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Abstract

Image textures can easily be created using texture systbgsexample. However, creating procedural textures is nmicre
difficult. This is unfortunate, since procedural textures hayeificant advantages over image textures. In this paperddeeas
the problem of texture synthesis by example for procedesdltes. We introduce a method for procedural multiregmiunoise
by example. Our method computes the weights of a procedurtiiresolution noise, a simple but common class of procaldur
textures, from an example. We illustrate this method byaigias a key component in a method for texture synthesis bynpla
for isotropic stochastic procedural textures. Our methgdicantly facilitates the creation of these procedueattres.

Keywords: procedural texture, isotropic stochastic texture, texgynthesis by example, texture synth@sialysis, noise,
procedural noise, wavelet noise, stochastic modeling] satture

1. Introduction rendererCGIlSudio [Eringis, 2006]. However, creating proce-
o ) ) ~ dural textures can be fiiicult. This typically involves either
Texturing is a fundamental tool in computer graphics t0 in-gome sort of programming language, such asRévaderMan
crease the visual complexity of computer-generated inyager shading language [Pixar, 2005], or an interactive visuerin
There are two important classes of textures: image texturegce sych aMlaPZone[Allegorithmic], accompanied by a deep
consisting of raster data and procedural textures. Proatdu understanding of procedural textures. In contrast, argath-
textures have several potential advantages over imagerésxt age textures is easy, and can be done by simply taking a digi-
[Ebertetal., 2002]: tal photograph, or by using texture synthesis by example [We

e Procedural textures are compact, their storage requiréa-t al., 2009].

ments are orders of magnitude smaller than those of image
textures.

e Procedural textures have no fixed resolution and size, they
have an infinite extent and are not subject to undesired In this paper we address this problem by exploring texture
seams and repetitions. synthesis by example for procedural textures. We belieat th
. investigating automatic methods for creating proceduzat t
* Procedural textures are parametrized, they represent @yes is definitely worthwhile, given the previously mental
class of related textures rather than a single texture, angigiculties with existing manual methods. Because procedural
leave room for an artist to tweak. textures are typically created starting from a proceducigen

« Solid procedural textures do not require texture coordi-UNCtion, such as Perlin noise, using a process similarrno-fu

nates and are not subject to undesired seams and distd{2" cOmposition [Perlin, 1985], they can be arbitrarilymeo
tions. plex. Therefore, we limit to a specific class of procedurai te

tures, multiresolution noise [Perlin, 1985; Ebert et a002,;
e Procedural textures often allow high-quality anti-aligsi Cook and DeRose, 2005], a simple but common class of proce-
[Ebert et al., 2002; Cook and DeRose, 2005]. dural textures, and present a method for procedural msitire

P dural herefore b ) lution noise by example. Multiresolution noise roughly reer
rocedural textures can therefore be an attractive afteerta sponds to the class of isotropic stochastic textures. \Weepte

image textures. This is witnessed by the fact that procédurg, einod for procedural isotropic stochastic textures kayrex

texturels are |ncreaS|n|egdpop|uIarc|jn prodlucuon_ renderiFlo?r dpIe, by combining our method for procedural multiresolntio

éxamp e,F2’|xar rece;lty eve 0%‘? wavelet n0|se| [C?O andpoise by example with existing techniques from texture syn-

DeRose, 2005], anBlue Sy Sudios uses a completely pro- haqis This is illustrated in figure 1. For isotropic stostia

cedural approach to texturing for animated feature filmbdirt textures, our method is similar to the one of Heeger and Berge

[1995] but produces a procedural texture rather than anemag

Email address: ares . lagae@cs.kuleuven.be (Ares Lagae) texture, that is randomly accessible and can be evaluated on
LAres Lagae is visiting at REVEBIRIA Sophia-Antipolis in 2009-2010.  the-fly, for example in a GPU shader.
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Figure 1: Our method for texture synthesis by example for égitrstochastic procedural textures. (a) A photograph efa&rworld scene. (b) A photograph of
a texture in the scene. (c) A cropped version of the photdgadjthe texture. (d) A procedural texture automatically gatesl from the cropped version of the
photograph using our method. (e) A rendering of a virtual sdertured using several of these procedural textures.

2. Related Work ically generating procedural geometric textures simitathte
one described in this paper. We discuss tliietknces between
Our work is related to procedural multiresolution noiseg an both methods in section 6. Lefebvre and Poulin [2000] intro-

to texture synthesis by example for image textures and for pr duced a system to extract values for parameters of structura
cedural textures. textures from photographs. However, their method is lichtte

Procedural multiresolution noise was introduced by Perlif €ctangular tiling and wood textures. Qin and Yang [2002] in

[1985] in the same work that introduced solid modeling andiroduced a genetic-based multiresolution parameter astm

Perlin noise. Cook and DeRose [2005] introduced a more bandPProach to recover the parameter values for a given precedu
limited procedural noise function that improves modelirighw 2! téxture, and Bourque and Dudek [2004] introduced a syste

and filtering of multiresolution noise. Methods related tolm ~ that performs a two-phase search over a library of procédura
tiresolution noise were introduced by Lewis [1989], and re-shaders. However, these systems are limited to textureartha

cently by Goldberg et al. [2008] and Lagae et al. [2009]. Gold represented in the library, and determining the paramefeas

berg et al. use an automatic method to compute the parametdiocedural texture using a search method is léSsient and
of an anisotropic multiresolution noise. However, theipliga- less accurate than a direct computation, such as the one pre-

tion is compensating for parametric distortion, and theisa ~ S€nted in this paper.
function is not procedural. In all of the other methods, the p _ Recently, there is some convergence between texture synthe
rameters of the multiresolution noise are manipulated mypu SIS Py example for image textures and for procedural testure

and none of the methods addresses the problem of multiresold €€ is some work that tries to port advantages of procedu-
tion noise by example. For an overview of procedural noisd@! lextures, such as random accessibility [Lefebvre anoiido
functions, see Lagae et al. [2010]. 2005; Dong et al., 2008], resolution independence [Han.gt al

There is a large amount of work that addresses texture syr?-OOS] and compactness [Wei et al., 2008], to texture syighes

thesis by example for image textures. This includes paramepy example for image textures. In this work we _try to port one
ric methods [Heeger and Bergen, 1995; Portilla and Simon9f the a(_jvantages of image texiures, easy creation usitigéex
celli, 2000], non-parametric methods [Bonet, 1997], idahg synthesis by example, 1o pracedural textures.

pixel-based methods [Efros and Leung, 1999; Wei and Levoy,

2000] as well as patch-based methods [Efros and Freema8, Procedural Multiresolution Noise

2001; Kwatra et al., 2003], and optimization-based methods . . . . ' .
[Kwatra et al., 2005]. Some methods also consider solid tex- Multiresolution noiseM is defined as a weighted sum of
tures [Heeger and Bergen, 1995; Dischler et al., 1998; KopPO'Se bands,

et al., 2007; Dong et al., 2008]. For a recent overview, re- M (X y) = Z\Ni Ni (X,Y). 1)

fer to Wei et al. [2009]. Our method is similar to parametric [

methods for texture synthesis, such as the work by Heeger angthe appearance of the noisé is determined by the weights
Bergen [1995], Portilla et al. [1996], and Portilla and Simo w;. The noise bandsl; are scaled versions of a single noise
celli [2000]. However, all of these methods produce image te bandN, typically a procedural noise function, where consec-

tures, while our method produces procedural textures. utive noise bands are scaled by a factor of two, and tramslate
Work that addresses texture synthesis by example for procétsing a randomidseto;,
dural textures is much less common. Ghazanfarpour and Dis- N (xy) = N [2i (X+01y),2 (y+ 0i,y)]~ )

chler [1995; 1996] presented a spectral method for autemati

solid procedural texture generation from a single or midtip The random fisets decorrelate the noise bands by randomly
2D exemplars. However, their method is designed for testureshifting them with respect to each other. The noise bandsidho
with only a few dominant frequencies, which is @dient tex-  ideally be orthogonal [Cook and DeRose, 2005]. In that case,
ture class than the one we address in this work. Dischler anthe weights accurately control the spectral shape of the mul
Ghazanfarpour [1997] also presented a method for automatiresolution noise, and the noise can be filtered using #aqu
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Figure 2: Procedural multiresolution noise. (a) A noise withinly mid-
frequency content. (b) A noise with mainly low and high-freqay content.
Each example shows the noise and the weights. (© (d)

Figure 3: Decomposition of frequency space for wavelet noisg Wavelet
clamping [Norton et al., 1982]. We therefore use waveles@oi noise. (b) The power spectrum of wavelet noiég {y € [-1/2,+1/2]). (c)
[Cook and DeRose, 2005] rather than Perlin noise [Perli@519 The supportof wavelet noise in the frequency domaig)( (d) The decompo-
. . . . - sition of frequency spacé&X) (the support of consecutive noise bands is shown
2002]. Procedural multiresolution noise is illustratedfitt  aternating in gray and black).
ure 2. For more information on multiresolution noise, refer
Perlin [1985], Ebert et al. [2002] and Cook and DeRose [2005]
for |, |fy| < 1/4 since wavelet noise is band-limited. Note
that
4. Procedural Multiresolution Noise by Example DF (N)) = { ?(ONJ-) i=j @)
otherwise

_In this section we present our method for procedural mul-Thjs decomposition of frequency space is illustrated inrigi
tiresolution noise by example. Given an exemjiiafor exam-  Next we multiply both sides of equation 4 I in order to
ple a grayscale photograph of a texture, our method computgs;|ate the weighty,

the weightsw; of a multiresolution noisé, such that the noise
M appears similar to the exemplay wff{N [2i (x+0iy),2 (y+ O.,y)]} ~ DiF [E(xY)]. ®)

M(xy) = ZW. N[2 (x+0,),2 (y+0y)| *E(xy). (3)  Note thatD; can be distributed inside the summation since it

i is a linear operator, and that all terms in the summationgxc
the term involvingw;, vanish due to equation 7. At this point,
it might seem as if the weighw; can be obtained by a simple
division. However, this is not the case, since the noise nd
is stochastic, and its value is not known. Therefore, weakpl
4.1. Derivation the statistical properties of the noise bakd We proceed by
étaking the power of both sides of equation 8,

We assume that the reader is familiar with Fourier analyss (
e.g. Bracewell [1999]).

In this subsection, we derive a direct formula to compute th

weight w; from the exemplaE. First, we apply the Fourier , i 2 5
transform# to both sides of equation 3, Wizf'T{N |2 (x+ 00,2 (y+ o.,y)]}| ~ f|DiT[E(X,Y)]| -9

DwFN[2 (x+0,),2 (y+o,)[} »F[E(Y)]. (4  Then, we use Rayleigh's theorem, which states that the power
i is the same in the spatial domain and in the frequency domain,

Note thatF can be distributed inside the summation since it is ' . 2
[FiNZxron2(+o))f = [Ny, ao

a linear operator. Then, we define a decomposition of frecquen
spaceD, whereD; indicates the support of the noise baxdn _
the frequency domain. For wavelet noise, we debnigy Note that the scale' 2nd dfseto; can be dropped, since the
' | | variance, and therefore the power, of all noise baNds the
[ 1165 <1/2 and [|fd, |1, > 1/4
Do (f. 1) _{ 0 otherwise ®

same. Next, we approximate the power in the noise béubg
the expected power, noting that wavelet noisi@hkas a Gaussian
_ _ e o intensity distribution with zero mean and varianeg ~ 0.265
D (f. fy) = Do(2 1 2ty), ©) [Cook and DeRose, 2005], and using the computational famul
for the variance,

where Dy is the support of wavelet noise in the frequency
domain. This definition follows from the construction of ) ) ,
wavelet noise [Cook and DeRose, 2008} f,, f,) equals 0 f|N(>QY)| ~ (IN(YPP) = o} ~ 0.265 (11)
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Figure 5: Multi-channel synthesis. (a) A photograph of auex (b) A synthe-

sis result generated using multi-channel synthesis in an B8k space. (c) A

synthesis result generated using multi-channel synthesisiecorrelated color
space.

Lalll
)

(c

specifically, the power in each noise band of a finite sample
%) of noise is not exactly equal to its expected power deterchine

by the weights, although the power converges to the expected
Figure 4: Validation of our method for procedural multiresisln noise by ~ POWer with increasing sample size.

example. (a) A set of random weights. (b) A noise generatetjubie random
weights. (c) A set of weights computed from the noise usingmethod. (d)

A noise generated using the computed weights. 5. Texture Synthesis by Example for Isotropic Stochastic
Procedural Textures

where () denotes expectation value. Finally, we substitute

equations 10 and 11 into equation 9 and obtain a direct famul Multiresolution noise roughly corresponds to the class of

isotropic stochastic textures. In this section, we theeefo

for the weightw;, . -
present a method for texture synthesis by example for igimtro
D [E ( y)]|2 stochastic procedural textures, based on our method for mul
W ~ 0—2 (12)  tiresolution noise by example. Like many other methods
N

[Heeger and Bergen, 1995; Portilla et al.,, 1996; Dischler
and Ghazanfarpour, 1997; Portilla and Simoncelli, 2000}, o

i method is motivated by the seminal work of Julesz [1962],
4.2. Implementation which states that textures with similar first and second rorde

We obtain the term(’|DiF [E (x, y)]|2 of equation 12 for all ~ statistics, or histogram and power spectrum, affécdit to dis-

i by interpreting the exempldE as a matrix, computing the criminate. Therefore, we combine our method for multireso-
Fourier transform, iterating over all elements, sorting &te-  lution noise by example, which matches the power spectrum,
ments into their corresponding frequency banand accumu-  with a method for matching the histogram. We also extend
lating the power in each frequency band. Note that this iS &yr method for multiresolution noise by example to colortex
simple method for power spectrum estimation. We obtain thg ;a5 Wwe use existing techniques from texture synthestis; w

frequency bandfrom an element with frequeno{}fy, fX) as out compromising the compactness and random accessilfility
o _ the procedural texture. We summarize our method as a texture
i = int{min[log, (1/If) . log, (1/1%/)]} + 1. (13)  synthesis-by-analysis method.

which follows from equations 5 and 6.
5.1. Multi-Channel Synthesis

4.3. Validation Multiresolution noise is limited to single-channel texasy
We present a validation of our method for procedural mul-because it is a scalar function. The most straightforwaterex
tiresolution noise by example in figure 4. We construct ansion of a single-channel synthesis method to multiple chbnn
exemplarE with known weights by generating a set of ran- is independent channel synthesis, where the synthesisotheth
dom weights (figure 4(a)), and generate a noise using the rais applied to each of the channels independently. Howener, i
dom weights (figure 4(b)). We obtain a nois& by comput-  dependent channel synthesis in an RGB color space results in
ing a set of weights from the exemplar using our method (fig-undesired color shifts. This is illustrated in figure 5(bhig’is
ure 4(c)), and generating a noise using the computed weightsecause the channels of natural images are not indeperdent.
(figure 4(d)). The exempldE and the noiséM appear very sim-  fact, they are highly correlated [Ruderman et al., 1998nRei
ilar, they could be dferent samples from the same proceduralhard et al., 2001]. Instead, we use independent channdiesynt
noise function. The two sets of weights are also very similarsis in a decorrelated color space, obtained using principak
Note that, even though the exemplar is constructed using muponent analysis (PCA), a fairly established techniquetute
tiresolution noise, the two sets of weights are not exa¢tyy t synthesis [Ruderman et al., 1998; Reinhard et al., 2001gétee
same. This is because of the stochastic nature of noise. Moend Bergen, 1995; Qin and Yang, 2002]. This is illustrated in
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some methods try to match both statistics jointly or iterdii.
However, Portilla et al. [1996] showed that matching the his
togram after matching the power spectrum works well in prac-
tice.

The challenge of using histogram matching in the context
of procedural textures is doing so without compromising the
random accessibility and compactness of the procedural tex
ture. In order to perform histogram matching, we need to know
all involved histograms. However, computing the histogifm
the multiresolution noise in the conventional way would eom
promise random accessibility. Therefore, we approximaite t

. » histogram using the expected intensity distribution of times-

CY (b) (©) olution noise. This is a Gaussian distribution with zero mea

and variancerz,,
Figure 6: Arbitrary intensity distributions. (a) A photagh of a texture with 2 2 14
a non-Gaussian intensity distribution. (b) A synthesisiitagithout histogram Om =0N Z Wi, ( )
i

matching. (c) A synthesis result with histogram matching.HE@@mple shows

the texture and the RGB histogram. 2 . . .
whereoy, ~ 0.265 is the variance of wavelet noise, amdare

the multiresolution noise weights [Cook and DeRose, 2005].
figure 5(c). Note that the undesired color shifts have disapburing the analysis phase we compute a single cumulative his
peared. This technique can easily be applied without compraogram that transforms the Gaussian intensity distrilouicthe
mising the compactness and random accessibility of thesproc noise, obtained using this approximation, into the histogof
dural texture, since it boils down to a simple color spacesra the exemplar. In order to ensure compactness, we fit this dis-
formation represented by a33 transformation matrix. crete histogram with a more compact parametrized represen-

There seems to be no consensus about the use of indepaation. We subsample the histogram using a small number of
dent channel synthesis in a decorrelated color space: IHeegsamples, typically 10, and store only these samples. During
and Bergen [1995] report good results for stochastic testur the analysis phase, we evaluate the cumulative histograrg us
while Kopf et al. report bad results for structured textykespf  a monotone piecewise cubic Hermite spline [Fritsch and-Carl
et al., 2007, figure 2]. We believe this can be explained ason, 1980]. This technique thus boils down to applying alsing
follows. Decorrelation minimizes the correlation betwéka  spline lookup to the values obtained from equation 1. Nadé th
channels. However, this does not necessarily imply that théhe resulting histograms are also shown in figure 6(a).
channels are also statistically independent. For stoichizst
tures, the decorrelated channels are often statisticadlggen- ; ;
dent, and if they are not, decorrelation minimizes the \eésér- 53. Texture ynthesis By Analysis
tifacts, while for structured textures, the decorrelatedrmels We summarize our method as a texture-synthesis-by-aralysi
are usually not statistically independent, because oftiives method. The key component of the analysis phase is our
ture. We believe this is why independent channel synthesis i method for multiresolution noise by example, and the sysithe
decorrelated color space works much better for stochaestic t phase corresponds to evaluating the procedural texture.

tures than for structured textures. In the analysis phase, the parameters for a proceduratéextu
. R are computed. First, the channels of the exemplar are decor-
5.2. Arbitrary Intensity Distributions related (subsection 5.1). This results in & 3 transforma-

Multiresolution noise is limited to textures with a Gaussia tion matrix. Then, for each of the channels, the cumulative
histogram, because it always has a Gaussian intensity-disthistogram is computed, and a Gaussian histogram is imposed
bution. We address this limitation using histogram matghin (subsection 5.2). This results in a 10-sample subsampled cu
a popular technique in texture synthesis [Heeger and Bergemulative histogram per channel. Finally, for each of thencha
1995; Dischler et al., 1998; Kopf et al., 2007]. Histogram nels, the weights of a multiresolution noise are computed-(s
matching is a technique to coerce the histogram of an image in tion 4). This results in 9 weights per channel for a resolutd
a desired shape. Before we apply our method for multiresolu512x 512. The total number of parameters is thus 66.
tion noise by example, we impose a Gaussian histogram on the In the synthesis phase, the procedural texture is evaluated
exemplar using histogram matching, since the resultingenoi First, for each of the channels, the multiresolution noéseval-
will also have a Gaussian intensity distribution. Afterleva uated (section 4). This corresponds to evaluating equation
ating the resulting noise, we impose the original intendis  Then, for each of the channels, the original histogram is im-
tribution of the exemplar on the noise, again using histogra posed (subsection 5.2). This corresponds to a spline lookup
matching. This improves the synthesis results for textthhas  Finally, the channels are recorrelated. This correspoods t
do not already have a Gaussian intensity distribution. This matrix multiplication. Evaluating the procedural textisdast,
illustrated in figure 6. It is worthwhile to note that applgin and can therefore be done for example per pixel in a GPU
histogram matching carffect the power spectrum. Therefore, shader. The performance of the GPU shader roughly equals the
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performance of the Wavelet noise GPU implementation scaletextures produced by our method are procedural, they are ran
by the number of noise bands. domly accessible and can be evaluated on-the-fly, for exampl
Although we summarize our method as a texture-synthesign a GPU shader. We believe this is a significant advantage ove
by-analysis method, the synthesized texture is a true dtoeé  the method of Heeger and Bergen, which is not procedural, and
texture, with all advantages mentioned in the introduction must generate the entire texture at once, in a pre-allocadea-
ory bufer, prior to rendering. Note that although a GPU imple-
mentation of the method of Heeger and Bergen might be possi-
ble, by exploiting recent developments on noise generation

Our method for texture synthesis by example for isotropicthe GPU [Tzeng and Wei, 2008], the iterative pyramid corstru
stochastic procedural textures is illustrated in figure @ i tion and collapse seems problematic with respect to rangom|
ure 8. We chose not to include a comparison with state-ofaccessibility and generation on-the-fly. The method of leeeg
the-art methods for texture synthesis by example, bechiase t and Bergen [1995] however can handle a slightly larger rafge
would only be of limited use. On the one hand, these methodteXtures, including anisotropic stochastic textures. dviecent
are better than our method in terms of synthesis qualityexd t Noise functions that support anisotropy, such as Gaboenois
ture classes. On the other hand, these methods produce imd§adae et al., 2009], might enable an extension of our method

textures, while our method produces procedural texturhighw {0 anisotropic textures. _

Ghazanfarpour [1997], which automatically generatesqutae
e Our procedural textures are compact. For example, @al geometric textures. Both methods match the power spec-
512<512 image texture requires 768 kB of storage, whiletrum and the histogram, but again using &etient methodol-
the corresponding procedural texture only requires 66 paogy. For example, their spectral analysis is based on agsisal
rameters of storage. of 1D profiles and the classification of frequencies in catiego

L . is iterative, and is subject to convergence problems, aeid th
e Our procedural textures are not limited in size and reso'histogram matching is very coarse. The most importaexi
lution, and have an infinite extent. These advantages al '

I’g . .
. ; . nce, however, is that the method of Dischler and Ghazanfar-
inherited from wavelet noise [Cook and DeRose, 2005]. pour is geared towards geometric textures. They do present a

e Our procedural textures allow high-quality anti-aliasing &x@mple involving color textures [Dischler and Ghazardarp
using frequency C|amping [Norton et a|.’ 1982, Cook and1997, plate 3, lower part], but Only demonstrate 1D color-var
DeRose, 2005], even when histogram matching is use@tion. In contrast, our method can model more complex color

[Hart et al., 1999; Lagae et al., 2009]. variation.
Our method is designed for isotropic stochastic textunes, a

e Our procedural textures support frequency-based texturgbviously cannot successfully synthesize textures thanato
editing, by manipulating the weights. This is illustrated i belong to this texture class. This limitation is inheritedrh
figure 10(a,b,c). wavelet noise. This is illustrated in figure 9, but to a certai

degree also in figure 8(b,f,i).

e Our procedural textures support texture morphing, by in- . .
: o L Interestingly, even unsuccessfully synthesized textares
terpolating the parameters. This is illustrated in figure 12 ; . .
often still usable, for example at a low level of detail, oaipre-

e Our procedura| textures support solid texture extrapo|aattentive context. We believe this is because our methodyeslw

tion, by rep|acing 2D wavelet noise by 3D wavelet noise_SynthESizeS a texture with first and second order imagestitati
This is illustrated in figure 10(a,b,d) and figure 11. similar to those of the exemplar, and that textures with Isimi

_ _ _ image statistics arefiicult to discriminate [Julesz, 1962; Malik
e Our _PfOCGde§| textures can easily be ||.”1tegra.1ted INto proand Perona, 1990; Heeger and Bergen, 1995]. This is ilkestra
duction rendering software and can easily be implementegh figure 13. This might be exploitable in the context of lev&l
as a GPU shader detail.
Therefore, our method can be a viable alternative to state-o One apphgaﬂon we have in _mlnd fgr our method for tex-
. ture synthesis by example for isotropic stochastic progddu
the-art methods for texture synthesis by example. . . : s .
textures is bulk modeling of textures in applications fopida

For isotropic stochastic textures, our method can be sean as odeling such asoogle SketchUp [Google]. A typical use
procedural variant of the method of Heeger and Bergen [1995 'ng . og P giel- yp
ase is an artist who is asked produce a textured model of a

Zcrr?ilel:\a/ztgnseir'rl:i]le;[f;()t/?]r';ess)gtgj;llﬁstagg Szzr:iir)r:(;ér tBec:EnEELhSOdBuilding in a short time. The artist could use our method to
' rapidly and fully automatically obtain an initial approxation

although in a dferent way. Especially note the connection ! .
. . . : for all textures in the scene, and concentrate manual nragleli
between multiresolution wavelet noise and the Laplaciaapy . . ;
on important textures that will appear in close-up.

mid of white noise. The most importantiirence is that the We have illustrated our method for multiresolution noise
by example using texture synthesis by example for isotropic

2See supplemental material for examples. stochasti_c procedural textures. I—!owever, our method cm al
3See supplemental material for a comparison. be used in any context where weights are manipulated, for ex-

6. Resultsand Discussion




(a) Grass.

(b) Ceramic tile.*

Figure 7: Examples of our method for texture synthesis by exarfaplisotropic stochastic procedural textures. Each exasimbws a photograph of a real-world
scene, a photograph of a texture in the scene, a croppeaesthe photograph of the texture, a procedural textureraatically generated from the cropped
version of the photograph using our method, and a renderiagvatual scene textured using several of these procedextires. The procedural textures in the
examples marked with an asterislwere constructed using histogram matching.

texture synthesis by example for isotropic stochasticgaacal
textures. Although a lot of work remains to be done, the tesul
are encouraging. We believe that texture synthesis by eleamp
for procedural textures is a very promising research doact
Recent developments in procedural texturing are encaugagi
anisotropic noise [Goldberg et al., 2008] and Gabor noise [L
gae et al., 2009] might enable an extension of our method to
anisotropic textures, and lift the limitation to isotropéxtures
inherited from wavelet noise.
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procgdural mUltireso'thiqn noise by example, a.nd by itiatst textures by spectral and spatial analysis of profiles. Coerp@raphics
ing this method by using it as a key component in a method for Forum 16, 1997.
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(a) Vinyl flooring. (b) Blue towel.* (c) Rock salt lamp*

(d) Bluestone doorstep. (e) Ceramic shower tile. (f) Blanket.*

(g) Octagonal table. (h) Living room tile. (i) Jeans vest:

() Rust. (k) Clinker.* () Granite (Rose Sarde).

(m) Granite (Bethel White): (n) Granite (Shivakasi Yellowy)- (o) Brick wall.

(p) Stone tile.* (q) Marble (Bianco Royal): (r) Human skin.

Figure 8: More examples of our method for texture synthesiscayngle for isotropic stochastic procedural textures. Eaelmgle shows a photograph of a texture
and a procedural texture automatically generated from tleéoghaph using our method. The procedural textures in thepbes marked with an asteriskwere
constructed using histogram matching.



(b) Wood.*

Figure 9: Unsuccessful examples of our method for texturehgygis by example for isotropic stochastic procedural testuEach example shows a photograph of
a texture and a procedural texture automatically generaded the photograph using our method. The procedural texintbe examples marked with an asterisk
* were constructed using histogram matching.

Figure 10: Frequency-based texture editing and solid tex¢xtrapolation. (a)
A photograph of a texture. (b) A procedural texture autonadifiogenerated
from the photograph using our method. (c) The high frequencfethe pro-
cedural texture are attenuated using frequency-basedr¢egtliting. (d) The
procedural texture is extrapolated to a solid proceduralite.

Figure 11: Solid texture extrapolation. A virtual scendtiegd using solid pro-
cedural textures obtained by applying solid texture exti@on to procedural
textures generated from photographs of textures using otirade

Figure 12: Texture morphing. The texture of figure 8(m) is mocpimeo the texture of figure 10 by interpolating the parametéthe corresponding procedural
textures. All parameters are linearly interpolated, extieptransformation matrix, which is interpolated using quate spherical linear interpolation.
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