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Abstract

Dynamic software product lines (DSPL) are software
product lines (SPL) that support runtime variability. Runtime
variability is typically interpreted as binding variation points
at runtime. We emphasize meta-variability as an impor-
tant dimension of runtime variability in DSPL. Whereas
dynamic binding considers the runtime (de)activation of
variants within the scope of a given variability model,
meta-variability considers runtime changes to the variability
model itself. Meta-variability is essential to support long-
lived software products that are subject to evolution.

In this paper, we consider meta-variability in an industrial
DSPL that is developed in a joint project with Egemin N.V.,
a leading company that provides full life cycle support for
automated transportation systems (ATS). The contribution of
this paper is threefold. First, we introduce a way to model
meta-variability in DSPL in an explicit manner. Second,
we put forward a meta-variability meta model that extends
the variability meta model with concepts that explicitly
support meta-variability. Third, we capture and apply meta-
variability in an industrial DSPL for automated transporta-
tion systems.

1. Introduction

Egemin N.V. is a leading company that provides full life
cycle support for automated transportation systems (ATS).
An ATS consists of a number of automated guided vehicles
(AGVs) to transport goods in a warehouse. ATS products
are tailored to the specific requirements of a particular
customer such as the kind of materials to be handled (e.g.
bulk or packaged materials), the specific layout of the
warehouse, the desired characteristics in terms of throughput
and availability, the required interaction with humans and
other machinery, etc.

In a joint project DistriNet Labs and Egemin N.V. are de-
ploying a software product line (SPL) for ATS [1]. The ATS
SPL provides a structured approach for applying customer-
specific customizations, improves the quality of the ATS
software and increases the productivity for building ATS.

However, as the customer requirements typically evolve dur-
ing the lifespan of a typical ATS, there is growing demand
for changing an ATS after installation. In the project, this
has lead to extending the ATS SPL with support for dynamic
variability, towards a dynamic software product line (DSPL)
for ATS. The research presented in this paper is underpinned
by our experiences with modeling variability for an ATS
DSPL.

A distinctive characteristic of DSPL compared to SPL is
the binding time of the variation points. Whereas the binding
time of variation points in an SPL is static, a DSPL is
characterized by the fact that variation points can be bound
dynamically, i.e. when the product is running [2].

However, our experience in the project reveals that vari-
ability in a DSPL entails more than dynamic binding of
variation points specified in the variability model. We experi-
enced that for long-lived software systems that are designed
to cope with evolution, the variability model itself can be
subject to changes at runtime. An example is a system
that supports dynamically adding new variants for particular
variation points. We use the term meta-variability to refer to
anticipated changes that affect the variability model itself.

The contribution of this paper is threefold. First, we
introduce a way to model meta-variability in DSPL in an
explicit manner. Second, we put forward a meta-variability
meta model that extends the variability meta model with
concepts that explicitly support meta-variability. Third, we
capture and apply meta-variability in an industrial ATS
DSPL.

This paper is structured as follows. We discuss related
work in Section 2. In Section 3, we pinpoint the importance
of meta-variability using a typical example scenario in the
context of the industrial ATS DSPL and we use an orthogo-
nal variability modeling technique [3] to capture the scenario
and to illustrate the problem. In Section 4, we put forward a
meta-variability meta model that extends the variability meta
model introduced in [3] with explicit concepts to capture
meta-variability. In Section 5, we illustrate how the extended
model can be used to model the meta-variability scenario
of Section 3. We discuss the software architecture of the
ATS DSPL in Section 6 and illustrate how meta-variability



is supported. Finally, we reflect on our work and draw
conclusions in Section 7

2. Related Work

Variability in an SPL is typically modeled in a specific
model, called variability model. A variability model supports
the application engineer in deriving products from an SPL.
Over the past few years, several variability modeling tech-
niques have been proposed. Currently, most approaches rely
on feature-based modelling of variability (e.g., FODA [4],
featureRSEB [5], Riebisch et al. [6], Forfamel [7], Requi-
Line [8], cardinality-based feature modelling [9], and COV-
AMOF [10]), though the interpretation of a feature in these
approaches varies. Another set of approaches represents
variability in terms of decisions that must be made by an
application engineer in order to arrive at a specific product
(so-called decision modelling). Examples of this category
include the RSP [11], the approach by Schmid and John [12],
Decision King [13]). Other approaches include VSL [14] or
the OVM [3]. A survey of variability modelling techniques
can be found in [15].

While mostly the focus of software product line engi-
neering has implicitly been on binding at design or compile
time [3], [16], more recently dynamic binding of vari-
ability has become a topic, mostly under the heading of
DSPL [17]. Thus, DSPL refers to systems that can be
interpreted as a product line, where the change among
product line variants is performed during runtime. While
none of the aforementioned variability modelling techniques
excludes dynamic binding of variability, most of the work
does not explicitly support it. In addition there is some work,
which aims at bridging the gap between design-time and
runtime binding. This type of work focuses on explicitly
integrating runtime binding and development time binding
in a unified framework. Examples of this type of work are
timeline variability [18], [19] and anytime variability [20].
One should note, however, that these approaches assume
very specific forms of realizing the variability within the
final products.

Staged configuration [21], [22] describes the process of
transitioning between different variability models. In staged
configuration, at each stage some variability is resolved,
leading to a reduced variability diagram for the next stage
until none is left. The configuration choices at each stage
are specified in a variability model. In this paper, we focus
on meta-variability to specify the way the configuration
choices defined in the variability model of a particular stage
can evolve, and in particular be extended, as a result from
software evolutions such as dynamic software updates.

In [23], meta-variability is defined as “variability with
respect to basic variability attributes.” Examples of meta-
variability mentioned by the authors are the binding time of
variation points and changes in constraints. The case study

in [23] only addresses the modification of binding times
and is thus mostly comparable to timeline variability [18]
and anytime variability [20]. In this paper, we use meta-
variability to refer to changes that affect the variability
model itself. Rather than switching the binding time of
variation points between static and dynamic, we support
meta-variability in terms of dynamically adding and re-
moving variants in a DSPL in order to meet the evolution
requirements of long-lived software systems.

3. Example Case

We start this section with a brief introduction of AGV
transportation systems in Section 3.1. Subsequently, in Sec-
tion 3.2 we describe the part of the variability model that
captures dynamic variability of the ATS DSPL. Finally, in
Section 3.3 we introduce a scenario in which this variability
model falls short.

3.1. Automated Transportation Systems

Figure 1. AGV at work in DaimlerChrysler

An automated transportation system (ATS) consists of a
number of AGVs (see Figure 1). AGVs are fully automated,
custom made vehicles that are are instructed by control
software to perform transportation tasks. Figure 2 shows the
typical setup of an ATS.

• The right hand side depicts a number of AGVs. AGVs
are provided with control software connected to sensors
and actuators to move safely through the warehouse.
While moving, the vehicles follow specific paths in
the warehouse by means of a navigation system which
uses stationary beacons in the work area, typically laser
reflectors on walls or magnet strips in the floor. AGVs
are equipped with infrastructure for wireless commu-
nication. Important functionalities of the AGV control
software include transport assignment to negotiate with
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Figure 2. Setup of an Automated Transportation Sys-
tem.

other AGVs which transports to execute, and routing
to navigate over the available paths to a particular
destination.

• In the center, the ATS server is depicted. The ATS
server uses wireless communication to poll the status
of AGVs and send tasks to AGVs. The ATS server
maintains a global view on the system as a whole, and is
responsible for ensuring that all transports are handled
by the AGVs. Functionalities of the ATS server include
location management of all loads in the warehouse,
announcing new transport tasks to AGVs and tracking
transports.

• On the left hand side, a number of ATS clients is
depicted. An ATS client is responsible for providing an
interface to human operators by means of modules for
visualization, diagnosis, statistics, and manual assign-
ment of tasks to AGVs. ATS clients can be desktop
computers or handheld devices that are used to interact
with the ATS.

For each customer, an ATS is composed that matches the
customer’s specific requirements. ATS can differ in terms
of number and type of AGVs, characteristics of materials
to be handled, warehouse layout, interfacing with legacy
ERP (Enterprise Resource Planning) systems, required level
of human control, etc. To support deploying ATS that
are tailored to each customer while improving quality and
reducing development time and costs, Egemin has recently
adopted an SPL approach. Reoccurring functionalities are
extracted and reified as core assets and a structured approach
is used to use these assets to derive an ATS product tailored
to each customer.

However, in the market for ATS there is an increasing
demand for dynamic variability. Customers require more
features to be dynamically adjustable. The demand for
dynamic variability is fueled by (1) the long lifespan of an
ATS, during which user requirements are likely to change,
(2) the high degree of availability that is required of an
ATS makes taking an ATS offline undesirable, and (3)

the dynamic and changing operating conditions that occur
in the warehouse of the ATS itself. This growing market
for dynamic variability in ATS has triggered the evolution
of Egemin’s SPL towards a dynamic SPL. An important
capability that can be dynamically adjusted in the ATS DSPL
is the operation mode of AGVs. Typically, the AGVs of an
ATS are used in standard operation mode. In this mode,
AGVs transport goods within a warehouse, and employ
algorithms for transport assignment and routing that are
tailored to this kind of work.

However, customers asked to extend the use of the ATS
beyond their standard operation mode. For example:

• Some customers have sites where periodically goods
arrive by truck, and would like the AGVs to assist
in unloading the trucks. This requires the AGVs to
switch to an unload operation mode that uses different
mechanisms for transport assignment and routing due
to the specific nature of the transport tasks (in terms
of frequency, urgency and spatial distribution of these
tasks) to unload a truck.

• Other customers want to use AGVs to carry out mainte-
nance tasks during off-peak periods. Maintenance tasks
include repositioning goods across the warehouse to
optimize accessibility based on demand statistics from
the past. This requires the AGVs to switch to a main-
tenance operation mode in which tasks are treated less
urgently, such that a proportion of AGV can recharge
its battery or park and wait on stand-by.

Depending on the range of different operating conditions
that occur at the customer’s site, the AGVs of a particular
ATS are loaded with a custom set of operation modes that
can be switched at runtime.

3.2. Example Variability Model

Figure 3 depicts the part of the variability model that
captures transport assignment and routing in the ATS DSPL.
We use the notation for orthogonal variability used in [3].

To support different operation modes for AGVs, two
variation points that can be bound at runtime:

• TA mechanism. The TA mechanism variation point al-
lows selecting a transport assignment (TA) mechanism
for AGVs in the ATS. For an extensive comparison
of the trade-offs between different TA mechanisms for
AGVs, see [24]. In Figure 3 there are two variants for
the TA mechanism variation point:

– RuBaTA is Rule-Based transport assignment mech-
anism that relies on a set of layout-specific rules to
assign transports to AGVs. An example of such a
rule is “if an AGV arrives at node 18 not carrying
a load, and there is a transport requested for a load
next to node 18, then the AGV should always pick
up the load next to node 18.” RuBaTa is typically
used in standard operation mode.



– CNET uses a Contract Net protocol to assign
transports among AGVs. In CNET, an initiator
that offers a task calls for proposals and partici-
pants offer proposals to perform the task. When
the initiator has received the proposals from all
participants, it evaluates the proposals and assigns
the task to the participant with the best offer. CNET
is typically used in unload operation mode.

• Routing Mechanism. The Routing Mechanism variation
point enables selecting the routing mechanism used by
the AGVs in an ATS. In Figure 3 there are two variants
for the Routing Mechamism variation point:

– A* Routing [25] is a shortest path routing mech-
anism. A* routing is a static routing mechanism:
once the destination has been chosen, the route is
fixed and cannot be reconsidered.

– Dynamic A* Routing is an approach that takes into
account a dynamic cost based on the traffic caused
by other AGVs on the road network. Based on
the traffic, the route to reach a particular destina-
tion is continuously being reconsidered. Dynamic
A* Routing is typically used in unload operation
mode, where there is a high probability that AGVs
hinder each other near the truck.

There is a constraint dependency between the variants of
the TA mechanism and variants the Routing mechanism.
The RuBaTA variant of task assignment requires the A*
Routing variant. The fixed set of rules in RuBaTA cannot
be combined with a dynamic routing of the Dynamic A*
Routing variant. The CNET variant of task assignment
can be combined with either A* Routing or Dynamic A*
Routing.

3.3. Evolution Scenario

A variability model precisely defines all variability sup-
ported by a DSPL. We now illustrate the problem we
experienced when applying variability modeling techniques
to capture dynamic variability in an ATS DSPL. We describe
an example scenario of runtime variability that is supported
in the ATS DSPL but remains implicit in the variability
model.

3.3.1. Scenario: Adding TA Mechanisms. A particular
kind of runtime variability supported by the ATS DSPL
is adding TA mechanisms on the fly. For example, after
deployment the existing AGVs of the ATS of a particular
customer can be updated with a new Transport Assignment
mechanism called Dynamic Contract Net (DynCNET) [24].
The default DynCNET protocol consists of four steps: (1)
the initiator sends a call for proposals; (2) the participants
respond with proposals; (3) the initiator notifies the pro-
visional winner; and finally, (4) the selected participant
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Figure 3. Orthogonal variability model for task assign-
ment and routing in an ATS.

informs the initiator that the task is started. These four steps
are basically the same as in the standard CNET protocol. The
flexibility of DynCNET is based on the possible revision
of the provisional task assignment between the third and
fourth step of the protocol. DynCNET enables AGVs to
continuously reconsider the situation in the environment and
the commitment to a transport task is delayed until the
load is actually picked, which improves the flexibility of
the system. For ATS that have to deal with unpredictable
transport streams, this improves performance a lot [24], and
these ATS are updated with DynCNET. However, due to
frequent transport renegotiations, DynCNET requires a much
higher communication bandwidth, preventing DynCNET be-
ing applied in some ATS.

As TA mechanisms of an ATS DSPL are subject to
frequent evolution, dynamically updating TA mechanisms
is identified as an important form of dynamic variability
that the ATS DSPL must be designed to cope with. Without
explicit support, adding a TA mechanism to an ATS DSPL
is typically a very costly process: the ATS DSPL has to be
shut down, the new TA mechanism must be added to the
ATS DSPL and the updated ATS DSPL must be redeployed
on all machines.

In essence, adding DynCNET results in evolving the
variability model from Figure 3 into Figure 4. However,
the point is that the variability model of Figure 3 does not
explicitly describe that the ATS DSPL supports adding new
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variants or variant constraint dependencies for the TA Mech-
anism variation point (and, vice versa, that such updates are
not supported for the Routing Mechanism variation point).

3.3.2. Framing the Problem. A DSPL can be endowed
with explicit support for dynamic updates. Such updates
are a form of runtime variability that is anticipated by the
designers of a DSPL, and hence should be documented
explicitly in the variability model of a DSPL. However,
to our knowledge existing approaches to variability mod-
eling lack support for documenting how a DSPL supports
anticipated changes to the variability model itself, allowing
particular parts (e.g. variants and constraint dependencies)
of the variability model to alter in a well-defined way.

We employ the term meta-variability to denote runtime
changes that are supported by the DSPL and have an impact
on the variability model itself. Currently, there is no explicit
way to document meta-variability in variability models.

4. A Meta Model for Meta Variability

In this section, we explore meta-variability in DSPL to a
further extent. We describe basic concepts to capture meta-
variability. We start from the variability meta model defined
in [3] using UML 2 notation. Afterwards, we put forward a
meta-variability meta model that extends the variability meta
model with explicit modeling constructs to capture meta-
variability.

Figure 5 shows the variability meta model together with
the meta-variability meta model. We elaborate on both meta
models.

4.1. Variability Meta Model

The lower part of Figure 5 is the variability meta model
described in [3].

The two central elements are Variation Point and Variant.
A Variation Point is a representation of a variable item within

domain artefacts, whereas a Variant is a representation
of a particular instance of a variable item within domain
artefacts. The Binding Time associated with a Variation Point
represents the time that Variants of that Variation Point are
to be bound.

A Variability Dependency is an association class that
states that a Variation Point offers a certain Variant. A
distinction is made between Optional and Mandatory vari-
ability dependencies, expressing that a Variant is optional or
mandatory if the corresponding variation point is selected.
The Alternative Choice groups a set of optional variants of
the same variation point and defines a range for the amount
of optional variants to be selected in the group.

Different kinds of variability constraints can be used to
express restrictions in a variability model.

A Variant Constraint Dependency describes a relation
between two variants: Requires V V expresses that the
selection of a variant V1 requires the selection of another
variant V2. Excludes V V expresses that the selection of a
variant V1 excludes the selection of another variant V2.

A Variant to Variation Point Constraint Dependency de-
scribes a relation between a variant and a variation point:
Requires V VP expresses that the selection of a variant
V requires the consideration a variation point V P . Ex-
cludes V VP expresses that the selection of a variant V
excludes the consideration of a variation point V P .

A Variation Point to Variation Point Constraint Depen-
dency describes a relation between two variation points:
Requires VP VP expresses that a variation point V P1 re-
quires the consideration of another variation point V P2. Ex-
cludes VP VP expresses that a variation point V P1 excludes
the consideration of another variation point V P2.

Finally, the meta model supports traceability between a
variability model and development artefacts. The Devel-
opment Artefact class represents a software development
artefact, such as requirements artefacts, design artefacts,
realization artefacts and test artefacts. An Artefact Depen-
dency captures that a variant is realized by one or several
development artefacts. A VP Artefact Dependency captures
that a variation point is represented by one or several
development artefacts.

4.2. Meta Variability Meta Model

The upper part of Figure 5 is the meta-variability
meta model. In fact, the meta-variability meta model is
a specialization of the variability meta model: the meta-
variability meta model defines constructs for describing
meta-variability by refining the concepts in the variability
meta model.

A meta-variability model describes the variability of
Variability Model Artefacts. A Variability Model Artefact
represents an entity in the variability model. Any class in
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Figure 5. The lower part of Figure 5 is the variability meta model described in [3]. The upper part of Figure 5 is the
meta-variability meta model.

the Variability Meta Model described in Section 4.1 is a spe-
cialization of the Variability Model Artefact class. However,
we only include Variant and Variation Point Dependency as
specialization of Variability Model Artefact, to match the
focus of this paper.

The two central elements are Meta Variation Point and
Meta Variant.

A Meta Variation Point (MVP) is a representation of a
variable item with respect to a Variability Model Artefact.

A meta variation point is further specialized in a Variant
MVP and a Variant Constraint Dependency MVP. A Variant
MVP is a representation of a variable item with respect
to the variants in a variability model. A Variant Constraint
Dependency MVP is a representation of a variable item with
respect to the variant constraint dependencies in a variability
model. A Variability Model Artefact Dependency captures
the relation between a meta variation point a the variability
model artefacts it describes the variability of.



A Meta Variant is a representation of a particular instance
of a variable item with respect to the variability model. A
meta variant is further specialized in a Variant Meta Variant
and a Variant Constraint Dependency Meta Variant.

A Variant Meta Variant is associated with a Variant MVP
and represents a particular instance of a variable item with
respect to variants in the variability model. It is specialized
in two classes: Add Variant and Remove Variant. Add Variant
represents the creation of a new variant in a variability
model. Remove Variant represents the removal of variants
from the variability model.

A Variant Constraint Dependency Meta Variant is associ-
ated with a Variant Constraint Dependency MVP and rep-
resents a particular instance of a variable item with respect
to variant constraint dependencies in the variability model.
It is specialized in two classes: Add Variant Constraint
Dependency and Remove Variant Constraint Dependency.
Add Variant Constraint Dependency represents the creation
of a new variant constraint dependency in a variability
model. Remove Variant Constraint Dependency represents
the removal of variant constraint dependencies from the
variability model.

5. Modeling Meta-Variability

We use the concepts of the meta-variability meta model
described in the previous section to extend the variability
model of Figure 3. Afterwards, we revisit the example
scenario and discuss how it is supported in the extended
model.

5.1. Example Variability Model augmented with
Meta Variability

Figure 6 shows the example variability model of Figure 3
extended with a meta-variability model.

The lower part of Figure 6 is the variability model
depicted in Figure 3. The upper part of Figure 6 is a meta-
variability model that explicitly documents meta-variability
that is supported with respect to the variability model.

The meta-variability model contains two meta variation
points that describe what changes to the underlying vari-
ability model are supported in the ATS DSPL. We describe
each of the meta variation points and their associated meta
variants in detail.

• Manage TA Mechanism Variants is a Variant Meta Vari-
ation Point that explicitly documents how the variants
at the TA Mechanism variation point in the variability
model can evolve at runtime. The two meta variants
document that TA Mechanism variants may be added
or removed.

• Manage TA Requires v v Constraints is a Variant Con-
straint Dependency Meta Variation Point that explicitly

documents how variant constraint dependencies of TA
Mechanism variants in the variability model can evolve
at runtime. The two meta variants document that variant
constraint dependencies of TA Mechanism variants may
be added or removed.

5.2. Scenario Revisited

We describe how Figure 6 offers support for the scenario
described in Section 3.3 in which a DynCNET mechanism
for transport assignment is loaded on the existing AGVs of
the ATS of a particular customer.

In this scenario, the DSPL supports dynamically updating
the TA Mechanism variation point with new variants, e.g.
for DynCNET, and new variant constraint dependencies,
e.g. between the DynCNET variant and the Dynamic A*
Routing variant. Recall that this kind of dynamic variability
is not explicitly supported in the variability model depicted
in Figure 3.

However, in Figure 6, this scenario is explicitly supported
in the meta-variability model: the Add TA Variant Meta Vari-
ant of the Manage TA Mechanism Variants Meta Variation
Point describes that a DynCNET variant can be dynamically
added to the TA mechanism variation point of the variability
model. Moreover, the Manage TA Requires v v Constraints
Meta Variation Point documents that a new Variant Con-
straint Dependency can be created between the newly cre-
ated DynCNET variant and the Dynamic A* Routing variant.

We conclude that the meta-variability model of Figure 6
explicitly captures that specific parts of the variability model
depicted in Figure 3 must have support for particular dy-
namic updates.

6. Architectural Support for Meta-Variability

In this section, we zoom in on the software architecture of
the ATS DSPL and illustrate how dynamic variability and
meta-variability are supported in the concrete case of the
ATS DSPL.

6.1. Overview of the Software Architecture

Figure 7 zooms in on Figure 2 and shows the main
components and connectors of the software architecture of
an ATS DSPL.

At an architectural level, the ATS DSPL uses an ATS
Client Component Manager, an ATS Server Component
Manager and an ATS AGV Component Manager to support
variability for ATS Clients, ATS Servers and AGVs respec-
tively. The component managers allow an ATS to be derived
from the ATS DSPL by instantiating a custom set of client
components, server components and AGV components that
suit the requirements of a a particular customer.
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Client components provide a graphical interface to interact
with the ATS. The ATS Client Component Manager offers
services such as life cycle management and security to sup-
port client components. An example of a client component
is the AGV Status Client that enables a human operator to
inspect the status of AGVs.

Server Components provide the application logic of an
ATS. Typical services the ATS Server Component Man-
ager offers to support server components are life cycle
management, logging and persistence. An example of a
server component is AGV Status Monitor, responsible for
polling the status of AGVs and publishing it to AGV Status
Clients. Status information that can be retrieved from an
AGV includes the position of the AGV, the log of transports,
whether there is currently a load on the lift, diagnostic
information about the battery level, etc.

AGV Components provide the functionality to control
an AGV. An example is an AGV Controller that contains
all logic to interact with the sensors and actuators on a
physical AGV. Specific AGV Controllers exist for each type
of physical AGV.

6.2. Supporting Dynamic Variability

We illustrate how the runtime binding of variation points
defined in Figure 3 is supported in the software architecture
of the ATS DSPL. Dynamic variability of transport assign-
ment mechanisms and routing mechanisms is supported by
representing them as AGV Plugins that can be dynamically
bound and unbound. The ATS AGV Plugin Manager de-
ployed on an AGV is responsible for dynamically binding
and unbinding AGV plugins. The AGV Plugin Repository
stores the set of AGV Plugins that can be bound/unbound
at runtime.

Currently, the selection of the AGV plugins for transport
assignment and routing is done using the Dynamic AGV
Plugin Selector client. Concrete examples of such clients
are (1) a switch on the wall that can be pushed by a human
operator to (de)activate unload operation mode on all AGVs
upon arrival or departure of a truck and (2) an automated
timer that activates the maintenance operation mode on
all AGVs during nights and weekends. The AGV Plugin
Selector client notifies the Dynamic AGV Plugin Switch
Coordinator that is responsible for coordinating the plugin
switch on all AGVs. The Dynamic AGV Plugin Switch
Coordinator contacts the ATS AGV Plugin Manager on each
AGV to activate the selected plugins.

6.3. Supporting Meta Variability

We illustrate that meta-variability defined in Figure 6
has resulted in additional infrastructure in the software
architecture of the ATS DSPL. Via an additional Register-
Plugin interface, the ATS AGV Plugin Manager supports

manipulations to the set of AGV plugins that are available
in the AGV Plugin Repository.

The AGV Plugin Loader client was created to support
an administrator in manipulating the set of available AGV
plugins. The AGV Plugin Loader client is connected to the
AGV Plugin Distributor on the ATS server. The AGV Plugin
Distributor is responsible for distributing the changes to the
set of available AGV Plugins made by the administrator to
all AGVs in the ATS by contacting the ATS AGV Plugin
Manager on each AGV to store or remove AGV Plugins in
the AGV Plugin Repository.

7. Conclusion

Long-lived systems are subject to evolution. Features
of such systems are subject to dynamic updates, due to
changes in customer requirements, deployment context or
technology. A DSPL can be designed to explicitly support
particular dynamic update scenarios. As a consequence,
the variability and the associated variability model of such
systems are not static, but subject to anticipated changes.

In this paper, we emphasize meta-variability as an es-
sential concept to support evolution in DSPL. We have
illustrated that concrete examples of meta-variability such
as adding or removing variants and constraint dependencies
are deeply grounded in industrial practice. So far, support
was lacking to express meta-variability in DSPL in an
explicit manner. We introduced a meta-variability model as
an explicit artefact to document the way the variability itself
of a DSPL can evolve at runtime. From our experience,
describing a meta-variability model enables DSPL engineers
to anticipate future updates and explicitly capture the way
such updates are supported.

Finally, we introduced a meta-variability meta model
that clarifies and relates the main concepts to express
meta-variability and that shows how variability and meta-
variability are related. Besides consolidating our current
knowledge, the meta-variability meta model is an important
stimulus for future work on meta-variability. Currently, we
only considered meta-variability with respect to the variants
and variant constraint dependencies in a variability model.
An important track for future research is to investigate meta-
variation points and meta-variants related to other artefacts
of a variability model, e.g. to describe the evolution of vari-
ation points, variability dependencies and artefact dependen-
cies. Other challenges are to investigate in depth the relation
between meta-variability and MDA, to develop a formal
underpinning for meta-variability, to extend other variability
modeling techniques with support for meta-variability, to
extend the meta-variability meta model with dependencies to
development artefacts, and to investigate in depth the impact
of meta-variability on requirements specifications, software
architectures, frameworks and testsuites for DSPL.
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