to probabilistic databases. It thus follows an inductive approach,
where the language of explanations is defined by means of a language bias and the
search is structured using a refinement operator. Furthermore, negative examples
can be incorporated in the score to find correlated patterns.
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Chapter 8

Inductive and Deductive
Probabilistic Explanation
Based Learning∗

Reasoning by analogy uses common properties of entities, such as shared structure
or participation in the same relations, to transfer information between them. It
is a strategy adopted in many contexts, reaching from everyday decisions such
as which movie to watch (based on similar ones seen before) or whether to take
an umbrella (based on days with similar weather conditions) to more complex
problems such as diagnosing a patient (based on patients with similar symptoms) or
deciding on whether to grant a loan (based on similar customers). The properties
and relations underlying analogical reasoning can conveniently be represented in
first order logic languages, allowing one to formally capture the notion of analogy.
Furthermore, extending such representations towards probabilistic logic languages
makes it possible to quantify the degree of analogy in terms of probabilities. In
this chapter, we use ProbLog as a framework for finding analogous examples based
on both relational and probabilistic information, though other probabilistic logic
languages could be used as well. Imagine for instance a life scientist exploring the
biological database described in Section 2.5, studying genes related to a specific
disease. He might know some genes that are relevant and be interested in finding
genes that are connected to the disease in analogous ways. In terms of the network
representation, such connections could be expressed as simple paths using certain
combinations of edge types, but more complex graph structures are possible as
well. Ranking these different types of connections according to their probabilities
∗This chapter builds on [Kimmig et al., 2007; Kimmig and De Raedt, 2008, 2009]

151



152 INDUCTIVE AND DEDUCTIVE PROBABILISTIC EXPLANATION BASED LEARNING

on the given examples gives a clear criterion for choosing the concept definition to
be used for measuring analogy of unseen examples.

Reasoning by analogy in the context of probabilistic logics thus relies on a relational
concept definition or explanation that can be used to rank possible examples.
Using a probabilistic framework affects both the construction of such explanations
and their use for ranking examples, as the coverage relation – between potential
explanations and given examples, or between the chosen explanation and potential
answer tuples – is no longer a hard 0/1-decision, but a gradual probabilistic score,
which can be used to rank candidates. The explanations themselves are purely
logical, and the probabilistic information resides in the database only, similar in
spirit to ProbLog’s separation of probabilistic facts and background knowledge.

While ranking candidate examples given an explanation corresponds to regular
ProbLog inference, the key task to be studied in this chapter is that of learning
explanations. More specifically, we consider two types of explanations, either
based on general domain knowledge, or on database information only. If domain
knowledge is available, it can be used to deductively construct explanations for
given examples, as has been done in explanation based learning [Mitchell et al.,
1986; DeJong, 2004], where a proof of a given example is abstracted to obtain an
explanation that can be applied to similar examples. In the absence of domain
knowledge, one can resort to inductive techniques that construct explanations
solely based on the database, such as relational query mining [Dehaspe et al., 1998;
De Raedt and Ramon, 2004]. In this chapter, we extend both techniques to use
probabilistic scoring functions to learn best explanations, thus realizing a deductive
as well as an inductive approach to explanation based learning in a probabilistic
setting.

This chapter is organized as follows: we introduce the general setting in more detail
in Section 8.1, followed by a summary of the underlying non-probabilistic techniques
of explanation based learning (Section 8.2.1) and query mining (Section 8.2.2).
Their probabilistic counterparts are introduced in Section 8.3. Section 8.4 discusses
the implementations used in Section 8.5 for experiments in the context of biological
link mining. Finally, Section 8.6 touches upon related work, and Section 8.7
concludes.

8.1 Explanation-based Analogy in Probabilistic Logic

The key notion of this chapter is that of an explanation in a relational language
which specifies analogy between examples.1 Combining such an explanation with

1In this chapter, we use the term proof for ProbLog’s explanations (conjunctions of ground
probabilistic facts supporting a query, cf. Equation (3.14), p. 35), and explanation for the
explanation clauses used to reason by analogy (cf. Equation (8.1)).
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probabilistic information makes it possible to rank analogous examples. We
use ProbLog as underlying language here, though other probabilistic relational
languages could be used as well. More specifically, an explanation clause (or
explanation for short) is a conjunctive query of the form

q(X) : − l1, . . . , lm (8.1)

where q/n is a predicate not appearing in a given ProbLog program T , the li are
positive literals using predicates from T and the variable vector X = (X1, . . . , Xn)
represents example tuples. Such an explanation is said to cover a ground tuple
q(c1, . . . , cn) if the success probability of q(c1, . . . , cn) in T extended by the
explanation is non-zero. All tuples in T covered by a given explanation q are
considered analogous. Furthermore, covered tuples can be ranked by probability.

Example 8.1 Within bibliographic data analysis, the similarity structure among
items can improve information retrieval results. Consider a collection of papers
{a,b, c,d, e} and some pairwise similarities alike(a, c), e.g., based on key word
analysis, cf. also Figure 3.1.

0. 8 :: alike(a, c). 0. 7 :: alike(a, b). 0. 8 :: alike(c, e).
0. 6 :: alike(b, c). 0. 9 :: alike(c, d). 0. 5 :: alike(e, d).

The explanation

q(X1, X2) : − alike(X1, X3), alike(X3, X4),
alike(X4, X5), alike(X5, X2).

covers tuple (a,d) with probability 0.7 · 0.6 · 0.8 · 0.5 = 0.168.

The main task studied in this chapter can be formalized as follows:

Task 8.1 (Explanation Learning)

Given • a ProbLog program T ,

• a language L of queries of the form (8.1) over the vocabulary of T ,

• one or more training examples in the form of ground atoms
id(t1, . . . , tn), and

• a function ψTid/n scoring queries on the examples,

find • an explanation q ∈ L that maximizes ψTid/n(q).
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In this chapter, we propose two different approaches to explanation learning. While
both extend well-known machine learning techniques that generate explanations
in a purely relational setting to probabilistic logic languages, they are based
on different types of input information. Probabilistic explanation based learning
requires background knowledge defining the example predicate id/n, which is used
to generate explanations deductively according to the structure of the most likely
proof of an example id(c1, . . . , cn). Probabilistic query mining, on the other hand,
does not rely on such background knowledge and generates explanations inductively
by successive refinement. Independent of the concrete setting used for explanation
learning, the resulting explanation together with a ProbLog program over the same
vocabulary defines a ranking of analogous examples.

8.2 Background: Constructing Explanations

This section reviews explanation based learning and query mining, two well-known
techniques for learning explanations in relational, non-probabilistic domains. We
conclude with a summary of their commonalities as well as their differences in
Section 8.2.3.

8.2.1 Explanation Based Learning

When searching for explanations, it is intuitively appealing to use as much domain
knowledge as possible in order to focus on plausible explanations. This idea forms
the basis of explanation based learning (EBL), which was a popular research
theme within the field of machine learning during the 80s. EBL is concerned with
finding plausible, abstracted explanations for particular examples using a logical
domain theory; we refer to [DeJong, 2004] for an overview and introduction.
Traditional explanation based learning was largely studied within first order
logic representations and explanations were built using deduction [Hirsh, 1987;
Van Harmelen and Bundy, 1988], though there was sometimes also an abductive
component [Cohen, 1992]. To make them applicable to other, analogous examples,
concrete explanations or proofs of given examples were variabelized. The resulting
abstracted explanations were then typically turned into rules that would be added
to the theory, often with the aim of speeding up further inference or extending an
imperfect domain theory.

EBL as conveniently formalized for Prolog [Hirsh, 1987; Van Harmelen and Bundy,
1988] computes an abstracted explanation from a concrete proof of an example.
Explanations use only so-called operational predicates, i.e. predicates that capture
essential characteristics of the domain of interest and should be easy to prove.
More formally, this leads to the following task description:



BACKGROUND: CONSTRUCTING EXPLANATIONS 155

Task 8.2 (Explanation Based Learning (EBL))

Given • an example id(t1, . . . , tn)

• a pure Prolog program T including a definition of the goal concept id/n

• a set of operational predicates occurring in the program

find an abstracted explanation in the form of a conjunction of literals with
operational predicates based on a proof of the example.

Explanation based learning starts from a definite clause theory T , that is a pure
Prolog program, and an example in the form of a ground atom id(t1, ..., tn).
It then constructs a refutation proof of the example using SLD-resolution,
cf. Section 2.1. Given such a proof for the example id(t1, ..., tn), explanation
based learning constructs an abstracted explanation, starting from the variabelized
goal, i.e. id(X1, ..., Xn) with different variables Xi, and then performing the same
SLD-resolution steps as in the proof for the example. The only difference is
that in the general proof atoms q(s1, ..., sr) for operational predicates q in a goal
?−g1, ..., gi, q(s1, ..., sr), gi+1, ..., gn are not resolved away. Also, the proof procedure
stops once the goal contains only atoms for operational predicates. The resulting
goal provides an abstracted explanation for the example. In terms of proof trees,
explanation based learning cuts off branches below operational predicates. It is
easy to implement the explanation based proof procedure as a meta-interpreter in
Prolog [Van Harmelen and Bundy, 1988; Hirsh, 1987].

Example 8.2 We extend Example 8.1 (ignoring probability labels for now) with
background knowledge defining that two items X and Y are related(X, Y) if they
are alike (such as a and c) or if X and some item Z which is related to Y are alike.

related(X, Y) : − alike(X, Y).
related(X, Y) : − alike(X, Z), related(Z, Y).

We declare alike/2 to be the only operational predicate, and use related(b, e)
as training example. EBL proves this goal using two instances of the operational
predicate, namely alike(b, c) and alike(c, e), and then produces the explanation
alike(X, Z), alike(Z, Y) for the abstract example related(X, Y). The successful
branches of the SLD-trees for related(b, e) and the abstract example related(X, Y)
are depicted in Figure 8.1; corresponding proof trees are in Figure 8.2. The result
can be turned into an explanation of the form (8.1) by adding a suitable clause
head:

exp related(X, Y) : − alike(X, Z), alike(Z, Y).
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?- r(b,e).

:- a(b,A), r(A,e).

:- r(c,e).

:- a(c,e).

[]

(a)

?- * r(X,Y).

:- * a(X,Z), r(Z,Y).

:- a(X,Z), * r(Z,Y).

:- a(X,Z), * a(Z,Y).

a(X,Z), a(Z,Y)

(b)

?- r(b,e).
?- r(a,e).

?- * r(X,Y).

:- a(b,e).
:- a(a,e).

:- * a(X,Y).

:- a(b,A), r(A,e).
:- a(a,B), r(B,e).

:- * a(X,Z), r(Z,Y).

:- r(c,e).
:- r(c,e).

:- a(X,Z), * r(Z,Y).

:- a(c,e).
:- a(c,e).

:- a(X,Z), * a(Z,Y).

[]
[]

a(X,Z), a(Z,Y)

(c)

Figure 8.1: (a) The successful branch of the SLD-tree for related(b,e) in
Example 8.2. (b) The corresponding branch for general goal related(X,Y), where
the asterisk separates the explanation constructed so far and the remaining query.
(c) A partial SLD-tree for Example 8.12, where each node contains the current
status for the two training examples as well as the general version.

8.2.2 Query Mining

In the absence of domain knowledge, alternative strategies have to be adopted
to construct explanations based on the database only, for instance by finding
patterns in the data. The traditional local pattern mining task is that of identifying
those elements in a language of patterns that satisfy the constraints imposed by a
selection predicate w.r.t. a given database [Mannila and Toivonen, 1997]. Numerous
works have been devoted to local pattern mining since the introduction of item-set
mining, cf. [Agrawal et al., 1996]. They can be distinguished alongst three main
dimensions. The first is concerned with the type of pattern considered, that is
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related(b,e)

similar(b,c) related(c,e)

similar(c,e)

(a)

related(X,Y)

similar(X,Z) related(Z,Y)

similar(Z,Y)

(b)

Figure 8.2: (a) Proof tree for related(b, e) in Example 8.2, and (b) for the abstract
example related(X, Y), stopped at operational predicates.

whether one mines for item-sets, episodes and strings, graphs or relational patterns.
The second is concerned with the nature of the selection predicate applied [Ng
et al., 1998], such as whether one employs frequency, confidence, significance, lift,
closedness, freeness, and so forth. Finally, the third distinguishes two types of
desired answer sets: all patterns covered by the selection predicate in the case of
frequent pattern mining [Agrawal et al., 1996], or the best k patterns in the case
of correlated pattern mining [Morishita and Sese, 2000].

Query mining upgrades traditional local pattern mining to the representations of
multi-relational databases [Dehaspe et al., 1998]; it is also known under the name
of query flocks [Tsur et al., 1998]. Queries in a relational database form a very
general type of pattern that can emulate many other pattern domains, such as
item-sets, sequences, trees and, as in our motivating application, graphs.

Query Mining aims at finding all queries satisfying a selection predicate φ. It can
be formulated as follows, cf. [Dehaspe et al., 1998; De Raedt and Ramon, 2004]:

Task 8.3 (Query Mining)

Given • a database D including the designated relation id,

• a language L containing queries of the form (8.1) over the vocabulary
of D, and

• a selection predicate φ,
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find all queries q ∈ L such that φD(q) = true.

In contrast to EBL as defined in Task 8.2, query mining does not rely on background
knowledge to deduce explanations, but induces them by combining literals that
can be matched against the database, which can be seen as a way of hypothesizing
explanations by freely combining individual properties. To exclude undesired
combinations, for instance including isolated literals not related to the rest of the
query, additional syntactic or semantic restrictions, called bias, can be imposed
on the form of queries by explicitly specifying the language L, cf. [Dehaspe et al.,
1998; Tsur et al., 1998; De Raedt and Ramon, 2004].

To structure and prune the search, query mining typically relies on a generality
relation � between patterns and requires the selection predicate to be anti-
monotonic with respect to this relation. A predicate φ is anti-monotonic w.r.t. a
generality relation � if and only if for all pairs of queries q1 and q2, if q1 � q2
then φ(q1) ≥ φ(q2). The generality relation employed in this work is OI-
subsumption [Esposito et al., 2000], as the corresponding notion of subgraph
isomorphism is favorable within the intended application in network mining. More
formally, a conjunctive query q1 represented as a set of literals OI-subsumes a
conjunctive query q2, notation q1 � q2, if and only if there exists a substitution
θ = {V1/t1, · · · , Vn/tn} such that q1θ ⊆ q2 and the ti are different constants not
occurring in q1.

Example 8.3 For queries Q1 to Q3 below, query Q1 OI-subsumes Q2, but neither
Q1 nor Q2 OI-subsumes Q3: for Q1, Y and Z cannot both be mapped to c; for Q2,
Y cannot be mapped to c as c already occurs in Q2.

(Q1) q(X) : − alike(X, Y), alike(Y, Z).

(Q2) q(X) : − alike(X, Y), alike(Y, c).

(Q3) q(X) : − alike(X, c), alike(c, c).

The most prominent selection predicate is minimum frequency, that is, selected
queries have to cover a minimum number of tuples in the designated relation.

Example 8.4 Let COUNTD(q(∗)) denote the number of different ground instances
id(X) for which q(X) is provable in D. Minimum frequency

φD(q) = COUNTD(q(∗)) ≥ t (8.2)

is anti-monotonic with respect to OI-subsumption: if q1 � q2, that is, q1θ ⊆ q2,
q1 covers at least all the instances covered by q2, and thus COUNTD(q1(∗)) ≥
COUNTD(q2(∗)).
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Within the intended application in network mining, the pattern language can
be restricted to connected subgraphs by requiring linkage of variables. A query
q(X) : −l1, ..., ln is linked if and only if for all i > 0 at least one variable appearing
in li also appears in q(X) : −l1, ..., li−1.

Example 8.5 Queries Q1 and Q2 above are linked, but Q3 is not, as the last
literal does not contain variables, and neither is the following query, where all
variables in alike(Y, Z) are new:

q(X) : − alike(Y, Z).

Correlated Pattern Mining [Morishita and Sese, 2000] uses both positive and negative
examples, specified as two designated relations id+ and id− of the same arity, to
find the top k patterns, that is, the k patterns scoring best w.r.t. a function ψ. The
function ψ employed is convex, e.g. measuring a statistical significance criterion
such as χ2, cf. [Morishita and Sese, 2000], and measures the degree to which
the pattern is statistically significant or unexpected. As an instance of Task 8.3,
correlated pattern mining thus uses the selection predicate

φD(q) = q ∈ argkmax
q∈L

ψD(q) (8.3)

Example 8.6 Consider the database of Example 8.1 with id+ = {a, c} and id− =
{d, e}, ignoring probability labels. A simple correlation function is

ψD(q) = COUNTD
+
(q(∗))− COUNTD

−
(q(∗)), (8.4)

where COUNTD+(q(∗)) and COUNTD−(q(∗)) are the numbers of different provable
ground instances of q among the tuples in id+ and id−, respectively. We obtain
ψD(Q4) = 2− 0 = 2 and ψD(Q5) = 1− 1 = 0 for queries

(Q4) q(X) : − alike(X, Y), alike(Y, Z).

(Q5) q(X) : − alike(X, d).

Multi-relational query miners such as the ones of [Dehaspe et al., 1998; De Raedt and
Ramon, 2004] often follow a level-wise approach for frequent query mining [Mannila
and Toivonen, 1997], where at each level new candidate queries are generated from
the frequent queries found on the previous level. In contrast to Apriori, instead
of a “joining” operation, they employ a refinement operator ρ to compute more
specific queries, and also manage a set of infrequent queries to take into account
the specific language requirements imposed by L. For instance, if L requires clauses
to be linked, the language is not necessarily anti-monotonic.
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Algorithm 8.1 Query mining
1: function SelectedQueries(refinement operator ρ, database D, anti-

monotonic selection predicate φ)
2: C := {q(X)}
3: i := 0
4: while C 6= ∅ do
5: Si := {h ∈ C | φD(h) = true}
6: Vi := C − Si
7: C := {h ∈ ρ(h′) | h′ ∈ Si and ¬∃s ∈

⋃
j Vj : s � h}

8: i := i+ 1
9: return ∪iSi

Example 8.7 Consider the clause

(Q6) q(X) : − alike(X, Y), alike(Y, Z).

The minimal generalizations of Q6 are

(Q7) q(X) : − alike(Y, Z).

(Q8) q(X) : − alike(X, Y).

Before considering Q6, the Apriori algorithm would require that both Q7 and Q8
have been investigated at the previous level. However, as Q7 is not linked, it would
not be generated by typical multi-relational data mining algorithms.

Apart from this, the algorithm as outlined in Algorithm 8.1 proceeds in the usual
level-wise way, starting at level i = 0 with the most general query q(X) in its list
of candidates C. At each level, all candidates of the current level are processed: if
a query satisfies the anti-monotonic selection predicate φ, it is added to the list Si
of solutions, otherwise, it is added to the list Vi of queries violating the selection
predicate. The next set of candidates is the set of all queries that are immediate
specializations obtained by applying the refinement operator ρ on queries in Si,
but filtering out the ones that specialize a query in some Vj .

A key component of the algorithm is the refinement operator used to specialize
queries. A refinement operator ρ is a function ρ : L → 2L such that

∀q ∈ L : ρ(q) ⊆ {q′ ∈ L|q � q′}.

Various properties of refinement operators have been considered and are desirable
for different types of algorithms [Nienhuys-Cheng and de Wolf, 1997]. For complete
algorithms, which search for all solutions, it is essential that the operator is optimal
w.r.t. L. A refinement operator ρ is optimal for L if and only if for all queries
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q ∈ L there is exactly one sequence of queries q0, ..., qn such that q0 = q(X) (the
most general element in the search space) and qn = q for which qi+1 ∈ ρ(qi).
Optimal refinement operators thus ensure that there is exactly one path from the
most general query q(X) to every query in the search space. This is typically
achieved by defining a canonical form for possible querys, often based on some
lexicographic order. For instance, in item-set mining, patterns are canonically
represented as sorted lists and refined by adding a new item to the end of the
list, respecting the order. The graph mining algorithm gSpan [Yan and Han,
2002] employs canonical labels for graphs to structure the search space. Various
canonical forms for conjunctive queries have been studied, cf. [Nĳssen and Kok,
2003; De Raedt and Ramon, 2004; Garriga et al., 2007]. Here, we shall employ a
canonical form based on ordering literals primarily on their arguments. This choice
is motivated by Prolog’s evaluation mechanism, where additional atoms using the
same variables but different predicates can lead to early failure and thus prune the
search space. For instance, when evaluating a given subgraph query in the network
setting, checking the type of a node early can avoid matching part of the pattern
for nodes of the wrong type, which would not be possible for an order primarily
based on predicates.

A query q(X) : −l1, . . . , ln with variables V1, . . . , Vm (ordered according to their
first occurrence from left to right) is in canonical form if and only if [l1, . . . , ln] is
smallest among all <l-ordered lists that can be obtained using the same type of
variable numbering for permutations of [l1, . . . , ln]. Given a user-defined order on
predicate names <p, the order <l on literals is defined as follows:

1. Constants are ordered lexicographically.

2. Variables are ordered by first occurrence: Vi <l Vj iff i < j

3. Constants come before variables: c <l V for constants c and variables V

4. Literals with same predicate (but possibly different arity) are ordered
lexicographically using the order on terms specified above:

• p(t1) <l p(t1, t2, . . .)
• p(t1, . . .) <l p(t′1, . . .) if t1 <l t′1
• p(t1, t2, . . .) <l p(t1, t′2, . . .) iff p(t2, . . .) <l p(t′2, . . .)

5. Literals with identical arguments are ordered by predicate name:
p1(t) <l p2(t) iff p1 <p p2

Example 8.8 While Q9 is in canonical form, the logically equivalent Q10 is not,
as it can be transformed into Q9 by exchanging alike(X, D) and alike(X, E):

(Q9) q(X) : − alike(X, A), alike(X, B), alike(A, C).

(Q10) q(X) : − alike(X, D), alike(X, E), alike(E, F).
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Algorithm 8.2 Correlated pattern mining
1: function CorrelatedQueries(refinement operator ρ, database D, con-

stant k, correlation measure ψ, upper bound function u)
2: R := {q(X)}
3: i := 0; t := −∞; T = ∅
4: while R 6= ∅ do
5: C := R ∪ T
6: if |C| ≥ k then
7: Let q be the k-th best query in C according to ψD
8: t := ψD(q)
9: T := {h ∈ C | ψD(h) ≥ t}

10: Vi := {h ∈ C | uD(h) < t}
11: S := {h ∈ C | uD(h) ≥ t}
12: R := {h ∈ ρ(h′) | h′ ∈ S and ¬∃s ∈

⋃
j Vj : s � h}

13: i := i+ 1
14: return T

The optimal refinement operator ρo used in this work ensures that queries are
linked and is defined as

ρo(Q) = {[Q, p(X1, . . . , Xt)] | p a relation

and ∃i ≤ t : Xi occurs in Q and

[Q, p(X1, . . . , Xt)] is in canonical form} (8.5)

Example 8.9 There are four optimal refinements of query Q5:

q(X) : − alike(X, d), alike(X, e).
q(X) : − alike(X, d), alike(X, X).
q(X) : − alike(X, d), alike(X, Y).
q(X) : − alike(X, d), alike(Y, X).

All other candidate literals are smaller than alike(X, d) according to <l and would
therefore result in non-canonical patterns.

Morishita and Sese [2000] adapt Apriori for finding the top k patterns w.r.t. a
boundable function ψ, i.e. for the case where there exists a function u (different
from a global maximum) such that ∀g, s ∈ L : g � s→ ψ(s) ≤ u(g).

Example 8.10 The function ψD(q) = COUNTD+(q(∗)) − COUNTD−(q(∗))
introduced in Example 8.6 is upper-boundable using u(q) = COUNTD+(q(∗)). For
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query c+ c− ψ
1 q(X) :- alike(X,Y) 2 1 1
2 q(X) :- alike(X,a) 0 0 0
3 q(X) :- alike(X,b) 1 0 1
4 q(X) :- alike(X,c) 1 0 1
5 q(X) :- alike(X,d) 1 1 0
6 q(X) :- alike(X,e) 1 0 1
7 q(X) :- alike(Y,X) 1 2 - 1
8 q(X) :- alike(a,X) 1 0 1
9 q(X) :- alike(b,X) 1 0 1

10 q(X) :- alike(c,X) 0 2 -2
11 q(X) :- alike(d,X) 0 0 0
12 q(X) :- alike(e,X) 0 1 -1

Table 8.1: Counts on id+ and id− and ψ-values obtained during the first level of
mining in Example 8.11. The current minimal score for best queries is 1, i.e. only
queries with ψ ≥ 1 or c+ ≥ 1 will be refined on the next level.

any g � s, ψD(s) ≤ COUNTD+(s(∗)) ≤ COUNTD+(g(∗)), as COUNTD−(s(∗)) ≥ 0
and COUNTD is anti-monotonic.

Again, at each level new candidate queries are obtained from those queries
generated at the previous level that qualify for refinement. More specifically,
Algorithm 8.2 maintains a set T containing the current top k queries and a
threshold t corresponding to the lowest score of a query in T . At level i, the set of
candidate queries C contains the queries in T as well as the ones obtained from
the refinement operator in the previous level. After the set of best queries and
the threshold have been updated, candidate queries with upper bound below the
new threshold are stored in the set Vi of queries known to violate the selection
predicate. All other candidate queries are refined and the result is filtered against
the discarded queries before being passed on to the next level.

Example 8.11 Assume we mine for the 3 best correlated queries in Example 8.6.
Table 8.1 shows counts on id+ and id− and ψ-values obtained during the first level
of mining. The highest score achieved is 1. Queries 1, 3, 4, 6, 8, 9 are the current
best queries and will thus be refined on the next level. Queries 5 and 7 have lower
scores, but upper bound c+ = 1, implying that their refinements may still belong to
the best queries and have to be considered on the next level as well. The remaining
queries are pruned, as they all have an upper bound c+ = 0 < 1, i.e. all their
refinements are already known to score lower than the current best queries.
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8.2.3 Deductive and Inductive EBL

Both explanation based learning and query mining are instances of explanation
learning as specified in Task 8.1, albeit in a setting without probability labels.
Their key difference is the type of reasoning they employ, which is motivated by
the type of information available in the respective settings. In EBL, background
knowledge encoding structural information about possible explanations is used to
reason deductively, that is, to construct explanations based on the proof structure
of a given example query. Such background knowledge is not available in query
mining, which therefore follows an inductive approach of systematically generating
explanations using a refinement operator. The learning process is guided by a
kind of implicit background knowledge in the form of multiple examples that
should or should not be considered analogous instead of by explicit structural
information. The distinction between inductive and deductive generalization goes
back to [Mitchell et al., 1986], where it has been argued that the power of deductive
generalization lies in the ability to justify generalizations in terms of the background
knowledge. However, inductive generalization is more flexible as it does not rely on
the availability of explicit knowledge about the domain and concept of interest, but
rather combines whatever information can be found in the database. While Mitchell
et al. [1986] have restricted the use of the term explanation-based to the deductive
setting, referring to the inductive setting as similarity-based, we use explanation in
both settings to emphasize the common core of our approaches, which both learn
explanations, though on somewhat different levels. The background knowledge
in EBL offers a powerful tool to narrow the search space and to easily define
complex explanation languages, such as for example a path connecting a set of
input nodes. While EBL is thus often more efficient to use, this typically comes at
the price of a more restricted explanation language. Indeed, in the network context,
query mining might identify a path connecting a set of input nodes, but also more
complex subgraph structures. From a user perspective, writing definite clauses as
background knowledge for EBL is typically much easier than declaring types and
modes to specify the language bias for query mining.

8.3 Incorporating Probabilistic Information

We now extend explanation based learning and query mining to take into account
probabilistic information, which provides two alternative instances of explanation
learning as defined in Task 8.1.

As we will see, besides the differences inherited from their logical counterparts,
probabilistic explanation based learning (PEBL) and probabilistic query mining also
differ in the way probabilities are integrated. While the explanation probability
naturally lends itself as basis for probabilistic explanation based learning, the
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choice of probability for query mining is open, and in principle, any of the exact or
approximate inference methods discussed in Chapter 4 could be used. Furthermore,
in PEBL, probabilities drive the search for the most likely explanation, that is,
probabilistic and logical inference are interleaved, while probabilistic query mining
retains the basic algorithms of standard query mining and merely uses probabilistic
inference to score patterns obtained from the refinement operator.

8.3.1 Probabilistic Explanation Based Learning

Probabilistic explanation based learning (PEBL) differs from EBL as defined in
Task 8.2 in two ways: it uses a probabilistic Prolog program instead of a Prolog
program, and the explanation to be returned is based on the most likely proof of the
example. Using PEBL for explanation learning as defined in Task 8.1 thus restricts
the explanation language to conjunctions of literals with operational predicates,
and employs the explanation probability of the underlying proof as scoring function.

Computing the most likely proof is one of the basic inference tasks in ProbLog,
solved in Algorithm 4.4 by integrating SLD-resolution with iterative deepening
search based on the probabilities of derivations. To use ProbLog for PEBL, we
extend this algorithm to simultaneously generate the explanation as described
for EBL in Section 8.2.1, maintaining the tight integration of probabilistic and
logical inference. We next discuss two important aspects of combining ProbLog
and EBL, namely the interaction between uncertainty and operationality, and the
relationship between learned explanations and the original background theory.

In EBL, literals with non-operational predicates in the abstracted explanation
are resolved against the same clause as the corresponding literal in the concrete
proof of the example. For predicates defined in terms of ground probabilistic facts,
this would introduce example-specific groundings into the explanation, which is
undesirable in general. Simply dropping such a literal would not only cause the
probability of the training example being covered by the resulting explanation to
be higher than its original explanation probability, but could also lose unification
information. To avoid these complications, we require probabilistic facts to either
be operational or else to only occur below operational predicates in the proof tree,
that is, in the definition of operational predicates in the background knowledge.

Explanations constructed in EBL follow deductively from the background theory.
In ProbLog, the logical consequences of the background knowledge depend on the
interpretation of the probabilistic facts. The probability of the most likely proof
as used in PEBL corresponds to the probability that this concrete instance of
the resulting explanation is entailed by the ProbLog program. However, it only
provides an upper bound on the probability of the abstracted explanation being
entailed, which depends on all other possible groundings as well. The probability
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is thus entirely example-specific2 and merely serves to guide the search for the best
explanation given the training example.

Probabilistic explanation based learning as incorporated in ProbLog offers natural
solutions to two issues traditionally discussed in the context of explanation based
learning [Mitchell et al., 1986; Langley, 1989]. The first one is the multiple
explanation problem, which is concerned with choosing the proof to be abstracted
for examples having multiple proofs. This problem arises in many applications
where there are various possible explanations as to why a particular query succeeds.
For instance, in our biological link mining domain, a gene can be linked to a
particular disease in several ways. The use of a sound probabilistic framework
naturally deals with this issue by selecting the most likely explanation. The second
problem is that of generalizing from multiple examples, another issue that received
quite some attention in traditional explanation based learning. To realize this in
our setting, we modify the best-first search algorithm so that it searches for the
most likely abstracted explanation shared by the n examples e1, ..., en. Starting
from the variabelized atom e, we compute n + 1 SLD-resolution derivations in
parallel. A resolution step resolving an atom for a non-operational predicate in
the abstracted proof for e is allowed only if the same resolution step can also be
applied to each of the n parallel derivations. Atoms corresponding to operational
predicates are – as sketched above – not resolved in the abstracted proof, but it
is nevertheless required that for each occurrence of these atoms in the n parallel
derivations, there exists a resolution derivation.

Example 8.12 Consider again our running example, and assume that we now
want to construct a common explanation for related(b, e) and related(a, e).
We thus have to simultaneously prove both examples and the variabelized goal
related(X, Y). This is illustrated in Figure 8.1(c). After resolving all three goals
with the first clause for related/2, we reach the first instance of the operational
predicate alike/2 and thus have to prove both alike(b, e) and alike(a, e). As
proving alike(b, e) fails, the last resolution step is rejected and the second clause
for related/2 used instead. As both alike(b, A) and alike(a, B) can be proven,
alike(X, Z) is added to the explanation, and the procedure continues with the goals
related(c, e), related(c, e) and related(Z, Y). This succeeds using the base case
and adds alike(Z, Y) to the explanation, resulting in the explanation

exp related(X, Y) : − alike(X, Z), alike(Z, Y).

To reason by analogy, it then suffices to add an explanation generated by PEBL
to the input program. Posing queries to the resulting predicate returns tuples

2The part related to the general explanation mentioned in [Kimmig et al., 2007] is due to the
early formulation of ProbLog, where all groundings of a probabilistic clause were interpreted as a
single random event, cf. Footnote 1 in Section 3.1, which made it possible to resolve against such
clauses in the abstracted explanation without the complications mentioned above.
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analogous to the training examples, which can be ranked according to probability,
and hence, analogy.

Example 8.13 Using the explanation of Example 8.12 to query for covered
instances returns the following answers:

0.8 · 0.9 = 0.72 exp related(a, d)
0.8 · 0.8 = 0.64 exp related(a, e)
0.6 · 0.9 = 0.54 exp related(b, d)
0.6 · 0.8 = 0.48 exp related(b, e)
0.7 · 0.6 = 0.42 exp related(a, c)
0.8 · 0.5 = 0.40 exp related(c, d)

8.3.2 Probabilistic Local Query Mining

Using local query mining for explanation learning as defined in Task 8.1 restricts
the explanation language to the set of conjunctive queries specified by the language
bias. To obtain the required probabilistic scoring function, we change the selection
predicate φ or correlation measure ψ to work with probabilistic databases, that
is, to employ a probabilistic membership function. In non-probabilistic frequent
query mining, every tuple in the relation id either satisfies the query or not. For
instance, for a conjunctive query q and a 0/1 membership function MD(q(t)), we
can explicitly write the counting function underlying frequency as a sum:

COUNTD(q) =
∑
t∈id

MD(q(t)) (8.6)

On a more general level, this type of function can be seen as aggregate of the
membership function MD(q(t)).

To apply the algorithms sketched in Section 8.2.2 with a probabilistic database D,
it suffices to replace the deterministic membership function MD(q(t)) with
a probabilistic variant. Possible choices for such a probabilistic membership
function PD(q(t)) include the success probability PDs (q(t)) or the explanation
probability PDx (q(t)) as introduced for ProbLog in Equations (3.16) and (3.15) on
page 35. Note that using such query probabilities as probabilistic membership
function is anti-monotonic, that is, if q1 � q2 then PD(q1(t)) ≥ PD(q2(t)). A
natural choice of selection predicate φ is the combination of a minimum threshold
with an aggregated probabilistic membership function

aggD(q) = AGGt∈id PD(q(t)). (8.7)

Here, AGG denotes an aggregate function such as
∑

, min, max or
∏

, which is
to be taken over all tuples t in the relation id. Choosing

∑
with a deterministic
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membership relation corresponds to the traditional frequency function, whereas∏
computes a kind of likelihood of the data. Note that whenever the membership

function P is anti-monotone, selection predicates of the form aggD(q) > c are
anti-monotonic with regard to OI-subsumption, which is crucial to enable pruning.

When working with both positive and negative examples, the main focus lies on
finding queries with a high aggregated score on the positives and a low aggregated
score on the negatives. Note that using unclassified instances id corresponds to
the special case where id+ = id and id− = ∅. In the following, we will therefore
consider instances of the selection function (8.7) for the case of classified examples
id+ and id− only. We use the following three functions:

pfD(q) =
∑
t∈id+

PD(q(t))−
∑
t∈id−

PD(q(t)) (8.8)

LLD(q) =
∏
t∈id+

PD(q(t)) ·
∏
t∈id−

(
1− PD(q(t))

)
(8.9)

LLDn (q) =
∏
t∈id+

n

PD(q(t)) ·
∏
t∈id−

(
1− PD(q(t))

)
(8.10)

Here, id+
n contains the n highest scoring tuples in id+. We obtain an upper bound

on each of these functions by ignoring the scores of negative examples, i.e. the
aggregation over id−. We will omit D if it is clear from the context.

Choosing sum as aggregation function results in a probabilistic frequency pf (8.8)
also employed by [Chui et al., 2007] in the context of item-set mining.

Example 8.14 Reconsider Example 8.11, where we mine for top k = 3
explanations using the probabilistic frequency pf with PD(q(t)) = PDx (q(t)).
Table 8.2 shows the scores obtained during the first level. As an example, for
query 1 we obtain P (a)+P (c)− (P (d)+P (e)) = 0.8+0.9− (0+0.5). The threshold
for the three best queries at this point is 0.8, therefore, queries 1, 4, 5, 6, 7 and 8
will be refined, whereas the remaining ones are pruned.

Using product, on the other hand, defines a kind of likelihood LL (8.9), as also
used in ProbLog theory compression, cf. Equation (6.2) (p. 117).

Example 8.15 Consider frequent pattern mining with LLD(q) > 0 for our example
database with id = id+ = {a, c}. The only query that will be refined after the first
level is q(X) : − alike(X, Y), as all other queries have probability zero on at least
one of the elements of id.

As using the product in combination with a non-zero threshold implies that all
positive examples must be covered with non-zero probability, which is often overly
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query
∑
id+

∑
id− pf

1 q(X) :- alike(X,Y) 1.7 0.5 1.2
2 q(X) :- alike(X,a) 0 0 0
3 q(X) :- alike(X,b) 0.7 0 0.7
4 q(X) :- alike(X,c) 0.8 0 0.8
5 q(X) :- alike(X,d) 0.9 0.5 0.4
6 q(X) :- alike(X,e) 0.8 0 0.8
7 q(X) :- alike(Y,X) 0.8 1.7 -0.9
8 q(X) :- alike(a,X) 0.8 0 0.8
9 q(X) :- alike(b,X) 0.6 0 0.6

10 q(X) :- alike(c,X) 0 1.7 -1.7
11 q(X) :- alike(d,X) 0 0 0
12 q(X) :- alike(e,X) 0 0.5 -0.5

Table 8.2: Aggregates on id+ and id− and probabilistic frequency obtained during
the first level of correlated query mining with k = 3 in Example 8.14. The current
minimal score for best explanations is 0.8, i.e. only queries with pf ≥ 0.8 or∑
id+ ≥ 0.8 will be refined on the next level.

query LLD1 (q)
q(X) :- alike(X,Y) 0.9
q(X) :- alike(X,b) 0.7
q(X) :- alike(X,c) 0.8
q(X) :- alike(X,d) 0.9
q(X) :- alike(X,e) 0.8
q(X) :- alike(Y,X) 0.8
q(X) :- alike(a,X) 0.8
q(X) :- alike(b,X) 0.6

Table 8.3: Queries refined after the first level of query mining using the modified
likelihood score LL1 in Example 8.16.

harsh, we also introduce a softened version LLn (8.10) of the likelihood, where
n < |id+| examples have to be covered with non-zero probability. This is achieved
by restricting the set of tuples in the product to the n highest scoring tuples in
id+, thus integrating a deterministic (anti-monotonic) selection predicate into the
probabilistic one.

Example 8.16 Using LLD1 (q) > 0 in Example 8.15, the eight queries shown in
Table 8.3 cover at least one example and will thus be refined after the first level.
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8.4 Implementation

The implementation of PEBL in Yap-5.1.2 used in the experiments of Section 8.5.1
combines a classical EBL meta-interpreter with an iterative-deepening meta-
interpreter for ProbLog as introduced in [De Raedt et al., 2007b].

Our implementation of correlated query mining is built upon and extends the
public version of ProbLog as introduced in Chapter 4 as well as the public domain
implementation of the (non-probabilistic) frequent query mining system c-armr
of De Raedt and Ramon [2004].

As in c-armr, the language bias can be defined using type and mode restrictions
as well as background knowledge. This reduces the number of queries generated
by taking advantage of general knowledge about the domain of interest. As each
query is evaluated on all training examples in turn, we prune query evaluation as
soon as the current upper bound of its aggregated score falls below the threshold,
where we include maximum estimates for positive examples not processed yet. The
user can define an application specific query reordering function aimed at more
efficient logical inference.

For correlated query mining we further modified c-armr. First, to deal with positive
and negative examples, we keep track of queries that are infrequent, but cannot be
pruned as their upper bound is still promising. Second, we modified the search
strategy to dynamically adapt the threshold to the score of the kth best query
whenever the set of k best queries found so far changes, thereby allowing for more
pruning.

8.5 Experiments

We experimentally evaluate our two approaches to explanation learning in the
context of the weighted biological database of Sevon et al. [2006], cf. also Section 2.5,
where we use a probabilistic network encoding with one probabilistic relation
edge/3 describing edges in terms of two nodes and a label (e.g. contains), and
a deterministic relation node/2 assigning a label (e.g. ’Gene’) to each node, see
Figure 8.3 for some illustration in the context of explanations.

While both methods ultimately aim at the same task of finding analogous examples,
the experimental evaluation is adapted to the specific setting the respective method
tackles. For PEBL, we therefore focus on examples consisting of multiple nodes
in the network, define connections between those in the background knowledge,
and evaluate resulting explanations both inside their domain of origin and across
domains. For probabilistic query mining, on the other hand, we choose single nodes
as examples, connected labeled graphs starting from those nodes as explanation
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e path(A,B) :- node(A,gene), edge(A,C,belongs to),
node(C,homologgroup), edge(B,C,refers to), node(B,phenotype),
nodes distinct([B,C,A]).

e path(A,B) :- node(A,gene), edge(A,C,codes for), node(C,protein),
edge(D,C,subsumes), node(D,protein), edge(D,E,interacts with),
node(E,protein), edge(B,E,refers to), node(B,phenotype),
nodes distinct([B,E,D,C,A]).

e path(A,B) :- node(A,gene), edge(A,C,participates in),
node(C,pathway), edge(D,C,participates in), node(D,gene),
edge(D,E,codes for), node(E,protein), edge(B,E,refers to),
node(B,phenotype), nodes distinct([B,E,D,C,A]).

e path(A,B) :- node(A,gene), edge(A,C,is found in),
node(C,cellularcomponent), edge(D,C,is found in),
node(D,protein), edge(B,D,refers to),
node(B,phenotype), nodes distinct([B,D,C,A]).

Figure 8.3: Some explanations for path(A,B), connecting gene A to phenotype B.

language, and focus evaluation on one domain. Furthermore, as probabilistic query
mining offers several choices concerning correlation measures and is computationally
demanding, we also study performance in terms of runtimes and scalability for this
method.

8.5.1 Probabilistic EBL

As an example problem to be studied using PEBL, we looked at connections
between disease genes and the corresponding phenotype for Alzheimer disease (resp.
asthma). Since the key motivation for employing probabilistic explanation based
learning is to be able to reason by analogy or to find analogous examples, we set
up experiments to answer the following questions:

Q1 Does PEBL produce meaningful examples when reasoning by analogy?

Q2 Can we find common explanations?

Q3 Can PEBL’s explanations induced on one domain (say Alzheimer disease) be
transferred to another one (say asthma)?

To answer those questions, we use the Alzheimer and Asthma subgraphs
as described in Appendix A. We modify the predicate path/2 as given by
definition (4.14), page 81, to use edge/3 and to additionally query node/2 for
each newly visited node. We define predicates related to node and edge types as
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operational. While the definition of path ensures acyclicity during construction
of explanations, this requirement is not captured by the resulting sequence of
edge and node atoms. We therefore terminate each proof with an additional
operational predicate nodes distinct/1 whose argument is the list of visited
nodes to ensure acyclic paths when reasoning by analogy. We start by studying
example explanations for path(A,B) obtained from the graphs, where A is a gene
and B a phenotype (Figure 8.3). These explanations are all semantically meaningful.
For instance, the first one indicates that gene A is related to phenotype B if A
belongs to a group of homologous (i.e., evolutionarily related) genes that relate
to B. The three other explanations are based on interaction of proteins: either an
explicit one, by participation in the same pathway, or by being found in the same
cellular component. This last discovery suggests that a clause to describe different
kinds of possible interactions would be a useful feature in the logical theory. It thus
seems that PEBL can produce useful explanations and can help the user discover
and synthesize new information, which answers Q1 positively.

To further study the questions more objectively, we consider a slightly artificial
setting. We define a target predicate connect/3 as

connect(X, Y, Z) : − path(X, Z), path(Y, Z), path(X, Y).

This predicate succeeds if three nodes are connected to each other. While each
of the three paths needs to be acyclic, nodes and edges can arbitrarily be shared
amongst them. We use graphs Alzheimer1 and Asthma1 with examples where Z
is a phenotype and X and Y are genes.

Resulting explanations are used to classify ordered triplets (G1,G2,P) of nodes,
where G1 and G2 are different genes and P is a phenotype3. We call such a triplet
positive with respect to the given network if both genes are annotated with the
graph’s disease and P is the corresponding phenotype, and negative otherwise.
Thus for Alzheimer1, there are 14 ·13 ·1 = 182 positive and 29 ·28 ·3−182 = 2254
negative triplets. Table 8.4 summarizes these statistics for all graphs.

We use connect(G1,G2,P) for positive triplets as training examples. As connect
is symmetric in the first two arguments, we only consider one ordering per pair
of genes, which yields in total 14 · 13/2 = 91 training examples for Alzheimer1
(resp. 21 for Asthma1). The aim is to construct explanations for connections
between the nodes of positive triplets, and use those to obtain for each test graph
a ranked list of triplets covered by the explanation. To do so, we first compute
the most likely explanation for each individual training example e, and then rank
all instances covered by the resulting explanation according to their explanation
probability. Table 8.5 summarizes classification accuracies obtained using those
rankings and the classification criterion on triplets as described above. Values are
averaged over all training examples. On graphs describing the same disease as

3The background knowledge ensures that this type information is part of any explanation.
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depth nodes edges ag ng pt pos neg
Alzheimer1 4 122 259 14 15 3 182 2254
Alzheimer2 5 658 3544 17 20 4 272 5056
Alzheimer3 4 351 774 72 33 3 5112 27648
Alzheimer4 5 3364 17666 130 55 6 16770 187470
Asthma1 4 127 241 7 12 2 42 642
Asthma2 5 381 787 11 12 2 110 902

Table 8.4: Graph characteristics: search depth used during graph extraction,
numbers of nodes and edges, number of genes annotated resp. not annotated with
the corresponding disease and number of phenotypes, number of positive and
negative examples for connecting two genes and a phenotype.

Alzheimer1
pos(1) pos(3) pos(5) pos n pos a prec

Alzheimer1 0.95 2.53 3.95 6.91 16.82 0.46
Alzheimer2 0.84 2.24 3.60 7.37 18.65 0.42
Alzheimer3 0.99 2.64 4.09 23.20 126.09 0.48
Alzheimer4 0.84 2.23 3.58 7.37 18.80 0.42
Asthma1 0.09 0.26 0.44 2.07 2.07 0.02
Asthma2 0.08 0.23 0.38 2.00 2.00 0.01

Asthma1
pos(1) pos(3) pos(5) pos n pos a prec

Alzheimer1 1.00 3.00 4.86 6.86 10.57 0.23
Alzheimer2 0.86 2.86 4.71 6.86 14.56 0.22
Alzheimer3 1.00 2.71 4.14 6.86 28.00 0.24
Alzheimer4 0.86 2.29 3.43 5.14 28.00 0.15
Asthma1 1.00 3.00 4.86 17.14 17.14 0.34
Asthma2 0.86 2.57 4.29 16.57 16.57 0.20

Table 8.5: Averaged results over all examples learned on Alzheimer1 (top) resp.
Asthma1 (bottom) and evaluated on 6 different graphs (lines Alzheimer1–4,
Asthma1–2): number of positives among the first k answers (pos(k)), number of
positives returned before the first negative (pos n), absolute number of positives
among examples with non-zero probability (pos a), and precision w.r.t. all examples
with non-zero probability (prec).

the training graph, the top k instances for k = 1, 3, 5 are mostly positive, which
again gives a positive answer to Q1. We obtained 26 different explanations from
Alzheimer1 and 3 different explanations from Asthma1. Most explanations have
been learned on at least two examples, and the biggest set of examples which
shared the most likely explanation contains 12 examples. Figure 8.4 shows an
example explanation found both on Alzheimer1 and on Asthma1. This indicates
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g hg
belongs

ghg
belongs

pt
refers refers

Figure 8.4: One explanation for connect(G1,G2,P), where double circles mark
answer variables, and node types used are gene (g), phenotype (pt) and
homologgroup (hg).

a positive answer to question Q2, discovery of common explanations. The answer
to Q3, if explanations can be transferred, is less conclusive: while transfer from
asthma to Alzheimer disease achieves good results, the other direction is a lot
worse. However, one has to take into account that 23 of the 26 explanations learned
on Alzheimer disease do not return any example at all on asthma graphs, one only
returns negative instances and the remaining 2 carry over very well, returning 30
resp. 16 positive instances before returning negative ones. At the same time, two of
the three explanations learned on asthma were also learned on Alzheimer disease,
which might explain their good performance there.

8.5.2 Probabilistic Query Mining

To evaluate our work on probabilistic query mining, we again report on experiments
in the context of the probabilistic biological database. Even though the database
is very large, at any point in time, a biologist will typically focus on a particular
phenomenon for which only a limited number of nodes is known to be relevant. As
a test-case to be studied, we therefore use the 142 genes known to be related to
Alzheimer disease contained in our database. We set up experiments to answer the
following questions about correlated query mining:

Q4 How do Ps and Px differ in performance?

Q5 Can the top queries discriminate unseen positive and negative examples?

Q6 Does the correlated query miner prune effectively?

Q7 Can the correlated query miner use the full network?

To answer these questions, we used three graphs: the full network Biomine of
roughly 6 million edges as well as Alzheimer2 and Alzheimer4, see Appendix A
for further details. The language bias employed allows adding literals of the form
edge(X,Y,e), edge(X,Y) (as a shortcut of edge(X,Y, )) and node(X,n) where X
and Y are variables of type node name, X already appears in the query (thereby
ensuring linkage), and e and n are constants denoting an edge and a node label
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LL LLn pf
Ps .72/.45/.33 .27/.02/.00 .13/.03/.00
Px 1/1/.45 1/1/1 1/1/1

Table 8.6: Fraction of cases where mining for k = 1/5/20 best queries successfully
terminated within 30 minutes.

appearing in the graph respectively. Note that in contrast to the running example
used for illustration, we do not allow node names as constants in the query language
here, as this would entail prohibitively many possible refinements for each query.
The bias further states that labels are mutually exclusive, that edge(X,Y,e) implies
edge(X,Y), and how to invert labels to use edges backwards. This ensures that
edges in queries map to database entries independently of direction. We use a
query reordering function greedily moving literals containing constants to the left.

Positive and negative training examples pij and nij are gene nodes annotated
resp. not annotated with AD randomly picked from Alzheimer2. We create ten
sets each containing ten example of each class

Si = {pi1, ni1, . . . , pi10, n
i
10} (8.11)

For each such Si, we use the first j examples of each class to obtain a total of 100
datasets of varying size

Dij = {pi1, ni1, . . . , pij , nij} (8.12)

To avoid one trivial refinement step, q(X):-node(X,’Gene’) is used as most
general query.

As probabilistic membership function P (q(t)) we employ either the explanation
probability Px or the lower bound of the exact probability Ps obtained by bounded
approximation with interval width δ = 0.1 and a time limit of 60 sec for the
evaluation of each individual bound. As aggregation functions to obtain probabilistic
selection predicates, we use the likelihood LL (8.9), the probabilistic frequency
pf (8.8) and the softened likelihood LLn (8.10) with n = dm/2e for m examples of
each class, indicating the probability function used by superscripts where needed.
All experiments are performed on 2.4 GHz 4GB machines running Linux.

To answer questions Q4 and Q5, we mine on Alzheimer2 for k = 1, 5, 20 with a
time limit of 30 minutes per run, using the 60 datasets Dij with at least 5 examples
of each class, that is, with 5 ≤ j ≤ 10. Table 8.6 illustrates the performance in
terms of the fraction of successful runs. In the case of Px, the time limit is only
reached for k = 20 with LL, i.e. when a higher number of queries covering all
positive examples is desired, whereas Ps crosses the limit frequently in all settings.
These results clearly suggest that Px is more favorable in terms of runtimes. To
compare the two choices of probabilistic membership function P in terms of their
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LLs LLsn pfs LLx LLxn pfx

precision 0.76 0.95 0.92 0.77 0.93 0.93
recall 0.94 0.79 0.81 1.00 0.85 0.86
F-measure 0.84 0.85 0.86 0.87 0.88 0.88

Table 8.7: Using query obtained with k = 1 to reason by analogy: Overall precision,
recall and F-measure, averaged over cases with mining time at most 30 minutes.

LLs LLsn pfs LLx LLxn pfx

(a) 1/.99/.95 1/1/1 1/1/1 1/1/1 1/1/1 1/1/1
(b) 0.18 0.67 0.33 0.93 0.83 0.86

Table 8.8: Using query obtained with k = 1 to reason by analogy: (a) Precision
among the first n = 1/10/20 ranked examples, (b) fraction of positives ranked
before the first negative, averaged over cases with mining time at most 30 minutes.

results, we use the highest scored query (note that scores are independent of k)
to retrieve covered examples from the larger graph Alzheimer4, and rank those
using the corresponding P . In case of equally likely queries, we choose the most
specific one. Note that due to the form of the most general query employed in
mining, this will return nodes of type gene only. Training examples are excluded
from the rankings. The fraction of annotated genes and thus positive examples
among the possible answers is 0.76.

We calculate overall precision (percentage of ranked genes that are positive),
recall (percentage of positive genes included in the ranking), and F-measure
(2 · prec · rec/(prec + rec)) for all rankings. Table 8.7 gives the averages over
all successful cases. Using LL results in high recall and low precision (close to
the fraction of positives among unseen genes), as queries covering all positive
training examples are very general and therefore often cover all negative examples
as well. Reducing the number of positives included in the score, i.e. using LLn,
and using probabilistic frequency both increase precision at the expense of lower
recall. This tendency is confirmed by the F-measure, which balances precision
and recall. Again, the explanation probability achieves better results. Combining
resource requirements and results, the answer to question Q4 is thus that using
the explanation probability is more favorable.

To study the predictive performance of best queries in more detail, we examine the
top regions of the rankings used above. Table 8.8 shows the precision among the
top ranked examples. All queries return several positive examples first, only in few
cases, negatives occur within the first twenty positions. Furthermore, especially for
the case of Px, the queries mined return a large fraction of all positive examples
before the first negative one. Together, these results show that the best queries are
indeed able to distinguish unseen positive and negative examples, thus answering
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k 1 5 10 20 50
(a) 225 626 983 1814 4057
(b) 1.25 6.44 32.46 98.37 1523.26

Table 8.9: Mining on Alzheimer4: (a) average number of queries tested for
datasets of size 10, (b) average runtimes (sec).

Q5 affirmatively.

Comparing the different aggregation functions in terms of both runtime and results
confirms that both LLn and pf clearly outperform LL. As probabilistic frequency
has the advantage of not requiring an extra parameter, we restrict ourselves to
probabilistic frequency using Px in the following.

To compare the number of queries examined for various k and thus answer Q6,
we mine on the larger graph Alzheimer4 with 17666 edges, with pfx as selection
predicate. Table 8.9 shows the number of queries tested and runtimes for various
values of k, averaged over all datasets of size ten. The query language LAlzheimer4
already contains roughly 50K elements of length at most 3. The size of the search
space explored nicely scales with k, focusing on very small fractions of the entire
search space, thereby answering Q6 affirmatively.

Finally, as both the tasks of query mining and probabilistic reasoning in relational
databases are computationally hard and are combined here, we also tested the
algorithm with pfx on the entire network Biomine with around 6M edges, using
the ten largest datasets and a time limit of one hour. For k = 1, runtimes vary
from 626 to 1578 seconds, with an average of 865. For k = 2, the seven runs
finishing within the time limit take between 1701 and 3145 seconds, with an
average of 2610. Runtimes for higher k exceed the limit. These results indicate that
although probabilistic relational query mining is computationally challenging, it is
in principle possible to run the algorithm on large scale networks for small values
of k. Thus the answer to Q7 is positive as well, although improving the efficiency
of the probabilistic reasoning engine would help to further increase scalability.

8.6 Related Work

The work presented in this chapter builds upon the existing work in both
probabilistic logics and explanation based learning or query mining, respectively.
It is related to work on analogical, similarity and case based reasoning, providing a
notion of analogy that is based on logical coverage as well as likelihood.

A first step towards combining EBL and probabilistic frameworks is done in [DeJong,
2006], where logical and empirical evidence are combined in explanation based
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learning to get explanations with a certain confidence. PEBL as presented here is a
simple extension of the formalisations of explanation based learning within Prolog
due to [Hirsh, 1987; Van Harmelen and Bundy, 1988] with probabilistic inference.
From a probabilistic logic point of view, it extends the work of Poole [1993b] in
that it finds abstracted explanations. We have argued that using probabilities to
score explanations provides a natural solution to the multiple explanation problem
whereas the use of a resolution based proof procedure allows one to naturally deal
with multiple examples and identify common explanations.

The probabilistic correlated query mining system introduced here extends existing
multi-relational data mining systems such as Warmr [Dehaspe and Toivonen, 1999]
and c-armr [De Raedt and Ramon, 2004] to deal with probabilistic data. Research
on mining probabilistic data has so far been focused on frequent pattern mining with
two different notions of frequency. Minimum expected support, which corresponds
to the probabilistic frequency of Equation (8.8), has been used for frequent item-set
mining [Chui et al., 2007] and for frequent subgraph mining in probabilistic graph
databases [Zou et al., 2009]. Minimum frequentness probability, which considers a
pattern to be frequent if its probability of being frequent in a randomly sampled
instance of the database exceeds a given threshold, has been used to find frequent
items [Zhang et al., 2008], item-sets [Bernecker et al., 2009] and subgraphs [Zou
et al., 2010]. However, these approaches consider neither arbitrary relational data
nor correlated pattern mining. As a consequence, their algorithms are tailored to
a specific type of queries, whereas relational query mining as considered here has
to deal with a much broader class of possible queries that are more complex to
evaluate.

8.7 Conclusions

This chapter has studied the use of relational explanations to reason by analogy in a
probabilistic context. Using such explanations as additional background knowledge
clauses, analogous examples can be ranked by probability. Depending on the
available domain knowledge, explanations can either be constructed deductively
based on both the database and a domain theory, or inductively based on
the database only. We have formalized the task of explanation learning and
introduced two concrete instantiations addressing the deductive and inductive
setting, respectively. The techniques presented have been realized in ProbLog, but
could easily be adapted towards other probabilistic relational frameworks.

As a deductive approach, we have introduced probabilistic explanation based
learning, which applies principles of explanation based learning to probabilistic
logic representations. It learns explanations by abstracting the most likely proof of
a given example with respect to the background knowledge.
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As an inductive approach suited for situations where no structural domain
knowledge is available, we have extended the frequent pattern mining paradigm
towards a probabilistic setting. We have introduced a correlated query mining
algorithm together with various scoring functions aggregating probabilities.

The resulting general techniques have been evaluated on challenging biological
network mining tasks, showing that the resulting explanations can be used
to retrieve analogous instances with high accuracy. A detailed experimental
comparison of the two approaches in the context of this network as well as on
different datasets is an important direction for future work.





Conclusions Part III

In this part of the thesis, ProbLog has been used as a framework for reasoning
by analogy. More specifically, we have formalized analogy in terms of relational
explanations that, when added to a ProbLog program, allow one to rank analogous
examples by probability. As obtaining such a ranking corresponds to basic
probabilistic inference in ProbLog, we have focused on the task of explanation
learning. Depending on the available domain knowledge, explanations can either
be constructed deductively based on both the database and a domain theory, or
inductively based on the database only. We have introduced concrete explanation
learning techniques for both cases. Both methods extend well-known relational
learning techniques to probabilistic logics and thus also illustrate the use of ProbLog
as a framework for lifting traditional ILP tasks to the probabilistic setting. While
probabilistic explanation based learning relies on background knowledge to identify
the most likely proof of a given example and to construct an abstracted explanation
from this proof, probabilistic query mining is targeted towards situations where no
domain knowledge is available. We have focused on correlated query mining here,
introducing scoring functions that favour high probabilities for positive examples
and low probabilities for negative examples. The results of both methods have been
used for reasoning by analogy in the context of the Biomine network. A detailed
experimental comparison of the two approaches in the context of this network as
well as on different datasets is an important direction for future work.
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Chapter 9

Summary and Future Work

We conclude the thesis by providing a summary and a perspective on future work.

Thesis Summary

Probabilistic logic learning, also known as statistical relational learning [Getoor and
Taskar, 2007; De Raedt et al., 2008a], is concerned with the combination of relational
languages, machine learning and statistical methods, which all are key ingredients
for flexible reasoning and problem solving systems. The field has contributed a
variety of approaches, combining different relational and statistical components
and addressing various types of inference and learning tasks. One stream of
work extends logical languages such as definite clause logic with independent
probabilistic alternatives, most often sets of ground facts at most one of which is
probabilistically chosen to be true. Examples of such languages include probabilistic
logic programs [Dantsin, 1991], the Independent Choice Logic [Poole, 2000] and
PRISM [Sato and Kameya, 2001]. The common theoretical basis of these languages
is the distribution semantics [Sato, 1995]. While such languages are remarkably
expressive despite their independence assumption on basic probabilistic events,
available implementations often restrict this expressivity by making additional
assumptions to allow for more efficient inference, or do not scale very well. These
limitations can hinder or even prevent their application to concrete reasoning and
learning tasks.

In this thesis, we have introduced ProbLog, a simple extension of the logic
programming language Prolog with probabilistic facts representing independent
random variables. While ProbLog shares its theoretical foundations, the
distribution semantics, with the probabilistic logic languages mentioned above, its
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implementation has been the first to allow for scalable inference in networks of
probabilistic links. This is due to the use of binary decision diagrams [Bryant, 1986],
which makes it possible to base probabilistic inference on proofs or explanations
even if those are not mutually exclusive in terms of the possible worlds they cover.
Since their first use in ProbLog, binary decision diagrams are getting increasingly
popular in the fields of probabilistic logic learning and probabilistic databases,
cf. for instance [Riguzzi, 2007; Ishihata et al., 2008; Olteanu and Huang, 2008;
Thon et al., 2008; Riguzzi, 2009].

Given its simplicity as well as the scalable inference algorithms, a second important
application domain for ProbLog is the lifting of tasks traditionally studied in
relational learning and inductive logic programming [Muggleton and De Raedt,
1994; De Raedt, 2008] to probabilistic logic languages. This has been demonstrated
in this thesis for theory compression, which is a restricted form of theory
revision [Wrobel et al., 1996], explanation based learning [Mitchell et al., 1986],
and query mining [Dehaspe et al., 1998; De Raedt and Ramon, 2004]. We have
also applied the latter two techniques to learn explanations which have then be
used to reason by analogy, that is, to identify analogous examples that are covered
with high probability.

ProbLog’s probabilistic facts can also be viewed as a probabilistic database with
independent tuples [Suciu, 2008]. In contrast to most other SRL languages, such
databases do not define a distribution over derived queries, but over interpretations
that either entail a given query or not. We have therefore introduced a novel
setting for parameter learning in probabilistic databases that integrates learning
from entailment and learning from proofs, and a corresponding gradient method
for parameter learning in ProbLog.

Throughout the thesis, we have experimentally validated our approaches in the
context of the Biomine network of Sevon et al. [2006], a network of a few million
links that probabilistically integrates information from public databases in the
domain of biology.

Besides its background in probabilistic logic learning, ProbLog also has strong
roots in logic programming. As a probabilistic logic programming language, it
is part of the recently emerging discipline of probabilistic programming, which
extends programming languages of various paradigms with stochastic elements.
Further examples of probabilistic programming languages include IBAL [Pfeffer,
2001], Church [Goodman et al., 2008] and Figaro [Pfeffer, 2009].

Finally, while most of the thesis is concerned with ProbLog, we have also introduced
ωProbLog, a generalization of the modeling and inference principles underlying
ProbLog where probabilities are replaced by weights defined in terms of commutative
semirings. As a weighted logic programming language, it is closely related to the
semiring-weighted dynamic programs of the Dyna system [Eisner et al., 2005].
While there is some overlap with respect to definable weights, each of these
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formalisms also covers cases that cannot be represented in the other one. In
terms of inference techniques, ωProbLog is related to the compilation of semiring
valuation algebras into Boolean formulae [Pouly et al., 2007; Wachter et al., 2007],
though the underlying inference problem is different.

To summarize, the key contributions of this thesis are

• the probabilistic programming language ProbLog and its implementation,1
which can also serve as a framework for lifting traditional ILP approaches to
probabilistic ILP or as a tool for reasoning by analogy,

• a new parameter learning setting for probabilistic databases and a
corresponding gradient-based algorithm,

• probabilistic variants of theory compression, explanation based learning and
query mining, and

• a generalization of probabilistic inference in ProbLog to semiring weights.

Future Work

ProbLog as introduced in this thesis is a simple yet powerful probabilistic logic
programming language providing a number of different directions for future work.

One of the key application domains of ProbLog is that of transferring relational
learning techniques to the probabilistic context, a direction we have only started
to explore. The theory compression setting introduced in Chapter 6 could be
extended towards a more general version of probabilistic theory revision with a
broader choice of revision operators. While an operator that sets fact probabilities
to 1 could directly be integrated in the current algorithm, more traditional revision
operators manipulating clause structure in the background knowledge would require
a new or modified algorithm, as such operators affect the structure of BDDs, which
makes their evaluation more involved. Sticking to the task of reducing the size of a
ProbLog program, it would also be interesting to investigate algorithms taking the
opposite direction of growing the theory instead of shrinking it, which has been
found beneficial in the context of probabilistic networks [Hintsanen and Toivonen,
2008]. Another direction worth exploring would be that of grammar induction from
proof trees or traces along the lines of [De Raedt et al., 2005] or [Bod, 2009]. In
the context of relational retrieval, Lao and Cohen [2010] have recently proposed
a combination of so-called path experts, which bears some similarity with the
patterns generated by probabilistic explanation based learning or probabilistic

1available as part of the stable version of YAP (http://www.dcc.fc.up.pt/˜vsc/Yap/), see
also http://dtai.cs.kuleuven.be/problog/
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query mining and might thus be another application domain for these techniques.
Clearly, these are only a few examples from the broad range of techniques developed
in ILP and related fields that could be considered.

A somewhat more abstract direction for future work concerns the analysis of
relationships between ProbLog and other approaches both from probabilistic logic
learning and from probabilistic programming. The simple probabilistic model used
in ProbLog suggests that it might be possible to map many other languages into
ProbLog. A first step in this direction has been provided in Section 3.4 for a
number of closely related languages, but needs to be complemented with more
distant examples. Such mappings – in both directions – would not only provide
theoretical insight into the domain, but would also make it possible to transfer
techniques developed in different frameworks.

While ProbLog’s BDD based inference algorithms are very powerful, this power is
not always needed and might even waste resources. Indeed, adapting algorithms to
the required level of expressive power has been identified as an important strategy in
SRL [Landwehr, 2009]. In the case of ProbLog, special purpose algorithms for cases
where the disjoint-sum problem does not occur, such as for instance probabilistic
grammars, would be a first step, but would ideally be combined with the existing
algorithm into a hybrid method that restricts BDD usage to those subproblems
that require one to disjoin explanations. While a first realistic approach would
probably start from some type of explicit marking to distinguish these cases, one
might also try to develop strategies to automatically recognize situations where
BDDs are not needed, or to even transform (parts of) programs to obtain equivalent
but disjoint explanations.

Another direction of future work concerns existing generalizations of ProbLog. For
ωProbLog, this first of all includes the implementation of the inference algorithms
presented in Chapter 5 and their application to concrete problems, but also a
more systematic overview of covered tasks and the development of algorithms
that avoid constructing the full explanation DNF where possible. In [Bruynooghe
et al., 2010], we have introduced FOProbLog, an extension of first order logic with
soft constraints. Similarly to ProbLog, probabilities are attached to a set of basic
facts, which then guard arbitrary first order formulae. We defined a semantics
for FOProbLog, developed a translation into ProbLog, and reported on initial
experience with inference. However, the current inference algorithms need to be
improved in order to be able to apply the formalism to larger problems.

In [Kimmig and Costa, 2010], we have started to explore the use of ProbLog for
link and node prediction in metabolic networks. Our ProbLog model combines
information about a given pathway extracted from the Kyoto Encyclopedia of Genes
and Genomes (KEGG) with a probabilistic relation modeling noise on gene-enzyme
assignments. Link or node prediction for an unseen test organism is based on
the information available for related organisms, where the parameter estimation
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method discussed in Chapter 7 is used to associate probabilities to different types of
queries. As for most SRL approaches, further exploring this and other applications
of ProbLog and its extensions on real-world data, for instance in biology, natural
language processing or information retrieval, is an important line of future work
both for the further validation of existing methods and for the identification of new
settings, tasks and challenges.
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Appendix A

Biomine Datasets∗

This appendix briefly describes the Biomine datasets used in our experiments. Real
biological graphs were extracted from NCBI Entrez and some other databases as
described in [Sevon et al., 2006]. Since NCBI Entrez alone has tens of millions of
objects, a rough but efficient method is used to extract a graph capturing a certain
region of the full data collection, typically the subgraph surrounding a number of
selected genes. Table A.1 gives an overview of all networks used.

The full Biomine network considered here is a snapshot of the Biomine database.
The other networks fall into two subgroups. Small and Medium use a single edge/2
relation, whereas the remaining ones distinguish different types of relationships. In
the following, we describe the generation of these graphs in some more detail. In
all cases, weights are produced as described in [Sevon et al., 2006].

To obtain Small and Medium, four random genes related to Alzheimer disease
(HGNC ids 620, 582, 983, and 8744) have been selected. Medium was obtained by
taking the union of subgraphs of radius 3 from the four genes. For Small, radius
2 was used, but only best weighted paths were included in the result. In this case,
gene 8744 was not connected to the other genes, and the corresponding component
was left out.

For the settings studied in Part III, where we are interested in reasoning by
analogy, we need data containing information on node and edge types. The
simple graph encoding used for Small and Medium is therefore extended to
use a predicate edge/3 whose additional argument holds a type label (such as
belongs to, participates in). We further introduce a new predicate mapping
node identifiers to node types (such as gene or protein). We extracted graphs
around both Alzheimer disease and asthma from a collection of databases. For each
∗We are grateful to Hannu Toivonen and the Biomine team for providing these datasets.
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Extraction Network
Depth Genes Nodes Edges Labels

Biomine - - 936,641 5,967,842 yes
Small 2* 4 79 144 no
Medium 3 4 5,220 11,530 no
Alzheimer1 4 17 122 259 yes
Alzheimer2 5 17 658 3,544 yes
Alzheimer3 4 142 351 774 yes
Alzheimer4 5 142 3,364 17,666 yes
Asthma1 4 17 127 241 yes
Asthma2 5 17 381 787 yes

Table A.1: Biomine datasets: Search depth and number of seed gene nodes used
during network extraction (* Small only includes best paths), number of nodes
and edges in resulting network, and encoding used (with or without type labels).

disease, we obtained a set of related genes by searching Entrez for human genes
with the relevant annotation (AD or asthma); corresponding phenotypes for the
diseases are from OMIM. Most of the other information comes from EntrezGene,
String, UniProt, HomoloGene, Gene Ontology, and OMIM databases. We did
not include articles since they would dominate the graphs otherwise. We used a
fixed number of randomly chosen (Alzheimer disease or asthma) genes for graph
extraction. Subgraphs were extracted by taking all acyclic paths of no more than
length 4 or 5, with a probability of at least 0.01, between any given gene and
the corresponding phenotype. Some of the genes did not have any such paths to
the phenotype and are thus disconnected from the rest of the graph. Three of
the 17 Alzheimer genes used for extraction were not connected to the Alzheimer
disease phenotype with a path of length at most 4 and are therefore not present in
Alzheimer1.
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