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A role for extrarenal cells in the regeneration following acute Nephrotoxic and ischemic insults to the kidney lead
renal failure. to acute renal failure and most often manifest as acute

Background. Recovery of renal function following acute tu- tubular necrosis. Recovery of renal function followingbular necrosis (ATN) is dependent on the replacement of ne-
acute renal failure is dependent on the replacement ofcrotic tubular cells with functional tubular epithelium. The source
necrotic tubular cells with functional tubular epithelium.of these new tubular cells is thought to be resident renal tubular

cells. The discovery of pluripotent bone marrow-derived stem The source of these new tubular cells is thought to be
cells has led to a reexamination of the cellular source and resident renal tubular cells. Recapitulating develop-
processes involved in the recovery from organ injury. mental paradigms, these cells dedifferentiate, proliferate,Methods. To test the hypothesis in humans that extrarenal

and eventually reline denuded tubules restoring thecells participate in the recovery following ATN, we examined
structural and functional integrity of the kidney [1–5].the origin of tubular cells in male patients with resolving ATN

who had received a kidney transplant from a female donor. Im- The molecular events defining this renal regeneration
munohistochmistry of kidney biopsies was performed to iden- have been well characterized and strategies to accelerate
tify renal tubular epithelial cells (cytokeratin positive) and the repair process tested in both experimental modelsleukocytes (CD45 positive). Fluorescent in-situ hybridization

and in humans [1–6].was used to detect Y chromosome containing cells with DAPI
The discovery of bone marrow-derived stem cells thatserving as a nuclear stain. All staining was performed on the

same section. possess the ability to differentiate into different cell lin-
Results. The Y chromosome was detected in approximately eages has led to a reexamination of the cellular source

40% of tubular cell nuclei in male kidneys (positive control)
and processes involved in recovery from organ injuryand in no nuclei of female kidneys (negative control). In male
[7–23]. We hypothesized that non-renal cells, likely ofrecipients of female kidneys who developed ATN, 1% of tubules

contained Y chromosome cells defined by their morphology, pos- bone marrow origin, participate in the tubular regenera-
itive staining for cytokeratin, and negative staining for CD45. tion following acute tubular necrosis (ATN). To test this
When present, multiple cells in a positive tubule stained for hypothesis in humans, we examined the origin of tubular
the Y chromosome. No Y chromosome containing tubular cells

cells in male patients with resolving acute tubular necro-were seen in similar sex mismatched transplants in male recipi-
sis who had received a kidney transplant from a femaleents who did not develop ATN, suggesting that recipient de-

rived cells do not routinely repopulate the transplanted kidney. donor. This strategy has been successfully used to dem-
Conclusions. This proof-of-principle clinical observation onstrate repair of injured liver by extrahepatic cells, to

demonstrates that extrarenal cells can participate in the regen- define the origin of mesenchymal cells in patients witherative response following ATN. These findings provide ratio-
chronic renal transplant rejection, to demonstrate chime-nale for the cellular therapy of acute renal failure.
rism of the transplanted human heart, and to prove that
blood-derived stem cells could differentiate into liver,
skin and gastrointestinal tract cells [20, 21, 24–26].

METHODS

PatientsKey words: stem cell, regeneration, acute tubular necrosis, tubular
epithelium, transplantation, cellular therapy. Frozen kidney tissue from archived samples of kidney

biopsies were obtained from a male patient who receivedReceived for publication February 22, 2002
a kidney transplant from a male donor and developedand in revised form April 15, 2002
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cipients of female kidneys who had developed acute tu- quence of the Y chromosome (band Yq12, locus DYZ1)
was used. The probe was denatured at 75�C for fivebular necrosis (ATN) following transplantation; and two

male recipients of female kidneys who underwent renal minutes, the sections hybridized at 42�C for 90 minutes,
followed by immersion in 4 � SSC/0.3% NP-40 at 75�Cbiopsy for elevated serum creatinine but did not have

biopsy evidence for ATN. Approval for this study was for two minutes. The slides were then washed at room
temperature in 2 � SSC/0.1% NP-40 for 90 secondsgranted by the Human Subjects Committee at the Uni-

versity of Minnesota. followed by three three-minute washes in PBS. To stain
nuclei, the sections were incubated for 30 minutes at

Staining procedure room temperature with 50 �L of 30 nmol/L DAPI (cat#
D-1306; Molecular Probe, Eugene, OR, USA) followedThe general strategy was to use immunohistochemistry

to identify renal tubular epithelial cells (cytokeratin posi- by three PBS washes. One drop of Gel/Mount� was ap-
plied and sections were cover slipped.tive) and leukocytes (CD45 positive); fluorescent in-situ

hybridization (FISH) to identify Y chromosome con-
Image analysistaining cells; and 4�6-diamidino-2-phenylindole dihydro

chloride (DAPI) as a nuclear stain. All staining was per- Images for each fluorophore were sequentially cap-
tured at �100, �200 and/or �400 magnifications usingformed on the same section. Five-micrometer (�m) sec-

tions were placed on plain glass slides and stored at a Zeiss Axioplan 2 fluorescent microscope (Carl Zeiss
Inc., Jena, Germany). For cytokeratin, the FITC signal�70�C. Preliminary studies demonstrated that the prote-

ase digestion and heating required for FISH resulted in was excited at 500 nm and emission collected at 525 nm.
Positive staining appeared green. The signal for CD45loss of the CD45 epitope. To circumvent this problem,

sections were first stained for cytokeratin and CD45, was detected using a RPE-cy5 labeled probe excited at
488 nm and collected at 670 nm resulting in a red color.cover slipped, and images captured. The cover slips were

then removed and FISH performed. For the technical The Spectrum Orange� signal of the Y chromosome was
reasons outlined above, CD45 staining was not available excited at 559 and collected at 588 nm and appeared
for all sections. reddish orange. Finally DAPI signals were excited at

Immunohistochemistry for cytokeratin and CD45. The 358 nm and collected at 461 nm. The sequentially cap-
sections were fixed in acetone for 10 minutes, and washed tured images were digitally combined using Adobe Pho-
three times in phosphate buffered saline (PBS). Fifty mi- toshop version 6.0.1 (San Jose, CA, USA).
croliters (�L) of R-phycoerythrin-cy5 (RPE-cy5) mouse
monoclonal anti-human CD45, clone T29/33 (cat# C7099;

RESULTSDako, Carpenteria, CA, USA) at 1:25 dilution was ap-
Patient characteristics are displayed in Table 1. As aplied to the tissue, and incubated for 90 minutes in hu-

positive control, we examined the kidney of a male pa-midified chamber in dark at room temperature. Sections
tient with moderate acute tubulointerstitial rejection thatwere then washed in PBS and incubated for 90 minutes
developed 40 days after he received a transplant from awith 50 �L of fluorescein isothiocyanate (FITC)-labeled
male donor. The creatinine at the time of the biopsy wasmouse monoclonal anti-human cytokeratin peptide 18,
3.1 mg/dL (274 �mol/L). The Y chromosome signal wasclone CY-90 (Cat# F4772; Sigma Chemical Co., St. Louis,
detected in approximately 40% of tubular epithelial cellMO, USA) at a 1:25 dilution. Sections were washed in
nuclei due to partial sampling related to the 5 �m sec-PBS and one drop of Gel/Mount� (cat# M01; Biomeda
tions missing some portions of the nucleus (Fig. 1A).Corp, Foster City, CA, USA) was placed on the sections
This result is consistent with what other investigatorsfollowed by cover slips. Pictures were taken immediately
have found in liver, kidney, heart and skin [20, 24–26].as described below. After obtaining the pictures, the
As expected the Y chromosome signal was also detectedslides were immediately placed in 1� PBS at room tem-
in interstitial cells. No Y chromosome signal was de-perature and processed for FISH.
tected in the female kidney of a patient with minimalFluorescent in situ hybridization (FISH). The sections
change glomerulonephritis that was used as a negativewere dehydrated by sequentially placing the slides for
control (Fig. 1B).three minutes in 70%, 85%, 90% and 100% ethanol.

Two male patients who had received female kidneysSections were then air dried and incubated in 2 � SSC
were studied. The first presented with an elevated serum(sodium chloride/sodium citrate) at 70�C for ten minutes.
creatinine 12 months following transplantation. At theThe tissue was denatured in 70% formamide/2 � SSC
time of the biopsy the serum creatinine was 2.7 mg/dLat 75�C for five minutes followed by the dehydration
(239 �mol/L), which was elevated from a baseline valueprotocol described above. To detect the Y chromosome,
of 1.7 mg/dL (150 �mol/L). The etiology of his acutea Spectrum Orange� fluorophore labeled, CEP Y (satel-
renal failure was unclear. A renal biopsy revealed resolv-lite III) DNA probe (cat# 32-130024; Vysis Inc., Downers

Grove, IL, USA), which hybridizes to satellite III se- ing acute tubular necrosis. Numerous Y chromosome
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Table 1. Patient information

Age Days from Creatinine
Specimen years transplant to biopsy mg/dL Pathologic diagnosis

1 (Positive control) 36 40 3.1 Moderate acute tubulointerstitial rejection
2 (Negative control) 14 NA 0.9 Minimal change disease
3 36 10 9.3 Resolving ATN with mild acute tubulointerstitial rejection
4 43 365 2.6 Resolving ATN
5 50 67 1.9 No pathologic diagnosis
6 42 515 4.9 Mild chronic rejection

Abbreviations are: NA, not applicable; ATN, acute tubular necrosis. To convert creatinine to SI units (�mol/L) multiply by 88.4.

Fig. 1. Immunofluorescent photomicrographs of kidney biopsies. (A) Male recipient and male donor (positive control) with moderate tubulointersti-
tial rejection. Both tubular cells (green) and interstitial cells (unstained) contain the Y chromosome signal (red dot; arrows) in nuclei. Magnification
�200. (B) Female patient with minimal change disease (negative control). No Y chromosomes are seen. Some CD45 positive cells are seen in the
interstitium (arrowheads). Magnification �100. (C ) Male recipient of female kidney with resolving acute tubular necrosis (ATN). Multiple cells
in this tubule contain Y chromosomes (arrows). Some interstitial cells also contain Y chromosomes and stain positive for CD45 (red staining;
arrowhead). Magnification �200. (D) Male recipient of female kidney with resolving ATN and superimposed mild acute tubulointerstitial rejection.
Multiple cells in this tubule contain Y chromosomes (arrows). Some interstitial cells also contain Y chromosomes. Magnification �400.
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containing renal tubular cells were seen, defined by their of eight sex-mismatched transplants with a variety of
morphology, positive staining for cytokeratin, and nega- pathologies [27]. Most of the patients in that study had
tive staining for CD45 (Fig. 1C). Some Y chromosome more than one biopsy, all of which showed persistence
positive/CD45 positive cells were seen in the interstitium of Y chromosome positive tubular cells. A limitation of
consistent with mild renal inflammation. The second that study was the lack of staining for white cell markers.
male recipient was biopsied ten days following a trans- A similar strategy of sex-mismatched transplants was
plant from a female donor that was complicated by de- used to define the origin of mesenchymal cells in renal
layed graft function. The serum creatinine at the time of biopsies of patients with chronic rejection [24]. Mesen-
biopsy was 9.3 mg/dL (822 �mol/L). The biopsy showed chymal cells derived from the recipient were found in the
resolving ATN with superimposed mild acute tubulo- vascular and interstitial compartments of these kidneys.
interstitial rejection. Y chromosome signal was detected Interestingly, these investigators detected Y chromo-
in renal tubular epithelial cells. An example is shown in some cells “within the confines” of the tubular basement
Figure 1D, where multiple cytokeratin positive cells in membrane in 4% of tubules of female kidneys trans-
a renal tubule contained a Y chromosome, providing planted into male recipients. These were felt to be in-
evidence that these tubular cells were derived from the flammatory cells although no tubular or leukocyte mark-
male recipient. Although this particular section was not ers were used. Since these kidneys undergo tubular
co-stained with CD45, cells in the interstitium also con- injury, the Y chromosome positive cells could be recipi-
tained the Y chromosome signal. ent-derived non-renal cells that differentiate into tubules

In both patients the presence of Y chromosome con- similar to the results of our study.
taining tubular cells was a rare event, occurring in less The origin of these recipient-derived tubular cells is
than 1% of renal tubules. When present, multiple cells unclear. Possible sources include the bone marrow, circu-
in a positive tubule stained for the Y chromosome as lating stem cells, or other tissues such as the liver, spleen,
the examples in Figure 1 C and D illustrate. lymph nodes, or native kidneys. We speculate the cells

As additional controls, we examined the biopsies of arose from pluripotent bone marrow stem cells that ei-
two male patients who had received female kidneys but ther take up residence in the kidney prior to injury and
had no evidence for ATN on biopsy. The diagnosis in function as tissue stem cells, or are recruited to the kid-
Patient 5 was dehydration combined with cyclosporine ney at the time of injury [28, 29]. The ability of bone
nephrotoxicity. Patient 6 had clinical evidence for dehy- marrow derived stem cells to differentiate into other cell
dration and mild chronic rejection on biopsy. No Y chro- lineages has been demonstrated both experimentally and
mosome containing renal tubular cells were seen in either in humans. For example, in mice and rats bone marrow-
of these biopsies, suggesting that recipient derived cells derived cells can differentiate into hepatocytes and/or
do not routinely repopulate the transplanted kidney in cholangiocytes following hepatic injury and have been
the absence of ATN. used to treat experimental liver disease [7–9]. Bone mar-

row-derived cells also have been demonstrated to differ-
entiate into skeletal muscle, cardiomyocytes, blood ves-DISCUSSION
sels, brain, bone and mesenchyme [10–18, 22, 23, 25].The presence of Y chromosome containing tubular
More recently, Krause and colleagues have shown thatepithelial cells in female kidneys of male recipients with
a single bone marrow-derived cell can differentiate intoresolving ATN supports the hypothesis that extrarenal
cells of the liver, lung, GI tract and skin [19]. The plastic-cells can participate in the regeneration following acute
ity of adult cells is further illustrated by the ability ofrenal failure. Evidence that these cells were tubular and
skeletal muscle to turn into bone marrow, brain to turnnot infiltrating white cells was their tubular morphology,
to blood, and adult cells have been used to clone wholepositive staining for cytokeratin, and negative staining
mammals [30–33].for CD45, a marker for white cells. This finding of male

The kidney possesses the ability to regenerate follow-tubular cells in a female kidney was a rare event, oc-
ing ischemic or nephrotoxic injury. This process of self-curring in approximately 1% of tubules. The relative
renewal restores kidney function in most cases. Althoughscarcity of these cells is consistent with what has been
a population of renal stem cells capable of clonal expan-seen following liver injury, where male cells were seen
sion and differentiation into tubules has been demon-in 0.5 to 4% of liver cells [20, 21]. Nonetheless, the
strated in vitro [34], it is generally held that the source forpresence of these Y chromosome containing tubular cells
regenerating cells are many if not all of the less injuredis an important proof-of-principle that extrarenal cells
tubular cells [1–5]. These cells undergo dedifferentiation,can repopulate the injured kidney.
proliferation and redifferentiation into cells that replaceOur results confirm the findings of Poulsom and col-
the lost necrotic and/or apoptotic cells that had lined theleagues who demonstrated Y chromosome positive tubu-

lar cells comprised 0.6 to 6.8% of tubular cells in biopsies tubules prior to injury [4]. Our findings that extrarenal
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