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Abstract There are many interesting Knowledge Representation questions surround-

ing rule languages for the Semantic Web. The most basic one is of course: which kind of

rules should be used and how do they integrate with existing Description Logics? Sim-

ilar questions have already been addressed in the field of Logic Programming, where

one particular answer has been provided by the language of FO(ID). FO(ID) is an

extension of first-order logic with a rule-based representation for inductive definitions.

By offering a general integration of first-order logic and Logic Programs, it also induces

a particular way of extending Description Logics with rules. The goal of this paper is

to investigate this integration and discover whether there are interesting extensions of

DL with rules that can be arrived at by imposing appropriate restrictions on the highly

expressive FO(ID).

1 Introduction

Over the past decades, Description Logics (DL) have emerged as an important Knowl-

edge Representation (KR) technology. More recently, they have also had a significant

impact on industry, most notably with the adoption of OWL as a W3C standard. In

current research, we find a trend to investigate extensions of OWL with rules (e.g.

[14]), and, in fact, the hierarchical Semantic Web architecture already prescribes a rule

layer on top of the ontology layer formed by OWL. There are a number of interesting

KR questions surrounding this topic.

– Which kind of rules are to be used? There are numerous kinds of rules known in

the literature (inference rules, rewrite rules, . . . ), with subtle differences between

them.

– What precisely do this kind of rules mean? It should be possible to explain exactly

the information content of such a rule and, obviously, this explanation should be

consistent with the formal semantics of the rules.
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– How do the rules complement DL? We should be able to clearly indicate how the

rules extend the class of knowledge that can be represented by the logic.

In this paper, we will present one particular answer to these questions, based on

the language of FO(ID), a general integration of classical first-order logic (FO) and

Logic Programming (LP). Conceptually, FO(ID) is an extension of FO with inductive

definitions. To explain, let us consider the following example of an inductive definition,

taken from the wikipedia page on the topic1.

The prime numbers can be defined as consisting of:

– 2, the smallest prime;

– each positive integer which is not evenly divisible by any of the primes

smaller than itself.

FO(ID) offers a formal syntax for representing such an inductive definition as a set of

definitional rules:(
Prime(2)←

∀x Prime(x)← x > 2 ∧ ¬∃y y < x ∧ Prime(y) ∧Divisible(x, y)

)

In natural language, an inductive definition consists of a set of cases in which the defined

relation, Prime in this case, holds. Each of these cases corresponds to a definitional rule

in the formal syntax of FO(ID). We remark that the ‘←’-symbol in the above expression

therefore conveys more meaning than the normal material implication of FO: it not

only states that certain numbers are prime, but also that no number can be prime

unless its “primeness” can be constructively derived by applying the two rules. This

additional meaning of such a rule is formalized in FO(ID) using the (parameterized)

well-founded model construction from Logic Programming [23]. It was argued in [5]

that this formal construction correctly captures the common-sense meaning of such a

definition, as it is understood throughout mathematics.

The “job” of an inductive definition is, obviously, to define certain relation(s) (e.g.,

Prime/1) in terms of some other relation(s) (e.g., < /2 and Divisible/2). In this sense,

it has the same semantic status as an FO formula: it expresses a relation between a

number of predicates, which may or may not be satisfied by a given interpretation for

these predicates. Based on this observation, FO(ID) integrates inductive definitions

into FO: a formula of FO(ID) is either a regular FO formula or an inductive definition.

In this way, FO is extended with a particular form of rules, namely, definitional rules,

whose meaning is that each such rule represent a “case” of a particular inductive defi-

nition. This enlarges the expressive power of the logic: it is well-known that inductive

definitions, such as that of transitive closure, cannot be expressed in FO.

The integration of FO and LP offered by FO(ID) has a number of properties that

are quite appealing from the point of view of extending DL with rules:

– as opposed to the many hybrid approaches that exist, FO(ID) offers a strong se-

mantic integration of FO and LP;

– in this integration, both components have a clear knowledge representation “task”:

the LP component is to be used to define concepts, whereas the FO component can

be used to assert additional properties of both the defined concepts and concepts

for which no definition is provided;

1 http://wikipedia.org/wiki/Inductive definition
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– FO(ID) is particularly natural from a DL perspective: the ability to properly define

concepts is already considered to be an important and characteristic feature of DL2,

and FO(ID) essentially just extends it to definitions that cannot be represented by

a normal FO equivalence.

These properties make FO(ID) an interesting source of inspiration for extending DL

with rules. In particular, because it contains full FO and allows general FO formulas

in the bodies of its definitional rules, it is well-suited to serve as an upperbound, from

which we can derive meaningful extensions of DL with rules, by imposing appropriate

restrictions on it. We believe that, in general, this is better than the opposite approach

of gradually extending a small tractable language into a more expressive one, since it

allows the trade-off between expressivity and complexity to be made more consciously

and informedly, which reduces the risk of creating an ad hoc language, whose boundaries

are decided more by coincidence than design. In the rest of this paper, we will therefore

follow this methodology, by defining two fragments of FO(ID) that are interesting DL

rule languages.

Part of this paper has been presented at the European Semantic Web Conference

(ESWC) 2009 [24].

2 Preliminaries: FO(ID)

This section summarizes the definition of FO(ID) as found in [5]. A definitional rule is

an expression of the form:

∀x P (x)← ϕ, (1)

with

– P/n a predicate (where the notation P/n means that the arity of P is n);

– x a tuple of n variables, not necessarily distinct;

– ϕ an FO formula.

Let us emphasize that expression (1) is just a particular syntax for writing down a

definitional rule with these three components. In particular, the symbol ‘←’, which we

call definitional implication, is not the material implication of FO (which we denote as

‘⇐’); instead, it is a new symbol, which is used exclusively to write down definitional

rules. Also the universal quantifier in expression (1) is simply part of the notation used

for definitional rules.

For a definitional rule r of form (1), we refer to P (x) as the head of r, denoted

head(r), and to the formula ϕ as its body, denoted body(r).

Syntactically, a definition in FO(ID) is a finite set of definitional rules, enclosed by

curly braces {}. An FO(ID) formula is any expression that can be formed by combining

atoms and definitions, using the standard FO connectives and quantifiers. So, the

syntactical status of a definition in FO(ID) is the same as that of a regular FO atom:

it is itself a formula, and more complex formulas can be built from it. A definitional

rule in FO(ID), on the other hand, has the same semantical status as a term in FO:

even though it may already be a complex expression, it is itself not yet a formula.

2 For instance, the DL handbook [1] has the following to say about DL’s ‘≡’-connective:
“This form of definition is much stronger than the ones used in other kinds of representations
of knowledge, which typically impose only necessary conditions; the strength of this kind of
declaration is usually considered a characteristic feature of DL knowledge bases.”
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A definitional rule may only appear as part of a definition (i.e., inside curly braces,

together with zero or more other definitional rules), whereas a definition as a whole

may appear wherever an FO atom is allowed, as long as it not inside another definition.

The meaning of the FO connectives is standard; e.g., a disjunction ∆1 ∨∆2 of two

definitions ∆1 and ∆2 holds if and only if ∆1 holds or ∆2 holds. We therefore only

need to define the semantics of a definition (i.e., what does it mean, precisely, to say

that a definition ∆ “holds”?) in order to define the semantics of FO(ID) in full.

Let us first recall some well-known semantical concepts. An interpretation S for a

vocabulary Σ consists of a non-empty domain D, a mapping from each function symbol

f/n to an n-ary function fS on D, and a mapping from each predicate symbol P/n

to a relation PS ⊆ Dn. A three-valued interpretation ν is the same as a two-valued

one, except that it maps each predicate symbol P/n to a function P ν from Dn to the

set of truth values {t, f ,u}. Such a ν assigns a truth value to each logical atom P (c),

namely P ν(cν1 , . . . , c
ν
n). This assignment can be extended to an assignment ν(ϕ) of a

truth value to each formula ϕ, using the standard Kleene truth tables for the logical

connectives:

ϕ,ψ t, t t, f t, u u, f u, u f, f

ϕ ∨ ψ t t t u u f

ϕ t u f

¬ϕ f u t

and so on. An existential quantification is of course similar to a disjunction, in the

sense that ∃x ϕ(x) is t if for some tuple d ∈ D, ϕ(d) is t, and otherwise it is u as soon

as some ϕ(d) is u; therefore, ∃x ϕ(x) is f only if all ϕ(d) are f.

The three truth values can be partially ordered according to precision:

u ≤p t and u ≤p f .

This order induces a precision order ≤p on interpretations: ν ≤p ν
′ if for each predicate

P/n and tuple d ∈ Dn, P ν(d) ≤p P
ν′(d). For a predicate P/n, a tuple d ∈ Dn and

a truth value v ∈ {t, f ,u}, we denote by ν[P (d)/v] the three-valued interpretation ν′

that coincides with ν on all symbols apart from P/n, and for which P ν′ maps d to v

and all other tuples d′ to P ν(d′). We also extend this notation to ν[U/v] with U a set

of such pairs of predicates Pi and tuples di.

Our goal is to define when a (two-valued) interpretation S is a model of a definition

∆. We call the predicates that appear in the head of a rule of ∆ its defined predicates

and we denote the set of all these by Def(∆); all other symbols are called open and the

set of open symbols is written Op(∆). The purpose of ∆ is now to define the predicates

Def(∆) in terms of the symbols Op(∆), i.e., we should assume the interpretation of

Op(∆) as given and try to construct a corresponding interpretation for Def(∆). Let

O be the restriction S|Op(∆) of S to the open symbols. We are now going to construct

sequences of three-valued interpretations (νO
α )0≤α, each of which extends O; we will

use the limit of these sequences to interpret Def(∆).

– νO
0 assigns PO : Dn → {t, f} to each P ∈ Op(∆) and the constant function that

maps each tuple d to u to each P ∈ Def(∆);

– νO
i+1 is related to νO

i in one of two ways:

– either νO
i+1 = νO

i [P (d)/t], such that ∆ contains a rule ∀x P (x) ← ϕ(x) with

νO
i (ϕ(d)) = t;

– or νO
i+1 = νO

i [U/f ], where U is any unfounded set, meaning that it consists of

pairs of predicates P/n and tuples d ∈ Dn for which P νO
i (d) = u, and for each

rule ∀x P (x)← ϕ(x), we have that νO
i+1(ϕ(d)) = f .
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– For each limit ordinal λ, νO
λ is the least upper bound w.r.t. ≤p of all νO

δ for which

δ < λ.

The intuition behind the concept of an unfounded set U is that we can safely conclude

that all P (d) ∈ U are false, because doing so will falsify all conditions under which

we would be able to derive that one of them is true. We call such a sequence (νO
α )0≤α

a well-founded induction of ∆ in O. Each such sequence eventually reaches a limit

νO
β . It was shown in [5] that all sequences reach the same limit, and that this limit

is precisely the well-founded model of ∆ given O [23]. It is now this νO
β that tell us

how to interpret the defined predicates. To be more precise, we define that, for each

two-valued interpretation S:

S |= ∆ iff S|Def(∆) = νO
β |Def(∆), with O = S|Op(∆).

This tells us when a definition ∆ is satisfied in a structure S. The semantics of full

FO(ID), in which definitions and atoms can be combined using the standard FO con-

nectives, is now simply that which is obtained by adding the usual recursive cases for

the connectives (e.g., S |= ϕ ∧ ψ if S |= ϕ and S |= ψ, and so). Note that if there is

some predicate P/n and d ∈ Dn such that P νβ (d) is still u, then the definition has no

models extending O. Intuitively, this means that, for this particular interpretation of

its open symbols, ∆ does not manage to unambiguously define the predicates Def(∆),

due to some non well-founded use of negation.

In the rest of this paper, we will only consider relational vocabularies, that is, there

will be no function symbols of arity > 0.

3 From FO(ID) to DL(ID)

As a language that extends full FO, FO(ID) is too expressive to serve as a DL itself. In

this section, we discuss the problem of restricting FO(ID) to a smaller, more DL-like

language. In doing this, it is important to be clear about the goals we are trying to

achieve. DLs themselves are fragments of FO that are interesting for essentially two

reasons:

– they are decidable;

– they are tailored towards a concept-centric modeling style, which they support by

means of an intuitive syntax sugar that hides away many of the complexities of

FO.

The first of these properties is about computation, whereas the second concerns knowl-

edge representation. To a certain extent, they are therefore orthogonal concerns.

Most of our attention in this paper will go to the knowledge representation issue,

simply because we feel that it comes first. If a logic is to be used at all, for whatever

purpose, then theories will have to be written in it. If this is difficult, for instance

because the language is too complex or because the meaning of its statements is unclear,

then it is unlikely the language will enjoy enduring success, no matter how efficient

certain inference task for it might be. Therefore, a primary goal of designing a rule

language for DL should be to ensure that it provides a clean and coherent integration

of rules into DL, which is easy to understand for those with a working knowledge of

DL.
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This does not mean that decidability is unimportant, but in the end it is of sec-

ondary nature, since also undecidable languages can have interesting uses. Indeed,

decidability is, by definition, only relevant if the goal is to perform deductive inference

(i.e., to decide whether, for formulas ϕ and ψ, it is the case that ϕ |= ψ, in the sense

that each model of ϕ is also a model of ψ) in an unknown or infinite domain. Or, to

put things more formally:

– given an FO theory T and an FO formula ϕ, it is undecidable whether for all

structures S, it holds that S |= T implies S |= ϕ;

– however, given a finite set D, an FO theory T and an FO formula ϕ, it is decidable

(with data complexity in co-NP and combined complexity in PSPACE) whether

for all structures S such that the domain of S is D, it holds that S |= T implies

S |= ϕ;

When we go from FO to FO(ID), both of these theorems still hold. This is important,

because the second situation arises in numerous interesting applications. For instance,

when reasoning in the context of a particular database, we only want to consider

the domain D consisting of all the objects in the database, as DB querying systems

indeed typically do. Similarly, if the goal is to query some data from Semantic Web

sites, we often only want to consider those objects about which we are able to retrieve

information; for instance, if we are looking for the cheapest flight from Athens to Rome,

it does us little good to be told that an unknown carrier might be offering a flight for

$1 that is not advertised anywhere. A second example is that for many combinatorial

problems, the domain is given as part of the specific problem instance that is to be

solved; e.g., in graph colouring, D would be the set of nodes, which is fixed once we get

a specific graph to colour. Moreover, even when the domain is not known, there might

still be approximate algorithms, that are able to derive useful information without

guarantees of completeness.

We will therefore now first present a fragment of FO(ID) that allows a DL-like

syntactic sugar and offers a DL-like modeling methodology. Afterwards, we will turn

to the topic of inference.

4 A fragment of FO(ID): ALCI(ID)

The goal of this section is to present a fragment of FO(ID), that supports a DL-

like modeling style. This will be an extension of the Description Logic ALCI. More

expressive logics, such as SHOIN (D) which underlies OWL-DL, can be extended in

the same way; we restrict to ALCI merely for simplicity.

Let us first briefly recallALCI. We start from a set of unary predicates {A1, A2, . . .}
called (atomic) concepts and a set of binary predicates {B1, B2, . . .} called (atomic)

roles. From the atomic concepts, we build more complex ones using the connectives t,

u, ¬, ∃ and ∀; their meaning can be inductively defined by the mapping to FO given

in Fig. 1. A role is either an atomic role B or its inverse B−, as in Fig. 2. We will use

the naming convention that, for a role R, R(x, y) is to be read as “x is an R of y”.

This is reflected in the cases for ∃ and ∀ in Fig. 1, which express that x belongs to the

concept ∃R.C or ∀R.C, respectively, if there exists a y that is an R of x such that y

belongs to C or if for each y that is an R of x, it holds that y belongs to C. We will

write ⊥ and > to denote the empty and universal concept, respectively.

A TBox then consists of a set of inclusions and equivalences as in Fig. 3.
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C 〈C〉(x)
A A(x) with A an atomic concept

C1 u C2 〈C1〉(x) ∧ 〈C2〉(x) with C1, C2 concepts
C1 t C2 〈C1〉(x) ∨ 〈C2〉(x) with C1, C2 concepts
¬C ¬〈C〉(x) with C a concept
∀R.C ∀y 〈R〉(y, x)⇒ 〈C〉(y) with R a role and C a concept
∃R.C ∃y 〈R〉(y, x) ∧ 〈C〉(y) with R a role and C a concept

Fig. 1 A concept C of ALCI represents a unary formula 〈C〉(x) of FO.

R 〈R〉(x, y)
B B(x, y) with B an atomic role

B− B(y, x) with B an atomic role

Fig. 2 A role R of ALCI represents a binary formula 〈R〉(x, y) of FO.

ϕ 〈ϕ〉
C1 v C2 ∀x 〈C1〉(x)⇒ 〈C2〉(x) with C1, C2 concepts
C1 ≡ C2 ∀x 〈C1〉(x)⇔ 〈C2〉(x) with C1, C2 concepts

Fig. 3 A statement ϕ in a TBox correspond to an FO sentence 〈ϕ〉.

R 〈R〉(x, y)
R1 uR2 〈R1〉(x, y) ∧ 〈R2〉(x, y) with R1, R2 roles
R1 tR2 〈R1〉(x, y) ∨ 〈R2〉(x, y) with R1, R2 roles
¬R ¬〈R〉(x, y) with R a role

R1.R2 ∃z 〈R1〉(x, z) ∧ 〈R2〉(z, y) with R1, R2 roles
C1 × C2 C1(x) ∧ C2(y) with C1, C2 concepts

Fig. 4 Additional ways of constructing roles.

We now form the language ALCI(ID) by extending ALCI. First, we add the con-

nectives in Fig. 4 for constructing more complex roles: the first three are the obvious

analogues of the connectives for concepts, the fourth takes the join of two roles, and

the last one takes the Cartesian product of two concepts. Second, we add two new

connectives for representing inductive definitions. The first is the symbol ‘
.
=’, which is

conceptually the same as ‘≡’, with the difference that it also works for inductive defi-

nitions. Formally, it is defined as an abbreviation for an FO(ID) definition containing

a single rule, as shown in the first two entries of Fig. 5.

For instance, we can define the concept of an uncle as the brother of a parent:

Uncle
.
= Brother.Parent

This abbreviates the FO(ID) definition:

{∀x, y Uncle(x, y)← ∃z Brother(x, z) ∧ Parent(z, y)}

Such a non-inductive definition (i.e., the role/concept on the left-hand side does not

appear in the right-hand side) is equivalent to a regular FO equivalence:

∀x, y Uncle(x, y)⇔ ∃z Brother(x, z) ∧ Parent(z, y).

However, ‘
.
=’ can also correctly represent inductive definitions. For instance, we can

define the role Ancestor as the transitive closure of Parent, by saying that an Ancestor

is either a Parent or the Parent of an Ancestor:

Ancestor
.
= Parent t Parent.Ancestor
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ϕ 〈ϕ〉
R1

.
= R2 {∀x, y 〈R1〉(x, y)← 〈R2〉(x, y)} with R1, R2 roles

C1
.
= C2 {∀x 〈C1〉(x)← 〈C2〉(x)} with C1, C2 concepts

{ϕ1, . . . , ϕn} {〈ϕ1〉, . . . , 〈ϕn〉} with ϕ1, . . . , ϕn definitional rules (Fig.6)

Fig. 5 A definition ϕ in ALCI(ID) corresponds to a definition 〈ϕ〉 in FO(ID).

ϕ 〈ϕ〉
R1 ← R2 ∀x, y 〈R1〉(x, y)← 〈R2〉(x, y) with R1, R2 roles
C1 ← C2 ∀x 〈C1〉(x)← 〈C2〉(x) with C1, C2 concepts

Fig. 6 A definitional rule ϕ in ALCI(ID) corresponds to a definitional rule 〈ϕ〉 in FO(ID).

Because of the translation to FO(ID), this too has the correct semantics. Therefore,

‘
.
=’ can be used instead of a transitive closure construct such as ·+ or the reflexive-

transitive closure ·∗ of e.g. [16]; it can also replace non-nested uses of the explicit least

fixpoint operator µ.

Whereas
.
= defines a concept by a single rule, it is convenient to also be able to

define a concept by a set of rules. For this purpose we introduce a new connective← to

represent a definitional rule and allow sets of such rules, again enclosed in curly braces,

as statements in our language; this is shown in Fig. 5 and 6. For instance, extending

the notion of an uncle to also include uncles-by-marriage, we could then define this

concept by saying that an uncle is

– either a brother of a parent;

– or a husband of an aunt.

We can write this down in ALCI(ID) as:(
Uncle← Brother.Parent

Uncle← Husband.Aunt

)

This abbreviates the following definition in FO(ID):(
∀x, y Uncle(x, y)← ∃z Brother(x, z) ∧ Parent(z, y)
∀x, y Uncle(x, y)← ∃z Husband(x, z) ∧Aunt(z, y)

)
In general, if a definition contains multiple rules with the same predicate in the

head, these can always be replaced by a single rule whose body is the disjunction of

the bodies of the original rules. Therefore, we could rephrase the above definition of

Uncle as

Uncle
.
= Brother.Parent tHusband.Aunt

However, this loses the natural case-based structure of the definition, i.e., it makes it

more difficult to see that there are actually two separate sufficient conditions, which

together also form a necessary condition. Moreover, the rule-based format is also more

elaboration tolerant, since rules can more easily be added or removed. For instance, a

bank might define the class of persons eligible for a loan as consisting of people with a

large income, people who own a house and people with a good credit history; each time

the bank now tightens or relaxes its policy, certain rules would have to be removed or

added to this definition.

The rule-based representation is also more general than ‘
.
=’, since it allows defini-

tions by simultaneous induction as well. For instance, given a two-player game whose
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9

Fig. 7 The result of selecting ball 2.

move tree is described by the role Parent, we can define the nodes in which I move

and the nodes in which my opponent moves by the following simultaneous induction

(assuming I start): 8><>:
HisMove←∃Parent.MyMove

MyMove←∃Parent.HisMove

MyMove←∀Parent.⊥

9>=>;
5 An Example

In this section, we will illustrate the new features offered by ALCI(ID). Our example

concerns a simple game, in which the player is presented a grid of coloured balls. He

makes a move by selecting one of these balls. The effect of this is that the entire colour-

group to which the ball belongs disappears; the remaining balls then fall down, yielding

the next position of the game, as depicted in Fig. 7. The goal of the game is to remove

all balls from the grid in such a way as to score as many points as possible. What we

will do here is construct an ALCI(ID) theory that describes the effect of a single move

of this game.

To make things more concrete, let us fix a representation for a state of the game.

We represent the grid by roles Up and Left, both with the obvious meaning. The

starting grid in Fig. 7, for instance, would correspond to the following interpretations:

Up ={(5, 1), (9, 5), (6, 2), (10, 6), (7, 3),

(11, 7), (8, 4), (12, 8)};
Left ={(1, 2), (2, 3), (3, 4), (5, 6), (6, 7),

(7, 8), (9, 10), (10, 11), (11, 12)}.

We represent the player’s move by a concept Chosen; the move made in Fig. 7 would

correspond to Chosen = {2}. Our goal is now to define roles Up′ and Left′, represent-

ing the next state of the game.

We first define some useful auxiliary roles and concepts. We begin by defining the

role Above as the transitive closure of Up. One ball is above another if it is either

directly on top of it, or on top of a ball that is already above it:

Above
.
= Up t Up.Above

A ball is next to another ball —the role NextTo— if it is either to the left, to the

right, underneath, or on top of it:

NextTo
.
= Left tRight t Up tDown
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Of course, the roles Right and Down are the inverses of, respectively Left and Up:

Right
.
= Left− Down

.
= Up−

We remark that of these four definitions, Above is defined inductively, while the others

are not. However, in ALCI(ID) this difference hardly matters: all four definitions have

the same “look and feel”.

The concept Disappears describes the balls that disappear after the move. These

are the chosen ball itself and all balls belonging to the same colour-group:

Disappears
.
= Chosen t ∃InColourGroup.Chosen

The role InColourGroup expresses that balls are in the same colour group, i.e., they

are connected through a sequence of balls of the same colour:(
InColourGroup← SameColour uNextTo
InColourGroup← InColourGroup uNextTo

)

Here, we use the ← connective to separate the base case and the inductive step of this

definition; the same could be done with our earlier definition of Above. Both forms are

equivalent, so it is up to the modeler to decide whether he prefers to use multiple rules

or a single rule with a disjunction in the body. The obvious guideline is to consider

how you would write the definition in a natural language text: if you would be inclined

to use a bulleted list, then use multiple rules; if you would write it as running text

instead (using an “either . . . or . . . ”), use a single rule.

Two balls have the same colour if the colour of one is also that of the other:

SameColour
.
= HasColour.HasColour−

Having now defined which balls disappear, we define in the concept Remains the

remaining balls as the complement thereof:

Remains
.
= ¬Disappears

We now define the role Above′, i.e., the “above”-relation as it will be in the next state.

This will hold for any two remaining balls that were originally above each other:

Above′
.
= Above u (Remains×Remains)

We can now define the role Up′ as the intransitive relation of which Above′ is the

transitive closure:

Up′
.
= Above′ u ¬(Above′.Above′)

We define an auxiliary concept OnGround′ as consisting of those balls that will form

the bottom row in the new situation:

OnGround′
.
= Remains u ¬∃Above−.Remains

All that remains now is to define the role Left′. Let us first define the role InLeftColumn

which describes when a ball x is in the column to the left of some other ball y. Re-

gardless of which of the two columns is higher, the following three cases cover all such

situations:

– x is to the left y;
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– x is to the left of a ball z 6= y that is in the same column as y;

– x is in the same column as a ball z 6= y that is to the left of y.

Even though this definition is not inductive, it is still a nice fit with the case-based

structure of definitions in ALCI(ID).8>><>>:
InLeftColumn←Left

InLeftColumn←Left.(Above tAbove−)

InLeftColumn←(Above tAbove−).Left

9>>=>>;
We now define Left′ as consisting of all pairs of balls such that (1) one ball is in

the column to the left of the other, and (2) both are on the same height:

Left′
.
= InLeftColumn| {z }

(1)

u ((OnGround′ ×OnGround′) t Up′.(Left′.Up′−))| {z }
(2)

Note that this too is an inductive definition, which proceeds along the rows of the grid:

the base case is the bottom row, whereas the inductive case defines that x is to the left

of y in the following situation:

x y

This concludes our representation of the game. As this example shows, ALCI(ID)

can represent many different kinds of definitions (case-based definitions, non-inductive

definitions, monotone inductive definitions, non-monotone inductive definitions) in a

uniform way in, leading to a clean and coherent language.

6 Inference in ALCI(ID)

In this section, we discuss some issues related to inference in ALCI(ID). Our first result

is that this language is, in general, undecidable.

Theorem 1 ALCI(ID) is undecidable. It is also not even semi-decidable.

Proof We will prove this result by showing that ALCI(ID) can express tiling problems:

a tiling problem consists of a set of tiles D and relations H,V ⊆ D × D describing

which tiles match horizontally and vertically, respectively. It is well-known that it is

not even semi-decidable whether the first quadrant of the plane can be tiled by a given

set of tiles (i.e., whether it is possible to assign to each point (i, j) ∈ N2 one of the tiles

in D such that all horizontally/vertically adjacent tiles match, as dictated by the sets

H and V , respectively) [4]. Therefore, it suffices to show that for each tiling problem

(D,H, V ), we can construct an ALCI(ID) theory T , such that T is satisfiable if and

only if (D,H, V ) can indeed tile this quadrant. We construct T as follows.

For each tile i ∈ D, we have a role Tilei, which is intended to hold for all (x, y)

such that square (x, y) is tiled by i. We use the role Succ to represent the successor
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relation of the natural numbers. The theory then is:

> v ∃Succ.> (each number has a successor)(
Greater ← Succ

Greater ← Succ.Greater

)
(transitive closure of Succ)

⊥×⊥ w Greater− uGreater (Greater is anti-symmetric)

>×> v tiTilei (the tiles cover all positions)

Tilei u Tilej v ⊥×⊥, for all i 6= j (at most one tile per point)

Tilei.Succ v t(i,j)∈V Tilej (tiles match vertically)

Tile−i .Succ v t(i,j)∈HTile
−
j (tiles match horizontally)

However, the undecidability of ALCI(ID) does not imply that the logic is unsuited

for all computational applications. In particular, we want to call attention to the fol-

lowing interesting inference task of model expansion.

6.1 Model expansion

[17] considered the inference task of model expansion for FO(ID): given an interpre-

tation S for some subset Σ0 of the alphabet Σ of a theory T , extend S with an

interpretation for the remaining symbols Σ \Σ0, such that the resulting interpretation

is a model of T . Here, S is required to have a finite domain. Note that, in general, a

model expansion problem may have many different solutions, because even though S
has to fix the domain of discourse, it does not fix the interpretation of Σ \Σ0 in this

domain, but only restrains it to satisfy T . This form of inference is decidable for full

FO(ID) and in fact captures the complexity class NP.

To illustrate the usefulness of this inference task, let us consider again the example

of the previous section. Here, we defined the next state of a game (Left′ and Up′) in

terms of its old state (Left and Up) and a given move (Chosen). We can therefore

compute a new state of the game by performing model expansion on the structure S
for the alphabet Σ0 = {Left, Up, Chosen}. Because our representation of the game

defines all of its predicates except the ones in Σ0, this computation can actually be

done in polynomial time.

The IDP-system3 implements the task of model expansion for FO(ID). A program

transforming ALCI(ID) syntax to input for this system is available.4 Together, these

two programs are able to use our formalization of Section 5 to compute state transitions

for this game. It is not hard to extend this to a method of determining whether a given

game has a solution (i.e., a sequence of moves that removes all balls). However, this

is only possible because there is an upperbound on the number of moves that can

be made—since every move removes at least one ball, the possible length of a game

is limited by the number of balls. For games that might last infinitely long, such as

the fifteen puzzle, model expansion cannot determine whether a solution exists (at

least, not unless clever tricks are used); it can only say whether, for some fixed n,

a solution exists in n steps or less. In this respect, the model expansion system is

similar to a lightweight verification system such as Alloy.5 To perform inference in

3 http://www.cs.kuleuven.be/∼dtai/krr/software/idp.html
4 http://www.cs.kuleuven.be/∼joost/alc id.tar.gz
5 http://alloy.mit.edu/
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unbounded domains, as a heavyweight verification method would do, more general

forms of deduction are needed. The next section presents a fragment of ALCI(ID) in

which general deduction is decidable.

6.2 Guarded ALCI(ID)

As discussed, there are interesting problems that can be solved by reasoning in a fixed,

finite domain, and for which the undecidability of FO(ID) is therefore not a problem.

However, since we would not want to claim that this covers all potential applications,

this section will develop a decidable fragment of ALCI(ID).

This fragment will be based on the guarded fragment of FO. We recall that an

FO formula ψ is guarded if every one of its quantified subformulas is either of the

form ∃x G(x,y) ∧ ϕ(x,y) or ∀x G(x,y) ⇒ ϕ(x,y), where G(x,y) is an atom, called

the guard, such that the free variables free(ϕ(x,y)) are a subset of free(G(x,y)).

There also exists a loosely guarded fragment, which allows the guards G(x,y) to be

conjunctions of atoms, rather than simply atoms, on condition that each quantified

variable x appears together with every other variable of x ∪ y in at least one of the

atoms.

In [10], the loosely guarded fragment of FO was extended to FO(LFP). We recall

that FO(LFP) extends FO with a least-fixpoint construct that can be used to represent

monotone induction. This works as follows.

In general, suppose that ϕ(x) is a formula with n free variables x. Together with

an interpretation I for its vocabulary, such a formula defines a set Sat(ϕ, I) of tuples

from dom(I) that satisfy it:

Sat(ϕ, I) = {d ∈ dom(I)n | I |= ϕ(d)}.

Now, let us suppose that ϕ contains some predicate P of arity precisely n, which is not

interpreted by I. By supplementing I with an interpretation J for the predicate P , we

can obtain the set of tuples Sat(ϕ, I ∪ J). This set of tuples can now serve as a new

interpretation J ′ for the predicate P . That is, ϕ and I define the following operator

F I
ϕ,P on interpretations J of the predicate P :

F I
ϕ,P (J) = Sat(ϕ, I ∪ J).

If the predicate P appears only positively in the formula ϕ, this operator is monotone

and, therefore, has a least fixpoint.

The logic FO(LFP) is now obtained by extending FO with the following kind of

fixpoint expression:

[lfpP (ϕ)](t). (2)

Here, P is a predicate of arity n, ϕ is a formula with n free variables, and t is a tuple

of n terms; the predicate P is only allowed to appear positively in the formula ϕ. The

semantics of such an expression is that it is satisfied by an interpretation I and variable

assignment σ if and only if tI,σ belongs to the least fixpoint of the operator F I
ϕ,P .

For instance, FO(LFP) allows us to express that a pair (A,B) belongs to the

transitive closure of a relation R as:

[lfpT (x,y)R(x, y) ∨ ∃z T (x, z) ∧ T (z, y)](A,B)
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To better bring out the similarity to FO(ID), we will also write a fixpoint expression

of form (2) in the following syntax:

[lfp{∀x P (x)← ϕ}](t).

Grädel et al. define the following (loosely) guarded fragment of FO(LFP).

Definition 1 (paraphrased from [10]) The (loosely) guarded fragment of FO(LFP)

is defined by extending the (loosely) guarded fragment of FO with the following rule for

constructing (loosely) guarded fixpoint formulas: a fixpoint formula [lfpP (x)ϕ(x)](t) is

(loosely) guarded if and only if ϕ is a (loosely) guarded formula such that P does not

appear in any of its guards.

They then go on to prove the following result:

Theorem 2 ([10]) The satisfiability problem for (loosely) guarded fixpoint logic is

2Exptime-complete.

We now define a similar (loosely) guarded fragment of FO(ID). First, we define the

concept of a (loosely) guarded definition, as an analogue of a (loosely) guarded fixpoint

formula. We will restrict attention to definitions that are total, i.e., for which the limit

of each induction sequence is always two-valued (regardless of the interpretation of the

open predicates). There is an easy syntactic criterion that suffices to ensure totality.

Let us say that a predicate P depends on a predicate Q in definition ∆ if there exists

a sequence of predicates P1, . . . , Pn with P = P1 and Pn = Q, such that for each i,

∆ contains a rule with Pi in the head and Pi+1 in the body; we say that P depends

negatively on Q if for at least one i, Pi+1 appears negatively in the body of the rule

for Pi. As long as there are now no two predicates P and Q (where it is allowed

that P = Q) that depend negatively on each other, the definition ∆ is guaranteed to

be total. In practice, it is quite rare to encounter definitions that do not satisfy this

criterion.

Definition 2 A definition ∆ of FO(ID) is (loosely) guarded if:

– for each of its rules ∀x P (x)← ψ, it holds that ψ is a (loosely) guarded formula;

– none of the defined predicates Def(∆) are used as guards;

– no defined predicates depend negatively on each other (as defined above).

Our method for proving the decidability of (loosely) guarded FO(ID) will be to

present a translation from FO(ID) to FO(LFP) and then show that it maps the (loosely)

guarded fragment of the former into the (loosely) guarded fragment of the latter. Be-

cause it will ease notation, we will actually present our transformation using simultane-

ous least-fixpoint logic FO(SLFP). As shown in, e.g., [7], FO(SLFP) can be reduced to

regular FO(LFP), by increasing the arities of the fixpoint predicate(s). Again, for con-

sistency with FO(ID) notation, we will use a rule-based form to write such simultaneous

fixpoint formulas, as is also done in, e.g., [15]. To be more concrete, a simultaneous

least fixpoint expression is of the form:

[lfpPi
S](t) (3)

where S is now a set of fixpoint rules:

S =

8><>:
∀x1 P1(x1)← ϕ1

· · ·
∀xn Pn(xn)← ϕn

9>=>; (4)
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Here, each ϕi is a formula with the tuple xi as free variables, such that no predicate

Pj (including Pi) appears negatively in it. Such an expression induces an operator

that now no longer works on interpretations of a single predicate P , but rather on

interpretations of all the Pi simultaneously. That is, in each interpretation I with

domain D that interprets (at least) all predicates of the ϕi that are not any of the

Pj , such a set of rules defines a fixpoint operator FI
S that takes an “old” tuple of

interpretations

(PJ
1 , . . . , P

J
n ) ∈ 2D|x1| × · · · × 2D|xn|

of the fixpoint predicates and maps it to a new such tuple (PJ′

1 , . . . , PJ′
n ) in the fol-

lowing way.

Definition 3 For a set S of fixpoint equations of form (4) and an interpretation I for

(at least) all the predicates of S different from the fixpoint predicates Pj , the operator

FI
S maps each interpretation J for the predicates Pj to the interpretation J ′ that

interprets each Pj by Sat(ϕj , I ∪ J).

Ultimately, however, it is only the predicate Pi that we are interested in: the formula

(3) is satisfied if and only if t belongs to PJ∞

i , where J∞ is the least fixpoint of this

operator FI
S .

In our version of simultaneous least-fixpoint logic FO(SLFP), we will also allow

positively nested occurrences of the least-fixpoint operator, i.e., the formulas ϕi may

themselves again contain lfp-expressions, as long as these do not appear in the scope of

a negation. This too does not increase the expressivity of the logic, and removing such

nestings is again simply a matter of increasing the arities of the fixpoint predicates

[18].

We will call a simultaneous least-fixpoint expression guarded if and only if all of the

formulas ϕi and predicates Pj satisfy the condition of Def. 1, i.e., if the ϕi are guarded

formulas in which the Pj do not appear as guards. Translating a guarded simultaneous

fixpoint formula into FO(LFP) preserves its guardedness. Therefore, it now suffices

to show that we can translate guarded FO(ID) to guarded FO(SLFP). The crux of

this transformation lies in the following characterization of the limit of a well-founded

induction sequence as the least-fixpoint of a certain operator.

It was shown in [5] that defining the semantics of a definition ∆ in FO(ID) as

the limit of an induction sequence is equivalent to using the well-founded model of

∆ [23]. Let us briefly recall how the well-founded model is usually defined. There is

a strong duality between three-valued interpretations and pairs (I, J) of two-valued

interpretations for which I ≤ J , in the sense that P I ⊆ PJ for each predicate P .

To be more concrete, to such a pair (I, J) we associate the following three-valued

interpretation τ(I, J).

– If both P I(a) = t and PJ (a) = t then P τ(I,J) also maps a to t.

– Similarly, if both P I(a) = f and PJ (a) = f then P τ(I,J) also maps a to f .

– If P I(a) = f and PJ (a) = t then P τ(I,J) maps a to u.

We will refer to pairs (I, J) for which I ≤ J as consistent pairs. τ is a one-to-one

mapping between consistent pairs and three-valued interpretations.

For a definition ∆ and an interpretation O for ∆’s open symbols, let us now define a

function UO
∆ that takes as arguments a consistent pair I, J of two-valued interpretations

such that I|Op(∆) = O = J |Op(∆). In fact, whenever we superscript a function with

such an interpretation O, we will implicitly assume that the domain of this function is
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restricted to interpretations I for which I|Op(∆) = O, or to tuples thereof. We define

UO
∆ as mapping (I, J) to the following two-valued interpretation K: PK(a) = t if and

only if ∆ contains a rule ∀x P (x)← ϕ(x) such that ν(ϕ(a)) = t with ν = τ(I, J).

This function UO
∆ is monotone in its first argument, and anti-monotone in its sec-

ond. Let us now consider the operator UO
∆ (·, J) that we obtain by keeping the second

argument J of UO
∆ fixed, i.e., UO

∆ (·, J) maps each interpretation I to UO
∆ (I, J). Because

UO
∆ is monotone in its first argument, each operator UO

∆ (·, J) is monotone. Tarski’s fix-

point theorem implies that each monotone operator — and therefore every operator

UO
∆ (·, J) — has a least fixpoint. For each J , let us denote this least fixpoint by STO

∆ (J),

i.e.,

STO
∆ (J) = lfp(UO

∆ (·, J)).

The function STO
∆ is now itself again an operator on the lattice of interpretations

extending O. Because UO
∆ is anti-monotone in its second argument, this operator STO

∆

is anti-monotone, i.e., for all J ≤ J ′,

STO
∆ (J) = lfp(UO

∆ (·, J)) ≥ lfp(UO
∆ (·, J ′)) = STO

∆ (J ′).

This anti-monotonicity implies that if we take a consistent pair (I, J), i.e., one such

that I ≤ J , then the following pair of interpretations

(STO
∆ (J), STO

∆ (I)) (5)

is again consistent. Let us denote by SO
∆ the operator that maps each consistent pair of

interpretations (I, J) to this new consistent pair (5). The one-to-one mapping τ allows

us to equivalently view SO
∆ as an operator on three-valued interpretations. It can be

shown that SO
∆ is monotone w.r.t. the precision order ≤p on three-valued interpreta-

tions (to be more precise, whenever (I, J) and (I ′, J ′) are such that τ(I, J) ≤p τ(I
′, J ′),

then τ(SO
∆(I, J)) ≤p τ(SO

∆(I, J))). As a consequence, Tarksi’s fixpoint theorem im-

plies that it has a least fixpoint (V,W ). The corresponding three-valued interpretation

τ(V,W ) is called the well-founded model of ∆ given O. [5] showed that the limit of

each induction sequence of ∆ in O is precisely the well-founded model of ∆ given O.

If ∆ is total, then, by definition, it must be the case that V = W . It can easily

be seen that in this case V (and W ) is also the least fixpoint of the square (STO
∆ )2

that maps each I to STO
∆ (STO

∆ (I)). Our transformation of FO(ID) to FO(SLFP) now

exploits precisely this fact, by constructing a lfp-expression that produces this least

fixpoint lfp((STO
∆ )2). Essentially, this transformation therefore provides an encoding

of the alternation fixpoint construct of [23]. It proceeds as follows.

Let ∆ be an FO(ID)-definition of the following form:

8><>:
∀x1 P1(x1)← ϕ1

· · ·
∀xn Pn(xn)← ϕn

9>=>;
in which every predicate is defined by a single rule, i.e., Pi 6= Pj for all i 6= j. (Recall

that a set of rules with the same predicate in the head can always be replaced by a

single rule whose body is the disjunction of the bodies of the original rules.)
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For each Pi, let P ′i be a new predicate symbol. For each i, let ϕ′i be the result

of replacing all positive occurrences of an atom Pj(t) in ϕi by P ′j(t). Let S be the

following system of fixpoint equations:8><>:
∀x1 P

′
1(x1)← ϕ′1

· · ·

∀xn P ′n(xn)← ϕ′n

9>=>;
The following correspondence between this system of equations and the operator STO

∆

now follows directly from its definition.

Lemma 1 Let I be an interpretation for Def(∆) ∪ Op(∆). With S the above system

of equations, we have that:

I |=
n̂

i=1

∀x Pi(xi)⇔ [lfpP ′
i
S](xi) if and only if I|Def(∆) = ST

I|Op(∆)
∆ (I).

Proof Let O be I|Op(∆). It suffices to show that UO
∆ (·, I) is identical to FI

S , because this

will obviously imply that also lfp(UO
∆ (·, I)) = STO

∆ (I) is equal to lfp(FI
S). Let J be an

interpretation for Def(∆). The operator UO
∆ (J, I) now produces a new interpretation

for Def(∆) by evaluating the bodies of the rules of ∆ as follows.

– Open predicates are interpreted by O = I|Op(∆).

– Negative occurrences of defined predicates are interpreted by I.

– Positive occurrences of defined predicates are interpreted by J .

Let us compare this to FI
S(J), which produces a new interpretation for the fixpoint

predicates P ′ of S by evaluating:

– the non-fixpoint predicates by I;

– the fixpoint predicates P ′i by J .

Because the transformation has replaced precisely the positive occurrences of a defined

predicate Pi by P ′i , it is now obvious that these two operators do the same thing.

To construct the least fixpoint of the square (STO
∆ )2, we need a fixpoint expression

that it is slightly more complicated still. For each i, we define ϕ′′i as the result of

replacing each negative occurrence of an atom Pj(t) in ϕi by the expression [lfpP ′
j
S](t).

Let S′ be the following system of fixpoint equations:8><>:
∀x1 P1(x1)← ϕ′′1

· · ·

∀xn Pn(xn)← ϕ′′n

9>=>;
Theorem 3 Assume that ∆ is a total definition. Let I be an interpretation for Def(∆)∪
Op(∆). With S′ the above system of equations, we have that:

I |=
n̂

i=1

∀x Pi(xi)⇔ [lfpPi
S′](xi) if and only if I |= ∆

Before proving this theorem, let us examine a small example.
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Example 1 We consider the following FO(ID) definition.(
∀x P (x)←¬Q(x).

∀x Q(x)←Q(x).

)

This translates to:

∀x P (x)⇔
„

[lfpP

8>><>>:
P (x)← ¬[lfpQ′

(
P ′(x)←¬Q(x)

Q′(x)←Q′(x)

)
](x)

Q(x)← Q(x)

9>>=>>;](x)

«

∧ ∀x Q(x)⇔
„

[lfpQ

8>><>>:
P (x)← ¬[lfpQ′

(
P ′(x)←¬Q(x)

Q′(x)←Q′(x)

)
](x)

Q(x)← Q(x)

9>>=>>;](x)

«

Taking a domain consisting of a single object A, the well-founded model of this example

in that domain says that P (A) is t, while Q(A) is f. Intuitively, this conclusion can be

reached in the following way.

1. If we assume that P (A) and Q(A) are both false, we are sure to be underestimating

their actual truth value. By applying this assumption to only the negative occur-

rences of these atoms in a formula, we are sure to be overestimating the effect that

their actual truth value would have on this formula. For instance, assuming that

Q(A) is false will lead us to believe that ¬Q(A) is true.

2. By applying this assumption to all negative occurrences of atoms in the bodies of

the rules of a definition, we end up with a positive definition (i.e., one which now no

longer has any negative occurrence of atoms, and of which we can therefore simple

construct a least fixpoint) that is sure to overestimate the truth of all atoms. In

this case, it will be (
P (A)←¬f
Q(A)←Q(A)

)

and its least fixpoint says that P (A) is true and Q(A) is false.

3. If we now apply this overestimate to the negative occurrences of atoms in rule bodies

of the original definition, we end up with an underestimating positive definition.

In this case, the overestimate says that P (A) is true and Q(A) is false, so the

underestimating definition is that(
P (A)←¬f
Q(A)←Q(A)

)

4. The least fixpoint of this underestimating definition now provides a new, greater

underestimate for the truth of the atoms, which we can plug in again in step 1, and

repeat until a fixpoint is reached. In this case, this greater underestimate says that

P (A) is true and Q(A) is false, which is the same as the overestimate we already

had in point 2 and hence the fixpoint.

The nested lfp expressions above now simulates this process as follows.
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1. The first iteration of the outer lfp starts by assuming that its fixpoint predicates

P and Q have an empty interpretation, i.e., that P (A) and Q(A) are false, as in:8>><>>:
P (A)← ¬[lfpQ′

(
P ′(A)←¬f

Q′(A)←Q′(A)

)
](A)

Q(A)← f

9>>=>>;
2. Under this interpretation for P and Q, the inner lfp expression then construct the

least fixpoint of P ′ and Q′, which says that P ′(A) is true and Q′(A) is false;

3. The body of the first rule of the outer lfp expression then singles out Q′ from this

least fixpoint computed by the inner expression and check whether A belongs to

it. It does not, so the body of this rule evaluates to true:(
P (A)← ¬f
Q(A)← f

)
4. Therefore, this first iteration produces that P (A) is true and Q(A) is false, which

is then plugged in as an interpretation for P and Q to start the second iteration

of the outer expression. Again, the reader can verify that this second iteration will

again produce the same result, which is therefore the least fixpoint.

The following proof now formally establishes the correctness of this translation.

Proof (Proof (of Theorem 3)) It follows from Lemma 1 and the construction of S′ that,

in each structure O, the expression [lfpPi
S′] is in fact constructing the least fixpoint

of the operator — let us call it ΓO — that maps each I to ΓO(I) = UO
∆ (I, STO

∆ (I)).

We now show that this coincides with the least fixpoint of the square (STO
∆ )2, which,

under the assumption of totality, is known to be equal to the well-founded model of ∆

given O. Therefore, this will suffice to prove the desired equivalence.

First, we remark that all fixpoints I of (STO
∆ )2 are also fixpoints of ΓO: because

each such I is by definition the least fixpoint of U(·, STO
∆ (I)), it is a fortiori also a

fixpoint, which means that I = U(I, STO
∆ (I)). Let I be lfp((STO

∆ )2) and let J be

lfp(ΓO). We will show that I = J . Being a fixpoint of (STO
∆ )2, I is also a fixpoint of

ΓO, so I ≥ J .

On the other hand, J is by construction a fixpoint of ΓO, so J = ΓO(J) =

UO
∆ (J, STO

∆ (J)). Therefore, J is also a fixpoint of the operator UO
∆ (·, STO

∆ (J)) and,

hence, must be greater than the least fixpoint of this operator, i.e., J ≥ lfp(UO
∆ (·, STO

∆ (J)) =

(STO
∆ )2(J), or in other words, J is a prefixpoint of (STO

∆ )2. Because Tarski’s theorem

implies that the least fixpoint of a monotone operator is also its least prefixpoint, we

know that for the least fixpoint I of (STO
∆ )2, it is the case that I ≤ J . Having shown

in the previous paragraph that also I ≥ J , we conclude I = J .

This theorem shows how we can, in general, transform FO(ID) into FO(SLFP).

However, if we look at the formulas that are used in this translation:

∀x Pi(xi)⇔ [lfpPi
S′](xi)

we see that these are not guarded (even if all formulas in S′ are guarded). Therefore,

they are unsuitable for our purposes. Our solution to this problem will be to avoid

having to assert the equivalence between the defined predicate symbols Pi and their

definitions, by simply replacing all of the predicate symbols Pi by their definition.

However, this can only work if there are no cyclic dependencies between predicates

defined in different definitions.
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Definition 4 An FO(ID) theory T is acyclic if the definitions of T can be ordered as

(∆1, . . . , ∆n), such that none of the defined predicates of ∆i appear in a definition ∆j

for which j < i.

Note that this condition implies that each predicate is defined by at most one

definition. Moreover, it ensures that we can recursively replace defined predicates P by

their unique definition without potentially running into infinite loops.

We also remark that this condition applies to predicates defined by different def-

initions, whereas the condition of no negative dependency-cycles that we imposed in

Def. 2 to ensure totality applies within a single definition.

Putting all of this together, we now define the guarded fragment of FO(ID) as

follows.

Definition 5 An FO(ID) theory T is (loosely) guarded if all the following conditions

are satisfied.

– Each definition in T is (loosely) guarded (Def. 2).

– Each FO formula in T is (loosely) guarded.

– No defined predicates (i.e., predicates that belong to Def(∆) of some definition ∆

of T ) are used as guards.

– T is acyclic (Def. 4).

We now have all the elements necessary for our transformation. Recall that, above,

we presented a translation of an FO(ID) definition ∆ into a set eq(∆) of fixpoint

equations. In more detail, for each ∆ of the form:8><>:
∀x1 P1(x1)← ϕ1

· · ·
∀xn Pn(xn)← ϕn

9>=>;
we constructed eq(∆) as: 8><>:

∀x1 P1(x1)← ϕ′′1

· · ·

∀xn Pn(xn)← ϕ′′n

9>=>;
where each ϕ′′i was the result of replacing each negative occurrence of an atom Pj(t)

in ϕi by:

[lfpP ′
j

8><>:
∀x1 P

′
1(x1)← ϕ′1

· · ·

∀xn P ′n(xn)← ϕ′n

9>=>;](t)

where each ϕ′i is the result of replacing all positive occurrences of an atom Pj(t) in ϕi

by P ′j(t).
We now translate a (loosely) guarded FO(ID) theory T into an FO(SLFP) theory

s(T ) as follows.

Definition 6 For a (loosely) guarded FO(ID) theory T , we define the corresponding

FO(SLF) theory s(T ) as the result of:

– recursively replacing all atoms P (t), such that P is defined by the (unique) defini-

tion ∆, by the least fixpoint expression [lfpP eq(∆)](t);



21

– subsequently removing all definitions from T .

We now obtain the following result.

Theorem 4 The (loosely) guarded fragment of FO(ID) is decidable.

Proof It follows from Theorem 3 and the fact that the transformation steps of Definition

6 are equivalence preserving that a (loosely) guarded FO(ID) theory T is equivalent

to the (loosely)guarded FO(LFP) theory s(T ). The known results for FO(LFP) [10]

therefore imply that (loosely) guarded FO(ID) is indeed decidable.

The 2exptime upperbound of the (loosely) guarded fragment of FO(LFP) does not

directly carry over, however, because the transformation s may exponentially increase

the size of the theory. This proof therefore only allows us to say that the complexity

is at most triple exponential—an upperbound which may or may not be tight.

Having found a decidable fragment of FO(ID), we now examine how this gives rise

to a corresponding decidable fragment of ALCI(ID).

Definition 7 We say that a role R (or concept C) is defined in an ALCI(ID) theory

T if T contains a formula of the form R
.
= ϕ (or C

.
= ϕ) or a definition in which a rule

R ← ϕ (or C ← ϕ) appears. An ALCI(ID) theory is loosely guarded if it is the case

that:

– for every construct ∃R.C that appears in T , R is either an atomic role that is not

defined, or a conjunction of roles R1 u · · · uRn such that at least one of the Ri is

an atomic role that is not defined;

– for every construct ∀R.C that appears in T , R is an atomic role that is not defined;

– for every construct R.S that appears in T , both R and S must be atomic roles that

are not defined, or the inverse of such a role;

– for every inclusion C1 v C2, C1 must be an atomic concept that is not defined, or

a conjunction of such concepts;

– there are no definitions in which predicates depend negatively on each other;

– the theory is acyclic (Def. 4).

It is easy to see that, if all these conditions are satisfied, the corresponding FO(ID)

theory, as defined in Section 4, is loosely guarded.

Lemma 2 For every loosely guarded ALCI(ID) theory T , it holds that the translation

s(〈T 〉) of T into FO(LFP) is a loosely guarded theory that is equivalent to T .

Proof A loosely guarded ALCI(ID) theory T satisfies the five conditions enumerated

in Definition 7. The last item in this list ensures that we can actually perform the trans-

formation of replacing each defined predicate by its unique definition. Therefore, we

can effectively construct s(〈T 〉). Moreover, the fourth condition ensures the equivalence

to the original theory T , as shown in Theorem 3.

Therefore, it suffices to show that all quantifiers that appear in the FO(ID) theory

〈T 〉 are indeed properly guarded. Consulting the relevant tables in section 4 reveals

that quantifiers can be introduced in the following ways.

– Each concept inclusion axiom C v D introduces a single universal quantifier; the

concept C is the only potential guard for this quantifier.
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– The ∀R.C and ∃R.C constructs introduce a universal and existential quantifier,

respectively, that could potentially be guarded by R.

– TheR1.R2 construct introduces an existential quantifier that can be loosely guarded

by the conjunction of R1 and R2.

Recall that the guarded fragment of FO(LFP) allows all predicates to serve as guards

apart from fixpoint predicates. This means that, for each of these cases, if the “potential

guard”, as we called it, is not a defined predicate, it will actually be a proper guard of

the formula. The first three conditions in the list of Definition 7 now ensure precisely

this fact.

Consequently, we obtain the following result.

Theorem 5 The guarded fragment of ALCI(ID) is decidable.

The guarded fragment of ALCI(ID) is a straightforward analogue of the guarded

fragment of FO(LFP) and is, therefore, one of the most obvious candidates for devel-

oping a guarded fragment of ALCI(ID). However, it remains to be seen how useful it

is in practice.

For instance, our representation of the game in Section 5 falls outside this fragment.

The main problem here lies in formulas such as:

Disappears
.
= Chosen t ∃InColourGroup.Chosen

The role InColourGroup is not a valid guard here, because our theory also contains

a definition for this role; moreover, because InColourGroup is meant to represent

a “reachability”-relation, we really have no alternative but to include an inductive

definition for it.

This seems to suggest that, maybe, this guarded fragment is not the decidable

fragment that is the most suited for capturing the interesting features of FO(ID). In

a currently ongoing research project, other decidable fragments of FO(ID) are being

constructed. In particular, efforts are being made to derive such fragments from Büchi’s

decidability result for monadic second order logic in the natural numbers [3]. Once

completed, this research will induce other decidable fragments for ALCI(ID), which

might provide a better match with the typical modeling style it inherits from FO(ID).

Nevertheless, the next section presents an example that is covered by the guarded

fragment we have developed here.

7 A Second Example: Conference management

While the example given in Section 5 illustrates the new features offered by our lan-

guage, it is perhaps not very evocative from a Semantic Web perspective. [8] uses a

running example that could easily be envisioned as part of an online conference man-

agement system such as EasyChair. We will briefly outline how this example can be

represented in our language.

There are a number of papers (belonging to a concept Paper), which are assigned

keywords (the role AssignedTo(Keyword, Paper)). The keywords are clustered into

sets of similar keywords (Similar(Keyword,Keyword)). There are also people, who

can be experts in certain areas (ExpertIn(Person,Area)). We assume to have some
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DL-knowledge base which provides information about these concepts and roles. This

may be just a list of facts such as

ExpertIn(IanHorrocks, SemanticWeb),

but it may also derive the knowledge from, say, a publication database.

[8] then proceeds to build an ASP-layer on top of the existing DL theory. In our

case, we achieve the same effect by adding some useful ALCI(ID) definitions to the

knowledge base.

First, we add the assumption that whenever some keyword (e.g., “OWL”) is as-

signed to a paper, all similar keywords (e.g., “Web Ontology Language”) also pertain

(PertainsTo(Keyword, Paper)) to it.(
PertainsTo← AssignedTo

PertainsTo← Similar.PertainsTo

)
(6)

Without making this more precise, [8] also assumes that the knowledge base some-

how assigns a paper to a specific area (InArea(Paper,Area)) based on the keywords

that pertain to it. In our case, we can imagine this being done, for instance, using a

predicate KeywordFor(Keyword,Area) and the following definition:

InArea
.
= PertainsTo−.KeywordFor (7)

We can then define those people who are good candidate reviewers for a paper as

those who are experts in the area of the paper:

GoodCandidateFor
.
= ExpertIn.InArea− (8)

The goal of reviewer assignment is to assign a good candidate to each paper

(Assigned(Paper,Reviewer)). A PC chair might therefore be interested in querying

those problematic papers that have not yet been assigned a good candidate:

Problematic
.
= Paper u ¬∃(Assigned uGoodCandidateFor).P erson (9)

This theory does not fall in the guarded fragment of ALCI(ID), because defined

predicates appear as guards in various places. Again, this is not necessarily problematic:

if we have a fixed set of n papers that is to be divided among m reviewers, then this

provides a fixed and finite domain context, in which we can easily compute the set of

problematic papers for a given assignment. By adding also the following restriction to

the theory:

Problematic v ⊥ (10)

we can compute whether an assignment without problematic papers is possible. This is

again a model expansion task, whereAssignedTo(Keyword, Paper), Similar(Keyword,

Keyword),KeywordFor(Keyword,Area) and ExpertIn(Person,Area) are given, and

Assigned(Paper,Reviewer) needs to be computed.

In addition to these closed world reasoning tasks, a conference management system

might also need to perform open world reasoning. For instance, while submissions are

still in progress and reviewers are still being added to the system, we might very well be

interested to know which papers are already certainly (un-)problematic given a current

partial set of assignments. Unfortunately, the guarded fragment of ALCI(ID) does not

provide us with any guarantees that this task will be decidable.



24

A possible work-around is to introduce for each paper p a separate conceptAssignedTop

that contains just those keywords that were assigned to p, a separate concept Pertainsp
that contains only those keywords pertaining to p, and so on.(

Keywordp ← ∃Similar.Keywordp

Keywordp ← AssignedTop

)
Areap

.
= ∃KeywordFor.Keywordp

Candidatep
.
= ∃ExpertIn.Areap

This theory now is guarded, with Similar, KeywordFor and ExpertIn serving as

guards. To figure out whether p is a problematic paper, we can then add also:

Candidatep uAssignedp v ⊥

In this way, we will be able to reason with the existence of unknown reviewers, though

not with unknown papers, since each paper requires its own set of concepts. Of course,

even here the guardedness still depends on the assumption that the rest of the theory

does not define any of the concepts Similar, KeywordFor or ExpertIn.

8 Related Work

In this section, we discuss several related approaches. For clarity, we divide them into

a number of different categories, the first being that of hybrid languages.

8.1 Hybrid languages

In [6], a combination of DL and LP under the well-founded semantics is investi-

gated, while dl-programs [8] combine DL and Answer Set Programming (ASP). Unlike

FO(ID)’s semantic integration, these two approaches foster a strong separation between

the LP and DL components: essentially, they allow a logic program to pose queries to

a description logic theory, with the latter acting as a black box towards the former. In

contrast, FO(ID) provides a full integration, in which both rules and description logic

axioms are first-class citizens.

While hybrid systems offer flexibility and are often also easy to implement using

off-the-shelf technology, they are not particularly satisfactory from a knowledge rep-

resentation point of view. They do not shed much light on the semantical relation

between the two languages or on how they might complement each other. Moreover,

since the languages are never truly integrated, a hybrid theory cannot be thought of as

a single piece of knowledge—a single mental model of some reality—but must always

be considered as two different pieces of knowledge that interact according to some spe-

cific interface. One illustration of this is that, in [8], disjunctive information from a DL

knowledge base is lost to the ASP program. For instance, a hybrid theory containing

DL-statements Person v Woman tMan and Person(Alex), together with an ASP

program:

∀x P (x)← DL[Woman](x).

∀x P (x)← DL[Man](x).

does not actually imply P (Alex), because the DL knowledge base cannot derive either

Woman(Alex) or Man(Alex).
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8.2 Layered integrations

This section discusses the language of r-hybrid rules [21], which was later extended

to DL+log [22], and to g-hybrid knowledge bases [12], which uses a transformation to

guarded open answer set programs [13] to prove decidability.

Unlike e.g. dl-programs, r-hybrid rules offer a semantic integration of DL and LP.

However, even though there is no longer a strict, syntactical separation between the

two components, the approach is, at the semantical level, still essentially a layered one,

in which an ASP program is added on top of a DL knowledge base. This can clearly be

seen in the semantics of the language, which proceeds according to a two-step process.

First, the predicates that appear in the DL part of the theory are considered in isolation;

afterwards, they are “projected” out of the theory, leaving only an ASP program. To

be more precise, an interpretation I is an NM-model of a combined theory (K,P ) if:

1. the restriction of I to the DL predicates is a model (in the standard sense) of the

DL knowledge base K;

2. the restriction of I to the rule predicates is an answer set of the program that

results from replacing in P all DL predicates by their truth value according to I.

This language is therefore less hybrid than dl-programs, in the sense that the integra-

tion is done directly on the semantical level, rather than by having one component

query the other. However, it is still a layered approach, in which a crisp distinction is

made between DL-predicates and rule predicates. For an example of what this means,

consider the following two rules:

Person(x)←Man(x)

Person(x)←Woman(x)

In a regular logic program (as well as in an inductive definition), these two rules would

imply, in the absence of any other rules with Person in their head, that each person

is either a man or a woman. In DL+log, they will mean the same thing, but only if

Person does not appear in the DL part of the theory. If, on the other hand, there is

for instance a fact Person(Bob) in the DL ABox, then Person will be interpreted as a

DL predicate and the meaning of these two rules will be different: the theory will then

have a model in which Bob is a person but neither a man nor a woman.

By contrast, FO(ID) and ALCI(ID) do not make any distinction between DL and

rule predicates; a definition (
Person←Man

Person←Woman

)
always implies that a person must be either a man or a woman, regardless of how or

where the predicates that appear in it are used in the rest of the theory.

8.3 Full integrations

One of the most widely known languages to combine DL with rules is that of SWRL

[14], which offers a full (non-hybrid and non-layered) integration of the two. SWRL

extends OWL with Horn clauses under the regular FO semantics. One of the limitations

of SWRL is that its rules can only be used to state sufficient conditions, and not
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necessary ones. As a consequence, SWRL rules cannot be used to define concepts.

Because definitions are such an important feature of DL (see footnote on p.3), this is a

curious lack. ALCI(ID), by contrast, also allows (in addition to the regular first-order

implication w) the definitional rule construct←, which can be used to define concepts,

even inductively. Moreover, it also allows more than just Horn clauses, since the body

of a rule may contain negation and quantifiers.

While SWRL itself is undecidable, many decidable fragments exists. For instance,

there is the fragment of (strongly) safe rules [20]: a SWRL-rule (i.e., Horn clause) is safe

if every one of its variables appears in an atom whose predicate is not used anywhere

in the TBox (i.e., it may only appear in other rules or in the ABox). Description

logic programs [11], which were actually developed prior to SWRL itself, form another

decidable fragment of SWRL.

There also exists a number of full integrations that, like ALCI(ID), offer more

expressive languages. In particular, [19] uses an embedding into MKNF to achieve this,

while [2] uses the first-order version of auto-epistemic logic FO-AEL. These approaches

are similar to ours in that they also start from a very expressive language and then

consider various interesting fragments of these languages. Moreover, like FO(ID), both

MKNF and FO-AEL are extensions of classical propositional/first-order logic.

The main difference to our approach lies in the nature of this extension: FO(ID)

extends classical logic with inductive definitions, whereas MKNF and FO-AEL both

extend classical logic with modal operator(s). Modal operators represent statements

about knowledge or possibility, which inherently refer to a reference class of many

possible worlds, existing side-by-side with the actual world. The semantics of these

languages is therefore naturally defined in terms of sets of interpretations. Inductive

definitions, on the other hand, do not have a modal component and do not refer to

multiple possible worlds. All they do is define the meaning of some predicate(s) in

terms of some other predicate(s), by means of a set of rules that serve as a recipe

to construct one from the other. The formal semantics of FO(ID) is therefore defined

in terms of this constructive process, as it is envisaged by mathematicians writing

down such definitions, and [5] attempts to demonstrate that the formal objects that

FO(ID) uses for this purpose indeed correctly capture the underlying intuitions. FO(ID)

and MKNF/FO-AEL therefore try to achieve different goals by means of different

mathematical constructions. These goals are not mutually exclusive and might even be

complementary: there is nothing a priori impossible or undesirable about developing

a language FO(ID, K, NF) that extends classical logic with both inductive definitions

and modal operators.

This goes back to a point that we already touched upon in the introduction to

this paper; namely, that the question of how to extend DL with rules is not one which

has a single right answer. It all depends on what this extension is meant to achieve.

People who are of the opinion that a key capability missing from DL is that of explicitly

reasoning about knowledge would do well to look into the papers on MKNF or FO-

AEL. People who would like the ability to include more expressive forms of definitions

in a DL theory are hopefully well-served by this paper.

For our part, we have attempted throughout this paper to argue that inductive

definitions are a useful addition to DL. Inductive definitions are well-known to math-

ematicians and computer scientists, and judging from the abundance of inductively

defined concepts in research papers (e.g., reachability, transitive closure, the satisfac-

tion relation |= of first-order logic), they indeed pop up quite often. Inductively defined

relations such as the ancestors of a person or the Google PageRank of a website cannot
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be defined by typical DLs—and the same also holds for certain non-inductive concepts

like being someone’s uncle. In [5], a mathematical theory was developed with the sole

purpose of demonstrating that FO(ID) offers a semantically correct and syntactically

convenient representation of such inductive definitions. Borrowing from this, we there-

fore believe that ALCI(ID) is a useful extension of DL with rules. While the MKNF

and FO-AEL based approaches may very well also be useful extensions of DL with

rules, they ultimately try to a achieve a different goal, which makes them a potential

complement rather than an alternative to our approach. Whether it is possible and/or

desirable to combine them into a joint language that can express both modalities and

inductive definitions is a potential topic for future research.

9 Conclusions and future work

In this paper, we have investigated the extension of DL with rules that is induced by

FO(ID). We first argued that this is quite natural for the following reasons:

– there is an appealing match between the intuitive notion of a “case” in an inductive

definition and the formal construct of a definitional rule in FO(ID);

– since non-inductive definitions are already a key feature of DL, it makes sense to

exploit this match by adding definitional rules to DL, in order to extend the class

of definitions that can be represented.

Motivated by these arguments, we have defined a fragment ALCI(ID) of FO(ID),

which offers a DL-like syntax for representing (inductive) definitions. For FO(ID), and

therefore also for ALCI(ID), there exist useful inference tasks that can be performed

efficiently; in Section 6, we discussed the task of model expansion, which can be used

to compute the next state of the game we modeled in Section 5. This is despite the fact

that the language as a whole is undecidable for deductive inference. We have defined a

decidable guarded fragment of ALCI(ID). A more comprehensive analysis of this and

other decidable fragments of FO(ID) is left for future work. The goal of the current

paper is not to present a single DL rule-language that is suitable for all purposes, but

rather to point towards FO(ID) in general as an interesting foundation from which

such languages can be derived.
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4. Börger, E., Grädel, E., Gurevich, Y.: The classical Decision Problem. Perspectives in
Mathematical Logic. Springer-Verlag (1997)



28

5. Denecker, M., Vennekens, J.: Well-founded semantics and the algebraic theory of non-
monotone inductive definitions. In: C. Baral, G. Brewka, J. Schlipf (eds.) Ninth Interna-
tional Conference on Logic Programming and Nonmonotonic Reasoning, LPNMR, Lecture
Notes in Artificial Intelligence, vol. LNAI 4483, pp. 84–96. Springer (2007)

6. Drabent, W., Henriksson, J., Maluszynski, J.: HD-rules: A hybrid system interfacing Prolog
with DL-reasoners. In: 2nd International Workshop on Applications of Logic Programming
to the Web, Semantic Web and Semantic Web Services (2007)

7. Ebbinghaus, H.D., Flum, J.: Finite Model Theory. Perspectives in Mathematical Logic.
Springer-Verlag (1995)

8. Eiter, T., Lukasiewicz, T., Schindlauer, R., Tompits, H.: Combining answer set program-
ming with description logics for the semantic web. In: In Proceedings of the International
Conference of Knowledge Representation and Reasoning (KR) (2004)
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