
Extending ProbLog with Continuous
Distributions

Bernd Gutmann1, Manfred Jaeger2, and Luc De Raedt1

1 Department of Computer Science, Katholieke Universiteit Leuven, Belgium
{bernd.gutmann, luc.deraedt}@cs.kuleuven.be

2 Department of Computer Science, Aalborg University, Denmark
jaeger@cs.aau.dk

Abstract. ProbLog is a recently introduced probabilistic extension of
Prolog. The key contribution of this paper is that we extend ProbLog
with abilities to specify continuous distributions and that we show how
ProbLog’s exact inference mechanism can be modified to cope with such
distributions. The resulting inference engine combines an interval calcu-
lus with a dynamic discretization algorithm into an effective solver.

1 Introduction

Continuous distributions are needed in many applications for building a natural
model. Probabilistic logic programming languages, such as ProbLog and CP-
Logic [1], have, so far, largely focused on modeling discrete distributions and
typically perform exact inference. The PRISM [2] system provides primitives for
Gaussian distributions but requires the exclusive explanation property which
complicates modeling. On the other hand, many of the functional probabilistic
programming languages, such as BLOG [3] and Church [4], can cope with contin-
uous distributions but only perform approximate inference by a Markov Chain
Monte Carlo approach. Typical statistical relational learning systems such as
Markov Logic and Bayesian Logic Programs have also been extended with con-
tinuous distributions. The key contribution of this paper is a simple probabilistic
extension of Prolog based on the distribution semantics with both discrete and
continuous distributions. This is realized by introducing a novel type of prob-
abilistic fact where arguments of the fact can be distributed according to a
continuous distribution. Queries can then be posed about the probability that
the resulting arguments fall into specific intervals. We introduce the semantics of
using continuous distributions in combination with comparison operations and
show how ProbLog’s inference mechanism, based on Binary Decision Diagrams
(BDDs) [5], can be extended to cope with these distributions. The resulting
language is called Hybrid ProbLog.

Similarly to Hybrid ProbLog, Hybrid Markov Logic Networks (HMLNs) [6]
aim at integrating Boolean and numerical random variables in a probabilistic-
logic modeling framework. The kind of modeling supported by HMLNs is quite
different in nature from the kind of modeling for which Hybrid ProbLog is de-
signed. In an HMLN, one defines equations that function as soft constraints for

relationships among numerical and logical variables. For example, one could ex-
press that the temperature on day d is typically around 20◦ Celsius using the
weighted equality w temperature(d) = 20, where larger weights w lead to a
larger penalty for deviations of temperature(d) from 20. All weighted formulae
containing temperature(d), together, implicitly define a probability distribution
for the random variable temperature(d) due to HMLN semantics. However, one
cannot directly specify this distribution to be Gaussian with, for example, mean
20 and standard deviation 5. No exact inference methods have been developed
for HMLNs.

It is also instructive to compare Hybrid ProbLog with Hybrid Bayesian Net-
works [7]. Apart from one being a logical-relational, and the other a purely
propositional framework, there is also a key difference in the interaction between
continuous and discrete random variables permitted. In Hybrid Bayesian Net-
works, the distributions of continuous variables (usually Gaussian) are typically
conditioned on discrete variables, but continuous variables cannot be parents
of discrete ones. In Hybrid ProbLog this order is reversed: continuous variables
are at the roots of the directed model, and the discrete (Boolean) variables are
conditioned on the continuous ones. Thus, Hybrid ProbLog provides modeling
capabilities and exact inference procedures that, for the propositional case, are
in some sense complementary to Hybrid Bayesian networks.

This paper has three main contributions. (1) An extension of ProbLog with
continuous distributions, (2) formal study of its semantics, and (3) an efficient
inference algorithm based on dynamic discretization.

The rest of this paper is organized as follows. Section 2 reviews basic concepts
from ProbLog. Section 3 introduces the syntax and semantics of Hybrid ProbLog.
Section 4 describes our exact inference algorithm. Before concluding, we evaluate
the algorithm in Section 5.

2 ProbLog

ProbLog [8] is a recent probabilistic extension of Prolog. A ProbLog theory
T = F ∪ BK consists of a set of labeled facts F = {p1 :: f1, · · · , pn :: fn}
and a set of definite clauses BK that express the background knowledge. The
facts pj :: fj in F are annotated with a probability pj stating that fjθ is true
with probability pj for all substitutions θ grounding fj . The resulting facts fjθ
are called atomic choices and represent random variables; they are assumed to
be mutually independent. It is not allowed to use a probabilistic fact in the
heads of clauses in BK. Let Θ = {θj1, . . . θjij |j = 1, . . . n} be a finite3 set of
possible substitutions for the variables in the probabilistic facts where ij is the
number of substitutions for fact j, then a ProbLog theory describes a probability
distribution over Prolog programs L ⊆ LF where LF = FΘ and FΘ denotes the
set of all possible ground instances of facts in F :

PP (L|F) :=
∏

fjθjk∈L

pj
∏

fjθjk∈LF \L

(1− pj) . (1)

3 Throughout the paper, we assume that FΘ is finite, but see [2] for the infinite case.

The success probability of a query q then is

Ps(q|T) :=
∑

L⊆LF :
L∪BK|=q

P (L|F) . (2)

ProbLog also defines a probability distribution Pw over possible worlds, that
is Herbrand interpretations. Each total choice L ⊆ LF can be extended to a
possible world by computing the least Herbrand model of L. This possible world
is assigned the probability Pw = P (L|F). Thus a set of total choices represents
an assignment of truth-values to all atomic choices.

3 Hybrid ProbLog

A Hybrid ProbLog theory T = F ∪ F c ∪BK is a ProbLog theory extended by a
set of continuous probabilistic facts4 of the form

F c = {(X1, φ1) :: f c1 , · · · , (Xm, φm) :: f cm}

where Xi is a Prolog variable, appearing in the atom f ci and φi is a density
function. The fact (X, gaussian(2, 8)) :: temp(D, X), for example, states that the
temperature for day D is Gaussian-distributed with mean 2 and standard devi-
ation 8. The syntax allows one to specify multivariate distributions, i.e.,

((X, Y), gaussian([1, 0], [[1, 0.5], [0.5, 1]]) :: f(X, Y) .

In this paper, however, we restrict ourselves to the univariate case. From a user’s
perspective, continuous facts are queried like normal Prolog facts, and the value
of the continuous variable is instantiated with a value drawn from the underlying
distribution. Hybrid ProbLog adds the following predicates to the background
knowledge of the theory to process values stemming from continuous facts:

– below(X,c) succeeds if X is a value from a continuous fact, c is a number
constant, and X < c

– above(X,c) succeeds if X is a value from a continuous fact, c is a number
constant, and X > c

– ininterval(X,c1,c2) succeeds if X is a value from a continuous fact, c1 and
c2 are number constants, and X ∈ [c1, c2]

Unification with number constants is not supported for the values of continuous
facts, i.e. the call temp(d, 0) fails. But one can express the same using

temp(d, T), ininterval(T, 0, 0) .

Similarly, standard Prolog comparison operators are not supported and one has
to use the corresponding comparison predicate from the background knowledge:

temp(d1, T), T > 5

4 We denote facts, values, and substitutions related to the continuous part of T by
the superscript c.

has to be written as
temp(d1, T), above(T, 5) .

Arithmetic expressions are not supported, i.e the query

temp(d1, T), Fahrenheit is 9/5 ∗ X + 32, Fahrenheit > 41

is illegal. There is no equivalent predicate for that in the background knowledge.
Also, the comparison of two continuous facts is not supported, i.e. the query

temp(d1, T1), temp(d2, T2), above(T1, T2)

is illegal. The latter restriction, in particular, prevents two or more continuous
variables getting “coupled”, i.e. there is a dependency that requires one to always
consider the values of both variables simultaneously. Furthermore, disallowing
arithmetic expressions ensures that one can partition the underlying Rn space
into simple intervals rather than into complex-shaped continuous sets. Despite
being fairly restrictive, our framework allows for non-trivial programs.

Example 1 (Gaussian Mixture Model). The following theory encodes a Gaussian
mixture model. The atom mix(X) can be used later on as if it were a simple
continuous fact, which means the variable X can be processed using above/2,
below/2 and ininterval/3.

0.6::heads. tails :- problog not(heads).
(X, gaussian(0, 1))::g(X). mix(X) :- heads, g(X).
(X, gaussian(5, 2))::h(X). mix(X) :- tails, h(X).

The predicate problog not/1 is provided by the ProbLog inference engine. It
allows one to negate an atom, similar to Prolog’s \+, but can only be applied
on ground probabilistic facts.

The following theory shall be used as running example throughout the paper
to define the semantics of Hybrid Problog and to explain the inference algorithm.

Example 2 (Weather). This theory models weather during winter time. The
background knowledge states that a person catches a cold when the temper-
ature is below 0◦ Celsius or when it is colder than 5◦ Celsius while it rains.

0.8::rain. catchcold :- rain, temp(T), below(T, 5).
(T, gaussian(2, 8))::temp(T). catchcold :- temp(T), below(T, 0).

The semantics of Hybrid ProbLog theory T = F ∪F c ∪BK is given by prob-
ability distributions over subsets of the facts fi (called subprograms), and over
sample values for the numeric variables in the continuous facts f ci (called con-
tinuous subprograms). The subprograms L ⊆ LF are distributed as in ProbLog
(cf. Equation (1)), and the continuous subprograms are distributed as described
in Section 3.1. Combining both gives one the success probability of queries in a
Hybrid ProbLog theory as described in Section 3.2.

3.1 Distribution over Continuous Subprograms

Let Θc = {θcj1, . . . θcji′j |j = 1, . . . ,m} be a finite set of possible substitutions
for the non-numeric variables in the continuous facts (Xj , φj) :: f cj where i′j
is the number of substitutions for fact j. Each substitution instance f cj θ

c
jk is

associated with a random variable Xjk with probability distribution φj . The
Xjk are assumed to be independent. Let X denote the |Θc|-dimensional vector
of the random variables, and f(x) their joint density function. A sample value
x for X defines the continuous subprogram Lx := {f cj θcjk{Xjk ← xjk} | j =
1, . . . ,m; k = 1, . . . i′j} where {Xjk ← xjk} is the substitution of Xjk by xjk.

Example 3 (Continuous Subprogram). Consider the following set of continuous
facts where the second fact is non-ground. That is, one can obtain several ground
instances where each instance has a continuous value drawn independently from
the same distribution.

(X, gaussian(1, 2)) :: h(X). (X, gaussian(4, 3)) :: f(X, Y).

When one applies the substitutions θc1,1 = ∅, θc2,1 = {Y ← a}, θc2,2 = {Y ← b}
together with the point x1,1 = 0.9, x2,1 = 2.3, x2,2 = 4.2, one obtains the
continuous subprogram Lx = {h(0.9), f(2.3, a), f(4.2, b)}.

The joint distribution of X thus defines a distribution over continuous sub-
programs. Specifically, for a |Θc|-dimensional interval I = [aθc11 , bθc11] × . . . ×
[aθc

mi′m
, bθc

mi′m
] (which may also be open or half-open in every dimension), one

obtains the probability of the set of continuous subprograms with continuous
parameters in I:

PP (X ∈ I|F c) :=

bθc11∫
aθc11

· · ·

bθc
mi′m∫

aθc
mi′m

f(x) dx (3)

Example 4 (Joint Density). In Example 3, the joint density function is f(x) =
f(x1,1, x2,1, x2,2) = ϕ1,2(x1,1)× ϕ4,3(x1,2)× ϕ4,3(x2,2) where ϕµ;σ is the density
of a normal distribution N (µ, σ).

3.2 Success Probabilities of Queries

The success probability Ps(q) of a query q is the probability that q is provable
in L∪Lx∪BK, where L is distributed according to (1), and x according to f(x)
respectively. The key to computing success probabilities is the consideration of
admissible intervals, as introduced in the following definition.

Definition 1. An interval I ⊆ R|Θc| is called admissible for a query q and a
theory T = F ∪ F c ∪ BK iff

∀x,y ∈ I, ∀L ⊆ LF :
(
L ∪ Lx ∪ BK

)
|= q ⇔

(
L ∪ Ly ∪ BK

)
|= q (4)

If (4) holds, we can also write L ∪ LI ∪ BK |= q.
A partition A = I1, I2, . . . , Ik of R|Θc| is called admissible for a query q and

a theory T iff all Ii are admissible intervals for q and T .

In other words, an admissible interval I is “small enough” such that the
values of the continuous variables, as long as they are in I, do not influence the
provability of q. Within an admissible interval, the query either always fails or
always succeeds for any sampled subset L ⊆ LF of probabilistic facts.

Example 5 (Admissible Intervals). Consider the Hybrid ProbLog theory consist-
ing out of a single continuous fact:

(X, gaussian(1, 2)) :: h(X)

For the query h(X), ininterval(X, 5, 10), the interval [0, 10] is not admissible
in this theory. The reason is, that for x = 4 ∈ [0, 10] the query fails but for
x = 6 ∈ [0, 10] it succeeds. The intervals [6, 9), [5, 10], or (−∞, 5), for example,
are all admissible. Note, that the inference engine allows one to evaluate con-
junctive queries and that the predicate ininterval/3 is automatically added to
the background knowledge.

Definition 2 (Discretized Theory). Let T = F∪F c∪BK be a Hybrid ProbLog
theory, then the discretized theory TD is defined as

F ∪ {f c{X ← f c} | (X,φ) :: f c ∈ F c}
∪ BK
∪ {below(X, C), above(X, C), ininterval(X, C1, C2)}

where f c{X ← f c} is the atom resulting from substituting the variable X by the
term f c.

The substitutions simplify the inference process. Whenever a continuous vari-
able is used in a comparison predicate, the variable will be bound to the origi-
nal continuous fact. Therefore, one can use a standard proof algorithm without
keeping track of continuous variables. The discretized theory still contains prob-
abilistic facts if F is not empty, thus it is a ProbLog theory. Definition 2 allows
one to merge the infinite number of proofs, which every Hybrid ProbLog the-
ory has, into a potentially finite number of proofs. This property is needed to
compute the admissible intervals efficiently.

Example 6 (Proofs in the discretized theory). The discretized theory TD for Ex-
ample 2 is

0.8::rain. catchcold :- rain, temp(T), below(T, 5).
temp(temp(T)). catchcold:- temp(T), below(T, 0).
below(X, C). above(X, C). ininterval(X, C1, C2).

The discretized theory contains two proofs for the query catchcold. For each
proof, one can extract

– fi the probabilistic facts used in the proof
– ci the continuous facts used in the proof
– di the comparison operators used in the proof

The proofs of catchcold can be characterized by:

f1 = {rain} c1 = {temp(temp(T))} d1 = {below(temp(T), 5)}
f2 = ∅ c2 = {temp(temp(T))} d2 = {below(temp(T), 0)}

It is possible, though not in Example 6, that the same continuous fact is used
by several comparison operators within one proof, i.e. fi = {below(f(X), 10),
above(f(X), 0)}. In such cases, one has to build the intersection of all intervals
to determine the interval in which all comparison operators succeed, i.e. fi =
{ininterval(f(X), 0, 10)}. If that intersection is empty, the proof will fail in the
original non-discretized theory. Building the intersections can also be interleaved
with proving the goal.

The following theorem guarantees that an admissible partition exists for each
query which has finitely many proofs in the discretized theory.

Theorem 1. For every theory T , every query q that has only finitely many
proofs in TD, and all finite sets of possible substitutions for the probabilistic
facts and the continuous facts Θ, Θc, there exists a finite partition of R|Θc|that
is admissible for T and q.

Proof. This follows from the fact that conditions defined by below/2, above/2,
and ininterval/3 are satisfied by intervals of sample values, and finite combi-
nations of such conditions, which may appear in a proof, still define intervals. ut

Algorithm 2 can be used to find admissible partitions. The algorithm has
to be modified as described in Section 4 to respect interval endpoints. Given
an admissible partition A one obtains the success probability of a query q as
follows:

Ps,A(q|T) :=
∑
L⊆LF

∑
I∈A:

L∪LI∪BK|=q

PP (L|F) · PP (X ∈ I|F c) (5)

The following theorem shows that the values of Ps are independent of the
partition A and therefore we can write Ps(q|T) instead of Ps,A(q|T).

Theorem 2. Let A and B be admissible partitions for the query q and the theory
T then Ps,A(q|T) = Ps,B(q|T).

Proof. Proven directly, by showing that for two admissible partitions one can
construct a third partition that returns the same success probability. Using the
definition for the success probability (5) we get:

Ps,A(q|T) :=
∑
L⊆LF

∑
I∈A:

L∪LI∪BK|=q

PP (L|F) · PP (X ∈ I|F c) (6)

Ps,B(q|T) :=
∑
L⊆LF

∑
I∈B:

L∪LI∪BK|=q

PP (L|F) · PP (X ∈ I|F c) (7)

Since A and B are both finite, one can construct a partition C such that it
subsumes both A and B, that is

∀I ∈ A : ∃I1, . . . , In ∈ C : I = I1 ∪ . . . ∪ In and
∀I ∈ B : ∃I ′1, . . . , I ′n′ ∈ C : I = I ′1 ∪ . . . ∪ I ′n′

BecauseA is admissible and by construction of C, we can represent any summand
in (6) as a sum over intervals in C. That is, for each L ⊆ LF and each I ∈ A
there exist I1, . . . , In ∈ C such that

PP (L|F) · PP (X ∈ I|F c) =
n∑
i=1

PP (L|F) · PP (X ∈ Ii|F c) . (8)

Because A is a partition and by construction of C, the intervals needed to cover
I ∈ A are disjoint from the intervals needed to cover I ′ ∈ A if I 6= I ′. Therefore∑

I∈A:
L∪LI∪BK|=q

PP (L|F)·PP (X ∈ I|F c) =
∑
I∈C:

L∪LI∪BK|=q

PP (L|F)·PP (X ∈ I|F c) (9)

for any subprogram L ⊆ LF . From (9) and the definition of the success proba-
bility (5) follows

Ps,A(q|T) = Ps,C(q|T) .

Similarly, one can show that

Ps,B(q|T) = Ps,C(q|T) .

ut

Theorem 1 and 2 guarantee that the semantics of Hybrid ProbLog, i.e. the
fragment that restricts the usage of continuous values, is well-defined. The im-
posed restrictions provide a balance between expressivity and tractability. They
allow one to discretize the space Rn of possible assignments to the continuous
facts in multidimensional intervals such that the actual values within one in-
terval do not matter. In turn, this makes efficient inference algorithms possible.
Comparing two continuous values against each other would couple them. This
would require a more complicated discretization of Rn in the form of polyhedra
which are harder to represent and to integrate over. Allowing arbitrary functions
to be applied on continuous values, eventually, leads to a fragmentation of the
space in arbitrary sets. This makes exact inference virtually intractable.

4 Exact Inference

In this section we present an exact inference algorithm for Hybrid ProbLog.
Our approach generalizes De Raedt et al.’s BDD algorithm [8] and generates a
BDD [5] that is evaluated by a slight modification of the original algorithm. The
pseudocode is shown in Algorithm 1, 2 and 3. In the remainder of this section, we
explain the inference steps on Example 2 and calculate the success probability
of the query catchcold.

Algorithm 1 The inference algorithm collects all possible proofs and partitions
the Rn space according to the constraints imposed by each proof. The interme-
diate variables f ′u and c′u are superfluous and have been added to simplify the
explanations in this section.
1: function SuccessProb(query q, theory T)
2: {(fi, ci, di)}1≤i≤m ← FindAllProofs(T, q) . Backtracking in Prolog
3: for cθ ∈ ∪1≤i≤mci do . Iterate over used ground continuous facts
4: Acθ ←CreatePartition({d1, . . . , dm})
5: {bcθ,I}I∈Acθ ←CreateAUXBodies(Acθ)
6: end for
7: u← 0 . # disjoint proofs
8: for i = 1, 2, . . . ,m do . Go over all proofs
9: (ĉ1θ̂1, . . . , ĉtθ̂t)← ci . All cont. facts of proof i (this simplifies notation)

10: (d̂1, . . . , d̂t)← di . Intervals in proof i (this simplifies notation)
11: for (I1, . . . , It) ∈ Aĉ1θ̂1

× · · · ×Aĉtθ̂t
do . Go over all possible intervals

12: if (d1 ∩ I1 6= ∅) ∧ . . . ∧ (dt ∩ It 6= ∅) then
13: u← u+ 1 . Add one more disjoint proof
14: f ′u ← fi . Probabilistic facts stay the same
15: c′u ← ci . Continuous facts stay the same
16: d′u ← {dom(ĉ1θ̂1) = I1, . . . , dom(ĉtθ̂t) = It} . Domains are adapted
17: f ′′u ← fi ∪ {bcθ,I |cθ ∈ c′u, I ∈ d′u} . Add aux. bodies to the facts
18: end if
19: end for
20: end for
21: BDD ←GenerateBDD(

W
1≤i≤u

V
f∈f ′′i

f) . cf. [9]

22: return Prob(root(BDD)) . cf. [8]
23: end function

1. All proofs for catchcold are collected by SLD resolution (Line 2 in Algo-
rithm 1).

f1 = {rain} c1 = {temp(T)} d1 = {T ∈ (−∞, 5)}
f2 = ∅ c2 = {temp(T)} d2 = {T ∈ (−∞, 0)}

Each proof is described by a set of probabilistic facts fi, a set of continuous
facts ci, and an interval for each continuous variable in ci. When a continuous
fact is used within a proof, it is added to ci and the corresponding variable
X is added to di with X ∈ (−∞,∞).
When later on above(X,c1) is used in the same proof, the interval I stored
in di is replaced by I ∩ (c1,∞), similarly for below(X,c2) it is replaced by
I ∩ (−∞, c2), and for ininterval(X, c1, c2) it is replaced by I ∩ [c1, c2],

2. We partition R1 because one continuous fact is used. The loop in Line 3 of
Algorithm 1 iterates over (∪1≤i≤mci) = {temp(T)}. When calling the func-
tion CreatePartition({d1, d2}) (cf. Algorithm 2) we obtain the admissible
partition {(−∞, 0), [0, 5), [5,∞)} which is used to disjoin the proofs with

Algorithm 2 This function returns a partition of R by creating intervals touch-
ing the given intervals. Partitions of Rn can be obtain by building the cartesian
product over the partitions for each dimension. This is possible due to the re-
strictions imposed in Section 3.
1: function CreatePartition(Set of intervals D = {d1, . . . dm})
2: C ←

Sm
i=1{lowi, highi} . lowi and highi are interval endpoints of di

3: C ← C ∪ {−∞,∞} . add upper and lower limit of R
4: (c′1, . . . , c

′
k)←SortAndIgnoreDuplicates(c)

5: Result← { (−∞, c′2], (c′k−1,∞) } . c′1 = −∞ and c′k =∞
6: for i = 2, . . . , k − 1 do
7: Result← Result ∪ { (c′i−1, c

′
i] }

8: end for
9: return Result

10: end function

respect to the continuous facts (Line 8-20 in Algorithm 1):

f ′1 = {rain} c′1 = {temp(T)} d′1 = {T ∈ (−∞, 0)}
f ′2 = {rain} c′2 = {temp(T)} d′2 = {T ∈ [0, 5)}
f ′3 = ∅ c′3 = {temp(T)} d′3 = {T ∈ (−∞, 0)}

3. We create one auxiliary fact per continuous fact and interval. They are de-
pendent, i.e. temp(T)[−∞,0) and temp(T)[0,5) cannot be true at the same time.
We have to make the dependencies explicit by adding, conceptually, the fol-
lowing clauses to the theory and replacing calls to continuous facts and
background predicates by the bodies bcθ,I :

call temp(T)(−∞,0) :- temp(T)(−∞,0)
call temp(T)[0,5) :- ¬temp(T)(−∞,0), temp(T)[0,5)
call temp(T)[5,∞) :- ¬temp(T)(−∞,0),¬temp(T)[0,5), temp(T)[5,∞)

Only one of the clauses can be true at the same time. The bodies encode
a linear chain of decisions. The probability attached to an auxiliary fact
temp(T)[l,h) is the conditional probability that the sampled value of T is in
the interval [l, h) given it is not in (−∞, l)

P
(
temp(T)[l,h]

)
:=

 h∫
l

N (2, 8, x) dx

 ·
1−

l∫
−∞

N (2, 8, x) dx

−1

(10)

where N is the density of the Gaussian specified for temp/1 in the pro-
gram. This encodes a switch (cf. [11]) such that the success probability of
call temp(T)[l,h] is exactly

∫ h
l
N (2, 8, x) dx. To evaluate the cumulative den-

sity function, we use the function Phi as described in [10]. If we want to use
any other distribution, we have to only replace the evaluation function of the

Algorithm 3 To evaluate the BDD we run a modified version of De Raedt et al.’s
algorithm that takes the conditional probabilities for each continuous node into
account. For Gaussian-distributed continuous facts we use the function Phi [10]
to evaluate

∫ hi
li
N (x, µi, σi) dx which performs a Taylor approximation of the

cumulative density function (CDF). If the program uses distributions other than
Gaussians, the user has to provide the corresponding CDF.
1: function Prob(node n)
2: if n is the 1-terminal then return 1
3: if n is the 0-terminal then return 0
4: Let h and l be the high and low children of n
5: ph ← Prob(h)
6: pl ← Prob(l)
7: if n is a continuous node with attached interval [a, b] and density φn then

8: p←
hR hn
ln

φn(x) dx
i
·
h
1−

R ln
−∞ φn(x) dx

i−1

9: else
10: p← pn . the probability attached to the fact in the ProbLog program
11: end if
12: return p · ph + (1− p) · pl
13: end function

density, as all the rest of the algorithm does not depend on the particular
distribution. Adding the bodies of the auxiliary clauses to f ′i yields the final
set of proofs (Line 17 in Algorithm 1):

f ′′1 = {rain, temp(T)(−∞,0)}

f ′′2 = {rain,¬temp(T)(−∞,0), temp(T)[0,5)}

f ′′3 = {temp(T)(−∞,0)}

The proofs are now disjoint with respect to the continuous facts. That is,
either the intervals for continuous facts are disjoint or identical. With re-
spect to the probabilistic facts, they are not disjoint and summing up the
probabilities of all proofs would yield a wrong result. One would count the
probability mass of the overlapping parts multiple times [8].

4. To account for that, we translate the proofs into a Boolean expression in
disjunctive normal form (cf. Line 21 in Algorithm 1) and represent it as
BDD (cf. Figure 1). This step is similar to ProbLog’s inference mechanism(

rain ∧ temp(T)(−∞,0)
)

∨
(
rain ∧ ¬temp(T)(−∞,0) ∧ temp(T)[0,5)

)
∨
(
temp(T)(−∞,0)

)
5. We evaluate the BDD with Algorithm 3 and get the success probability of

catchcold. This is a slight modification of De Raedt et al.’s algorithm (cf. [8,
9] for the details) that takes into account the continuous nodes.

temp(T)(−∞,0)

rain

temp(T)[0,5)

01

1 0

1 0

1 0

Prob = 1 Prob = 0

p =

0@ 5Z
0

N (x, 2, 8) dx

1A0@1−
0Z

−∞

N (x, 2, 8) dx)

1A−1

≈0.409

Prob =1 · 0.409 + 0 · (1− 0.409) ≈ 0.409

p =0.8

Prob =0.409 · 0.8 + 0 · (1− 0.8) ≈ 0.327

p =

0@ 0Z
−∞

N (x, 2, 8) dx

1A0@1−
−∞Z
−∞

N (x, 2, 8) dx)

1A−1

≈0.401

Prob =1 · 0.401 + 0.327 · (1− 0.401) ≈ 0.597

Fig. 1. This BDD [5] encodes all proofs of catchcold in the theory from Example 2. The
dashed boxes show the intermediate results while traversing the BDD with Algorithm 3.
The success probability of the query is returned at the root and is 0.597.

The function CreatePartition (cf. Algorithm 2) does not necessarily return
an admissible partition as it ignores the interval endpoints by creating right-open
intervals. For instance, if one obtains two proofs which impose as constraint the
intervals [1, 2] and [2, 3), the minimal admissible partition is

{(−∞, 1), [1, 2), [2, 2], (2, 3), [3,∞)} .

The function CreatePartition, however, returns the inadmissible partition

{(−∞, 1), [1, 2), [2, 3), [3,∞)} .

With respect to the interval [2, 3), the first proof succeeds for x = 2 but fails for
any other value in [2, 3) – which is not allowed for admissible intervals (cf. Defini-
tion 1). Though, when calculating the success probability, one can ignore interval
endpoints. Since the calculation involves integrals of the form

∫ hi
li
φ(x) dx, it is

irrelevant whether intervals are open or closed (cf. Equation (10)). Also, an in-
tegral over a single point interval has value 0.

However, when one wants to know whether there is a proof with specific
values for some or all continuous facts, one has to be precise about the interval

0 1
5
1
4

1
3

1
2

1 f(Val1, 1)

f(Val2, 2)

0

1
5

1
4

1
3

1
2

1

Fig. 2. The query s(5, 2) succeeds, if both values f(Val1, 1) and f(Val2, 2) lie in one of
the intervals [0, 1

1
], [0, 1

2
], . . ., [0, 1

5
]. These areas correspond to the thick-lined squares

starting at (0, 0). Since they overlap, one has to partition the space R2 in order to
disjoin the proofs. Due to the restrictions of Hybrid ProbLog program, i.e., continuous
variables cannot be compared against each other, one can obtain an admissible partition
for each dimension independently. Algorithm 2 returns the partitions shown by the
dotted lines. The horizontal lines partition the space of f(Val2, 2) and the vertical the
space of f(Val1, 1).

endpoints and use a modified algorithm. Admissibility can be ensured, for in-
stance, by creating for each pair of constants the open interval (li, hi) and the
single point interval [li, hi]. For the former example this is

{(−∞, 1), [1, 1], (1, 2), [2, 2], (2, 3), [3, 3], (3,∞)} .

5 Experiments

We implemented Hybrid ProbLog in YAP 6.0.7 and set up experiments to answer
the question

How does the inference algorithm (cf. Algorithm 1) scale in the size of
the partitions and in the number of ground continuous facts?

In domains where exact inference is feasible, the number of continuous facts and
comparison operations is typically small compared to the rest of the theory. Our
algorithm is an intermediate step between SLD resolution and BDD generation.
Therefore, it is useful to know how much the disjoining operations cost compared
to the other inference steps. We tested our algorithm on the following theory:

(Val, gaussian(0, 1)) :: f(Val, ID).
s(Consts, Facts) :- between(1, Facts, ID), between(1, Consts, Top),

High is Top/Consts,

f(Val, ID), ininterval(Val, 0, High).

0

200

400

600

800

1000

1200

0 10 20 30 40 50 60 70 80 90 100

ti
m

e
[m

s]

number of constants

SLD Resolution
Disjoin

BDD Script
BDD
total

Fig. 3. Runtimes for calculating the success probability of s(Consts, Facts) for varying
the number of constants s(1, 1), · · · s(100, 1). As the graphs show, most of the time is
spent on disjoining the proofs, that is partitioning the domains. The BDD time stays
more or less constant, this is due to the fact that the resulting Boolean expression,

i.e. ¬s(Val, 1)(−∞,0) ∧
“
s(Val, 1)[0, 1

n
) ∨ s(Val, 1)[1

n
, 1
n−1

) ∨ . . . ∨ s(Val, 1)[1
2
,1)

”
, is rather

simple. This can be detected and exploited by the BDD package.

The query s(Consts, Facts) has Consts×Facts many proofs where both ar-
guments have to be positive integers. The first argument determines the number
of partitions needed to disjoin the proofs with respect to the continuous facts
and the second argument determines how many continuous facts are used. The
query s(5, 2), for instance, uses two continuous facts, f(Val1, 1) and f(Val2, 1),
and compares them to the intervals [0, 1], [0, 1

2], · · · [0, 1
5
]. Figure 2 shows the

resulting partitioning when proving the query s(5, 2). In general, one obtains
(Consts + 1)Facts many partitions of the space RFacts.

The success probability of s(Consts, Facts) is independent of Consts. That
is, for fixed Facts and any c1, c2 ∈ N

Ps(s(c1, Facts)|T) = Ps(s(c2, Facts)|T)

We ran two series of queries5. First, we used one continuous fact and varied
the number of constants from 1 to 100. As the graph in Figure 3 shows, the disjoin
5 The experiments were performed on an Intel Core 2 Quad machine with 2.83GHz

and 8GB of memory. We used the CUDD package for BDD operations and set the
reordering heuristics to CUDD REORDER GROUP SIFT. Each query has been
evaluated 20 times and the runtimes were averaged.

0.01

0.1

1

10

100

1000

10000

100000

0 10 20 30 40 50 60 70 80 90 100

ti
m

e
[m

s]

number of ground continuous facts

SLD Resolution
Disjoin

BDD Script
BDD
total

Fig. 4. Runtimes for calculating the success probability of s(Consts, Facts) for varying
the number of dimensions s(5, 1), . . . , s(5, 100). In this setting, most of the time is spent
in the BDD package, that is building the BDD based on the script and traversing it.
The runtime for our disjoin operation grows only linearly. This is due to the fact that
the partitions of Rn can be factorized into each dimensions because we do not allow
comparisons between two continuous variables.

operation – that is finding all partitions, generating the auxiliary bodies and
rewriting the proofs – runs in O(Consts2) when everything else stays constant.
In this case, due to compression and pruning operations during the BDD script
generation [9] (the input for the BDD package), building and evaluating the BDD
runs in quasi-linear time. In the second run, we varied the number of continuous
facts by evaluating the queries s(5, 1), · · · , s(5, 100). As Figure 4 shows, our
algorithm (depicted by the Disjoin graph) runs in linear time. The runtime for
the BDD operations grows exponentially due to the reordering heuristics used
by the BDD package.

6 Conclusions and Future Work

We extended ProbLog with continuous distributions and introduced an exact
inference algorithm. The expressivity has been restricted to make inference
tractable. Possible directions for future work include comparisons between two
continuous facts and applying functions on continuous values. We are working
on upgrading existing ProbLog parameter learning methods to continuous facts.
ProbLog is available for download at http://dtai.cs.kuleuven.be/problog.

Acknowledgments

Bernd Gutmann is supported by the Research Foundation-Flanders (FWO-
Vlaanderen). This work is supported by the GOA/08/008 project “Probabilistic
Logic Learning”.

References

1. Vennekens, J., Denecker, M., Bruynooghe, M.: Representing causal information
about a probabilistic process. In Fisher, M., van der Hoek, W., Konev, B., Lisitsa,
A., eds.: Logics in Artificial Intelligence, 10th European Conference, (JELIA 2006),
Liverpool, UK. Volume 4160 of Lecture Notes in Computer Science., Springer
(2006) 452–464

2. Sato, T.: A statistical learning method for logic programs with distribution se-
mantics. In Sterling, L., ed.: Proceedings of the Twelfth International Conference
on Logic Programming (ICLP 1995), MIT Press (1995) 715–729

3. Milch, B., Marthi, B., Russell, S.J., Sontag, D., Ong, D.L., Kolobov, A.: Blog:
Probabilistic models with unknown objects. In Kaelbling, L.P., Saffiotti, A., eds.:
IJCAI-05, Proceedings of the Nineteenth International Joint Conference on Arti-
ficial Intelligence, Edinburgh, Scotland, UK, July 30-August 5, 2005, Professional
Book Center (2005) 1352–1359

4. Goodman, N., Mansinghka, V.K., Roy, D.M., Bonawitz, K., Tenenbaum, J.B.:
Church: a language for generative models. In McAllester, D.A., Myllymäki, P.,
eds.: UAI 2008, Proceedings of the 24th Conference in Uncertainty in Artificial
Intelligence, July 9-12, 2008, Helsinki, Finland, AUAI Press (2008) 220–229

5. Bryant, R.E.: Graph-based algorithms for boolean function manipulation. IEEE
Transactions on Computers 35(8) (1986) 677–691

6. Wang, J., Domingos, P.: Hybrid markov logic networks. In Fox, D., Gomes, C.P.,
eds.: Proceedings of the Twenty-Third AAAI Conference on Artificial Intelligence,
AAAI 2008, Chicago, Illinois, USA, July 13-17, 2008, AAAI Press (2008) 1106–1111

7. Murphy, K.: Inference and learning in hybrid bayesian networks. Technical Report
UCB/CSD-98-990, University of Berkeley (1998)

8. De Raedt, L., Kimmig, A., Toivonen, H.: ProbLog: A probabilistic Prolog and its
application in link discovery. In Veloso, M.M., ed.: IJCAI 2007, Proceedings of the
20th International Joint Conference on Artificial Intelligence, Hyderabad, India.
(2007) 2462–2467

9. Kimmig, A., Santos Costa, V., Rocha, R., Demoen, B., De Raedt, L.: On the
efficient execution of probLog programs. In Garcia de la Banda, M., Pontelli, E.,
eds.: Logic Programming. Volume 5366 of Lecture Notes in Computer Science.
Springer Berlin/Heidelberg (2008) 175–189

10. Marsaglia, G.: Evaluating the normal distribution. Journal of Statistical Software
11(5) (7 2004) 1–11

11. De Raedt, L., Demoen, B., Fierens, D., Gutmann, B., Janssens, G., Kimmig, A.,
Landwehr, N., Mantadelis, T., Meert, W., Rocha, R., Santos Costa, V., Thon,
I., Vennekens, J.: Towards digesting the alphabet-soup of statistical relational
learning. In Roy, D., Winn, J., McAllester, D., Mansinghka, V., Tenenbaum, J.,
eds.: Proceedings of the 1st Workshop on Probabilistic Programming: Universal
Languages, Systems and Applications, Whistler, Canada (December 2008)

