
86	 I E E E S O F T W A R E P u b l i s h e d b y t h e I E E E C o m p u t e r S o c i e t y � 0 74 0 - 74 5 9 / 1 0 / $ 2 6 . 0 0 © 2 0 1 0 I E E E

M
odern distributed software systems
such as Web-based e-commerce and
business-process management pose
huge engineering challenges. As the
systems interact with one another,
they necessarily become decentral-

ized. The underlying system components and
collaborations change over time—often in unan-

ticipated ways. The systems must therefore make
adaptations at runtime—that is, they need to be
self-adaptive.

Engineering such systems requires concepts,
methods, and infrastructures beyond what cur-
rent practice offers. Conventional engineering
approaches call for direct specification of all pos-

sible configurations and reconfigurations. Build-
ing systems that can handle unanticipated events
is difficult and error prone. Self-adaptive systems
call for a shift in engineering vision from satisfying
offline requirements through traditional top-down
methods to satisfying online requirements through
the coordination of decentralized systems. This is
where multiagent systems and agent-oriented soft-
ware engineering can help.

Self-Adaptive Systems
Self-adaptive systems respond dynamically to
changes in their environment and user require-
ments. Self adaptation can apply to various sys-
tem properties. For example, a self-healing system
can automatically discover, diagnose, and correct
faults; alternatively, a self-optimizing system can
automatically monitor and adapt resource usage
to ensure optimal functioning relative to defined
requirements.

Current engineering practice takes an
architecture-centric perspective on self-adaptive
systems. Typical examples include the Rainbow
framework developed at Carnegie Mellon Univer-
sity and IBM’s blueprint for autonomic computing
(see the sidebar for Web links). These approaches

Danny Weyns and Michael Georgeff

Each decade has its key software technology to advance artificial intelligence, and each technology is high-
lighted in a novel that sells much better than the underlying technology. Who hasn’t read Michael Crich-
ton’s Prey and wondered how far multiagent systems might evolve and how they might affect humankind?
Our technology column digs into this topic in this issue. Danny Weyns and Michael Georgeff provide a
short introduction and show how multiagent systems help master the complexity of self-adaptive systems.
They contrast multiagent systems with other current technologies and provide links and hints for practitio-
ners who want to get started with this emerging field.

I look forward to hearing from both readers and prospective column authors about this column and the
technologies you want to know more about. —Christof Ebert

Self-Adaptation Using
Multiagent Systems

software technology
E d i t o r : C h r i s t o f E b e r t n V e c t o r C o n s u l t i n g n c h r i s t o f . e b e r t @ v e c t o r - c o n s u l t i n g . d e

Authorized licensed use limited to: Katholieke Universiteit Leuven. Downloaded on January 6, 2010 at 03:52 from IEEE Xplore. Restrictions apply.

	 January/February 2010 I E E E S O F T W A R E � 87

SOFTWARE TECHNOLOGY

provide an appropriate abstraction level
for describing and managing dynamical
system changes. Over the past decade, var-
ious frameworks have contributed to suc-
cessful self-adaptive systems.

However, several challenges remain,
including decentralized coordination of
self-adaptation in a distributed setting.
Decentralized control is crucial for qual-
ity requirements such as openness, robust-
ness, and scalability. Global control of
distributed systems such as Web-scale in-
formation systems, intelligent transporta-
tion systems, and power grids is difficult
to achieve or even infeasible, although
centralized control of local subsystems is
possible.

Multiagent Systems
Multiagent systems belong to a class
of decentralized systems in which each
component (agent) is an autonomous
problem solver, typically able to oper-
ate successfully in various dynamic and
uncertain environments. These agents
interact to solve problems that are be-
yond their individual capabilities or
knowledge.

Multiagent systems have features that
are key to engineering self-adaptive sys-
tems—specifically, loose coupling, con-
text sensitivity, and robustness to failures
and unexpected events. To some extent,
loose coupling and context sensitivity
are also present in conventional service-
oriented systems. But self-adaptive mul-
tiagent systems extend these mechanisms
to the behavior of each agent component.

Loose Coupling
Agents are self-contained, goal-directed
entities. They get their adaptability from
goals. When multiple agents are avail-
able, a goal can be achieved by selecting
among the agents at runtime rather than
requiring a hardwired design. For exam-
ple, agents could negotiate a supply-chain
collaboration at runtime on the basis of
service providers’ availability and specific
preferences of the collaborating parties.
This is similar to loosely coupled services
in a service-oriented architecture (SOA)
and yields the same flexibility and reuse
benefits. However, because goals normally
have a well-defined semantics (corre-
sponding to some preferred world state or
behavior), one agent can invoke others on

the basis of what they can achieve rather
than their names. This gives agent-based
systems more flexibility than service-
oriented approaches.

Loose coupling and goal-directed be-
havior extend to an agent’s internal pro-
cessing, as typified by BDI (belief-desire-
intention) architectures. For example, in a
manufacturing execution system, an agent
responsible for routing work pieces might
adapt its routing strategy dynamically ac-
cording to particular observations in its
environment. By having a library of inde-
pendent, semantically complete processes
(rather than a hard-linked network of pro-
cesses), a system can easily add new pro-
cesses to the library, making it easy to ex-
tend the agent’s capabilities. It’s similarly
easy to modify existing processes without
having to rewire code in other processes.

Goal-based, loose coupling of agents
externally and of agent processes inter-
nally provides the flexibility needed for
self-adaptation and reuse. It also drives
standardization and reduces total owner-
ship costs.

Context Dependence
An agent includes a specification of the
situation or context in which it’s appropri-
ate or expected to achieve its target goal.
A calling agent can simply post the goals
it wishes to achieve and select only those
agents appropriate to the goal and cur-
rent processing context: the right agent at
the right time in the right circumstances.
Similarly, an agent’s internal processes are
typically associated with a context con-

dition describing the situations in which
the process can achieve its specified goal.
This means that processes “self select” ac-
cording to the desired goal and prevailing
situation.

In conventional engineering, this con-
textual information isn’t typically in-
cluded in the definition of the called ser-
vice or process (although service-oriented
approaches move some way toward this
objective). Instead—somewhat bizarrely
when you think about it—the developer
must write conditional decision logic in the
calling process to ensure that the system
will select the right called process. This
complex decision logic rapidly leads to un-
manageable code.

More troublesome, any changes to a
process and the context in which it’s ap-
propriate require changes to the decision
logic—not just in one place, but every-
where the process is used. As a result, de-
velopers can’t create processes indepen-
dently of one another.

Robustness
Goal-directed multiagent systems elimi-
nate most of the complexity needed for
handling agent or process failures, such as
a delivery service’s truck breaking down,
and unanticipated events, such as a road
closure. In such systems, failures and un-
expected events cause the original goal to
be reposted and tried again, without the
need for explicit exception handling.

This way of handling failure is typi-
cal of the real world: if a door fails to
open, try a key; if that also fails, ring the
buzzer for someone to let you in. The goal
is simple, but if we tried to write this in a
conventional process language, we would
have to explicitly specify all the exception-
handling processes and how and when to
apply them. In goal-directed agent sys-
tems, there is nothing to do. If other agents
or processes can achieve the same objec-
tive, the goal-directed mechanism will au-
tomatically try them until success or ulti-
mate failure.

Technology Comparison
Agent-based software engineering is of-
ten compared to object-based approaches.
This might be useful for clarifying some
aspects of agent technology, but the com-
parison is finally between apples and or-
anges. Agents are a specific architectural

Multiagent systems
have features that are

key to engineering self-
adaptive systems—

loose coupling,
context sensitivity,

and robustness.

Authorized licensed use limited to: Katholieke Universiteit Leuven. Downloaded on January 6, 2010 at 03:52 from IEEE Xplore. Restrictions apply.

88	 I E E E S O F T W A R E w w w . c o m p u t e r . o r g / s o f t w a r e

SOFTWARE TECHNOLOGY

style that imposes particular constraints
on a system while yielding particular qual-
ities and tradeoffs. Objects are the primary
building blocks for implementing practical
multiagent system architectures.

A more useful comparison contrasts
agent-based approaches with more tradi-
tional architectural styles. Table 1 com-
pares multiagent systems with client-
server and service-oriented approaches
in terms of usefulness, quality attributes,
and cost.

A Self-Adaptive Automated
Transportation System
An application for an automatic guided
vehicle (AGV) transportation system illus-
trates the self-adaptive value of multiagent
systems (for background information on
this project, visit the Emc2 Web site listed
in the sidebar).

An AGV system transports loads in an
industrial environment. Different clients
can generate transports—for example, a
warehouse management system, a ma-
chine’s software, or a human operator.
The system’s main functionalities include
assigning transport tasks to appropriate
AGVs, routing the AGVs efficiently while
avoiding collisions and deadlocks, and
providing AGV maintenance services.
The system must operate efficiently and

robustly while handling dynamic operat-
ing conditions such as AGVs leaving the
system for maintenance, variable wait-
ing times for production machines, delays
in supply of goods, temporary closures in
warehouse areas, and blocked paths.

Traditionally, a central server con-
trols an AGV system. The server plans
the schedule for the system as a whole,
dispatches commands to the AGVs, and
continually polls their status. This results
in reliable, predictable solutions and easy
diagnosis of errors. However, such solu-
tions are usually inflexible and difficult to
adapt to changing business needs. Systems
that can autonomously adapt to changing
circumstances must meet quality require-
ments for flexibility and openness. Specifi-
cally, they must have the flexibility to deal
autonomously with dynamic operating
conditions and the openness to deal auton-
omously with AGVs leaving and entering
the system.

To meet these quality requirements
for an AGV system, researchers from
DistriNet Labs and engineers from Ege-
min—the two partners in the project—
developed a new architecture based on
multiagent systems. Figure 1 shows a high-
level deployment model of the system. An
AGV agent deployed on a computer sys-
tem in each vehicle controls the vehicle. A

transport agent deployed at a dedicated
computer system called the transport base
represents each transportation task in the
system. AGV agents and transport agents
must coordinate their actions—for ex-
ample, assigning transports and avoiding
collisions. Common middleware services
manage communications over a wireless
network.

To illustrate the system’s self-adaptive
properties, we explain how the agents use
a dynamic communication protocol for
transport assignment. The protocol ex-
tends the well-known contract-net proto-
col (CNET) that Reid G. Smith introduced
in the early 1980s. DynCNET (Dynamic
CNET) consists of five basic steps, shown
in Figure 2.

	 1.	The transport agent—the protocol’s
initiator—sends a call for propos-
als (cfp) to the AGV agents in its con-
text—that is, the agents within a cer-
tain area from the load.

	 2.	The AGV agents in this area—the
participants in the protocol—respond
with proposals.

	 3.	The transport agent notifies the provi-
sional winner.

	 4.	While the AGV moves toward the
load, the transport agent as well as the
AGV agent can abort the provisional

Table 1
Technology comparison of multiagent systems

with client-server and service-oriented system approaches
Description Usefulness Performance Robustness Adaptability Scalability Cost

Client-server Centralized,
reliable,
high-security
environments

Fast; response
times increase
gradually as
more requests
are made

System fails
when server goes
down; solve by
increasing number
of servers

Difficult to adapt
to changing
circumstances
or new business
requirements

Congestion risk
when adding more
users; solve by
increasing number
of servers

Higher initial
capital
investment, higher
maintenance costs

Service-
oriented

Loosely coupled
systems with
business- and
technology-
domain
alignments

Dynamic service
composition
and description
parsing
introduce
performance
overhead

Depends on the
quality attributes
of the service
composition
infrastructure to
deal with failures

Can adapt at the
service level using
dynamic service
discovery

Stateful services
require exchange of
service (meta)data,
which increases
coupling and
reduces scalability

Cost effective
as a result of
reusability,
composability, and
standardization

Multiagent
system

Inherently
distributed,
locally
autonomous,
highly dynamic
environments

Efficient
adaptation to
local changes;
lack of global
information can
result in myopic
decisions

Goal-directed
mechanism
handles failures;
if failure occurs, it
will have only local
impact

Goal-directed,
context-sensitive
process selection
extends the benefits
of loose coupling
and adaptability to
individual processes
and workflows

Depending on
the connectivity,
communication
channel can become
a bottleneck when
adding nodes;
solve by increasing
bandwidth

Economical with
regard to required
processing power;
poor integration
of agent-based
design tools
with common
engineering tools

Authorized licensed use limited to: Katholieke Universiteit Leuven. Downloaded on January 6, 2010 at 03:52 from IEEE Xplore. Restrictions apply.

	 January/February 2010 I E E E S O F T W A R E � 89

SOFTWARE TECHNOLOGY

agreement if a more suitable assign-
ment is available.

	 5.	The selected AGV agent informs the
transport agent when the AGV picks
the load (bound).

The shaded zones in the activation boxes
represent periods in the protocol when
both agents can switch the provisional
agreement.

The DynCNET protocol, in combi-
nation with the goal-directed, context-
sensitive process selection, enables the
agents to reconsider the environmental
situation and adapt the task assignments
dynamically when circumstances change.
When a load is picked up or a new task
enters the system, or when an AGV enters
or leaves the system, the candidates for
interaction will dynamically change and
the agents will adapt their behavior ac-
cordingly. For example, an AGV that has
provisionally accepted a certain task might
decide, while moving toward its assigned
load, to change the assignment to another
load that now appears closer than the ini-
tially assigned load.

Tests in industrial installations have
demonstrated up to 50 percent improve-
ment in system throughput compared to
the traditional static approach for task as-
signment. The trade-off is a doubling of re-
quired communications bandwidth.

Hints for Practitioners
Although multiagent systems are an ap-
pealing approach for developing decentral-
ized self-adaptive systems, the gains don’t
come without cost. We report some impor-
tant lessons learned from experiences with
developing industrial-strength multiagent
systems.

The Right Motivation
Quality requirements are the main drivers
for structuring a software system. Mul-
tiagent systems are known for addressing
quality attributes such as adaptability, ro-
bustness, openness, and scalability. The
decision to apply a multiagent system ar-
chitecture must be based on a good under-
standing of the stakeholders’ main quality
attributes and those realized by a multi
agent system architecture.

Clarifying the added value and trade-
offs of adopting a multiagent system will
help architects make well-considered de-

cisions and prevent stakeholders from
overestimating or underestimating agent
technology.

Multiagent System Integration
Software systems are rarely built in iso-

lation. Introducing a multiagent system
usually requires embedding and integrat-
ing it with an existing software environ-
ment, including legacy systems. In multi
agent system engineering, developers often
consider “agentification” to be a general

Transport
agent

Transport
agent

Agent middleware

Common
middleware services

.NET

Transport base

AGV agent

AGV

Agent middleware

Common
middleware services

.NET

AGV agent

AGV
Clients

Agent middleware

Common
middleware services

.NET

Wireless ethernet

ParticipantInitiator

DynCNET basic protocol

m

n

1: send(cfp)

2: [available]
send(proposal)

3: send(provisional-accept)

4: [better assignment]
send(abort)

5: [task started]
send(bound)

start()

Figure 1. Deployment model of the automatic guided vehicle (AGV)
transportation system. Each AGV is deployed with an AGV agent, and a
transport base supports transport agents. Communications occur through a
wireless Ethernet.

Figure 2. DynCNET protocol. The start() operation initiates the protocol. The
transport agent—initiator—sends a call for proposals to m AGV agents—
participants—within a certain area of the load. AGV agents respond with
proposals to n transport agents within a certain area from their current
location. After the provisional agreement, task assignment can be aborted,
and the task can be reassigned until the load is picked up.

Authorized licensed use limited to: Katholieke Universiteit Leuven. Downloaded on January 6, 2010 at 03:52 from IEEE Xplore. Restrictions apply.

90	 I E E E S O F T W A R E w w w . c o m p u t e r . o r g / s o f t w a r e

SOFTWARE TECHNOLOGY

solution for integrating legacy code. How-
ever, concerns such as security, persis-
tence, and transactional behavior often
crosscut a system. Wrapping falls short
when integrating existing infrastructure

that supports these concerns, which are
typically provided as reusable middleware
services.

Unfortunately, most available agent
platforms do a poor job of integrating

with common middleware services. No-
table exceptions are Whitestein Technol-
ogies’ Living Systems and Agentis Soft-
ware’s AdaptivEnterprise platform, which
are integrated with Java Enterprise Edition
(see the sidebar for more information).

Multiagent System Design
The multiagent system community has de-
veloped a variety of agent-based method-
ologies. These methodologies have their
value, but their specificity can hamper in-
dustrial adoption. Experience taught us
that integrating agent-based techniques
within mainstream software engineering
works well for building practical multiagent
systems.

For the AGV transportation system, we
used the Software Engineering Institute’s
attribute-driven design method. To realize
the system goals, we employed a set of mul-
tiagent system architectural patterns and
combined them with some common archi-
tectural patterns. We organized an archi-
tectural evaluation using Carnegie Mellon’s
Architecture Trade-off Analysis Method to
determine the design trade-offs and risks
with respect to satisfying important qual-
ity attribute scenarios, particularly those
related to flexibility, openness, and perfor-
mance. The agent-based software architec-
ture became a blueprint for system develop-
ment, which we implemented in C#.

Multiagent System Testing
As with any distributed system, testing a
multiagent system is challenging. Decen-
tralization and deployment in open envi-
ronments add to the complexity. Among
the important issues to be considered when
testing a multiagent system are dynamic
interactions, nondeterminism, dependen-
cies on third-party infrastructure, partial
failures, semantic interoperability, task
synchronization, and unwanted emergent
behaviors.

You can combine traditional testing
techniques such as unit and functional
tests, advanced simulations, and partial for-
mal verification to test a multiagent system.

Impact of Multiagent System Adoption
Conway’s Law says that software archi-
tecture is related to a developing organiza-
tion’s structure. A dramatic change in the
software architecture typically requires
corresponding changes in the way teams

Resources
Jeff Kramer and Jeff Magee provide an excellent overview of the state-of-the-art
and challenges in self-adaptive systems in “Self-Managed Systems: An Archi-
tectural Challenge” (Future of Software Engineering, IEEE CS Press, 2007, pp.
259–268).

Anand S. Rao and Michael P. Georgeff introduce the basics of the belief-
desire-intention agent architecture in “Modeling Rational Agents within a BDI
Architecture” (Proc. 2nd Int’l Conf. Principles of Knowledge Representation and
Reasoning, Morgan Kaufmann, 1991, pp. 473–484).

In Architecture-Based Design of Multi-Agent Systems (ISBN 978-3-642-01063-
7, Springer, 2009), Danny Weyns describes an architecture-based approach for
multiagent system software engineering and its application to the AGV (auto-
matic ground vehicle) transportation system that we describe in this article.

Additionally, Weyns and coeditors H. Van Dyke Parunak and Onn Shehory
developed a special issue on the future of software engineering and multiagent
systems for the International Journal on Agent-Oriented Software Engineering
(vol. 3, no. 4, 2009, pp. 369–415). The issue bundles a set of papers that discuss
the opportunities as well as the technical and organizational obstacles for indus-
trial adoption of multiagent system technology.

Several Web sites offer information relevant to this article.
IBM Autonomic Computing takes a perspective on self-managing systems in-

spired by the human central nervous system; www.research.ibm.com/autonomic.
Rainbow is a framework for architecture-based adaptation of complex sys-

tems. It was developed at Carnegie Mellon University and supports automated,
dynamic system adaptation via architectural models; www.cs.cmu.edu/~able/
research/rainbow.

A Dagstuhl seminar dedicated to Software Engineering for Self-Adaptive Sys-
tems brought together researchers from different disciplines, including research-
ers with backgrounds in autonomic computing, dependable computing, robotics,
multiagent systems, and service-oriented architecture; www.dagstuhl.de/de/
programm/kalender/semhp/?semnr=08031.

Emc² (Egemin Modular Controls Concept) is a joint R&D project between
Egemin and K.U. Leuven which has applied agent technology to developing
a self-adaptive control system for an automated transportation system; http://
emc2.egemin.com.

The Foundation for Intelligent Physical Agents is working with OMG on agent
standardization, including a service-oriented architecture standard that supports
agents (SoaML) and an agent metamodel and profile; http://agent.omg.org.

Living Systems of Whitestein Technologies is a pioneer and leading innova-
tor in software agent technologies, autonomic computing, and self-adaptation;
www.whitestein.com.

AdaptivEnterprise of Agentis Software is an innovative approach for devel-
oping adaptive software systems based on goal-directed agent theory; www.
agentissoftware.com

The International Journal of Agent-Oriented Software Engineering aims to
promote the interface between research and commercial adoption of agent
technology and bring together agent technologists and conventional software
engineers; www.inderscience.com/browse/index.php?journalCODE=ijaose.

Authorized licensed use limited to: Katholieke Universiteit Leuven. Downloaded on January 6, 2010 at 03:52 from IEEE Xplore. Restrictions apply.

	 January/February 2010 I E E E S O F T W A R E � 91

SOFTWARE TECHNOLOGY

are structured for developing, testing, and
maintaining the software. Our experience
indicates that moving from a traditional
client-server architecture to a decentral-
ized multiagent architecture is a big step
with far-reaching effects not only for the
software but also for the organization’s
structure.

One approach to manage this transition
in a controlled way is to gradually shift re-
sponsibilities from the central server to the
autonomous subsystems, focusing initially

on those tasks that benefit most from mul-
tiagent systems.

C omplete offline design is no longer an
option for distributed systems that
must establish component collabora-

tions at runtime and adapt dynamically
with changing operational conditions and
user needs. Multiagent systems can tackle
some of the hard problems of engineer-
ing self-adaptive systems. Although they
aren’t a silver bullet, their added value will

be a critical advantage as software systems
continue to integrate and decentralization
becomes a matter of fact, and the added
value of multiagent systems will be of criti-
cal advantage.

Danny Weyns is a postdoctoral researcher at the
Katholieke Universiteit Leuven’s DistriNet Labs. Contact him at
danny.weyns@cs.kuleuven.be.

Michael Georgeff is founder and chief executive
officer of Precedence Health Care and professor in the Faculty
of Medicine at Monash University. Contact him at michael.
georgeff@precedencehealthcare.com.

C A L L F O R A R T I C L E S

Publication: November/December 2010

Submission deadline: 1 April 2010

When putting architecture viewpoints,
frameworks, or models into practice, architects
face recurring issues: Which views and models/
languages do I need? How do I handle concern
X? How do I illustrate the concerns addressed
by my architecture to stakeholder Y? Are there
any reusable viewpoints or models to frame the
concerns of clients, auditors, or maintainers?

This special issue will explore the state of the
art and current industrial practice in framing
architectural concerns. We especially welcome
case studies, lessons learned, success and failure
stories in introducing viewpoints, frameworks,
and models to organizations, mature and
innovative approaches, and future trends.

Possible topics include
but are not limited to

■■ research approaches and industrial practice
on identifying, documenting, and applying
viewpoints, frameworks, and models
(VFMs) in framing architectural concerns;
■■ tools to support VFMs in framing
architectural concerns;

■■ reuse, customization, generalization, and
standardization of architectural VFMs;
■■ viewpoints and models for specialized
concerns (e.g., reliability, safety, security)
or for specific domains (enterprise,
healthcare, embedded systems); and
■■ relations between VFMs with other
knowledge management mechanisms such as
perspectives, principles, styles, and patterns.

Questions?
For more information about the
focus, contact the Guest Editors:

■■ Patricia Lago, VU University
Amsterdam, patricia@cs.vu.nl
■■ Paris Avgeriou, University
of Groningen, paris@cs.rug.nl
■■ Rich Hilliard, software systems
architect, r.hilliard@computer.org

For author guidelines:
www.computer.org/software/author.htm
For submission details: software@computer.org

Software Architecture: Framing
Stakeholders’ Concerns

Authorized licensed use limited to: Katholieke Universiteit Leuven. Downloaded on January 6, 2010 at 03:52 from IEEE Xplore. Restrictions apply.

