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REVIEW

Chronic myelogenous leukemia: mechanisms underlying disease progression
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Chronic myelogenous leukemia (CML), characterized by the
BCR-ABL gene rearrangement, has been extensively studied.
Significant progress has been made in the area of BCR-ABL-
mediated intracellular signaling, which has led to a better
understanding of BCR-ABL-mediated clinical features in
chronic phase CML. Disease progression and blast crisis CML
is associated with characteristic non-random cytogenetic and
molecular events. These can be viewed as increased oncogenic
activity or loss of tumor suppressor activity. However, what
causes transformation and disease progression to blast crisis
is only poorly understood. This is in part due to the lack of a
good in vivo model of chronic phase CML even though animal
models developed over the last few years have started to pro-
vide insights into blast crisis development. Thus, additional in
vitro and in vivo studies will be needed to provide a complete
understanding of the contribution of BCR-ABL and other genes
to disease progression and to improve therapeutic approaches
for blast crisis CML.
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Introduction

Chronic myelogenous leukemia (CML) is a clonal myeloprolif-
erative disorder of the hematopoeitic stem cell (HSC). In the
initial chronic phase, myeloid progenitors and mature cells
accumulate in the blood and extramedullary tissues.1 After 3–
4 years, the disease transforms and terminates in a blast crisis
characterized by a maturation arrest in the myeloid or lymph-
oid lineage.2–4 The only curative therapy for this disorder is
allogeneic stem cell transplantation performed during chronic
phase.5–7 Treatment with interferon � delays progression of
the disease to blast crisis and in 10–20% of patients results in
complete remission.6,8 The median survival of patients with
blast crisis without treatment is 3 months.3

CML is a malignancy that is consistently associated with an
acquired genetic abnormality, the Philadelphia chromosome.
Ph is present in �90% of patients and is the result of a
rearrangement between the BCR and Abelson genes. The
BCR-ABL fusion gene, is seen in up to 95% of CML patients
and gets translated into an oncoprotein, p210BCR/ABL.9 The
presence of p210BCR/ABL is necessary and sufficient for malig-
nant transformation as demonstrated in animal models10–13

and in vitro systems.14,15 Although the molecular mechanisms
that underlie BCR-ABL-mediated transformation have been
extensively studied, progression of the disease from chronic
phase to blast crisis is incompletely understood. In this review
we will summarize the patho-physiology of chronic phase
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CML as it is currently understood and then discuss the mol-
ecular mechanisms thought to contribute to the progression
of chronic phase to blast crisis CML.

Molecular biology of BCR-ABL

Approximately 90% of patients with CML have an acquired
genetic abnormality, the Philadelphia chromosome (Ph).16

The Ph is a shortened chromosome 22 resulting from a
reciprocal translocation between the long arms of chromo-
somes 9 and 22 t(9; 22q34;q11).16,17 In this translocation, the
c-ABL proto-oncogene is transposed from its normal position
on chromosome 9 to a 5.8 kb major breakpoint cluster region
M-BCR on chromosome 22, forming a BCR-ABL fusion
gene.17,18 The new gene encodes p210BCR/ABL, an oncoprotein
that has increased tyrosine kinase (TK) activity19,20 and
increased binding to the actin cytoskeleton21 compared with
the p145 Abelson protein, both of which contribute to trans-
formation. The presence of p210BCR/ABL causes growth factor
independence and leukemic cell growth in hematopoietic cell
lines.14,15,22 Transplantation of BCR-ABL-transduced hemato-
poietic stem cells or transgenic expression of p210BCR/ABL

induces leukemia, lymphomas and CML-like syndromes10–

13,23–27 proving the direct causal relationship to CML.
Prior to discussing the biology of the BCR-ABL gene we will

review the functions of the gene products of the normal Abel-
son and BCR genes. The p145ABL protein, the product of the
Abelson gene, is a TK whose function is not totally known.
There is evidence that p145ABL is important for cell growth,28–

30 induction of apoptosis31–33 and is involved in DNA
repair.34–36 Although p145ABL is found mainly in the cell
nucleus, there is mounting evidence that it plays a role in cell
signaling from integrins37 as well as other cell surface recep-
tors such as the B cell receptor and CD19.38 Abelson−/− mice
die early after birth due to severe runting and impaired
lymphoid development39 that may be related to the recently
discovered role of p145ABL in B cell function.38 ABL+/− mice,
however, are normal indicating that it is unlikely that loss of
one normal Abelson allele in CML plays a role in the disease.
Even less is known about the function of the normal BCR
gene.

BCR−/− mice develop septic shock when challenged with
lipopolysaccharide due to a significantly increased and dysre-
gulated neutrophilic oxidative burst.40 BCR +/− mice are nor-
mal, again suggesting that loss of one normal BCR allele does
not play a role in the pathogenesis of CML.

Signal transduction in chronic phase CML

The biology of the BCR-ABL oncogene and its intracellular
signal transduction pathways have been extensively
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reviewed41–44 and only the key parts will be discussed here
(Figure 1). The BCR-ABL oncoprotein has constitutively
expressed tyrosine kinase activity as a result of oligomeriz-
ation of the coiled coil region of p210BCR/ABL 45 and deletion
of the inhibitory SH3 domain of ABL.46 This results in phos-
phorylation of p210BCR/ABL itself on the Y-177 tyrosine resi-
due47 and leads to recruitment of GRB2,48 a small adapter
molecule that can activate the RAS pathway.49–52 p210BCR/ABL

kinase also phosphorylates JAK2 and STAT1/STAT5,53–56 pro-
teins that transfer signals from non-TK cytokine receptors to
the nucleus. RAS and STAT activation contributes to growth
factor independence of cell lines containing the BCR-ABL
gene.

Furthermore, p210BCR/ABL activates the PI(3)K/Akt path-
way,57–60 increases expression of BCL-2,61 and phosphorylates
STAT562,63 leading to the increased resistance of CML pro-
genitors to apoptosis.

Finally, p210BCR/ABL is localized almost exclusively in the
cytosol due to loss of a nuclear localizing signal and has
increased binding to actin compared with p145ABL.21,64,65 This
results in phosphorylation of a number of neighboring cytos-
keletal proteins including FAK66 and paxillin,67 all of which
contribute to aberrant adhesion receptor function and may
explain the premature circulation of progenitors and precur-
sors in the blood.68,69

The features of chronic phase CML, expansion and prema-
ture circulation of the malignant myeloid population can
therefore be explained by activation of mutagenic pathways,
antiapoptotic pathways and abnormal cytoskeletal function
(Figure 1). These same characteristics, increased mutagenicity
and decreased susceptibility to apoptosis may also be respon-
sible for disease progression.70 Moreover, the continuously
proliferating malignant cell population is prone to secondary
genetic abnormalities, which may be better tolerated due to
the antiapoptotic phenotype conferred by the presence of
p210BCR/ABL. Subsequently, multiple malignant clones with
new genetic errors emerge that can ultimately lead to disease
progression and blast crisis.

Mechanisms of disease progression

Although the BCR-ABL gene plays a central role in the patho-
genesis of chronic phase CML and its continued expression is
required for the proliferation of cells in the acute phase, the
molecular events leading to the evolution to blast crisis are not
fully understood. CML cells develop additional cytogenetic or
molecular defects that commonly precede blast crisis (Table
1). The significance of these cytogenetic and molecular
defects and their impact on disease transformation will be dis-
cussed in this section. We will also describe the underlying
pathways that are considered important in disease pro-
gression.

Cellular events

Decreased apoptosis

Apoptosis or programmed cell death can be considered a pro-
tective mechanism against cancer and its derangement has
significance in many malignancies. Cells harboring or acquir-
ing chromosomal errors by DNA damaging agents undergo
apoptosis. Signals instructing a cell to undergo apoptosis are
multiple, complex and highly redundant. The final decision
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for a cell to initiate apoptosis rather than cell cycle arrest, or
a failure to respond by either method may be dependent on
the magnitude and duration of the damage stimulus.

In CML, multiple mechanisms contribute toward resistance
against apoptosis. Phosphorylation and activation of the PI(3)-
K/Akt pathway59,71 is a major pathway by which BCR-ABL
exerts its antiapoptotic effect. PI(3) kinase activation also via
protein kinase B, results in the phosphorylation and inacti-
vation of the pro-apoptotic protein BAD a member of the Bcl-
2 family.60 Increased expression of BCL-2 the prototype mem-
ber of the BCL family of antiapoptotic proteins72 has been
described in cell types harboring the BCR-ABL oncogene and
contributes to decreased apoptosis.61 BCR-ABL-mediated acti-
vation of STAT5 and subsequent increases in BCLxl levels may
also increase resistance to apoptosis.62,63,73

Most but not all studies using p210BCR/ABL expressing cell
lines have demonstrated that BCR-ABL expression protects
from apoptosis induced by physical and chemical stresses.74–

78 Additionally, chronic phase CML CD34+ cells undergo
delayed apoptotic death upon cytokine withdrawal when
compared with normal progenitors.79–81 The use of antisense
oligonucleotides against BCR-ABL could reverse the delay in
apoptosis in CML cell lines.80,81 P210BCR/ABL may protect cells
from cytotoxic agent-induced apoptosis by preventing the
release of cytochrome-c82 and preventing the activation of
caspases especially caspase 3.83

The redox-sensitive transcription factor NF-�B translocates
to the nucleus upon cellular activation and its activity is gener-
ally associated with protection from apoptosis. There is evi-
dence for activation of NF-�B in transgenic models of CML
which is yet another mechanism that may protect against
apoptosis.84 Finally, the RAS pathway may be involved in
BCR-ABL-mediated inhibition of apoptosis75,85,86 and elevated
cytokine production87,88 may have an inhibitory effect on
apoptosis.

Interestingly, c-ABL is thought to have a pro-apoptotic func-
tion in the cytoplasm by inhibiting the survival pathway
mediated by PI(3)K and as discussed later, methylation of the
only normal ABL allele seen during disease progression may
contribute towards resistance against apoptosis. Nuclear ABL
is also believed to have a role in cell death. More evidence
to support this theory has emerged with the demonstration that
nuclear import of BCR-ABL in a CML cell line by treatment
with STI-571 (gleevec, a new specific tyrosine kinase inhibitor
that inhibits the BCR-ABL TK at micromolar concentrations89)
and its subsequent nuclear entrapment by leptomycin B
induced apoptosis.90 Therefore, the abnormal cytoplasmic
location of BCR-ABL and the reduction in nuclear ABL protein
may enhance resistance to apoptosis.

Protection against apoptosis is relatively minimal in chronic
phase CML but there is evidence that BCR-ABL mediates
resistance to apoptosis in a dose-dependent fashion.91

Increased expression of the BCR-ABL mRNA, often associated
with disease progression92 may therefore lead to increased
resistance to apoptosis in accelerated phase and blast crisis.91

Despite being a characteristic feature of CML decreased
apoptosis alone is not sufficient for disease transformation and
disease progression likely requires additional abnormalities
such as for instance, loss of a tumor suppressor gene.

Differentiation block

During the process of hematopoeitic differentiation, pluripot-
ent stem cells become lineage committed and eventually dif-
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Figure 1 CCM, coiled coil motif; Y-177, tyrosine residue; STK, serine-threonine kinase; SH1 and 2, Src homology domain; PPD, polyproline
domain; F-actin, actin binding domain; FAK, focal adhesion kinase. Signal transduction pathways affected by p210BCR-ABL. Activation of the
RAS, Jak/Stat and PI-3 kinase pathways results in increased proliferation, differentiation and decreased apoptosis of CML progenitors. F-actin
binding via integrins results in impaired adhesion and premature release of CML progenitors into the circulation. Loss of p53 results in diminished
apoptosis and increases the likelihood of secondary genetic abnormalities. Decreased DNAPKcs can result in inadequate DNA repair, as may
decreased amounts of nuclear ABL. Shuttling of ABL occurs between the nucleus and cytoplasm and cytoplasmic ABL has a role in cell surface
signaling through integrins. Cytoplasmic ABL is also believed to inhibit the PI(3)K pathway, a function that may be impaired due to reduced
amounts of ABL.
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progression

Mechanisms of disease Ref.
progression

Cellular events
Increased proliferation 53, 55, 70, 174
Drug resistance 103–106
Decreased apoptosis 58–63, 71, 73, 75, 79–84, 86, 91
Differentiation block 93–96
Abnormal immune surveillance98–99

Genetic and molecular events
Oncogene formation/activation

Ph duplication 108, 109, 151, 173
c-MYC 115–118, 152–155, 157
RB 114, 166
AML-EV1 119, 120, 159–161

Tumor suppressor gene
inactivation

p53 loss 109–111, 129–136
p16INK4a 112, 138–139
Miscellaneous

c-ABL hypermethylation 141–144
Genomic instability 169–170
Impaired DNA repair 172
Loss of imprinting 150

ferentiate morphologically and functionally into distinct blood
cell types. Although the p210BCR/ABL itself does not signifi-
cantly affect terminal cell differentiation in chronic phase, dif-
ferentiation is blocked in blast phase CML.93–95 The role of
BCR-ABL itself or other events in this phenomenon is not fully
elucidated. Additional mutations, formation of new onco-
genes, elevated cytokine levels, inactivation of tumor sup-
pressor genes are hypothetical reasons for this phenomenon.
As exemplified in acute promyelocytic leukemia, tumor pro-
gression can be suppressed by inducing differentiation with
cytokines or factors that regulate normal hematopoiesis.96,97

Further studies elucidating the mechanisms underlying the dif-
ferentiation block seen in blast crisis CML are warranted to
help define a role for differentiating agents in the therapeutic
armamentarium against blast crisis.

Decreased immune surveillance

MHC-restricted and MHC-unrestricted mechanisms play an
important role in the natural control of the Ph clone in chronic
phase as well as during progression of CML.98 Among the
MHC-restricted mechanisms, T lymphocyte-mediated killing
of target cells via Fas-receptor triggering plays an important
role in elimination of malignant CML cells. CML progenitor
cells also express functional Fas-ligand, which may be an
important immune surveillance escape factor. In comparison
to the chronic phase, CML cells derived from patients in blast
crisis are refractory to Fas-mediated apoptosis, regardless of
the expression levels of Fas, suggesting that an immune-
mediated selection pressure could result in acquisition of Fas
resistance.99,100 Natural killer (NK) and activated killer (AK)
cells mediate MHC-unrestricted cytotoxicity. There is evi-
dence for declining NK cell function in blast crisis CML but
it is unclear if this is a cause rather than an effect of disease
progression.101,102
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Drug resistance

CML progenitors obtained from patients during chronic phase
and blast crisis are equally sensitive to STI-571 by in vitro
assay methods.103 Despite this observation there is a lower
response rate in accelerated phase and blast crisis compared
with chronic phase CML indicating development of drug
resistance in vivo. The other possibility to consider is the pres-
ence of additional genetic errors that can stimulate the malig-
nant clone in the absence of BCR-ABL. The observation that
some patients who initially respond to STI-571 redevelop Ph-
positive hematopoiesis may also indicate development of drug
resistance. Additionally, resistance to interferon � or hydrox-
yurea is thought to be a herald of disease transformation. Drug
resistance may be contributory to the change in character of
chronic phase CML. There are multiple mechanisms involved
in resistance to therapy, which could impact on disease pro-
gression. These include expression of the MDR-1 gene,104,105

AGP-1,106 reduplication of BCR-ABL or its over-
expression,104,107 decreased apoptosis74 and possibly defec-
tive drug transport.

Genetic events

Cytogenetic and molecular changes occur in the majority of
the patients during evolution to blast crisis. Approximately
70–80% of patients with classical Ph-positive CML show
additional non-random chromosomal changes108,109,172

involving chromosomes 8, 17, 19 and 22 with duplication of
the Ph chromosome108 or trisomy 83 being the most frequent.
In about 15% of patients, progression of the disease is associa-
ted with −7, −17, +17, +21 and −Y.172

At the molecular level, the most frequent abnormality is a
deletion of p53, a tumor suppressor gene located on the short
arm of chromosome 17,110–112 leading chiefly to myeloid blast
crisis. About 50% of patients with lymphoid blast crisis have
a homozygous deletion of the p16INK4a gene located on chro-
mosome 9.113 Other less frequent acquired genetic abnormali-
ties are deletions of the retinoblastoma gene,114 over-
expression of c-MYC115–118 or N-RAS119 and generation of an
oncogene AML-EVI-1.120,121

Inactivation of tumor suppressor genes

DNA damage in eukaryotic organisms leads to activation of
DNA damage sensor proteins such as ATM.122 These proteins
when activated phosphorylate p53, which in turn upregulates
expression of proteins such as BAX,123, CD95124 and DR5,125

all members of core apoptotic pathways. In addition, activated
p53 causes increased expression of cell cycle blocking genes
such as p21cip1,126 leading to cell cycle arrest at the G1–S
phase to allow cell repair. Thus, the p53 gene manifests its
tumor suppressive effects via apoptotic cell death or cell cycle
arrest.126 The tumor suppressor role of p53 has been demon-
strated in p53 knock out mice that develop normally but are
prone to developing spontaneous tumors.127

The p53 gene is located on chromosome 17 and its inacti-
vation has been shown to be important in the evolution of
CML to blast crisis.128 Loss of p53 function can be due to
mutations,129 deletions and rearrangements130 and is seen in
25% of myeloid blast crisis.111,129,131,132 In addition to loss of
function mutations, the production of mutant p53 proteins can
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function as a dominant negative isoform or can act co-
operatively with BCR-ABL to stimulate proliferation.133

The best proof for a role of p53 in disease progression is
derived from a murine model that closely resembles chronic
phase CML in which BCR-ABL cDNA regulated by the Tec
promoter was introduced.23 Mice expressing BCR-ABL from
the Tec promoter were crossed with p53+/− mice. In contrast
to BCR-ABL transgenic animals, BCR/ABL-p53+/− animals
developed rapid progression to blast crisis.134 This rapid pro-
gression of chronic phase to blast crisis was due to loss of
function of the remaining p53 allele. Similarly, transplantation
of p53-deficient bone marrow cells transduced with BCR-ABL
cDNA led to rapid blast crisis.135

In one report, marrow from a CML patient in blast crisis
showed a point mutation in the coding region of the p53 gene
that was absent in chronic phase CML and upon return to
second chronic phase the mutation was undetectable.136 A
number of studies using sequential evaluation of bone marrow
of patients in chronic phase that evolved to blast crisis have
revealed frequent acquisition of p53 mutations.111,112,130,137

Additionally, the blasts of some of these patients displayed
decreased apoptosis emphasizing the role of p53-mediated
apoptotic cell death that appears to be deficient in blast
phase.111

Another tumor suppressor gene p16INK4a located on chro-
mosome 9 has been associated with progression of CML to
blast crisis.113,138 P16INK4a is an inhibitor of cyclin D. Cyclin
D kinase complexes phosphorylate Rb and prevent cell cycle
arrest in G1.139 P16−/− mice are prone to developing cancer
and many human tumors carry transcriptionally silent p16
genes due to aberrant methylation of upstream regulatory
sequences.140 Sequential studies of CML patients demonstrate
homozygous deletions of p16 INK4a acquired in associated with
progression to lymphoid blast crisis in approximately 50%
cases.113

Alterations in methylation of the proximal promoter of c-
ABL appear to be specifically and consistently associated with
progression of CML.141–144 In chronic phase the promoter of
ABL is seldom methylated while progressive hypermethylation
is observed with late chronic phase, accelerated phase and
blast crisis CML. As mentioned above, nuclear p145ABL is
important for DNA repair and can induce apoptosis. Thus,
silencing of the c-ABL promoter by methylation will further
decrease nuclear p145ABL levels, further decreasing apoptosis
and perhaps enhancing genomic instability, features that are
related to disease progression. Another gene that is hyperme-
thylated during acceleration of CML is the calcitonin gene,
although its importance in disease progression is unclear.145

Deletions associated with acquired somatic mutations have
been described previously in other leukemias, and small
deletions of chromosome 22 sequences adjacent to the Ph
chromosome translocation have been identified in CML.146,147

In the past these deletions were thought too small and without
pathological significance. Recently, however, sequential
analysis of bone marrow of 56 patients with CML revealed
that 16 patients had large acquired genomic deletions
resulting in loss of chromosome 9 or 22 sequences flanking
the translocation breakpoint on the derivative 9, on additional
partner chromosomes, or on both.148 These results suggest that
the loss of a gene or genes adjacent to the translocation break-
point may influence the progression of CML.

Other rare forms of genetic or molecular defects such as
deletions in the retinoblastoma gene,114 decreased Ikaros
activity149 and loss of imprinting150 have been described in

progression from chronic phase to blast crisis CML but their
contribution to disease progression remains speculative.

Activation of oncogenes

Increased levels of BCR-ABL mRNA and protein are associa-
ted with disease progression.92 This can be due to duplication
of the Philadelphia chromosome, the most frequent cytog-
enetic change preceding disease transformation.108,151 In other
patients increased levels of BCR-ABL mRNA may represent
increased translational activity of the existing BCR-ABL gene.
In vitro studies have shown that resistance to STI-571 can be
induced by amplification of the BCR-ABL gene or by redupli-
cation.104 This correlates with poor response rates seen in
blast crisis as well as loss of response to STI-571 in
responding patients.

Activation of oncogenes in addition to the Ph chromosome
has been investigated in CML blast crisis. c-MYC appears to
play a role in BCR-ABL-mediated transformation30,152–155 and
may mediate its effects either by antagonising the function of
p53156,157 or by acting as a co-operative oncogene with the
BCR-ABL.154 MYC expression is normal in chronic phase CML
but is increased in patients with blast crisis.116,155 Over-
expression of c-MYC occurs as a result of increased transcrip-
tion156 or trisomy 8158 frequently observed during disease pro-
gression or stabilization of c-MYC m-RNA due to
polyadenylation.117

Additional translocations like t(3;21) have been reported in
high frequency in blast crisis.120,159–161 This results in the for-
mation of the chimeric AML/EVI-1 fusion protein that blocks
differentiation and stimulates proliferation. It can therefore
assist the progression of CML through interference with cell
growth and differentiation.162 Although RAS plays a central
role in the signal transduction activity of BCR-ABL,85,86,163–165

the role of RAS mutations in CML blast crisis seems unclear.
In one study, only two of 22 samples of patients in blast crisis
showed mutations for K-RAS166 and no mutations for N-RAS
were detected in another analysis of 121 patients in blast
crisis.167 Despite evidence that many oncogenes are involved
in the progression of CML, currently there is no single oncog-
ene in addition to BCR-ABL that has been shown to defini-
tively cause this phenomenon.

Impaired DNA repair

Genetic instability due to dysfunction of DNA repair has long
been considered a cause of the non-random chromosomal
abnormalities that contributes to disease progression.
However, not all the studies support the notion of genomic
instability in CML.105,168,169 Additionally, whether genomic
instability is a cause or effect of disease progression is also
not known.170 Although c-ABL has a role in DNA repair after
damage34,171 and can interact with DNA repair proteins such
as DNA protein kinases (DNA-PKcs),35 how loss of one ABL
allele and presence of BCR-ABL affects DNA repair is not
understood. In an interesting recent study it was shown in
murine and human p210BCR/ABL containing cells that BCR-ABL
might down-regulate the DNA repair protein DNA-PKcs.172

These findings suggest that increasing levels of BCR-ABL pro-
tein lead to inhibition of DNA repair that can lead to accumu-
lation of other genetic defects and disease progression. It is
possible that instability of the genome may be a feature of the
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CML, which becomes significant at a certain threshold level
of BCR-ABL protein or signaling.

Conclusions

In summary, expression of the BCR-ABL oncoprotein leads to
an inherently unstable genome in the hematopoeitic stem cell.
There is a resultant increase in proliferation, which may
increase the likelihood of non-random mutations. Impaired
DNA repair contributes to the accumulation of non-random
chromosomal abnormalities in addition to BCR-ABL and mul-
tiple different cytogenetic and molecular abnormalities are
commonly seen with disease progression. Increased p210BCR-

ABL protein levels in advanced disease further increases the
resistance of the leukemic clone to apoptosis, resulting in tol-
erance to the genetic errors accumulating in the malignant
clone. Subsequent dominance of one or more clones finally
leads to culmination in fatal blast crisis. Currently, there is no
well-characterized genetic or cellular event that overwhelm-
ingly contributes to disease progression, emphasizing the
complexity and redundant nature of the multiple signaling
pathways in this disease. The most frequent abnormalities
seen are loss of p53 and reduplication of the Ph chromosome,
which lead to rapid development of blast crisis. These abnor-
malities need further characterization to determine their pre-
cise role and exact contribution to disease progression.

Ideally, disease progression should be studied in an animal
model of chronic phase CML. Despite the existence of many
different murine models of CML only one model replicates
relatively faithfully the extended chronic phase of CML.23 This
model has been successfully used to demonstrate a role of p53
in disease progression.134 However, loss of p53 alone does not
fully explain this complicated event and the search for other
co-operative genes must continue. Development of better ani-
mal models can delineate mechanisms for disease progression
and may facilitate development of novel methods that would
treat this fatal event.
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