KATHOLIEKE UNIVERSITEIT

Web services specifications
on eventing and coordination

Geert Monsieur, Monigue Snoeck and Wilfried Lemahieu

DEPARTMENT OF DECISION SCIENCES AND INFORMATION MANAGEMENT (KBI)

KBI 1026

Web services specifications
on eventing and coordination

Geert Monsieur, Monique Snoeck, Wilfried Lemahieu
Faculty of Business and Economics
Katholieke Universiteit Leuven
firstname.lastname@econ.kuleuven.be

January 15, 2007

1 Existing event-based Web services standards

1.1 WS-Events

The WS-Events specification consists of ’a set of processing rules for adver-
tising, subscribing, producing and consuming Web services Events’ [4]. All
authors of this specification are based at Hewlett-Packard. Further develop-
ment of WS-Events is not on the agenda anymore. Therefore we only give a
brief overview of this specification.

WS-Events defines an event as a change in the state of a resource or re-
quest for processing. The specification describes three main entities. The
event producer is an entity which generates notifications. These notifica-
tions are received by the event consumers. The event broker is responsible
for routing the notifications. Brokers typically aggregate and publish events
from several producers. An event broker can also apply some transforma-
tion to the notifications it processes. The precise role of the broker remains
unclear in WS-events. Subscription requests and notifications are described
as (direct) messages between the event producer and the event consumer.
The specification does not provide descriptions of entities responsible for
subscription or subscription management tasks (such as the subscriber and
subscription manager in WS-Notification and WS-Eventing) nor does it dis-
tinguish between publisher and producer roles (as in WS-Brokered Notifica-
tion).

1.2 WS-Eventing

The WS-Eventing specification describes a protocol that allows Web services
to subscribe to or accept subscriptions for event notification messages [3].
The specification defines four entities in the event notification architecture

Subscription management operations
(getStatus, unsubscribe, renew)

coeccna,
- e

I 4 .
LY
Subsription . .
Event source P Subscriber Event sink
manager
A) ’
. W .° ’
\‘ e o _o' 4
[N Rl T ___-" 'o'
\“ ~~-------'. ",
.~ subscribe .®

- o®
Ceo -
Ceoa CX A
Ceccccscscsane""

notifications

Figure 1: WS-Eventing

(see figure 1). An event source is considered as a Web service that sends no-
tifications and accepts requests to create subscriptions. A Web service that
receives notification messages is referred to as an event sink. Before this
event sink can receive notifications it’s subscriber needs to send a subscrip-
tion creation request to the event source. The subscriber is also responsible
for sending subscription management requests (retrieving status informa-
tion, renewing or deleting subscriptions). These latter requests are sent to
and handled by the subscription manager.

1.3 WS-Notification

The Web services Notification (WS-Notification) family of specifications de-
fines a framework for event notification in a Web services environment.
It consists of three main specifications, namely WS-Base Notification, WS-
Brokered Notification and WS-Topics [1].

1.3.1 Terminology and concepts

All WS-Notification specifications use a common terminology for the entities
used in the framework definitions. We will give a brief description of the
most important concepts.

WS-Notification does not specify what a event is or is not, nor does it
define the concrete relationship between an event and the notification mes-
sages that are used to describe the event. In any case an event is some
occurrence within a (web) service or component of interest to third parties
- most of the time other services or components. An event is published by
a publisher. This entity creates a notification message based on an event
it is capable of detecting. The publisher does not have the responsibility
for sending the notification message to the appropriate receivers. This task
is reserved for the notification producer. In some cases, the notification pro-

ducer also has the role of publisher (thus it creates the notification messages
itself). In the other cases the notitication producer is referred to as a notifica-
tion broker. The broker similarly distributes notification messages that were
created by a separate publisher. In order to distribute notification messages
the notification producer maintains a list of interested and registered notifi-
cation consumers. Expressing interest in some types of notification messages
occurs with the use of so called topics. For more details about the topic-
based subscription mechanism we refer to the WS-Topics specification [1].
A subscriber is an entity that sends subscription requests to the notification
producer on behalf of a notification consumer. Although it is not necessary, a
notification producer can delegate subscription management tasks (retriev-
ing subscription status, unsubscribing and renewing) to a separate entity, a
so called subscription manager.

1.3.2 WS-Base Notification

Figure 2(a) represents the architecture described in the WS-Base Notifica-
tion specification. There are three main entities defined, namely a noti-
fication producer, a subscriber and a notification consumer. The use of a
subscription manager is optional.

As one can see there is no publisher in this setting. The notification pro-
ducer is responsible for creating and sending the notification messages to the
consumers. If required the notification producer can delegate subscription
management to a subscription manager.

1.3.3 WS-Brokered Notification

Figure 2(b) represents the brokered version of WS-Notification. The central
entity in this pattern is the broker. This intermediary decouples publishers
from notification producers. It has two main responsibilities, distributing
notification messages (the notification producer’s task) and managing sub-
scriptions (the subscription manager’s task) (see figure 2(b)). Beside these
basic functionalities the broker can provide so called additional added-value
functions. Examples of these functions are logging notification messages,
transforming topics or notification message content [7].

2 Web services coordination

In this section we will discuss two Web services coordination specifications.
Specific transaction or coordination protocols are beyond the scope of this
article. The focus is on the generic coordination architecture.

Subscription management operations
(getStatus, unsubscribe, renew)

L Y
Notification Subsription . Notification
Subscriber
producer manager Consumer
‘\ v~ "' ‘
. Se P4 .
‘\ See L P i - 0'
‘\ ..~--.----.‘.- 0'
. L d
Seo subscribe .o’

notifications
(a) WS-Base Notification

Publisher

)
]
registerPublisher ¢

)
! E notify
\ 4

Notification Broker

Additional added-value functions

Notification Subsription
producer manager

Transforming topics Logging
Transforming message content

(]
subscribe ! notify
: v
Subscriber Notification
Consumer

(b) WS-Brokered Notification

Figure 2: WS-Notification

2.1 WS-Coordination (WS-C)

In general, coordination can be seen as the act of one entity (known as
the coordinator) disseminating information to a number of participants or
components for some domain-specific reason. The reason could be to reach
consensus on a decision like in a distributed transaction protocol, or simply
to guarantee that all components obtain a specific message, as occurs in a
reliable multicast environment [6].

All these kinds of coordination have something in common. The idea
is that when components are being coordinated, information known as the
coordination context is propagated to tie together operations which are log-
ically part of the same coordinated activity. The WS-Coordination (WS-C)
specification is built starting from this idea. It defines a generic framework
which can be used to propagate context information, independent of the co-
ordination protocol used.

The main part of the WS-C specification describes the different services
and functionalities a coordinator should provide. Three services are de-
fined in the specification. The task of the activation service is to provide
an interface where components can request the creation of a coordination
context. Since the propagation of context information - which bundles op-
erations that are part of the same coordinated activity - is necessary before
any coordination can occur, the request of context creation can be seen as
the activation of the coordination. Once components have received context
information they can register for coordination by talking to the registration
service of the coordinator mentioned in the context information. Actual coor-
dination is realized by protocol communication between the protocol service
of the coordinator and the participating (registered) components. Context
information typically consists of a reference to the registration service of
a coordinator, the coordination type and protocol-specific information [2].
Figure 3 represents the overall WS-C architecture. As an illustration we will
discuss how one can apply WS-C to implement e.g. the single sign-on proto-
col. Single sign-on (SSO) is a form of software authentication that enables a
user to authenticate once and gain access to multiple components. In terms
of the WS-C architecture authentication is done when the client application
sends a request for context creation. In case of successful authentication
the coordination process is activated. Then the client application receives
context information which can be used in communications with all the dif-
ferent components (e.g. printer service or email service). Components use
this context information to register with the coordinator. Registration occurs
every time a component receives a particular context for the first time. Reg-
istration is successful when the coordinator manages to associate a logged
on user (and thus an active coordination process) with the details of the
registration message (e.g. a ticket code that was included in the context
information). When the user logs out, the coordinator sends via the reg-

0 Application message

Client application =eeeeeccecscccccccccaaly Participant
. Context
. .o .pllcafl'o
- [7 L4
o A Sel Mg 4 A
" 0 e T ‘Sfage o, o’ 0
¢ 0 Se P .
O -
o : : "[e,y[".. ‘,' :
[] [] - -
Activation message ¢ o Y s N
; "
(request for context creation) § : % N "- Participant
: . g \{5\\0 ‘o'
") -
o @l 4
- &, . ‘?' -’ ; ?
O . '
: : g ‘) 6\(6\\ .* ‘ . |4
[) P ?\eg\ o’ .o .0
Coordinator ¢ * @ .’ . ’ 0
* ¢ 4 e ’ 0

-
.
.
.
.
-

Activation Service

w
L)
[y .
.
N .
[}
.
.
[y
.
[y
.
.
)
[
.
.
[y
.
N)
[[}
. .
0"
[y L)
.
A .
’% .
.
.
) ~
3 .

Registration Service

e’ . e
. eo="" Pid W
Protocol Service i Le=" 000‘6\
ce®
"ecccccse"™

Figure 3: WS-Coordination architecture

istration service warnings to the registered components to revoke access
rights of the user [6].

The specification also allows that applications or components use their
own coordinators to communicate coordination aspects. In this case the
components forward context information to their coordinator. Subsequently
the component’s coordinator registers with the coordinator mentioned in the
context details. For more details about coordination with multiple coordi-
nators we refer to the standard specification [2].

2.2 WS-Coordination Framework (WS-CF)

The purpose of the Web services Composite Application Framework (WS-
CAF) standardized by OASIS is to define a generic and open framework for
applications that contain multiple services used in combination (composite
applications). The framework consists of three specifications: WS-Context,
WS-Coordination Framework (WS-CF) and WS-Transaction management.

Since we are not interested in the specific coordination protocols (de-
fined in the WS-Transaction management specification) for the moment,
but rather in the high-level coordination architecture we only discuss the
WS-Context and WS-CF specifications.

2.2.1 WS-Context

The architectures described in WS-C and WS-CF both use the concept of
contexts. As discussed earlier a context provides a way to correlate a set of
messages into a larger unit of work by sharing common information such as
a security token exchanged within a single sign on session. It can be used
to identify an activity or a business event. While WS-C defines the man-
agement of contexts and the coordination mechanisms together, WS-CAF
defines separated specifications for context management and coordination
infrastructure. The purpose of WS-Context is to handle and manage context
information [8]. Some WS-Context functionalities (in particular the Con-
text Service) match with the concepts defined in the activation service of a
coordinator as defined in WS-C. Additionally WS-context defines message
exchanges used to query the content of a context or the state of coordina-
tion - this happens via the context manager service. The latter functionality
is especially useful when a context contains a large amount of data and is
not supported in WS-Coordination [5].

2.2.2 The coordination framework

Figure 4 presents an overview of the architecture defined in the WS-CF spec-
ification. The main difference with WS-C is that WS-CF does not define
entities (like the activation service in WS-Coordination) and operations for
the creation and management of contexts. Instead it depends on the WS-
Context specification for these context related tasks. Roughly speaking WS-
C’s registration service and protocol service provide the same functionalities
as WS-CF’s registration service and participant service respectively.

In figure 4 no connection between the WS-Context entities and WS-CF
entities (registration and participant service) is shown. In fact the WS-CF
specification doesn’t discuss how a registration service is located or associ-
ated with the Context Service. Although one can surely consider possible
coordination protocols which don’t require this connection, we believe one
can not ignore the possible working relationships between a registration
and/or participant service and the context services. In case of the single-
sign protocol the registration service should validate received registration
messages (in particular the ticket information) with the support of the con-
text services. The context services also need to interact with the registration
and/or participant service if the user logs out and all services needs to be
informed of this security-related change.

References

[1] Akamai Technologies, Hewlett-Packard, IBM, Sonic Software, SAP,

e Application message

Client application eeeecececee .C.)- ? .t. ccces -} Participant
. ontex
'1/)?”0.9,«,-0
) « o 0n 4
O A O U, 0. 4
[- 0
Request for §] 3 007727@. . "0 :
context creation ® ' S S D !
(not discussed in 4 10 NN
WS-CF)] . "
* ' o s o Participant
O e
0
3] Context Service & o Q,’ A
& . e ' .
c L4 o’ [
]
et Context Manager ‘o' @5\‘ Lo’ h :
s Service S Q@',' N H
4 o’] [}
e Pl ’ !
l' o’ l' l.
(4 '0' . ’
.) J
s Registration Pid 9'.‘)
®E Service y 3 L U
€9 P4 P
5 2 . RS
o g PY e P N
8 H e - o’ {$\\0
- o A - L d N
L W Participant Service «-- e &
@ eo=" S
s cccccscee" C)o

Figure 4: WS-Coordination Framework (WS-CF)

Tibco Software. Web services notification (ws-notification) (specifica-
tion version 1.0), January 2004.

[2] Arjuna, BEA Systems, Hitachi, IBM, IONA, Microsoft. Web services co-
ordination (ws-coordination) (specification version 1.0), August 2005.

[3] BEA Systems, Computer Associates, IBM, Microsoft, TIBCO Software.
Web services eventing (ws-eventing), August 2004.

[4] Hewlett-Packard. Web services events (ws-events) (version 2.0), July
2003.

[5] Frank Leymann and Stefan Pottinger. Rethinking the coordination mod-
els of ws-coordination and ws-cf. In ECOWS “05: Proceedings of the Third
European Conference on Web Services, page 160, Washington, DC, USA,
2005. IEEE Computer Society.

[6] Mark Little and Jim Webber. Introducing ws-coordination. Web Services
Journal, May 2003.

[71 P. Niblett and S. Graham. Events and service-oriented architecture: the
oasis web services notification specifications. IBM Syst. J., 44(4):869-

886, 2005.

[8] Oasis. Web services context (ws-context), August 2006.

	FEB_KBI-voorblad onderzoeksrapport-sharepoint.pdf
	research_report1

