
Three complementary approaches to context aware movie
recommendation

Hossein Rahmani
Leiden Institute of Advanced

Computer Science,
Universiteit Leiden,

hrahmani@liacs.nl

Beau Piccart
Department of Computer

Science, Katholieke
Universiteit Leuven,

beau.piccart@cs.kuleuven.be

Daan Fierens
Department of Computer

Science, Katholieke
Universiteit Leuven,

daan.fierens@cs.kuleuven.be

Hendrik Blockeel
Department of Computer

Science, Katholieke
Universiteit Leuven,
blockeel@liacs.nl

ABSTRACT
We describe three different approaches to the Context Aware
Movie Recommendation (CAMRa) challenge; each approach
is based on different machine learning techniques. The re-
sults obtained with the three techniques are compared.

1. INTRODUCTION
The CAMRa challenge (Context Aware Movie Recommen-
dation) [5] is about building models for recommending movies
to users, taking certain background information (“context”)
into account. For more information on the datasets and
tasks, see [5]. In this paper we address the“social”track. We
formulate the task as a machine learning problem as follows.
Given: a set of ratings that users have given to movies, plus
information about which users are friends, which actors /
directors are involved in which movies, which users have
commented on / reviewed movies or actors, and more such
background information; Learn: a function f that, from
a user-movie pair (u,m) and some context (background in-
formation about the user and movie) C, predicts a rating
r(u,m). After predicting for a particular user his/her rating
for all movies, the highest scoring movies are recommended.

We next describe three machine learning approaches, which
differ w.r.t. the methods used and information exploited.

2. MACHINE LEARNING APPROACHES
2.1 Approach 1: a k-NN based approach
Our first approach uses a k-nearest neighbor classifier [1].
For each user ui, first, we find the k most similar users to
ui (MSU(ui)), then we rate each movie mj with formula 1:

r(ui,mj) =
∑

∀uk∈MSU(ui)

UMIV (uk,mj) (1)

UMIV (uk,mj) (User-Movie-Interest-Value) indicates how
much user uk is interested in the movie mj . It is not iden-
tical to the observed rating (if any); see Section 2.1.1 for
its definition. The set of k most similar users, MSU(ui),
obviously depends on the notion of similarity. Different user
similarity metrics will be provided in the next sections.

2.1.1 User Movie Interest Value
Let U be the set of all users, and M the set of all movies,
in the dataset. We want to estimate how much user ui ∈ U
is interested in movie mj ∈ M . To this aim, we integrate
the information available in the entities: “Favorites”, “Movie
Comments”, “Reviews” and “Review Ratings” into a matrix
UMIV . Each cell UMIV (ui,mj) shows how much user ui

is interested in the movie mj and is calculated based on
formula 2:

UMIV (ui,mj) = F (ui,mj)+C(ui,mj)+R(ui,mj)+Ra(ui,mj)
(2)

F (ui,mj) represents the “Favorites” entity; it returns +1 if
the user ui likes the movie mj , −1 if ui dislikes mj , and
0 if no information was given. C(ui,mj) represents the
“Movie Comments” entity. The Movie Comments file only
shows whether a user commented on a movie, not whether
the comment was positive or negative. Therefore, we as-
sume that if ui likes (dislikes) mj , the comment was positive
(negative). Thus, if user ui made a comment on movie mj ,
then C(ui,mj) = F (ui,mj), and otherwise C(ui,mj) = 0.
R(ui,mj) represents the “Reviews” entity, which indicates
whether or not a user reviewed a movie. Again, we guess
the evaluation from F (ui,mj): if the ui made a review on
mj , then R(ui,mj) = F (ui,mj), otherwise R(ui,mj) = 0.
Ra(ui,mj) shows how user ui rated movie mj , on a scale
from 1 to 5.

UMIV can be seen as an improved version of Ra; its compu-
tation reflects an assumption that users who, besides giving

a rating, explicitly comment on a movie, have a stronger or
more informed opinion.

2.1.2 Distances
To express (dis)similarity among users, we consider the fol-
lowing distance measures.

Movie Interest Distance: This is the Manhattan distance
between the UMIV values of two users; it simply reflects that
users are similar when they have similar movie preferences.

dM (ui, uj) =
∑

∀m∈M

|UMIV (ui,m)− UMIV (uj ,m)| (3)

Genre Interest Distance: Each movie m might belong
to one or more genres g. If we represent the relationship
between movies and genres in a zero-one matrix MG then
we find the interest value of user ui in genre gj by simply
multiplying UMIV and MG (Formula 4).

UGIV = UMIV ×MG (4)

With G the set of all genres in the dataset, we can define
a distance between users that is the Manhattan distance
between their genre interests:

dG(ui, uj) =
∑
∀g∈G

|UGIV (ui, g)− UGIV (uj , g)| (5)

Person Distance: Two users might be said to have sim-
ilar interests if they like the same actors, directors, . . . The
“People in the Movie” entity indicates which people are in-
volved in which movies; we represent it as a binary matrix
MP . Multiplying UMIV and MP gives a matrix UP that
shows how much user ui is interested in person pj :

UP = UMIV ×MP (6)

Further, the entity“personComments”describes whether the
user ui has made any comments on person pj or not; we
represent it as a matrix PC where PC(ui, pj) = 1 if ui

has commented on pj and 0 otherwise. We use formula
7 to integrate the information in PC and UP (implicitly
assuming that comments on people are positive):

UPIV = PC + UP (7)

With P the set of all people in the dataset, we then define

dP (ui, uj) =
∑
∀p∈P

|UPIV (ui, p)− UPIV (uj , p)| (8)

Friend Distance: Here, we simply choose all the friends
of the user ui as its most similar users: dF (ui, uj) = 1 if
ui and uj are friends, and dF (ui, uj) = ∞ otherwise. The
number of most similar users may differ among users.

2.1.3 Integrated Framework
We could use each of the defined distance metrics to rank
movies with Formula 1. Alternatively, we can combine them.
Let ~RM be a vector containing the rank of each movie when
dM is used as distance measure, and similarly for ~RG, ~RP

and ~RF . We can define an integrated rank vector ~RI :

~RI=αM∗~RM + αG∗~RG + αP ∗ ~RP + αF ∗~RF (9)

Setting Num k α1 α2 α3 α4

1 5 217 112.97 114.56 87.52
2 10 248.63 121.26 110.04 74.41
3 20 334.84 167.2 140.73 90.97
4 30 433.88 177.21 136.27 81.19
5 40 474.06 175.42 121.96 56.28
6 50 582.86 195.83 132.65 62.59
7 100 765.98 245.49 130.68 56.76
8 200 869.3 323.25 195.55 82.65
9 500 775.77 223.21 388.21 43.39

Table 1: Tuning different parameters of integrated
framework.

with the α’s to be determined. We will recommend movies
with high ~RI to the selected user.

The integrated framework has several parameters that we
need to set or optimize: the number of nearest neighbors
k, the α’s, and the number of movies to recommend (or a
threshold above which a movie should be recommended).
We optimize these parameters on the training set.

The α’s are initialized to zero, and then iteratively increased,
with the increase depending on how well the corresponding
distance performs. More specifically, we increase each co-
efficient based on the Jaccard similarity of the movies it
recommends (PrX(ui), where X is M,G,P or F) and the
movies actually seen by the user (Re(ui)), where the number
of predicted movies is chosen to be |Re(ui)|:

∀ui ∈ trainingset : αX+ =
|PrX(ui) ∩Re(ui)|
|PrX(ui) ∪Re(ui)|

(10)

We examined the values 5, 10, 20, 30, 40, 50, 100, 200 and
500 for k. Table 1 shows the α values learned for these k.
The values show a clear tendency for the movie similarity
itself to get a high weight, while the friend similarity tends
to get a low weight, suggesting that the friendship relation
is not very important. The weight of the genre and people
involved fluctuates significantly.

2.2 Approach 2: regression-based k-NN
Our second k-NN based approach differs from the first mainly
on the similarity measures used. The method combines two
similarity measures which each result in a predicted rating;
these are then averaged to get a final prediction for each
user/movie-pair.

2.2.1 Linear Regression based k-NN
Our first similarity consists of the fit of a linear regression be-
tween the ratings given by two users. This is very similar to
using correlation as a similarity measure, but is more robust
to differences in calibration. Suppose user u1 rated some
movies as (2, 3, 1, 4, 4, ?) (with ? the rating which we want
to predict), and u2 rated those movies as (3, 4, 2, 5, 5, 3).
The known ratings of u1 and u2 correlate perfectly. Stan-
dard 1NN would use u2’s rating of 3 as prediction for the
unknown rating of u1. This does not make much sense, as
u2 consistently rates movies higher than u1. Performing a
linear regression solves this problem: it results in the equa-
tion y = x − 1, and filling in u2’s rating of 3 would give

Second Third Fourth
p@5 0.107823 0.147738 0.135386
p@10 0.103589 0.123460 0.096503
MAP 0.077488 0.096026 0.075459
AUC 0.980484 0.982339 0.980253

Table 2: Evaluation metrics for predictions based on
degree 2, 3, and 4 social neighborhoods.

the more likely result: a predicted rating of 2. The linear
regression based prediction is computed using

LR−Prediction(ui,mj) =

∑
∀uk∈MSU(ui,mj)

LR(ui, uk,mj)

k
(11)

where MSU(ui,mj) is the set of most similar users, accord-
ing to the fit of the linear regression, among those who rated
mj . LR(ui, uk,mj) is the prediction for pair ui,mj based on
the linear regression between u1 and u2 in which the rating
for mj given by u2 is filled in.

2.2.2 Social Neighborhood predictions
The second component of our second approach uses the so-
cial neighborhood of a user to predict ratings. A prediction
is made by averaging the ratings given to the movie of in-
terest by the user’s friends:

FriendsPred(ui,mj) =

∑
∀uk∈Friends(ui,mj)

Ra(uk,mj)

k
(12)

where Friends(ui,mj) are u1’s friends who rated mj , and
Ra(uk,mj) those ratings. This approach can be extended
to include friends-of-friends. More generally, we define the
i-th-degree social neighborhood of uk as the set of all people
within a friend distance of at most i from uk. This gives
the following formula to make predictions based on a user’s
social neighborhood.

SocNeighPred(ui,mj , n) =

∑
∀uk∈SocNeigh(ui,mj ,n)Ra(uk,mj)

k
(13)

with n the degree of the social neighborhood. With a too
low degree, we may not have enough people, and thus rat-
ings, in the neighborhood; with too high a degree, we will
overgeneralize.

The predictions from the linear regression method and the
social neighborhood method are averaged to give the final
prediction by our second approach.

2.2.3 Training
We tested social neighborhoods with degrees between 1 and
5. The performance increased up to degree 3 and went back
down thereafter. Table 2 gives the results for degrees 2 to 4.

2.2.4 Evaluation procedure
Our results for the second method are obtained by evaluat-
ing the algorithm on all possible movie/user-pairs. To make
this computationally feasible, one extra rule was added to
the system: if a movie is not rated by at least 250 users, the
prediction for that movie, for any user, is the lowest rating

possible, i.e. it will not be recommended. As it turns out,
this rule does not only make prediction more efficient, it also
increases predictive performance by a large margin. This
caused us to evaluate a trivially simple prediction method:
recommend a movie, irregardless of the user, if and only if it
is rated by over 100 users. This gave us a remarkably high
AUC of 0.943. Thus, the simple rule “recommend a movie
if many people have seen it” seems to work well, and might
be useful as a reference point.

2.3 Approach 3: ILP
Our third approach is the use of inductive logic programming
(ILP) [4]. This approach is motivated by the fact that ILP
systems are good at handling background knowledge, as long
as it can be expressed in a first order logic format.

We use the ILP system Tilde [2], in its regression setting [3].
This system uses a Prolog-like syntax. It takes a set of exam-
ples of the form p(x1, x2,, xn, y) together with background
information (a Prolog program), and tries to construct a
decision tree that predicts y from the other available infor-
mation. The latter does not only include the values of the
xi; the xi may serve as foreign keys that link the informa-
tion on this example to other information, as in a relational
database. For instance, we could have the logical facts

rating(user1,movie1,5)).

rating(user2,movie1,4)).

rating(user3,movie1,5)).

friends(user1,user3).

stating that user1 rates movie1 as 5, and similar for user2
and user3, and that user1 and user3 are friends. Then we
could learn a rule stating that users who are friends tend to
score movies alike.

rating(U,M,R) :- friends(U,U2), rating(U2,M,R).

Any kind of information that can be represented in a re-
lational database can be represented in this logic-based for-
mat, and used by Tilde. Note that Tilde does not learn such
rules directly; rather, it learns a decision tree, which can
however be expressed as a rule set. Further information on
Tilde is available at http://dtai.cs.kuleuven.be/~ACE/.

As Tilde was not able to handle the entire dataset, we used a
random subset of 100,000 ratings from the training dataset.
We also used the information about users (age, location),
people in movies (actors, directors, writers), genres, com-
ments, lists, friends and similar movies. This information
was used to define relationships among and between users
and movies. These definitions are available to Tilde as so-
called background knowledge. Figure 1 shows a small frag-
ment of this background knowledge. The rules define a re-
lationship between users who differ at most 5 years in age
(first rule), movies with the same director (second rule), etc.

Given this information, Tilde can learn a regression tree that
predicts the rating. The internal nodes of the regression
tree are boolean tests that can make use of the background
knowledge. Figure 2 shows a fragment of the tree learned by

same_age_5(User,User2) :-
users(User,Age,_,_,_), users(User2,Age2,_,_,_),
not(Age=null), not(Age2=null), not(User=User2),
Diff=abs(Age-Age2), Diff=<5.

same_director(Movie,Movie2) :-
people_in_movies(Movie,Person,director),
people_in_movies(Movie2,Person,director),
not(Movie=Movie2).

same_genre(Movie,Movie2) :-
genres(Movie,Genre),
genres(Movie2,Genre), not(Movie=Movie2).

Figure 1: Fragment of the background knowledge
for Tilde.

same_person(M,M2),rating2(U,M2,1) ?
+yes: 2.7728241350413
+no: same_director(M,M3),rating2(U,M3,5) ?

+yes: 3.89465124683773
+no: same_age_1(U,U2),rating2(U2,M,5) ?

+yes: 3.57332009268454
+no: same_age_5(U,U3),rating2(U3,M,1) ?

+yes: 2.83493166201012
+no: same_person(M,M4),rating2(U,M4,2) ?

+yes: 3.09792345276873
+no: ...

Figure 2: Fragment of a regression tree for predict-
ing the rating of a user U for a movie M. Nodes with
question marks are internal nodes, other nodes are
leaves. Free logical variables in internal nodes are
(implicitly) existentially quantified.

Tilde. This tree can be used to predict the rating of any user
for any movie, given the relevant background knowledge.

3. RESULTS
The results of the three approaches are summarized in Ta-
ble 3. For the first approach, results for k = 100 and
k = 3000 are reported. Between these values, all evalua-
tion criteria increase monotonically with k. LR performs
worse in terms of precision, but has a higher AUC. The so-
cial neighborhood based method performs much better on
all metrics, and combining it with LR gives a small further
improvement (results shown for n = 3). The ILP approach
performs somewhat similar to the first k-NN approaches,
with higher AUC but comparable or lower precisions.

These results are somewhat approximative. First, the P@5,
P@10, MAP and AUC values reported here are obtained
based on a ranking over all user/movie pairs; this gives a
micro-average of the corresponding values per user. MAP
is usually defined as a macro-average of average precision.
Second, P@5 and P@10 are actually approximated by P@R,
where R is the smallest recall value at least equal to 0.05
or 0.10, respectively. For micro-averaged values this gives a
good approximation. Generally, the results are such that we
expect LR+Soc, with n = 3, to make the best predictions
on the evaluation set.

The different methods each have their own strengths; the
first incorporates background knowledge into the distance

100-NN 3000-NN LR Soc LR+Soc ILP
P@5 0.057 0.092 0.023 0.148 0.148 0.062
P@10 0.056 0.086 0.024 0.123 0.123 0.018
MAP 0.009 0.019 0.019 0.096 0.097 0.013
AUC 0.576 0.612 0.960 0.982 0.988 0.652

Table 3: Final results for the three approaches.
LR+Soc evaluated on subset only.

and rating metrics; the second handles better differences
in calibration between users; the third constructs relevant
features from background knowledge automatically. One can
imagine that combining the strenghts of the three will give
better results. This was not investigated here for lack of
time.

Acknowledgements
Work supported by NWO (H.R., Vidi 639.022.605), K.U.Leuven
(D.F., GOA/08/008), and FWO-Vlaanderen (B.P., project
G.0255.08).

4. REFERENCES
[1] David W. Aha, Dennis F. Kibler, and Marc K. Albert.

Instance-based learning algorithms. Machine Learning,
6:37–66, 1991.

[2] Hendrik Blockeel and Luc De Raedt. Top-down
induction of first-order logical decision trees. Artif.
Intell., 101(1-2):285–297, 1998.

[3] Hendrik Blockeel, Luc De Raedt, and Jan Ramon.
Top-down induction of clustering trees. In Jude W.
Shavlik, editor, ICML, pages 55–63. Morgan
Kaufmann, 1998.

[4] Luc De Raedt. Logical and Relational Learning.
Springer, 2008.

[5] Alan Said, Shlomo Berkovsky, and Ernesto W. De Luca.
Putting things in context: Challenge on context-aware
movie recommendation. In CAMRa2010: Proceedings of
the RecSys ’10 Challenge on Context-aware Movie
Recommendation, New York, NY, USA, 2010. ACM.

