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Abstract

Image textures can easily be created using texture synthesis by example. However, creating procedural textures is muchmore
difficult. This is unfortunate, since procedural textures have significant advantages over image textures. In this paper we address
the problem of texture synthesis by example for procedural textures. We introduce a method for procedural multiresolution noise
by example. Our method computes the weights of a procedural multiresolution noise, a simple but common class of procedural
textures, from an example. We illustrate this method by using it as a key component in a method for texture synthesis by example
for isotropic stochastic procedural textures. Our method significantly facilitates the creation of these procedural textures.

Keywords: procedural texture, isotropic stochastic texture, texture synthesis by example, texture synthesis/analysis, noise,
procedural noise, wavelet noise, stochastic modeling, solid texture

1. Introduction

Texturing is a fundamental tool in computer graphics to in-
crease the visual complexity of computer-generated imagery.
There are two important classes of textures: image textures
consisting of raster data and procedural textures. Procedural
textures have several potential advantages over image textures
[Ebert et al., 2002]:

• Procedural textures are compact, their storage require-
ments are orders of magnitude smaller than those of image
textures.

• Procedural textures have no fixed resolution and size, they
have an infinite extent and are not subject to undesired
seams and repetitions.

• Procedural textures are parametrized, they represent a
class of related textures rather than a single texture, and
leave room for an artist to tweak.

• Solid procedural textures do not require texture coordi-
nates and are not subject to undesired seams and distor-
tions.

• Procedural textures often allow high-quality anti-aliasing
[Ebert et al., 2002; Cook and DeRose, 2005].

Procedural textures can therefore be an attractive alternative to
image textures. This is witnessed by the fact that procedural
textures are increasingly popular in production rendering. For
example,Pixar recently developed wavelet noise [Cook and
DeRose, 2005], andBlue Sky Studios uses a completely pro-
cedural approach to texturing for animated feature films in their
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rendererCGIStudio [Eringis, 2006]. However, creating proce-
dural textures can be difficult. This typically involves either
some sort of programming language, such as theRenderMan
shading language [Pixar, 2005], or an interactive visual inter-
face, such asMaPZone [Allegorithmic], accompanied by a deep
understanding of procedural textures. In contrast, creating im-
age textures is easy, and can be done by simply taking a digi-
tal photograph, or by using texture synthesis by example [Wei
et al., 2009].

In this paper we address this problem by exploring texture
synthesis by example for procedural textures. We believe that
investigating automatic methods for creating procedural tex-
tures is definitely worthwhile, given the previously mentioned
difficulties with existing manual methods. Because procedural
textures are typically created starting from a procedural noise
function, such as Perlin noise, using a process similar to func-
tion composition [Perlin, 1985], they can be arbitrarily com-
plex. Therefore, we limit to a specific class of procedural tex-
tures, multiresolution noise [Perlin, 1985; Ebert et al., 2002;
Cook and DeRose, 2005], a simple but common class of proce-
dural textures, and present a method for procedural multireso-
lution noise by example. Multiresolution noise roughly corre-
sponds to the class of isotropic stochastic textures. We present
a method for procedural isotropic stochastic textures by exam-
ple, by combining our method for procedural multiresolution
noise by example with existing techniques from texture syn-
thesis. This is illustrated in figure 1. For isotropic stochastic
textures, our method is similar to the one of Heeger and Bergen
[1995] but produces a procedural texture rather than an image
texture, that is randomly accessible and can be evaluated on-
the-fly, for example in a GPU shader.
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Figure 1: Our method for texture synthesis by example for isotropic stochastic procedural textures. (a) A photograph of a real-world scene. (b) A photograph of
a texture in the scene. (c) A cropped version of the photograph of the texture. (d) A procedural texture automatically generated from the cropped version of the
photograph using our method. (e) A rendering of a virtual scene textured using several of these procedural textures.

2. Related Work

Our work is related to procedural multiresolution noise, and
to texture synthesis by example for image textures and for pro-
cedural textures.

Procedural multiresolution noise was introduced by Perlin
[1985] in the same work that introduced solid modeling and
Perlin noise. Cook and DeRose [2005] introduced a more band-
limited procedural noise function that improves modeling with
and filtering of multiresolution noise. Methods related to mul-
tiresolution noise were introduced by Lewis [1989], and re-
cently by Goldberg et al. [2008] and Lagae et al. [2009]. Gold-
berg et al. use an automatic method to compute the parameters
of an anisotropic multiresolution noise. However, their applica-
tion is compensating for parametric distortion, and their noise
function is not procedural. In all of the other methods, the pa-
rameters of the multiresolution noise are manipulated manually,
and none of the methods addresses the problem of multiresolu-
tion noise by example. For an overview of procedural noise
functions, see Lagae et al. [2010].

There is a large amount of work that addresses texture syn-
thesis by example for image textures. This includes paramet-
ric methods [Heeger and Bergen, 1995; Portilla and Simon-
celli, 2000], non-parametric methods [Bonet, 1997], including
pixel-based methods [Efros and Leung, 1999; Wei and Levoy,
2000] as well as patch-based methods [Efros and Freeman,
2001; Kwatra et al., 2003], and optimization-based methods
[Kwatra et al., 2005]. Some methods also consider solid tex-
tures [Heeger and Bergen, 1995; Dischler et al., 1998; Kopf
et al., 2007; Dong et al., 2008]. For a recent overview, re-
fer to Wei et al. [2009]. Our method is similar to parametric
methods for texture synthesis, such as the work by Heeger and
Bergen [1995], Portilla et al. [1996], and Portilla and Simon-
celli [2000]. However, all of these methods produce image tex-
tures, while our method produces procedural textures.

Work that addresses texture synthesis by example for proce-
dural textures is much less common. Ghazanfarpour and Dis-
chler [1995; 1996] presented a spectral method for automatic
solid procedural texture generation from a single or multiple
2D exemplars. However, their method is designed for textures
with only a few dominant frequencies, which is a different tex-
ture class than the one we address in this work. Dischler and
Ghazanfarpour [1997] also presented a method for automat-

ically generating procedural geometric textures similar to the
one described in this paper. We discuss the differences between
both methods in section 6. Lefebvre and Poulin [2000] intro-
duced a system to extract values for parameters of structural
textures from photographs. However, their method is limited to
rectangular tiling and wood textures. Qin and Yang [2002] in-
troduced a genetic-based multiresolution parameter estimation
approach to recover the parameter values for a given procedu-
ral texture, and Bourque and Dudek [2004] introduced a system
that performs a two-phase search over a library of procedural
shaders. However, these systems are limited to textures that are
represented in the library, and determining the parametersof a
procedural texture using a search method is less efficient and
less accurate than a direct computation, such as the one pre-
sented in this paper.

Recently, there is some convergence between texture synthe-
sis by example for image textures and for procedural textures.
There is some work that tries to port advantages of procedu-
ral textures, such as random accessibility [Lefebvre and Hoppe,
2005; Dong et al., 2008], resolution independence [Han et al.,
2008] and compactness [Wei et al., 2008], to texture synthesis
by example for image textures. In this work we try to port one
of the advantages of image textures, easy creation using texture
synthesis by example, to procedural textures.

3. Procedural Multiresolution Noise

Multiresolution noiseM is defined as a weighted sum of
noise bandsNi,

M (x, y) =
∑

i

wi Ni (x, y) . (1)

The appearance of the noiseM is determined by the weights
wi. The noise bandsNi are scaled versions of a single noise
bandN, typically a procedural noise function, where consec-
utive noise bands are scaled by a factor of two, and translated
using a random offsetoi,

Ni (x, y) = N
[

2i (x + oi,x
)

,2i
(

y + oi,y

)]

. (2)

The random offsets decorrelate the noise bands by randomly
shifting them with respect to each other. The noise bands should
ideally be orthogonal [Cook and DeRose, 2005]. In that case,
the weights accurately control the spectral shape of the mul-
tiresolution noise, and the noise can be filtered using frequency
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Figure 2: Procedural multiresolution noise. (a) A noise withmainly mid-
frequency content. (b) A noise with mainly low and high-frequency content.
Each example shows the noise and the weights.

clamping [Norton et al., 1982]. We therefore use wavelet noise
[Cook and DeRose, 2005] rather than Perlin noise [Perlin, 1985,
2002]. Procedural multiresolution noise is illustrated infig-
ure 2. For more information on multiresolution noise, referto
Perlin [1985], Ebert et al. [2002] and Cook and DeRose [2005].

4. Procedural Multiresolution Noise by Example

In this section we present our method for procedural mul-
tiresolution noise by example. Given an exemplarE, for exam-
ple a grayscale photograph of a texture, our method computes
the weightswi of a multiresolution noiseM, such that the noise
M appears similar to the exemplarE,

M (x, y) =
∑

i

wi N
[

2i (x + oi,x
)

,2i
(

y + oi,y

)]

≈ E (x, y) . (3)

We assume that the reader is familiar with Fourier analysis (see
e.g. Bracewell [1999]).

4.1. Derivation

In this subsection, we derive a direct formula to compute the
weight wi from the exemplarE. First, we apply the Fourier
transformF to both sides of equation 3,

∑

i

wiF
{

N
[

2i (x + oi,x
)

,2i
(

y + oi,y

)]}

≈ F
[

E (x, y)
]

. (4)

Note thatF can be distributed inside the summation since it is
a linear operator. Then, we define a decomposition of frequency
spaceD, whereDi indicates the support of the noise bandNi in
the frequency domain. For wavelet noise, we defineD by

D0

(

fx, fy

)

=

{

1 | fx| ,
∣

∣

∣ fy

∣

∣

∣ < 1/2 and | fx| ,
∣

∣

∣ fy

∣

∣

∣ > 1/4
0 otherwise

(5)

Di

(

fx, fy

)

= D0

(

2i fx,2
i fy

)

, (6)

where D0 is the support of wavelet noise in the frequency
domain. This definition follows from the construction of
wavelet noise [Cook and DeRose, 2005],D0

(

fx, fy
)

equals 0

x

y

(a)
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(b)
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Figure 3: Decomposition of frequency space for wavelet noise. (a) Wavelet
noise. (b) The power spectrum of wavelet noise (fx, fy ∈ [−1/2,+1/2]). (c)
The support of wavelet noise in the frequency domain (D0). (d) The decompo-
sition of frequency space (Di) (the support of consecutive noise bands is shown
alternating in gray and black).

for | fx| ,
∣

∣

∣ fy
∣

∣

∣ < 1/4 since wavelet noise is band-limited. Note
that

DiF
(

N j

)

=

{

F
(

N j

)

i = j
0 otherwise

. (7)

This decomposition of frequency space is illustrated in figure 3.
Next, we multiply both sides of equation 4 byDi in order to
isolate the weightwi,

wiF
{

N
[

2i (x + oi,x
)

, 2i
(

y + oi,y

)]}

≈ DiF
[

E (x, y)
]

. (8)

Note thatDi can be distributed inside the summation since it
is a linear operator, and that all terms in the summation, except
the term involvingwi, vanish due to equation 7. At this point,
it might seem as if the weightwi can be obtained by a simple
division. However, this is not the case, since the noise bandN
is stochastic, and its value is not known. Therefore, we exploit
the statistical properties of the noise bandN. We proceed by
taking the power of both sides of equation 8,

w2
i

∫

∣

∣

∣

∣

F
{

N
[

2i (x + oi,x
)

,2i
(

y + oi,y

)]}

∣

∣

∣

∣

2
≈

∫

∣

∣

∣DiF
[

E (x, y)
]

∣

∣

∣

2
. (9)

Then, we use Rayleigh’s theorem, which states that the power
is the same in the spatial domain and in the frequency domain,

∫

∣

∣

∣

∣

F
{

N
[

2i (x + oi,x
)

,2i
(

y + oi,y

)]}

∣

∣

∣

∣

2
=

∫

|N (x, y)|2 . (10)

Note that the scale 2i and offsetoi can be dropped, since the
variance, and therefore the power, of all noise bandsNi is the
same. Next, we approximate the power in the noise bandN by
the expected power, noting that wavelet noise has a Gaussian
intensity distribution with zero mean and varianceσ2

N ≈ 0.265
[Cook and DeRose, 2005], and using the computational formula
for the variance,

∫

|N (x, y)|2 ≈
〈

|N (x)|2
〉

= σ2
N ≈ 0.265, (11)
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Figure 4: Validation of our method for procedural multiresolution noise by
example. (a) A set of random weights. (b) A noise generated using the random
weights. (c) A set of weights computed from the noise using ourmethod. (d)
A noise generated using the computed weights.

where 〈〉 denotes expectation value. Finally, we substitute
equations 10 and 11 into equation 9 and obtain a direct formula
for the weightwi,

wi ≈

√

√

∫ ∣

∣

∣DiF
[

E (x, y)
]

∣

∣

∣

2

σ2
N

. (12)

4.2. Implementation

We obtain the term
∫ ∣

∣

∣DiF
[

E (x, y)
]

∣

∣

∣

2
of equation 12 for all

i by interpreting the exemplarE as a matrix, computing the
Fourier transform, iterating over all elements, sorting the ele-
ments into their corresponding frequency bandi, and accumu-
lating the power in each frequency band. Note that this is a
simple method for power spectrum estimation. We obtain the
frequency bandi from an element with frequency

(

fy, fx

)

as

i = int
{

min[log2 (1/| fx|) , log2

(

1/| fy|
)

]
}

+ 1, (13)

which follows from equations 5 and 6.

4.3. Validation

We present a validation of our method for procedural mul-
tiresolution noise by example in figure 4. We construct an
exemplarE with known weights by generating a set of ran-
dom weights (figure 4(a)), and generate a noise using the ran-
dom weights (figure 4(b)). We obtain a noiseM by comput-
ing a set of weights from the exemplar using our method (fig-
ure 4(c)), and generating a noise using the computed weights
(figure 4(d)). The exemplarE and the noiseM appear very sim-
ilar, they could be different samples from the same procedural
noise function. The two sets of weights are also very similar.
Note that, even though the exemplar is constructed using mul-
tiresolution noise, the two sets of weights are not exactly the
same. This is because of the stochastic nature of noise. More

(a) (b) (c)

Figure 5: Multi-channel synthesis. (a) A photograph of a texture. (b) A synthe-
sis result generated using multi-channel synthesis in an RGBcolor space. (c) A
synthesis result generated using multi-channel synthesis in a decorrelated color
space.

specifically, the power in each noise band of a finite sample
of noise is not exactly equal to its expected power determined
by the weights, although the power converges to the expected
power with increasing sample size.

5. Texture Synthesis by Example for Isotropic Stochastic
Procedural Textures

Multiresolution noise roughly corresponds to the class of
isotropic stochastic textures. In this section, we therefore
present a method for texture synthesis by example for isotropic
stochastic procedural textures, based on our method for mul-
tiresolution noise by example. Like many other methods
[Heeger and Bergen, 1995; Portilla et al., 1996; Dischler
and Ghazanfarpour, 1997; Portilla and Simoncelli, 2000], our
method is motivated by the seminal work of Julesz [1962],
which states that textures with similar first and second order
statistics, or histogram and power spectrum, are difficult to dis-
criminate. Therefore, we combine our method for multireso-
lution noise by example, which matches the power spectrum,
with a method for matching the histogram. We also extend
our method for multiresolution noise by example to color tex-
tures. We use existing techniques from texture synthesis, with-
out compromising the compactness and random accessibilityof
the procedural texture. We summarize our method as a texture-
synthesis-by-analysis method.

5.1. Multi-Channel Synthesis

Multiresolution noise is limited to single-channel textures,
because it is a scalar function. The most straightforward exten-
sion of a single-channel synthesis method to multiple channels
is independent channel synthesis, where the synthesis method
is applied to each of the channels independently. However, in-
dependent channel synthesis in an RGB color space results in
undesired color shifts. This is illustrated in figure 5(b). This is
because the channels of natural images are not independent.In
fact, they are highly correlated [Ruderman et al., 1998; Rein-
hard et al., 2001]. Instead, we use independent channel synthe-
sis in a decorrelated color space, obtained using principalcom-
ponent analysis (PCA), a fairly established technique in texture
synthesis [Ruderman et al., 1998; Reinhard et al., 2001; Heeger
and Bergen, 1995; Qin and Yang, 2002]. This is illustrated in
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Figure 6: Arbitrary intensity distributions. (a) A photograph of a texture with
a non-Gaussian intensity distribution. (b) A synthesis result without histogram
matching. (c) A synthesis result with histogram matching. Each example shows
the texture and the RGB histogram.

figure 5(c). Note that the undesired color shifts have disap-
peared. This technique can easily be applied without compro-
mising the compactness and random accessibility of the proce-
dural texture, since it boils down to a simple color space trans-
formation represented by a 3× 3 transformation matrix.

There seems to be no consensus about the use of indepen-
dent channel synthesis in a decorrelated color space: Heeger
and Bergen [1995] report good results for stochastic textures,
while Kopf et al. report bad results for structured textures[Kopf
et al., 2007, figure 2]. We believe this can be explained as
follows. Decorrelation minimizes the correlation betweenthe
channels. However, this does not necessarily imply that the
channels are also statistically independent. For stochastic tex-
tures, the decorrelated channels are often statistically indepen-
dent, and if they are not, decorrelation minimizes the visible ar-
tifacts, while for structured textures, the decorrelated channels
are usually not statistically independent, because of the struc-
ture. We believe this is why independent channel synthesis in a
decorrelated color space works much better for stochastic tex-
tures than for structured textures.

5.2. Arbitrary Intensity Distributions

Multiresolution noise is limited to textures with a Gaussian
histogram, because it always has a Gaussian intensity distri-
bution. We address this limitation using histogram matching,
a popular technique in texture synthesis [Heeger and Bergen,
1995; Dischler et al., 1998; Kopf et al., 2007]. Histogram
matching is a technique to coerce the histogram of an image into
a desired shape. Before we apply our method for multiresolu-
tion noise by example, we impose a Gaussian histogram on the
exemplar using histogram matching, since the resulting noise
will also have a Gaussian intensity distribution. After evalu-
ating the resulting noise, we impose the original intensitydis-
tribution of the exemplar on the noise, again using histogram
matching. This improves the synthesis results for texturesthat
do not already have a Gaussian intensity distribution. Thisis
illustrated in figure 6. It is worthwhile to note that applying
histogram matching can affect the power spectrum. Therefore,

some methods try to match both statistics jointly or iteratively.
However, Portilla et al. [1996] showed that matching the his-
togram after matching the power spectrum works well in prac-
tice.

The challenge of using histogram matching in the context
of procedural textures is doing so without compromising the
random accessibility and compactness of the procedural tex-
ture. In order to perform histogram matching, we need to know
all involved histograms. However, computing the histogramof
the multiresolution noise in the conventional way would com-
promise random accessibility. Therefore, we approximate this
histogram using the expected intensity distribution of multires-
olution noise. This is a Gaussian distribution with zero mean
and varianceσ2

M,

σ2
M = σ

2
N

∑

i

wi, (14)

whereσ2
N ≈ 0.265 is the variance of wavelet noise, andwi are

the multiresolution noise weights [Cook and DeRose, 2005].
During the analysis phase we compute a single cumulative his-
togram that transforms the Gaussian intensity distribution of the
noise, obtained using this approximation, into the histogram of
the exemplar. In order to ensure compactness, we fit this dis-
crete histogram with a more compact parametrized represen-
tation. We subsample the histogram using a small number of
samples, typically 10, and store only these samples. During
the analysis phase, we evaluate the cumulative histogram using
a monotone piecewise cubic Hermite spline [Fritsch and Carl-
son, 1980]. This technique thus boils down to applying a single
spline lookup to the values obtained from equation 1. Note that
the resulting histograms are also shown in figure 6(a).

5.3. Texture Synthesis By Analysis

We summarize our method as a texture-synthesis-by-analysis
method. The key component of the analysis phase is our
method for multiresolution noise by example, and the synthesis
phase corresponds to evaluating the procedural texture.

In the analysis phase, the parameters for a procedural texture
are computed. First, the channels of the exemplar are decor-
related (subsection 5.1). This results in a 3× 3 transforma-
tion matrix. Then, for each of the channels, the cumulative
histogram is computed, and a Gaussian histogram is imposed
(subsection 5.2). This results in a 10-sample subsampled cu-
mulative histogram per channel. Finally, for each of the chan-
nels, the weights of a multiresolution noise are computed (sec-
tion 4). This results in 9 weights per channel for a resolution of
512× 512. The total number of parameters is thus 66.

In the synthesis phase, the procedural texture is evaluated.
First, for each of the channels, the multiresolution noise is eval-
uated (section 4). This corresponds to evaluating equation3.
Then, for each of the channels, the original histogram is im-
posed (subsection 5.2). This corresponds to a spline lookup.
Finally, the channels are recorrelated. This corresponds to a
matrix multiplication. Evaluating the procedural textureis fast,
and can therefore be done for example per pixel in a GPU
shader. The performance of the GPU shader roughly equals the
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performance of the Wavelet noise GPU implementation scaled
by the number of noise bands.

Although we summarize our method as a texture-synthesis-
by-analysis method, the synthesized texture is a true procedural
texture, with all advantages mentioned in the introduction.

6. Results and Discussion

Our method for texture synthesis by example for isotropic
stochastic procedural textures is illustrated in figure 7 and fig-
ure 8. We chose not to include a comparison with state-of-
the-art methods for texture synthesis by example, because that
would only be of limited use. On the one hand, these methods
are better than our method in terms of synthesis quality and tex-
ture classes. On the other hand, these methods produce image
textures, while our method produces procedural textures, which
have several advantages over image textures:

• Our procedural textures are compact. For example, a
512×512 image texture requires 768 kB of storage, while
the corresponding procedural texture only requires 66 pa-
rameters of storage.

• Our procedural textures are not limited in size and reso-
lution, and have an infinite extent. These advantages are
inherited from wavelet noise [Cook and DeRose, 2005].

• Our procedural textures allow high-quality anti-aliasing
using frequency clamping [Norton et al., 1982; Cook and
DeRose, 2005], even when histogram matching is used
[Hart et al., 1999; Lagae et al., 2009].

• Our procedural textures support frequency-based texture
editing, by manipulating the weights. This is illustrated in
figure 10(a,b,c).

• Our procedural textures support texture morphing, by in-
terpolating the parameters. This is illustrated in figure 12.

• Our procedural textures support solid texture extrapola-
tion, by replacing 2D wavelet noise by 3D wavelet noise.
This is illustrated in figure 10(a,b,d) and figure 11.

• Our procedural textures can easily be integrated into pro-
duction rendering software and can easily be implemented
as a GPU shader2.

Therefore, our method can be a viable alternative to state-of-
the-art methods for texture synthesis by example.

For isotropic stochastic textures, our method can be seen asa
procedural variant of the method of Heeger and Bergen [1995],
a milestone in texture synthesis by example. Both methods
achieve a similar synthesis quality3 and use similar techniques,
although in a different way. Especially note the connection
between multiresolution wavelet noise and the Laplacian pyra-
mid of white noise. The most important difference is that the

2See supplemental material for examples.
3See supplemental material for a comparison.

textures produced by our method are procedural, they are ran-
domly accessible and can be evaluated on-the-fly, for example
in a GPU shader. We believe this is a significant advantage over
the method of Heeger and Bergen, which is not procedural, and
must generate the entire texture at once, in a pre-allocatedmem-
ory buffer, prior to rendering. Note that although a GPU imple-
mentation of the method of Heeger and Bergen might be possi-
ble, by exploiting recent developments on noise generationon
the GPU [Tzeng and Wei, 2008], the iterative pyramid construc-
tion and collapse seems problematic with respect to randomly
accessibility and generation on-the-fly. The method of Heeger
and Bergen [1995] however can handle a slightly larger rangeof
textures, including anisotropic stochastic textures. More recent
noise functions that support anisotropy, such as Gabor noise
[Lagae et al., 2009], might enable an extension of our method
to anisotropic textures.

Our method is also similar to the method of Dischler and
Ghazanfarpour [1997], which automatically generates procedu-
ral geometric textures. Both methods match the power spec-
trum and the histogram, but again using a different methodol-
ogy. For example, their spectral analysis is based on an analysis
of 1D profiles and the classification of frequencies in categories,
is iterative, and is subject to convergence problems, and their
histogram matching is very coarse. The most important differ-
ence, however, is that the method of Dischler and Ghazanfar-
pour is geared towards geometric textures. They do present an
example involving color textures [Dischler and Ghazanfarpour,
1997, plate 3, lower part], but only demonstrate 1D color vari-
ation. In contrast, our method can model more complex color
variation.

Our method is designed for isotropic stochastic textures, and
obviously cannot successfully synthesize textures that donot
belong to this texture class. This limitation is inherited from
wavelet noise. This is illustrated in figure 9, but to a certain
degree also in figure 8(b,f,i).

Interestingly, even unsuccessfully synthesized texturesare
often still usable, for example at a low level of detail, or ina pre-
attentive context. We believe this is because our method always
synthesizes a texture with first and second order image statistics
similar to those of the exemplar, and that textures with similar
image statistics are difficult to discriminate [Julesz, 1962; Malik
and Perona, 1990; Heeger and Bergen, 1995]. This is illustrated
in figure 13. This might be exploitable in the context of levelof
detail.

One application we have in mind for our method for tex-
ture synthesis by example for isotropic stochastic procedural
textures is bulk modeling of textures in applications for rapid
modeling such asGoogle SketchUp [Google]. A typical use
case is an artist who is asked produce a textured model of a
building in a short time. The artist could use our method to
rapidly and fully automatically obtain an initial approximation
for all textures in the scene, and concentrate manual modeling
on important textures that will appear in close-up.

We have illustrated our method for multiresolution noise
by example using texture synthesis by example for isotropic
stochastic procedural textures. However, our method can also
be used in any context where weights are manipulated, for ex-

6



(a) Grass.

(b) Ceramic tile.∗

Figure 7: Examples of our method for texture synthesis by example for isotropic stochastic procedural textures. Each example shows a photograph of a real-world
scene, a photograph of a texture in the scene, a cropped version of the photograph of the texture, a procedural texture automatically generated from the cropped
version of the photograph using our method, and a rendering ofa virtual scene textured using several of these procedural textures. The procedural textures in the
examples marked with an asterisk∗ were constructed using histogram matching.

Figure 13: Preservation of image statistics. The three dresses on the left use the
image texture of figure 9(a), while the three dresses on the right use the proce-
dural texture of figure 9(a). Although the textures appear dissimilar from close
by, they appear more similar from further away, because our method preserves
image statistics.

ample in terrain modeling [Ebert et al., 2002].

7. Conclusion

Although procedural textures have several advantages over
image textures, there is a huge discrepancy between the current
state-of-the-art in texture synthesis by example for imagetex-
tures and for procedural textures. We believe we have taken a
step to address this discrepancy, by introducing a method for
procedural multiresolution noise by example, and by illustrat-
ing this method by using it as a key component in a method for

texture synthesis by example for isotropic stochastic procedural
textures. Although a lot of work remains to be done, the results
are encouraging. We believe that texture synthesis by example
for procedural textures is a very promising research direction.
Recent developments in procedural texturing are encouraging:
anisotropic noise [Goldberg et al., 2008] and Gabor noise [La-
gae et al., 2009] might enable an extension of our method to
anisotropic textures, and lift the limitation to isotropictextures
inherited from wavelet noise.
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