KATHOLIEKE UNIVERSITEIT

On the concept of service coordination

Geert Monsieur, Monique Snoeck and Wilfried Lemahieu

DEPARTMENT OF DECISION SCIENCES AND INFORMATION MANAGEMENT (KBI)

KBI 1027

On the concept of service coordination

Geert Monsieur, Monique Snoeck, Wilfried Lemahieu
Faculty of Business and Economics
Katholieke Universiteit Leuven
firstname.lastname@econ.kuleuven.be

February 1, 2010

1 Introduction

In this research report we study service coordination, which is a crucial as-
pect when services are combined into service-based systems (Metzger &
Pohl, 2009).

Coordination is not only in computer science an important research
topic. It is also studied in disciplines such as organization theory, opera-
tions research, economics, linguistics, and psychology. Malone & Crowston
(1994) studied the similarities and connections between the different fla-
vors of coordination and created a more generic coordination theory. They
define coordination as managing dependencies between activities. This defi-
nition is based on the intuitive idea that there is nothing to coordinate with-
out any interdependence. In their work they state that coordination theories
should try to characterize different kinds of dependencies and identify the
coordination processes that can be used to manage them. Therefore, in
the next section (see Section 2), we will discuss several types of dependen-
cies that can exist when composing services to service-based systems. In
the rest of this research report is targeted at two types of dependencies,
namely sequence dependencies and data dependencies. Therefore, the re-
search continues in Sections 3 and 4 with an overview of existing techniques
for managing sequence and data dependencies, respectively. In each section
there is also a general conclusion included.

2 Dependencies in service compositions

Multiple researchers have studied dependencies in the context of service
composition (Janssen & Feenstra, 2008; Bhiri, Perrin & Godart, 2005, 2006;
Yang, Papazoglou & Heuvel, 2002; Papazoglou, Delis, Bouguettaya & Haghjoo,
1997).

Bhiri et al. (2005, 2006) have used dependencies to specify how (com-
ponent) services are coupled and how the behavior of some given services
influences the behavior of some others. In their view on inter-service de-
pendencies they assume that a service’s behavior can be modeled using a
finite state machine. In particular, they assume that a service has a mini-
mal set of states (initial, active, aborted, canceled, failed and completed) and
transitions (activate, abort, cancel, fail and complete). When a service is in-
stantiated (e.g. the service received a request for executing a business task),
the state of the instance is initial. Then this instance can be either aborted
or activated. Once it is active, the instance can normally continue its exe-
cution or it can be canceled during its execution. In the first case, it can
achieve its objective and successfully complete or it can fail. Additionally,
the service’s transactional properties can be extended by adding a compen-
sated state and compensate transition, which can be fired when the service
is in the completed state. Based on this behavior model Bhiri et al. (2005,
2006) consider two classes of dependencies: activation dependencies and
transactional dependencies. The activation dependencies class contains two
types of dependencies:

Activation dependency There is activation dependency between a service
s1 and a service s if the completion of s; can fire the activation of ss.

Abortion dependency There is activation dependency between a service s;
and a service s, if the failure, the cancellation or the abortion of s; can
fire the abortion of ss.

In the transactional dependencies class a distinction is made between three
types of dependencies:

Compensation dependency There is a compensation dependency from s;
to s9 if the failure or the compensation of s; can fire the compensation
of S9.

Cancellation dependency There is a cancellation dependency from s; to
s if the failure of sy can fire the cancellation of s,.

Alternative dependency There is an alternative dependency from s; to s
if the failure of s; can fire the activation of ss.

Janssen & Feenstra (2008) argue that the analysis of dependencies is
necessary to create feasible service compositions and to identify alternative
compositions. In their social-technical theory they identify two main classes
of dependencies among component services: resource and link dependen-
cies (Janssen & Feenstra, 2008).

Resource dependency There is a resource dependency between two ser-
vices if both services use the same resource, which sets constraints on

2

the execution order (i.e. a service should be consumed before another
service can start).

Link dependency There is a link dependency between two services if one
service depends in some way on the output of the other service (e.g.
a service cannot continue its execution until another service has pro-
vided certain data)

Yang et al. (2002) and Papazoglou et al. (1997) make a distinction be-
tween two types of dependencies that can occur among service components:

Sequence dependency There is a sequence dependency (also referred to
as a commit dependency) between a service s; and a service s, if the
start or continuation of the execution of service so depends on the
completion of the execution of s;.

Data dependency There is a data dependency between a service s; and a
service s, if the start or the continuation of the execution of service s;
depends on data that is provided by s;.

In our research we use the two dependencies as proposed by Yang et al.
(2002), because these two types are more general than the dependencies
proposed by Bhiri et al. (2005, 2006) and Janssen & Feenstra (2008). The
dependencies presented by Bhiri et al. (2005, 2006) are mostly sequence
dependencies, while Janssen & Feenstra (2008) listed both sequence and
data dependencies.

Based on the distinction between sequence and data dependencies, we
can identify two main coordination challenges that one faces when com-
posing service-based systems. The first challenge is the management of
sequence dependencies. This challenge consists of consuming all compo-
nent services in the right order (i.e. according to sequence dependencies as
possibly specified in a business process). For example, an order fulfillment
process could have a sequence dependency between a payment service and
a shipping service, because this business process specifies that the order can
only be shipped after the payment is arranged. The second challenge is the
management of data dependencies, which is about providing a service with
all the data it needs. Consider for instance a data dependency between a
shipping service and a customer relationship service, because the shipping
service can only ship an order if it received the customer’s shipping address,
which can be provided by the customer relationship service. Obviously, each
complete coordination scenario (for an order fulfillment process) needs to
take into account both sequence and data dependencies.

In their Extended SOA Papazoglou (2005) and Papazoglou & Heuvel
(2007) describe the coordination function that a composite service needs
to perform as follows: “controlling the execution of component services, and
manage data flow among them and to the output of the component service

3

(e.g. by specifying workflow processes and using a workflow engine for run-
time control of service execution)”. Controlling the execution of services and
managing the data flow, exactly is what managing sequence and data de-
pendencies is about.

Alonso, Casati, Kuno & Machiraju (2004) consider six different dimen-
sions of a service composition model. Among these are an orchestration
model, which Alonso et al. (2004) define as a model that specifies the or-
der in which services are to be invoked, and a data and data access model,
which they define as a model that describes how data is specified and how
it is exchanged between components. Hence, in an orchestration model it is
specified how sequence dependencies are managed, while a data and data
access model describes how data dependencies are dealt with.

3 Managing sequence dependencies

3.1 Introduction

Many developers use the terms orchestration and choreography to describe
the business interaction protocols that control the execution of services (Papazoglou,
Traverso, Dustdar & Leymann, 2007). Since managing sequence dependen-
cies is about controlling the execution of services and designing the appro-
priate service interactions for accomplishing this, orchestration and chore-
ography must be relevant terms when designing coordination logic for man-
aging sequence dependencies.

However, orchestration and choreography are not always defined in the
same way. Furthermore, some researchers introduce centralized or decen-
tralized variants such as centralized orchestration, decentralized orchestra-
tion, centralized choreography and decentralized choreography. In addition,
it is not always clear how these terms are related to terms such as centralized
coordination, decentralized coordination and peer-to-peer coordination. In the
same way, it is not always easy to understand the relations to concepts such
as a coordinator, an orchestrator or a choreographer. To make things even
more complex, there exist several synonyms or overlapping concepts such
as behavioral interface, an abstract process in BPEL (OASIS, 2007) and an
executable process in BPEL (OASIS, 2007).

In order to understand terms like orchestration and choreography (and
related concepts) it is beneficial to have a set of basic concepts that are re-
lated to service composition in general, regardless of whether an orchestration-
or a choreography-oriented description is used. In Subsection 3.2 we dis-
cuss such basic concepts. Subsequently, we use these concepts to discuss
two groups of orchestration and choreography definitions that can be found
in the literature (see Subsections 3.3 and 3.4).

3.2 A meta-model for service composition

Figure 1 shows our meta-model for service composition design, illustrat-

ing common concepts in service composition design and their relationships

using the UML class diagram notation (OMG, 2010). It extends the meta-

model proposed by Benatallah, Dijkman, Dumas & Maamar (2005) by adding
business process-related concepts such as business process, business task,

business request and business event.

A service composition supporting a business process consists of a number
of (component) services that are provided by service providers. The same
service can be provided more than once by different service providers (e.g.
a flight booking service can be provided by different airlines). A service
has several (internal) actions and is associated to several message events that
are part of an interaction with other services. The interactions are message-
based because this is the basic mechanism for interaction used in the main-
stream service description languages (e.g. WSDL (W3C, 2001, 2007)). Each
interaction consists of a catching message event (receive) and a throwing mes-
sage event (send). A message event is associated with a message type, which
is either a business request or a business event. A business request - also re-
ferred to as a service request - means that the service sends (in case of a
throwing message event) or receives (in case of a catching message event)
a request for executing a certain business task in the business process. Busi-
ness requests typically are defined in a contract between two parties in which
is stated what the requester can expected from the party that receives the
request (Weigand & Van den Heuvel, 2002). A business event means that
the service sends or receives a event notification that describes a business
task-related event (e.g. the end of a certain business task) (Hens, Snoeck,
Poels & De Backer, 2009). Relations relate actions and interactions to each
other via message events. The interactions (including the message events)
form the coordination logic in a service composition.

In this meta-model abstraction is made of the sequence constraints be-
tween interactions. Furthermore, the meta-model does not take account the
transactional aspect of coordinating business processes and tasks.

3.3 Orchestration and choreography as composition viewpoints

A first group of researchers consider orchestration and choreography sim-
ply as different viewpoints in a service composition. The most detailed def-
initions in this category are proposed by Barros, Dumas & Oaks (2006).
Therefore, we will summarize their definitions below and indicate the re-
lationship with the meta-model presented in Subsection 3.2. Subsequently,
we highlight similar definitions by other researchers.

Barros et al. (2006) define a choreography (model) as follows:

e ”A description of a collaboration between a collection of services to achieve

suonisodurod 221A19s Ut s1daduod d1seq :T 2In31]

1
1
JudAY ssaursng ysel ssaursng
It *
1 T
1
uonesynoN .
JUSAY SsouIsng 1sanbay ssaursng uonePy uondy $S9001(SsauIsng
M * T
{3utofs1p ‘a19[dwiod} _ 1 1 N
1 1 M
odA], o8essoN © |juaayg o8esson | DIAIDS uonsoduio)
{aurofsip ‘@19[dwod} _ .
_ |
JUSAT 98BSSIA JUaAY 98BSSAN
Summoury, uryoren Topraoid
1 T
170 170

UOTIORIIU]

a common goal.

e "It captures the interactions in which the participating services engage
to achieve this goal and the dependencies between these interactions, in-
cluding the causal and/or control-flow dependencies (i.e. that a given
interaction must occur before another one, or that an interaction causes
another one)”

e "The interactions are captured from a global perspective meaning that all
participating services are treated equally. In other words, a choreography
encompasses all interactions between the participating services that are
relevant with respect to the choreography’s goal.”

e ”It does not describe any internal action of a participating service that
does not directly result in an externally visible effect, such as an internal
computation or data transformation.”

Hence, choreography is about the design of all interactions, including the
message events, in a service composition. In a service composition compo-
nent services are collaborating together to achieve a common goal, which
is the realization of a new composite service. A choreography does not de-
scribe the relationship between these interactions and the internal actions
of the component services.

Barros et al. (2006) define an orchestration (model) as ”a description of
the communication actions and the internal actions in which a service engages.
Internal actions include data transformations and invocations to internal soft-
ware modules.” Thus, orchestration is about designing all (internal) actions
and related message events and interactions in which a particular compo-
nent service is involved.

The above definitions of orchestration and choreography fit well in sev-
eral business-to-business service composition methodologies, in which both
orchestration and choreography (as viewpoints) need to be combined in or-
der to build a service-based application that supports the inter-enterprise
business process. The main idea in these methodologies (Papazoglou et al.,
2007; Papazoglou & Van den Heuvel, 2007; Peltz, 2003) is that companies
involved in the business process first agree upon on the way they collaborate
by designing and specifying a choreography. Subsequently, each participat-
ing company can develop an orchestration that fits into the choreography.
In practice companies first design a choreography (e.g. in a WS-CDL (W3C,
2005) or BPEL4Chor (Decker, Kopp, Leymann & Weske, 2009) representa-
tion) and then generate a sort of orchestration skeleton for each company
(e.g. in an abstract BPEL process (OASIS, 2007)). Barros et al. (2006) refer
to this orchestration skeleton as a behavioral interface:

e "A behavioral interface captures the behavioral aspects of the interactions
in which one particular service can engage to achieve a goal.”

7

e "It focuses on the perspective of one single party (in a choreography). As
a result, a behavioral interface does not capture ‘complete interactions’
since interactions necessarily involve two parties.”

e ”Basically, it consists of communication actions performed by one partic-
ipant”

e ”A behavioral interfaces does not describe internal tasks such as internal
data transformations.

Note that these definitions imply that in each service composition there is
only one choreography viewpoint and several orchestration viewpoints.

3.4 Orchestration and choreography as composition styles

A second group of researchers describe orchestration and choreography as
composition styles, which are two generic ways that illustrate how compo-
nent services in a service composition interact. This means that orchestra-
tion and choreography can be considered as two templates for coordination
scenarios that manage sequence dependencies.

Several researches define orchestration as a service composition in which
a central coordinator - sometimes also referred to as the orchestrator (Busi,
Gorrieri, Guidi, Lucchi & Zavattaro, 2005; Tabatabaei, Kadir & Ibrahim,
2008; ter Beek, Bucchiarone & Gnesi, 2006), the controller (Barker, Weiss-
man & Hemert, 2009) or the choreographer (Mitra, Kumar & Basu, 2008) -
is responsible for coordinating the business process execution by invoking all
component services in the right order (Busi et al., 2005; Barker et al., 2009;
Tabatabaei et al., 2008; Malinova & Gocheva-Ilieva, 2008; ter Beek et al.,
2006; Bellini, Prado & Zaina, 2010). This coordinator can be either one of
the component services or another service (e.g. a BPEL engine) (Malinova
& Gocheva-Ilieva, 2008). Pedraza & Estublier (2009) describe orchestration
as a service composition in which ”a single engine on a single machine forms
the heart of the (service-based) system, with all communication going to and
coming from that machine”. Similarly, Pessoa, Silva, Sinderen, Quartel &
Pires (2008) state that all the interactions in an orchestration pass through
the coordinator.

In summary, this means that orchestration can be considered as a service
composition style in which one service (the coordinator) interacts with all
component services. There are no (explicit) interactions between compo-
nent services; each interaction in the orchestration is between the coordi-
nator and a component service. Typically, only the coordinator has knowl-
edge of the business process and sends business requests to the component
services. The component services mostly send business events to the coordi-
nator. In the literature, orchestration defined in this way is also referred to
as centralized coordination (Pessoa et al., 2008; Benatallah, Sheng & Dumas,

2003), centralized orchestration (Binder, Constantinescu & Faltings, 2006) or
centralized choreography (Mitra et al., 2008). This definition can also be ex-
plained by means of the orchestra metaphor. As in a real-life orchestra, one
service is playing the role of the conductor and coordinates all component
services (Lin & Chang, 2005).

In line with orchestration as a composition style, choreography is often
described as a service composition in which there is no central coordinator.
In a choreography the component services are rather collaborating together.
The business process is executed and coordinated by several peer-to-peer in-
teractions among the collaborating services (Busi et al., 2005; Barker et al.,
2009; Tabatabaei et al., 2008; Malinova & Gocheva-Ilieva, 2008; ter Beek
et al., 2006; Bellini et al., 2010). The component services directly com-
municate with each other, and not through a central coordinator (Pedraza
& Estublier, 2009; Pessoa et al., 2008). According to Barker et al. (2009)
and Malinova & Gocheva-Ilieva (2008) all participants in a choreography
need to be aware of the business process, operations to execute, messages
to exchange, and the timing of message exchanges. In contrast, Pedraza &
Estublier (2009) state that each participant is responsible for routing mes-
sages to the 'next’ (Web) service(s) without any global view such as the
business process. In summary, choreography can be considered as a service
composition style in which the component services interact with each other
and there is no central coordinator that exclusively interacts with compo-
nent services. Typically, several component services have knowledge about
(part of) the business process and send business requests to each other;
component services mostly also send business events to other component
services. In the literature, choreography defined in this way is also referred
to as peer-to-peer coordination (Pessoa et al., 2008; Benatallah et al., 2003)
or decentralized orchestration (Binder et al., 2006). This definition can also
be explained by means of the dancers metaphor. As a group dancers do
in real life, each service knows exactly when to execute and with whom to
interact (Lin & Chang, 2005).

3.5 Conclusion

As discussed in the introduction of this section, orchestration and chore-
ography are important terms when designing coordination logic that deals
with sequence dependencies. Based on our literature overview (see Subsec-
tions 3.3 and 3.4) we can conclude that orchestration and choreography are
relevant terms in two ways. On the one hand, orchestration and choreogra-
phy can be considered as viewpoints in a service composition. In particular,
one can say that orchestration and choreography provide local and global
views on a coordination scenario. On the other hand, orchestration and
choreography can refer to two composition styles. In the context of service
coordination, this perspective is probably the most relevant, because in a

way these composition styles refer to different kinds of coordination scenar-
ios.

We believe both composition viewpoints and styles are useful concepts
when designing service interactions. However, as shown in the previous
subsections the terms orchestration and choreography are used for both
purposes, which can potentially lead to confusion and inconsistencies.When
referring to the composition styles, we advice to use the terms centralized
and decentralized coordination. Terms such as centralized orchestration or
decentralized orchestration are very confusing when orchestration is consid-
ered as a viewpoint, because then orchestration is, per definition, always
executed by one service. Centralized choreography or decentralized chore-
ography are perhaps easier to understand, because then the adjectives tell
something about the interactions. However, these terms, currently, are not
so frequently used in the literature.

Note that it is relatively easy to understand that people confuse compo-
sition viewpoints with composition styles. Indeed, from the viewpoint per-
spective orchestrations are always executed by one service. However, it is
important to realize that this does not necessarily imply that the service ex-
ecuting the orchestration have to coordinate the complete business process.
Similarly, it is true that in a choreography (as viewpoint) there are several
services interacting with each other, but this does not imply a centralized or
decentralized coordination. Indeed, also in a centralized coordination one
can consider the choreography viewpoint.

As mentioned earlier, in service coordination is mainly related to compo-
sition styles, because centralized or decentralized coordination describes a
sort of coordination style. Nevertheless, orchestration and choreography as
composition styles does not explicitly describe the types of messages that are
exchanged between services (i.e. business requests or business event notifi-
cations). As we have described in Subsection 3.4, centralized coordination
(or orchestration as composition style) typically implies that one coordinat-
ing service has business process knowledge and sends business requests to
the component services. However, one could also think of a coordination
scenario in which a central business process-agnostic service (e.g. an event
broker) does not send business requests but only forwards business event no-
tifications to interested services. Similarly, a choreography as composition
style does not describe the nature of inter-service communication. On the
one hand, one can easily imagine scenarios in which component services
collaborate together and send business requests to each other. On the other
hand, however, services can also collaborate together by only sharing busi-
ness events. For example, in a group of dancers typically dancers do not
tell each other what and when to do something (i.e. they do not send busi-
ness requests to each other). Dancers rather react on movements etc. from
others to know when to do something. In summary, we can conclude that
the common distinction between orchestration and choreography does not

10

describe the complete set of possible coordination scenarios. However, cur-
rently, there are no concrete guidelines available for building such scenarios
and choosing an appropriate solution.

4 Managing data dependencies

In this section we will discuss existing solutions for managing data depen-
dencies in service compositions. Before discussing these studies in detail,
we first describe a short running example that we use for illustrating the
results of these studies.

4.1 Short running example

We use a simple (fictive) example of a service composition in hospitals as
running example. We deliberately chose a non-automated example so as
not to clutter the discussion with (low-level) implementation issues, but
the conclusions presented in this section are equally applicable to software
services.

Consider a nurse who wants to treat a patient’s high fever using a febrifuge.
Getting the right febrifuge requires consumption of several services. In par-
ticular, the nurse should request a febrifuge from the pharmacist, who of
course also provides several services to the hospital staff. Hence, the nurse
can be considered as a service composer that needs to consume the service
of a pharmacist. Both aspirin and paracetamol are fever reducers. However,
aspirin has the unpleasant side effect that it can cause stomach bleeding in
certain circumstances. Therefore, the pharmacist needs patient-specific in-
formation concerning the risk for stomach bleeding, before he or she can de-
liver an appropriate febrifuge. The risk for stomach bleeding is only known
by the patient’s doctor. This means that the doctor provides a second ser-
vice that needs to be consumed in order to support the task of choosing a
febrifuge. Hence, this implies that there is a data dependency in this service
composition between the pharmacist and the doctor. In this case, service
coordination means providing the pharmacist with the data that is held by
the doctor.

Even though this is a rather small example of data dependencies in a
service composition, many coordination scenarios are possible. In figures
2(a) and 2(b) two ways of managing the data dependency between the
pharmacist and the doctor are shown.

4.2 Existing techniques for dealing with data dependencies

Data dependencies are related to the data flow concept in service composi-
tions. In general, data flow can be defined as the service interactions that are

11

Information request
concerning the risk for
stomach bleeding

Request for
@ notifying the pharmacist [« ¢ o o o o ® ® *

of the risk for stomach bleeding
.......

Nurse e Doctor
.
L)
. ————
\ ‘The risk for @
@ A v @ N stomach bleeding
. []
. .
Request for . Request for 3
a medicine for o Riskfor =~ Doctor a medicine for Y Risk for
d o stomach bleeding < N :
reducing fever ' reducing fever !} stomach beeding
. L]
. '
HO) ®
The risk for
stomach bleeding
(@) (b)

Figure 2: Two ways of coordinating the pharmacist and doctor

necessary for sending data from one service that can provider certain data
to another service that needs that data (Barker, Weissman & Van Hemertb,
2008b; Yang, 2003; Weber, Schuler, Neukomm, Schuldt & Schek, 2003;
Charfi & Mezini, 2007). A data flow thus specifies how data dependencies
are managed. Therefore, we will focus on studies that contain approaches
to find and use alternative data flows in a service composition. We illustrate
the results of these studies by means of the running example presented in
the Subsection 4.1. Subsequently, we will show that these studies do not
cover all aspects that are important for the design of an appropriately coor-
dinated service-based system.

In the descriptions below, we use two coordination scenarios for the hos-
pital example, which are represented in figures 3(a) and 3(b). Each arrow
corresponds to a message sent between two entities. The dashed arrows re-
fer to service invocations, while the solid arrows denote the transfer of data
between two entities. The semi-dashed arrow (as used in figure 3(a)) is
used to indicate that the data is included in the invocation message. While
in figure 3(a) all data passes via the nurse (central data flow), the data flow
in figure 3(b) is decentral, since data flows directly from one service to the
other. As we will show below, the contributions of many studies can be
easily explained by means of this small example consisting of two possible
coordination scenarios.

Barker et al.b (2008b) and Barker, Weissman & Van Hemerta (2008a)
have presented a Web services based architecture that allows centralizing
component invocations (centralized control flow) and decentralizing data
flows (similar to figure 3(b)). This architecture consists of a centralized or-
chestration engine that issues control flow messages to Web services taking
part in service composition. However, enrolled Web services can pass data
messages among themselves, as in a peer to peer model. The architecture
is mainly based on the idea of so called proxies, which are deployed in the

12

@ @ @ Nurse @
Nurse oo
Py —
Pd ~, e Request for

, Request for Request for ¢ dicine fc
I a medicine for the risk for ? Feducing fover
ek for « reducing fever stomach bleeding * reducing fever
e risk for (includes the risk for q
stomach blecding ! \ stomach bleeding)
.

’
.
.
‘The risk for 1 M

stomach bleeding . v

L)
.
1]
L]
\ 4 \ 4
Doctor
Doctor
@ The risk for
stomach bleeding
(a) Central data flow (b) Decentral data flow

Figure 3: Two possible data flows for hospital example

vicinity of Web services. These proxies realize the more efficient data flow
between component services.

Liu, Law & Wiederholda (2002a); Liu, Law & Wiederholdb (2002b) have
published a mathematical model that is built to compare the data flow per-
formances. They concluded that decentralized data flow is in general supe-
rior in performance (i.e. the service composition in figure 3(b) outperforms
3(a)). Subsequently, they developed a Flow-based Infrastructure for Com-
posing Autonomous Services (FICAS) (Liu et al.a, 2002a; Liu et al.b, 2002b).
Autonomous services are built to support the service access protocol, which
enforces the explicit separation of data flows from control flows. In FICAS
the so called autonomous services are implemented by wrapping each soft-
ware application or service into an autonomous service with a mediator.

The infrastructure based on so called service invocation triggers, intro-
duced by Binder et al. (2006), is very similar to FICAS. In this infrastructure
service invocation triggers also act as proxies for individual service invoca-
tions. Triggers collect the required input data before they invoke the service.
Moreover, they forward service outputs to exactly those services that need
the output. In order to make use of triggers, business processes are decom-
posed into sequential fragments, and the data dependencies are encoded
within the triggers. Once the trigger of the first service in a business process
has received all input data, the execution of that service is started and the
outputs are forwarded to the triggers of subsequent services. Consequently,
the service composition is implemented in a fully decentralized way, the
data is transmitted directly from the producer to all consumers.

Balasooriya, Padhye, Prasad & Navathe (2005) use the same ideas for
decentralizing data flows. In particular, they create a proxy wrapper around
each Web service. The proxy wrappers embed the coordination logic so that
instances of wrapped web services become stateful self-coordinating web
objects. However, the proxy wrappers need to interact with the actual Web
service to complete each method invocation.

13

4.3 Conclusion

We can conclude that several approaches exists that cater for alternative
data flows. Many studies propose architectural infrastructures for such data
flows. These infrastructures often use the same idea: wrapping each com-
ponent service with additional logic that decides where to send input or
output data. Obviously, these infrastructures are valuable and useful when
one wants to implement a specific data flow. However, the focus on the
problem of designing the data flow itself is rather limited. Furthermore, as
we will show below, it remains difficult for a service composer to construct a
well coordinated service composition. There are two main reasons why the
current approaches are not entirely adequate for this purpose:

1. As most approaches have only a limited focus on designing the data
flow, these studies fail to systematically analyze the coordination prob-
lem. Most approaches allow finding alternative data flows, but do not
provide a systematic way of building different coordination styles nor
do they analyze the advantages and disadvantages of alternatives. As
a consequence, they fail to exhaustively identify all coordination sce-
narios. The approaches mostly propose techniques for decentralizing
data flows in service compositions. Applied to the hospital example,
this would mean that a scenario such as shown in figure 3(a) can be
transformed into a scenario such as shown in figure 3(b). However,
one can easily see that there are more possibilities. For example, the
scenario represented in figure 4 contains a different coordination sce-
nario. In this scenario the pharmacist requests and receives the risk
information directly from the doctor, which can be considered as yet
another different way of managing the data dependency between the
pharmacist and the doctor. Other possible scenarios were shown in
the subsection discussing the running example (see figures 2(a) and
2(b)).

2. The main motivation behind existing approaches are performance is-
sues (i.e. communication overhead, etc.). Only the work by Balasooriya
et al. (2005) recognizes that decentral data flow can be required due
to security, privacy, or licensing imperatives. However, when evaluat-
ing their infrastructure, they only focus on the performance aspect. To
the best of our knowledge, no studies about data dependency manage-
ment take into account other aspects that could influence the choice
of a specific data flow such as data confidentiality, loose coupling or
robustness to change. This can result in badly or suboptimally coor-
dinated service compositions and service-based systems. For exam-
ple, the pharmacist and doctor in the decentralized data flow scenario
shown in figure 2(b) are not optimally coordinated. This is due to
the fact that nurses probably should not need to understand which

14

Request for
the risk for

< stomach bleeding @
Doctor
AN
»
@ The risk for

stomach bleeding

Figure 4: An alternative data flow for the scenarios represented in figures
3(a) and 3(b)

data is required by the pharmacist. Nurses simply want to consume
the pharmacist’s services, and it is to be avoided that changes in data
requirements on behalf of the pharmacist result in changes in how
nurses need to work (or consume the pharmacist’s services). Hence,
the scenarios represented in figures 2(a) and 4 are probably more ap-
propriate, because in these scenarios the nurse does not have to know
which data is needed by the pharmacist. This example illustrates that
robustness to change is another useful criterion to be considered next
to performance issues.

References

Alonso, G., Casati, F., Kuno, H. & Machiraju, V. (2004). Web services: con-
cepts, architectures and applications. Data-Centric Systems and Appli-
cations. New York, NY, USA: Springer-Verlag Berlin Heidelberg.

Balasooriya, J., Padhye, M., Prasad, S. K. & Navathe, S. B. (2005). Bond-
flow: A system for distributed coordination of workflows over web
services. In Proceedings of the 19th IEEE International Parallel and Dis-
tributed Processing Symposium (IPDPS 2005) - Workshop 1 (p. 121.1).
Washington, DC, USA: IEEE Computer Society.

Barker, A., Weissman, J. B. & Hemert, J. I. (2009). The circulate architec-
ture: avoiding workflow bottlenecks caused by centralised orchestra-
tion. Cluster Computing, 12(2), 221-235.

Barker, A., Weissman, J. B. & Van Hemert, J. (2008a). Eliminating the mid-
dleman: peer-to-peer dataflow. In Proceedings of the 17th international
symposium on High performance distributed computing (HPDC 2008)
(pp. 55-64). New York, NY, USA: ACM.

Barker, A., Weissman, J. B. & Van Hemert, J. (2008b). Orchestrating data-
centric workflows. In Proceedings of the 2008 Eighth IEEE International

15

Symposium on Cluster Computing and the Grid (CCGRID 2008) (pp.
210-217). Washington, DC, USA: IEEE Computer Society.

Barros, A., Dumas, M. & Oaks, P. (2006). Standards for web service chore-
ography and orchestration: Status and perspectives. In C. Bussler
& A. Haller (Eds.), Business Process Management Workshops, Volume
3812 of Lecture Notes in Computer Science (pp. 61-74). Springer-Verlag
Berlin Heidelberg.

ter Beek, M., Bucchiarone, A. & Gnesi, S. (2006). A survey on service
composition approaches: From industrial standards to formal meth-
ods. Technical Report 2006-TR-15, Consiglio Nazionale delle Ricerche,
Pisa, Italy.

Bellini, A., Prado, A. F. d. & Zaina, L. A. M. (2010). Top-down approach for
web services development. In Proceedings of the 2010 Fifth Interna-
tional Conference on Internet and Web Applications and Services (ICIW
2010) (pp. 426-431). Washington, DC, USA: IEEE Computer Society.

Benatallah, B., Dijkman, R., Dumas, M. & Maamar, Z. (2005). Service Com-
position: Concepts, Techniques, Tools and Trends. In Service-Oriented
Software System Engineering: Challenges and Practices chapter 3, (pp.
48-66). IGI Publishing.

Benatallah, B., Sheng, Q. & Dumas, M. (2003). The Self-Serv Environment
for Web Services Composition. IEEE Internet Computing, 7(1), 40-48.

Bhiri, S., Perrin, O. & Godart, C. (2005). Ensuring required failure atomicity
of composite web services. In Proceedings of the 14th international
conference on World Wide Web (WWW 2005) (pp. 138-147). New York,
NY, USA: ACM.

Bhiri, S., Perrin, O. & Godart, C. (2006). Extending workflow patterns with
transactional dependencies to define reliable composite web services.
In Proceedings of the Advanced International Conference on Telecommu-
nications and International Conference on Internet and Web Applications
and Services (AICT-ICIW 2006) (p. 145). Washington, DC, USA: IEEE
Computer Society.

Binder, W., Constantinescu, I. & Faltings, B. (2006). Decentralized orches-
tration of composite web services. In Proceedings of the IEEE Interna-
tional Conference on Web Services (ICWS 2006) (pp. 869-876). Wash-
ington, DC, USA: IEEE Computer Society.

Busi, N., Gorrieri, R., Guidi, C., Lucchi, R. & Zavattaro, G. (2005). Towards
a formal framework for choreography. In Proceedings of the 14th IEEE
International Workshops on Enabling Technologies: Infrastructure for
Collaborative Enterprise (WETICE 2005) (pp. 107-112). Washington,
DC, USA: IEEE Computer Society.

Charfi, A. & Mezini, M. (2007). AO4BPEL: An Aspect-oriented Extension to
BPEL. World Wide Web, 10(3), 309-344.

Decker, G., Kopp, O., Leymann, F. & Weske, M. (2009). Interacting ser-
vices: From specification to execution. Data & Knowledge Engineering,

16

68(10), 946-972.

Hens, P., Snoeck, M., Poels, G. & De Backer, M. (2009). The use of the con-
cept of event in enterprise ontologies and requirements engineering
literature. Technical Report KBI 0909, Faculty of Business and Eco-
nomics, Katholieke Universiteit Leuven, Leuven, Belgium.

Janssen, M. & Feenstra, R. (2008). Socio-technical design of service com-
positions: a coordination view. In Proceedings of the 2nd International
Conference on Theory and Practice of Electronic Governance (ICEGOV
2008) (pp. 323-330). New York, NY, USA: ACM.

Lin, F.-r. & Chang, H.-c. (2005). The development and evaluation of ex-
ception handling mechanisms for order fulfillment process based on
bpel4ws. In Proceedings of the 7th international conference on Electronic
commerce (ICEC 2005) (pp. 478-484). New York, NY, USA: ACM.

Liu, D., Law, K. H. & Wiederhold, G. (2002a). Analysis of integration models
for service composition. In Proceedings of the 3rd international work-
shop on Software and performance (WOSP 2002) (pp. 158-165). New
York, NY, USA: ACM.

Liu, D., Law, K. H. & Wiederhold, G. (2002b). Data-flow distribution in
FICAS service composition infrastructure. In Proceedings of the 15th
International Conference on Parallel and Distributed Computing Systems
(PDCS 2002). Louisville, Kentucky USA: ISCA.

Malinova, A. & Gocheva-Ilieva, S. (2008). Using the Business Process Execu-
tion Language for Managing Scientific Processes. International Journal
Information Technologies and Knowledge, 2(3), 257-261.

Malone, T. & Crowston, K. (1994). The interdisciplinary study of coordina-
tion. ACM Computing Surveys (CSUR), 26(1), 119.

Metzger, A. & Pohl, K. (2009). Towards the Next Generation of Service-
Based Systems: The S-Cube Research Framework. In P. van Eck,
J. Gordijn & R. Wieringa (Eds.), Advanced Information Systems En-
gineering, Volume 5565 of Lecture Notes in Computer Science (pp. 11—
16). Springer-Verlag Berlin Heidelberg.

Mitra, S., Kumar, R. & Basu, S. (2008). Optimum decentralized choreog-
raphy for web services composition. In Proceedings of the 2008 IEEE
International Conference on Services Computing (SCC 2008) (pp. 395-
402). Washington, DC, USA: IEEE Computer Society.

OASIS (2007). Web Services Business Process Execution Language (WS-
BPEL) Version 2.0. OASIS Standard.

OMG (2010). OMG Unified Modeling Language™ (OMG UML), Superstruc-
ture Version 2.3. OMG Document (formal/2010-05-05).

Papazoglou, M. (2005). Extending the service-oriented architecture. Busi-
ness Integration Journal, 7(1), 18-21.

Papazoglou, M., Delis, A., Bouguettaya, A. & Haghjoo, M. (1997). Class
library support for workflow environments and applications. IEEE
Transactions on Computers, 46(6), 673-686.

17

Papazoglou, M. & Heuvel, W. (2007). Service oriented architectures: ap-
proaches, technologies and research issues. The VLDB Journal - The
International Journal on Very Large Data Bases, 16(3), 415.

Papazoglou, M., Traverso, P., Dustdar, S. & Leymann, F. (2007). Service-
Oriented Computing: State of the Art and Research Challenges. Com-
puter (pp. 38-45).

Papazoglou, M. P. & Van den Heuvel, W.-J. (2007). Business process devel-
opment life cycle methodology. Communications of the ACM, 50(10),
79-85.

Pedraza, G. & Estublier, J. (2009). Distributed Orchestration Versus Chore-
ography: The FOCAS Approach. In Proceedings of the International
Conference on Software Process (ICSP 2009) (pp. 75-86). Berlin, Hei-
delberg: Springer-Verlag Berlin Heidelberg.

Peltz, C. (2003). Web services orchestration and choreography. Computer,
36(10), 46-52.

Pessoa, R. M., Silva, E., Sinderen, M. v.,, Quartel, D. A. C. & Pires, L. F.
(2008). Enterprise interoperability with soa: a survey of service com-
position approaches. In Proceedings of the 2008 12th Enterprise Dis-
tributed Object Computing Conference Workshops (EDOCW) (pp. 238-
251). Washington, DC, USA: IEEE Computer Society.

Tabatabaei, S., Kadir, W. & Ibrahim, S. (2008). Web Service Composition
Approaches to Support Dynamic E-Business Systems. Communications
of the IBIMA, 2, 115-121.

W3C (2001). Web Services Description Language (WSDL) Version 1.1. W3C
Note.

W3C (2005). Web Services Choreography Description Language (WS-CDL)
Version 1.0. W3C Candidate Recommendation.

W3C (2007). Web Services Description Language (WSDL) Version 2.0 Part
1: Core Language. W3C Recommendation.

Weber, R., Schuler, C., Neukomm, P., Schuldt, H. & Schek, H.-J. (2003).
Web service composition with O’'GRAPE and OSIRIS. In Proceedings of
the 29th international conference on Very large data bases (VLDB 2003)
(pp- 1081-1084). VLDB Endowment.

Weigand, H. & Van den Heuvel, W.-J. (2002). Cross-organizational work-
flow integration using contracts. Decision Support Systems, 33(3),
247-265.

Yang, J. (2003). Web service componentization. Communications of the
ACM, 46(10), 35-40.

Yang, J., Papazoglou, M. P. & Heuvel, W.-J. V. d. (2002). Tackling the
Challenges of Service Composition in E-Marketplaces. In Proceedings
of the 12th International Workshop on Research Issues in Data Engi-
neering: Engineering E-Commerce/E-Business Systems (RIDE 2002) (p.
125). Washington, DC, USA: IEEE Computer Society.

18

	FEB_KBI-voorblad onderzoeksrapport-sharepoint.pdf
	research_report2

