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Nederlandse samenvatting
–Summary in Dutch–

De prestatieanalyse van elektrische fietsen: subjectief enob-
jectief benaderd

1 Inleiding

Elektrische geassisteerde fietsen of pedelecs zijn relatief nieuw in het mobiliteitsland-
schap. Het betreft fietsen uitgerust met een elektrische hulpmotor, die enkel vermo-
gen levert als de fietser trapt. Twee- of meerwielers met trapondersteuning worden in
Europa als fiets geklasseerd als ze aan de volgende voorwaarden voldoen:
De elektrische motor heeft een nominaal continu vermogen van maximaal250W
waarvan de aandrijfkracht geleidelijk vermindert en ten slotte wordt onderbroken
wanneer het voertuig een snelheid van25km/h bereikt, of eerder, indien de bestuur-
der ophoudt met trappen[22].

2 Een subjectieve benadering van de prestatieanalyse

De bevindingen van een uitleendienst voor elektrische fietsen

Binnen het kader van een Europees onderszoeksproject werden vanaf november 2000
tot april 2003 door de vakgroepETEC van deVrije Universiteit Brusselelektrische
fietsen ter beschikking gesteld van meer dan 250 personen gedurende meerdere weken.
Op die manier werden gegevens verzameld omtrent de producttevredenheid, de eisen
die de klant stelt aan elektrische fietsen, het marktpotentieel,... Daaruit is vooral
gebleken dat de elektrische fiets geen simpel alternatief isvoor gewone fietsen, maar
wel degelijk een nieuw transportmiddel dat uitstekend geschikt blijkt voor afstanden
tussen de 5 en15km. De elektrische fiets werd door de proefpersonen zowel ge-
bruikt voor woon-werk verkeer, als voor boodschappen en ontspanning. De meeste
klachten kwamen er over het gewicht (±30kg), de hoge kostprijs (± ¤1700), de au-
tonomie van de batterijen en de vele technische problemen met de testfietsen. De
fietsinfrastructuur in Brussel (waar de meeste testpersonen vandaan kwamen) dient
echter serieus te worden aangepast om het elektrisch (en conventioneel) fietsen com-
fortabeler te maken. Uit de testen bleek ook dat de appreciatie van elektrische fiet-
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sen sterk afhangt van de plaats (stad/platteland) waar de fiets gebruikt werd en de
voorgeschiedenis (al of niet frequent fietsen) van de testpersonen.

De markt voor elektrische fietsen in Vlaanderen

Aangezien 82% van de Vlamingen hun fiets koopt bij de gespecialiseerde fietshan-
del [29], is een bevraging van de fietsenhandelaars over hun ervaring met elektrische
fietsen een goede manier om een zicht te krijgen op de Vlaamse pedelec markt. In
december 2005 werd naar 468 Vlaamse fietsenhandelaars een elektronische enquête
gestuurd. Iets meer dan honderd van hen waren bereid aan dit onderzoek mee te
werken. Daarnaast werden ook nog eens 110 websites van fietsenhandelaars bezocht
op zoek naar info over elektrisch fietsen.
Ongeveer 85% van de fietsenhandelaars in Vlaanderen biedt volgens de bevraging
elektrische fietsen aan. Er blijken maar liefst 31 verschillende merken op de markt
te zijn, waarvan Electronic Bike Developments, Sparta en Batavus de drie meest
voorkomende merken waren in 2005. Gemiddeld gezien verkocht de fietsenhande-
laar 13 pedelecs in 2005, tegenover ongeveer 400 conventionele fietsen. De prijzen
voor deze fietsen variëren van¤695 tot¤3600. De fietsenhandelaar ziet ook de
batterijradius, het grote gewicht en de hoge kost van de fietsen als de belangrijkste
nadelen. Weinig van hen bleken inspanningen te doen om de elektrische fietsen actief
te promoten.

3 Een objectieve benadering van de prestatieanalyse

De bouw van een testbank voor elektrische fietsen

Om een objectief beeld te krijgen van de prestaties van elektrische fietsen werd een
testopstelling gebouwd aan deVrije Universiteit Brussel. Deze testopstelling (zie
figuur 4.3) is een verlengde loopband, aangedreven door een snelheidsgestuurde in-
ductiemotor. Hiermee kan een snelheid opgelegd worden aan een elektrische fiets die
zich op de loopband bevindt.
Op de plaats van het zadel wordt een stroomgestuurde gelijkstroommotor geplaatst.
Deze motor drijft een riemschijf aan die op de pedaalas van defiets wordt gemon-
teerd. Op deze manier kan een koppel worden opgedrongen ter hoogte van de ped-
alen. De riemschijf bevat een koppel- en snelheidsensor.
De fiets wordt verhinderd voorwaarts te bewegen door een kabel met een krachtsen-
sor. Het meten van een elektrische fiets bestaat erin na te gaan welke trekkracht wordt
ontwikkeld bij een opgelegde snelheid en een opgelegd koppel. Deze trekkracht
hangt niet alleen af van de fietser (hier vervangen door de gelijkstroommotor) maar
ook van de bijdrage van de assistentiemotor. Indien in elk werkingspunt 2 metingen
verricht worden, één met de assistentiemotor ingeschakeld en één met de assisten-
tiemotor uitgeschakeld, kan men door het verschil in gemeten trekkracht de bijdrage
van de motor gaan kwantificeren.
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Prestatieanalyse aan de hand van testbank metingen

Aan de hand van de beschreven metingen is het mogelijk om modellen te gaan maken
voor het gedrag van de elektrische fiets op de testbank en op deweg.

• Het trekkracht modelgeeft de trekkracht weer in functie van de snelheid en het
koppel. Indien meerdere assistentieniveaus beschikbaar zijn, kan men per fiets
voor elk van deze niveaus een trekkrachtmodel opstellen.

• Het klimcapaciteit modelgeeft de maximale helling weer die de fietser kan
overwinnen in functie van de snelheid en het koppel. Deze modellen zijn her-
schaalde versies van de vorige, maar hebben een betere fysische interpreteer-
baarheid.

• Het vereiste fietserkoppel modelgeeft het koppel weer dat de fietser moet leve-
ren om een bepaalde snelheid en een bepaalde trekkracht te ontwikkelen. Ook
hier kan er per assistentieniveau een koppelmodel worden opgesteld.

• Het rendement modelmodelleert de mechanische verliezen. Het toont het ren-
dement van de fiets in elk (niet-geassisteerd) werkingspuntin functie van snel-
heid en fietserkoppel.

• Het assistentiefactor modelgeeft in elk werkingspunt weer wat de verhou-
ding is tussen de netto trekkrachtbijdrage van de elektrische motor tot de totale
beschikbaar trekkracht.

Verschillende vormen van regressieanalyse werden uitgeprobeerd om deze model-
len op te stellen voor het ganse werkingsgebied van de fiets, vertrekkend van een
beperkt aantal testbankmetingen. De LS-SVM regressiemethode leek hiervoor uiter-
mate geschikt.

Prestatiecurven

De prestatieanalyse kan in de eerste plaats gebeuren op basis van grafische voorstellin-
gen van de beschreven modellen. Zo geven figuren die3D-oppervlakken weergeven
van verschillende assistentieniveaus van de trekkracht (figuur9.1), de klimcapaciteit
(figuur 9.7) of het vereist fietserkoppel (figuur9.4) reeds een goed beeld van het
gedrag van de elektrische fiets. Door2D-figuren (contourplots, doorsneden bij con-
stante snelheden of constante koppels) van deze oppervlakken te analyseren kan nog
beter ingezoomd worden op de toegepaste controlestrategie.

Prestatieparameters

Naast de visuele prestatieanalyse worden ook een aantal parameters gedefinieerd die
bepaalde eigenschappen van de fiets in een enkel getal proberen weer te geven. Er
worden 2 soorten parameters gedefinieerd:
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• De gebruiksonafhankelijke parameterszijn parameters die enkel bepaald
worden door de elektrische fiets zelf. Hierbij horen de volgende parameters:

– Het100W rendementis het mechanisch rendement van de fiets uitgemid-
deld over alle werkingspunten waarvoor de fietser100W dient te leveren.

– De75W assistentiefactoris het gemiddelde van de assistentiefactor over
alle werkingspunten waarvoor de fietser75W dient te leveren. De assis-
tentiefactor heeft de relatieve nettobijdrage van de motortot het tractie-
vermogen.

– De 100W klimcapaciteit is het gemiddelde van de klimcapaciteit over
alle werkingspunten waarvoor de fietser100W dient te leveren.

• De gebruikersafhankelijke parameterszijn parameters die zowel door de
fiets zelf worden bepaald als door de manier waarop hij gebruikt wordt door de
fietser. Daarvoor dient een representatieve rit van de gebruiker opgegeven te
worden. Deze rit kan eventueel gelogd worden met een zelfontworpen logsys-
teem. De gebruikte parameters zijn:

– Het rit rendementis het mechanisch rendement van de fiets uitgemiddeld
over alle werkingspunten waarin de fiets verkeert tijdens het afleggen van
de vooropgestelde rit.

– De rit assistentiefactoris het gemiddelde van de assistentiefactor over
alle werkingspunten waarin de fiets verkeert tijdens het afleggen van de
rit.

– De benodigde menselijke energie tijdens de ritis de totale energie die
door de fietser dient geleverd te worden voor het afleggen van de rit.

– Debenodigde motor energie tijdens de ritis de totale energie die geleverd
wordt door de motor tijdens het afleggen van de rit.

– Derit batterijradius is de afstand die met een gegeven batterij kan afgelegd
worden tijdens het (meermaals) uitvoeren van de rit met de elektrische
fiets.

Een grafische gebruikersinterface voor het verwerken van detestbankmetingen

Omdat het verwerken van de testbankmetingen nogal wat datamanipulaties vraagt,
werd een grafische gebruikersinterface in Matlab ontwikkeld die deze manipulaties
automatiseert. Deze interface bestaat uit 5 delen.

1. ModelsCreation.mcreëert vanuit de gegeven metingen alle gevraagde LS-
SVM modellen en slaat ze op in eenpedelec.mat-file.
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2. PerformancePlots.mmaakt het mogelijk om alle soorten grafische3D en2D
voorstellingen van deze modellen op te roepen.

3. DriveCycle.mkan vertrekkend vanuit de gegevens van de logger van een fiets-
rit, een testcyclus opstellen en analyseren.

4. PerformanceParameters.mberekent aan de hand van de LS-SVM modellen en
een testcyclus de verschillende gebruikersonafhankelijke en gebruikersafhanke-
lijke prestatieparameters.

5. Comparison.mmaakt een vergelijking tussen de metingen op verschillende
elektrische fietsen mogelijk.

Testresultaten

Zes verschillende elektrische fietsen werden reeds op de testbank geplaatst. De
metingen worden weergegeven in tabel13.2. De beschreven prestatieanalyse slaagt
erin de verschillen in controlestrategie van de constructeurs aan te tonen. Ook het
prestatieverschil van de fietsen bij verschillend gebruik kan mooi in kaart worden
gebracht.





English summary

Performance analysis of pedal electric cycles: a subjective
and objective approach

1 Introduction

Pedelecs or Electrically Power Assist Cycles (EPACs) are a relatively new means of
transportation. It are bicycles equipped with an electric motor only providing assis-
tance. These cycles are classified as bicycles in Europe, if they meet the following
specifications:
The electric motor has a maximum continuous rated power of250W , of which the
output is progressively reduced and finally cut off as the vehicle reaches a speed of
25km/h, or sooner, if the cyclist stops pedalling [22].

2 A subjective approach

A lending service for pedelecs

A lending service for pedelecs was organised by the groupETEC of theVrije Uni-
versiteit Brusselin the framework of an European research project. During theperiod
november 2000 - april 2003 more than 250 persons tested a pedelec for several weeks.
In this way a lot of information was gathered about the product satisfaction, the user’s
needs and the market potential of pedelecs.
One of the findings was that the electric bicycle is certainlynot a simple alternative
for normal bikes, but a new mobility means, especially suited for distances between5
and15km. The pedelecs were used for commuting, shopping as well as leisure. Most
complaints were about the weight (±30kg), the high purchase price (± ¤1700), the
battery range and the many technical problems with the testbikes. The cycling in-
frastructure in Brussels (where most of the test persons lived) has to be improved
seriously to make (electric) cycling more attractive. Moreover the apprecation of
pedelecs was highly dependent on the region (city/countryside) and the cycling his-
tory of their user.
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The pedelec market in Flanders

More than 80% of the Flemish bicycle consumers buy their bicycles in specialized
dealer shops [29]. An inquiry for those bicycle dealers might give a good insight
in the Flemish pedelec market. In december 2005, an electronic questionnaire was
sent to 468 Flemish dealers. More than hundred of them wantedto participate in
this research. Also 110 websites of Flemish dealers were checked for pedelec related
information.
About 85% of the dealers are offering pedelecs. At least 31 different brands were
found, of which Electronic Bike Development, Sparta and Batavus were most fre-
quently found in 2005. An average dealer sold 13 pedelecs andabout 400 conven-
tional bicycles during 2005. Prices of pedelecs are varyingfrom¤695 until¤3600.
Also the dealers mentioned the battery range, the weight andthe high purchase price
as the more important disadvantages. Few of the dealers wereactively promoting the
electric bicycle.

3 An objective approach

The development of a test bench for pedelecs

The objective performance of a pedelec is analysed by means of test bench designed
and constructed at theVrije Universiteit Brussel. This test bench (figure4.3) is an
extended treadmill, driven by a speed-controlled induction machine. In this way, a
speed may be imposed to a bicycle that is situated on the treadmill.
A current-controlled DC-machine is used as a ‘dummy cyclist’ and is placed at the
place of the saddle. This motor drives the pedal axis via a belt and pulley system. So,
a torque can be imposed to the pedal axis. At the pedal axis there is also a speed and
torque sensor installed.
The pedelec is kept from forward motion by a cable with a load cell. Measuring the
traction force on this load cell for different speeds and (dummy) cyclist’s torques is
an interesting tool to analyse the pedelec’s performance. After all, the traction force
does not only depend on the cyclist’s efforts, but also on theadded motor power from
the assistance motor. With the difference in traction forcein measurements with and
without this assistance motor, for the same speed and cyclist torque, one can quantify
the contribution of the motor power to the traction power.

Performance analysis

From the above mentioned measurements, different models are made to analyse the
behaviour of the pedelec on the test bench.

• The traction force modelgives the traction force as a function of speed and
cyclist torque. If more than one assistance level for the pedelec is available,
one can make a traction force model for all these assistance levels.
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• The climbing-ability modelgives the maximum slope that can be overcome at
a certain speed and cyclist torque. These models are rescaled versions of the
former ones, but have a better understandable physical interpretation.

• The required cyclist torque modelgives the cyclist torque that is required to get
a certain speed and to realise a certain traction force. Alsoin this case, one
model per assistance level is required.

• The efficiency modelshows the efficiency of the bicycle transmission in every
(non-assisted) point of operation as a function of speed andcyclist torque.

• The assistance factor modelshows the relation between the net motor contri-
bution to the traction force and the total available traction force.

Different ways for regression modelling were tried out, to model the behaviour of the
pedelec over the whole operation area, starting from a limited number of test bench
measurements. The LS-SVM regression method seemed to be very well suited for
this work.

The performance plots

The performance analysis may be based in the first place on graphical representations
of the described models. So,3D-plots of the different assistance levels of the trac-
tion force (figure9.1), the climbing-ability (figure9.7) or the required cyclist torque
(figure 9.4) already gives a good idea of the behaviour of the pedelec. Byanalyz-
ing 2D-plots like contourplots, and slices of constant speed and torque, the control
strategy can be studied in more detail.

The performance parameters

Next to the visual performance analysis, also some parameters are defined to catch
different qualities of the pedelecs in a single value. Two groups of parameters are
used:

• The user independent parametersare parameters that are only determined
by the pedelec itself. There are three different ones defined:

– The100W efficiencyis the mechanical efficiency of the bicycle, averaged
out over all points of operation where the required power input of the
cyclist is100W .

– The75W assistance factoris the average of the assistance factor over all
points of operation where the required power input of the cyclist is 75W .
The assistance factor gives the relative net contribution of the motor to
the traction power.
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– The100W climbing-ability is the average of the climbing-abilities over
all points of operation where the required power input of thecyclist is
100W .

• The user-independent parametersare parameters that are determined by the
pedelec itself as well as by the way it is used by the cyclist. Therefore a repre-
sentative drive cycle of the user is required. This cycle maybe obtained by a
developed speed log system. The applied parameters are:

– Thedrive cycle efficiencyis the mechanical efficiency of the bicycle, av-
eraged out over all points of operation of the bicycle duringthe postulated
drive cycle.

– The drive cycle assistance factoris the average of the assistance factor
over all points of operation of the pedelec during the drive cycle.

– The human energy need during the drive cycleis the total amount of
energy that has to be delivered by the cyclist during the drive cycle.

– Themotor energy need during the drive cycleis the total amount of en-
ergy that is delivered by the motor during the drive cycle.

– Thedrive cycle battery rangeis the distance that can be covered with a
given battery while (multiple) executing the drive cycle with the pedelec.

A graphical user interface for the test bench measurements

Because the data processing of the test bench measurements requires a lot of manipu-
lations, a graphical user interface is developed to automate these manipulations. This
interface consists in 5 different parts

1. ModelsCreation.mcreates all defined LS-SVM models starting from a given
pedelec measurement set. These models are saved as apedelec.mat-file.

2. PerformancePlots.menables the visualisation of all kinds of3D and2D plots
of these models.

3. DriveCycle.mstarts from the measurements of the logger to create and analyse
a drive cycle.

4. PerformanceParameters.mcalculates the defined user-dependent and user-
independent performance parameters for a given pedelec anda given drive
cycle.

5. Comparison.mcompares the performance parameters of different pedelecs.
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Test results

Six different pedelecs were already tested with the test bench. The measurement
results are given in table13.2. The applied performance analysis uncovers the differ-
ent control strategies of the manufacturers. Also the performance difference of the
pedelecs by a different way of use is well charted.





0
Introduction

0.1 Introduction

Mobility is an important factor for the sense of well-being of people: A European
citizen covers a distance of about 14000km a year. 73% of thisdistance is covered by
car [1]. This fact and the increase of cars in the EU-25 to an averageof 472 cars per
1000 inhabitants in 2004 prove that the car is commonly seen as the favorite means
of transport [2]. However, in the last decennia the drawbacks of this succeswere
becoming clearer and are bringing a growing consciousness of the need for a diverser
and cleaner mobility.
The conventional bicycle could be a solution for a number of these drawbacks. It
has been an efficient means of transport well appreciated forshort distances but the
limitation of the human power might have been a restriction to massive daily use.
People have been trying to overcome this power limitation indifferent ways. One of
the solutions is to equip the bicycle with an electric motor.
Electrical bicycles are already widely available in today’s market. They appear in
many different forms and their motors are controlled in manydifferent ways. The
‘Electrically Power Assisted Cycle’ (E-PACs) or ‘PEDal ELEctric Cycle’ (pedelecs)
seems to be one of the most suitable concepts for the Europeancountries. Pedelecs
are bicycles equipped with an electrical motor that only assists when the cyclist is
pedalling. The market potential of these pedelecs and theirtechnical performances
will be investigated in this work.
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0.2 Outline

This book is divided in two major parts: the findings of a market analysis for pedelecs
in Flanders and the description of an objective method to analyse the performance of
a pedelec.
These two parts are preceded by an introduction on electric bicycles.Chapter1 starts
with a justification for the adding of motor power to a human powered vehicle, fol-
lowed by a brief history of the electric bicycle, the name giving of electric bicycles
and the different ways that are used to classify them. The technical working principle
of and the legislation for pedelecs conclude the introduction.
Part I of this book explains how the subjective performance of pedelecs is analysed
by a double market research: the point of view of the pedelec users as well as the
bicycle dealers are investigated.Chapter2 reports about the experiences of a lending
service for pedelecs and shows the daily user’s appreciation. The pedelec market in
Flanders is outlined inChapter3 by means of information that is received from the
bicycle dealers.
Part II reports about the development of a test method to characterize, in an objective
way, the performance of pedelecs. A general description of what is meant by perfor-
mance analysis is given inChapter4. Chapter5 describes the design and realisation
of the test application required for the intended performance analysis. The way this
testbench is used and the measurements that are taken are given in Chapter6. The
testbench measurements are used to create models that describe the behaviour of the
pedelec. Therefore the non-parametric LS-SVM regression analysis is used. This
method is explained inChapter7. The different regression models that are used to
analyse the pedelec’s performance are given inChapter8. The performance analysis
itself is based on the creation of a number of performance plots (Chapter9) as well as
the calculation of a number of performance parameters (Chapter10). The discussion
about a standard drive cycle for the testing of pedelecs is started inChapter11. Be-
cause the complete performance analysis of a pedelec requires a lot of measurement
data manipulation,Chapter12 presents a handy graphical user interface to automate
these manipulations. The results of the performance analysis of different pedelecs
are discussed inChapter13. Finally, part II is ended by some suggestions for further
research inChapter15.



1
Electric Bicycles

1.1 The electric bicycle concept

For ages people have been looking for a way to amplify or replace the human force
for their displacements. This research yielded a large variety of means of transport:
steps, roller skates, (recumbent) bicycles, segways, motorbikes, cars, airplanes,...,
and also electric bicycles. Each of these are developed in many different appearances,
for many different aims, but none of them has been able to replace all the others. Also
the addition of an electric motor to a conventional bicycle will not lead to the perfect
means of transportation. The introduction of the electric bicycle might even surprise
people. Why should one keep on searching for an adaptation ofa vehicle that is
(partly) propelled by human force while there are completely autonomous vehicles
available?
Today, the benefits of cycling (as well for the cyclist as for the society) are sufficiently
known [3]:

• cycling is a flexible way of moving, perfectly suited for a city environment
• considering the purchase price and the ease of use, it is suited for a wide range

of people
• there is no insurance or driving license required
• cycling does not produce noise
• cycling does not pollute the air
• cycling keeps the cyclist in good physical condition
• ...

Although many people are convinced of these benefits, still too many reasons can be
found for keeping away from cycling (see section2.4). The human power limit is
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certainly one of them. The combination of human and externalpower may erase this
excuse and might result in an interesting hybrid means of transportation. In this way
the cyclist gets the choice to cycle faster with the same effort or to reach the same
speed with less effort.

1.2 The history of electric bicycles

Figure 1.1: Steam bicycle from Michaux/Perraux[4].

The principle of the electric bicycle is not very new. Its history is closely related to
that of the conventional bicycle and the motorcycle.
The principle of today’s conventional bicycles (the so-called ‘pneumatic tired safety
bikes’) dates from the 1890’s[5]. Before Gottlieb Daimler builds the first motorcycle
in 1885, there are already some experiments with a hybrid drive for bicycles. One
of them is the steam bicycle from Michaux/Perraux that is shown in figure1.1. Al-
though this hybrid bicycle is rather a step towards the fullymotorized motorcycle
than a considered choice, it might be seen as the first ‘power-assisted’ bicycle.
In the next decades the will to get rid of the pedals dominatesthe research. The rea-
sons for the presence of pedals in the models with combustionengine only have to be
looked for in the still imperfect technology of the engines in those days: people still
want to be able to cycle home when the engine fails (A fear thatis also recognized
by today’s potential pedelec buyers as shown in chapter2). Because the early day’s
combustion engines present some danger for the cyclist, many applications are sub-
mitted to patent bicycles with an electric motor. In some cases the electric motor has
to be started by a second person controlling the starting resistors.
In the early 1900’s, the improved combustion technology eclipses the electric alter-
native. The only feats worth mentioning before the second world war are the electric
bicycle developed by a subsidiary of Philips and the development of the first rear
wheel hub motor with possibility of recuperation braking inEngland [6].
The years after the second world war are characterised by theresearch in the ‘auto’-
mobile technology. Bicycles in general are degraded to the transportation of the
poorer people. This is seized by the French constructor of carburetors ‘Vélosolex
S.I.F.A.C’. They develop a popular assisted bicycle with a small combustion engine
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driving the front wheel with a friction roller that is presented in figure1.2 [7].1

Figure 1.2: The solex combustion assisted bicycle with friction wheel

In 1985 the Dutch cycle manufacturer Sparta develops the ‘Spartamet’, a bicycle with
an auxiliary30cc combustion hub motor from the German motor manufacturer Sachs
[8]. Today this bicycle is still available as the ‘Saxonette’.
The electrically assisted bicycle or pedelec as it is known today dates from the late
80’s. The first one is called Rivolt, but is not really successful because of the many
technical imperfections. Yamaha comes in 1995 with the PAS system, which is seen
as the first sales success for pedelecs [9]. These PAS bicycles are especially promoted
as bicycles for people having problems to ride a common bicycle. Ever since plenty of
bicycle manufacturers come out with their own electric version (see3.2). Nowadays
the image of ‘bicycle for disabled persons’ is never far away. But the younger designs
(e.g. hidden motor and battery) and lighter models of the last years may people
make aware that there might be a difference between ‘reducing the human effort’ and
‘amplifying the human force’. However, the legal limits forthis amplification are
discussed in section1.5. Today, all bicycle sales are raising [10],[11]. The electric
assisted bicycles are following this trend[12].

1.3 Classification of electric two-wheelers

Nowadays a lot of names are circulating to describe electricvehicles. In the case
of small vehicles the term LEV (Light Electric Vehicles) is often used. Electric two-
wheelers are a subcategory of the LEVs, but their naming is not always unambiguous.
A two-wheeler is called ‘electric’ from the moment it is equipped with an electrical
motor. But there are many ways to use the motor in the drive system. The classifica-
tion of electric two-wheelers can be based on different criteria. The most commonly
used classification criteria are illustrated in this section.

1In 2005 the french firm Mopex restart the production under thebrand name Black ’n roll proving
that assisted two-wheelers have market potential.
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1.3.1 The relationship between motor power and human power

Electric two-wheelers may be propelled by human as well as electric power. The
possibility of riding without pedalling is an often used classification criterion by
legislators[13].

Light Electric Scooters

Light Electric Scooters are two-wheelers with an electric drive system: an electric
motor supplied by a (rechargeable) battery delivers all thetraction. The amount of
power is controlled by a twist-grip. There is no possibilityto add human power by
pedalling. These scooters are mainly popular in the USA and the Asian countries,
but also have growing sales numbers in the EU. They come in twogeneral types:

• Light Stand Up Scooters carry the rider standing upon a deck.
• Light Sit Down Scooters have a seat for the rider.

E-bikes

E-bikes are electric two-wheelers equipped with an electric motor drive and pedals.
The amount of motor power is more or less independently adjustable from the human
power input. There is so-called power-on-demand (POD) without pedalling available
by using a kind of twist-grip.
In Europe, the legislator classifies these vehicles as mopeds, because they are able to
drive without human power (see section1.5).

Pedelecs

Pedelecs or Pedal Electric Cycles (also called Electrically Power Assisted Bicycles,
E-PACs, E-PABS, Power Assists, PABs...) also have an electric motor, but the de-
livered motor power depends on the cyclist’s effort. If the cyclist does not pedal,
the motor will not assist. The electric drive automaticallyprovides additional power
while pedalling. The amount of motor power depends on the measurements of one or
more sensors, the control strategy and the behaviour of the pedelec system itself. The
performance analysis in this book is focussed on this type ofelectric two-wheelers.
They will be referred to as ‘pedelecs’ in the rest of the text.
If their rated motor power is limited at 250W and the maximum assisted speed stays
beneath 25 km/h, the European law still classifies them as bicycles. This has the ad-
vantage of being free of driving license and insurance. In most member states even a
helmet is not mandatory.

1.3.2 The ease of assembly

One can also classify electric bikes according to their easeof assembly. Next to
the ready-made electric two-wheelers also electric ‘powerkits’ are available. These
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kits can be mounted on conventional bikes to give them additional motor power.
The cheapest ones are equipped with a motor with a friction roller unit that can
drive the front or rear wheel, but also hub motor types are available (BionX, E-
motor,Heinzmann,...). Both power-assist and power-on-demand operation are avail-
able on the market.

1.3.3 The location of the motor

Figure 1.3: Applied mounting places for the electric motor

Another distinction can be made by the location of the motor.Four possibilities will
be considered.

• The mounting of the motoron the carrier(figure1.3a) behind the saddle ini-
tially seemed a cheap solution, but has proofed impractical. Only prototypes
and self-built examples were found in this configuration.

• IntroducingFront wheeltraction (FWD) is another possibility (figure1.3b).
Some mountainbike manufacturers state the advantages of the introduction of
a front wheel drive for bicycles: the cyclist should have a greater control over
wet roots and slippery rocks and it would be easier to climb slopes[14]. It
may be one of the easiest options for the implementation of power kits because
the front wheel is free of brackets and gear apparatus. Although the common
cyclist may experience this as a less comfortable for driving.

• Rear wheel hub motorseasily fit on existing frames and platforms (figure1.3d).
They use a space that is otherwise not used and reduce the visibility of the aux-
iliary device. This explains why there seems to be a nearly universal intuitive
acceptance of hub motors by consumers[15].
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• Another often used location for the motor is nearthe bottom bracket(figure
1.3c). The space at this location is rather limited, so ingenious mechanical
constructions have been developed. This motor location increases the stability
of the bicycle because the center of mass is moved to the middle of the bicycle.
Also the flexibility is better because the gear shifting is available for both motor
and cyclist power. However, there are also some disadvantages for this config-
uration. A small amount of motor power is already lost in the transmission of
the bicycle and there is more chain and sprocket wear required.

1.4 The pedelec working principle

Figure 1.4: The pedelec working principle

The pedelec is an electric two-wheeler with a hybrid drive system. Its working princi-
ple is shown in figure1.4. The traction is partly coming from thehuman powerinput
and partly coming from an electricmotor. The most popular motor type for pedelecs
is the brushless DC motor. The motor may be directly (dotted line) or indirectly
(dashed line) driving the wheel. The motor is supplied by rechargeablebatteries.
Lead-Acid, Lithium-Ion, NiMh and NiCd are commonly used battery types for ped-
elecs.
The amount of motor power is continuously determined by acontroller. The con-
troller output is based on the measurement signals of aspeed and/or torque sensor.
Sometimes (not on the figure) the cyclist has the opportunityto influence the con-
troller output (and thus the motor power output) by switching between different as-
sistance levels. There is often a built-in protection against motor overheating that is
also steered by the controller. Another task of the controller is to organise the (intel-
ligent) recharging of the batteries.
This book will proof that the behaviour of the controller influences the performance
as well as the appreciation of the pedelec to a large extent.
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1.5 Legislation

The ease of use and market potential of a pedelec are quite influenced by the way they
are treated by the legislator. If they are classified as motorcycles, a helmet, driving li-
cense and insurance are obliged in most countries. If they are seen as bicycles (some
of) these conditions may be called off. In this section the evolution of and the current
EU regulations specifically concerning pedelecs are considered. Conventional bicy-
cle standards or pure electric motorcycle standards are discussed in reference [17].
For legislation in other countries references [18] and [19] might help.

1.5.1 EU Directive 92/61/EEC

In 1992, the EU comes out with directive2 92/61/EEC that applies to ‘all two or three-
wheel motor vehicles, twin-wheeled or otherwise, intendedto travel on the road, and
to the components or separate technical units of such vehicles’ [16]. This directive
did not mention E-PACs or pedelecs. Motor vehicles were supposed to have a com-
bustion engine. Only for the light quadricycles, the possibility of an electric motor
was discussed. It is important to notice that a directive is binding on the Member
States as regards the objective to be achieved but leaves it to the national authorities
to decide on how the agreed Community objective is to be incorporated into their
domestic legal systems [20].
This freedom results in different interpretations in the member states.

1.5.2 EU Member states regulations until November 9th, 2003

In anticipation of a stricter EU regulation, every member state creates his own regu-
lation/toleration concerning pedelecs. Differences are found in vehicle classification,
maximum rated motor power, assisted speed limit, helmet andinsurances obligations
and age limits. Table1.1 sums up the regulations of most EU member states that
were applicable until November9th, 2003.

1.5.3 EU Directive 2002/24/EC

A new proposition concerning pedelecs is submitted in 1999 into the Council of Eu-
rope and the European Parliament[21]: The European Commission makes an agree-
ment to exclude pedelecs up to 250 W and 25 km/h from type approval. The Eu-
ropean Parliament and the Council have released the EU-Directive 2002/24/EC [22]
concerning this type approval for two and three wheeled vehicles on March 18, 2002.
This EU-Directive replaces the former 92/61/EEC Directive. In article 1 (h) one can
read that ‘cycles with pedal assistance which are equipped with an auxiliary electric

2The EC/Euratom directive, expressed by the EU council, is inthe EU the most important legislative
instrument alongside the regulation. The idea is to remove contradictions and conflicts between national
laws and regulations or gradually iron out inconsistenciesso that, as far as possible, the same material
conditions obtain in all the Member States.
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Country
Legal Type Speed Motor In-

Helmet
Age

status approval limit limit surance Limit

Austria bicycle no 25 km/h n.a. no no no
Belgium bicycle no no 300 W no no no
Denmark bicycle no 25 km/h 250 W no no no
Finland bicycle no 25 km/h 250 W no no no
France bicycle no 25 km/h 500 W no no no

Germany bicycle no 24 km/h 250 W no no no
Holland bicycle no 25 km/h 250 W yes no no
Ireland moped yes n.a. n.a. n.a. n.a. n.a.
Italy bicycle no no no no no no

Luxembourg bicycle no no no no no no
Spain bicycle no 25 km/h 500 W no no no

Sweden moped yes 30 km/h no yes yes 15
UK bicycle bicycle 15 mph 200 W no no 14

Table 1.1: Legislation of EU member states regarding pedelecs before November 2003[23]

motor having a maximum continuous rated power of 0,25 kW, of which the output is
progressively reduced and finally cut off as the vehicle reaches a speed of 25 km/h,
or sooner, if the cyclist stops pedalling’ are excluded fromtype approval.
One should note however that the directive text specifies this power as a ‘continuous
rated power’ and not as a ‘peak power’[21]. It could thus be acceptable to have a
higher peak power level during limited time (e.g. during acceleration). A reference
has to be made to standards describing how this rating of an electric motor is to be
defined and measured (see table1.2).
Pedelecs that exceed the technical specifications must havea type approval and are
classified as ‘mopeds’ and must consequently meet all additional laws, i.e. motorcy-
cle helmet, adequate brakes, mirrors, insurance, they willnot be allowed in reverse
one way directions in cities etc. These additional featuresmight be seen as a barrier
for a real breakthrough because it might weaken the advantages of pedelecs on con-
ventional bicycles. Although the market study (chapter3) shows that so far neither
users nor dealers are really concerned about speed.
Moreover some pedelec manufacturers (BionX, Swizzbee,...) made a simple com-
promise by introducing the ‘fast pedelec’ as a ‘low-performance moped’[24]. These
are mopeds with pedals, with an auxiliary motor power not exceeding 1 kW and a
maximum design speed not exceeding 25 km/h. Low-Performance Mopeds are sub-
ordinate to the European category ‘Mopeds’ (maximum speed 45 km/h), but type
approval requirements are simplified or do not apply for certain components (9 ex-
ceptions out of 35 characteristics[23])
This has some interesting advantages as compensation for the extra requirements:

• the possibility of motor power without pedalling until a certain speed
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• higher motor power limit: 1kW instead of 250W

The directive does not suggest any relationship between themotor and the cyclist’s
power, except that motor power has to disappear when the cyclist stops pedalling.
This possibility is handely used by manufacturers (e.g. theEstelle pedelecs by Heinz-
mann) to introduce a pedelec with twist-grip. The motor power is determined by the
user on condition that the pedals are turning. In some cases,motor power without
pedalling may be tolerated beneath 6 km/h.

1.5.4 Preliminary European Standard prEN15194

The European Committee for Electrotechnical Standardisation CENELEC proposes
in 2005 a draft for a pedelec standard.
‘The prEN15194 European Standard gives requirements for electric power assisted
cycles, and has been developed in response to demand throughout Europe. Its aim
is to provide a standard for the assessment of electrically powered cycles of a type
which are excluded from type approval by Directive 2002/24/EC’ [25].

Aspect Standard(s) and Directive(s)

The electrical circuit ISO 2575, IEC 60227-1, IEC 60245-1
The batteries EN 50272-3, EN 61429

The charger
EN 55011, EN 61000-3-2, EN 61000-4-2,

EN 61000-4-3, ENV 50204, EN 61000-4-4,
EN 61000-4-5, EN 61000-4-6, EN 61000-4-11

The brakes pr EN 14764

EMC
emission directive 89/336/EC,

Annex C (see1.5.4), immunity directive 89/336/EC
Measuring Continuous

EN 60034-1, clause 3.2.1 Duty type S1
Rated Power

Table 1.2: Related standards for different pedelec aspects[25]

For many aspects the draft standard refers to existing standards. Table1.2 gives an
overview of these related standards.

A lot of requirements that are mentioned in the preliminary European standard are
only meaningful for electrically assisted bicycles. They are listed below per pedelec
aspect.

• Motor power

– Assistance is provided only when the cyclist pedals forward
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– Assistance is cut off when the cyclist stops pedalling forward such that
the cut off distance does not exceed 5 m with brake lever cut off switch
or 2m without brake lever cut off switch.

– The output or assistance is progressively reduced and finally cut off as
the vehicle reaches the maximum assistance speed as designed.

• EMC
In Annex C of the prEN 15194 radiation limits and field strengths limits are
defined to assure electromagnetic compatibility of two pedelecs and electri-
cal/electronic sub-assemblies. In the scope of the lendingservice of section
2, a complaint is received about EMC problems with police communication
infrastructure. In appendixA the result of an EMC measurement to examine
the susceptibility of this complaint is included.

• Electrical hazard
Due to the limitation of the voltage to 48V, there are no special requirements
applicable to the pedelec about protection against electrical hazards. When the
battery charger is a part of the bicycle, the pedelec may be connected to the
higher grid voltage

• Maximum speed
The maximum speed for which the electric motor gives assistance may differ
by ± 5% from the values specified by the manufacturer. During a production
conformity check, the maximum speed may differ by± 10% from the above-
mentioned determined value.

• Labelling
Each pedelec has to be visibly and durably marked with the requirements of
PrEN14764 and a special label with ‘EPAC, according to EN15194, cut off
speed, and continuous rated power’.

• Instruction for use
In addition to the instruction required by the bicycles standard EN 15194, each
pedelec shall be provided with a set of instructions containing

– the concept and a description of the electric assistance
– a recommendation for washing
– the maximum range as determined according to the EN15194
– the control and indicators
– specific pedelec recommendations for use
– specific pedelec warnings
– recommendations about battery charging and charger use

Standard measuring methods to determine continuous motor power and maximum
speed are also included in the prEN15194 preliminary standard.



Part I

A Subjective Approach of the
Pedelec’s Performance



Over 130 million bicycles are worldwide sold every year and over 10 million electric
bicycles were sold in 2005[15]. This means that less and less people are surprised if
one uses the words ‘electric’ and ‘bicycle’ in one sentence.Also while cycling along
the side of a Flemish river, one can be surprised by the performance of some older
cyclists, until it gets clear that they cycle with electrical assistance. Anyway, the
pedelec starts to take its place in mobility. However, thereare neither data about the
exact number of pedelecs on Flemish roads, nor about the acceptation/appreciation
of the cycling community (dealers and users) of these vehicles in Flanders.
In part II of this book, a scientific and objective method is developed to quantify the
performance of a pedelec. Before the start of this objectiveperformance analysis, it
is interesting to get an idea of the market potential of the pedelec and the aspects that
make people distinguish between good and bad pedelecs. These topics are discussed
in this part I.
The intended subjective performance analysis is done by a market research that fo-
cusses on the appreciation and the acceptation of the pedelec by the cycling commu-
nity. Therefore two independent inquiries are organised: one for the daily users of
pedelecs and one for the bicycle dealers.
As a first step, an extended lending service with opinion pollwas organised to in-
vestigate the market potential and daily use appreciation of the pedelec. In the heart
of Brussels Capital-Region people could borrow a pedelec and test it during several
weeks. They were asked to keep a log with trip information andpedelec experiences.
Each test period was concluded with the answering of a standard questionnaire. The
data and conclusions from the logs as well as the standard questionnaires are gathered
in chapter2:‘The Pedelec and its Daily User’.
A second way to get data was to send an electronic questionnaire to the dealers of
bicycles. They were interrogated about their sales figures,their (good as well as bad)
experiences with pedelecs, the support of the manufacturers and their opinion about
the pedelec. Especially the last item may influence the market because more than
80% of the Flemish bicycles are bought in a specialized dealershop. The data and
conclusions from this electronic questionnaire are given in chapter3:‘The Pedelec
Market in Flanders’.



2
The Pedelec and its Daily User

Within the framework of the European E-tour project (see section 2.1) a lending
service of pedelecs was started at theVrije Universiteit Brusselto get an idea of the
appreciation of pedelecs by their daily users. From november 2000 until april 2003
more than 250 persons could intensively test one of five different pedelec models
for an average period of 7 weeks. Together they drove over 44600 km. A standard
questionnaire sounded out their experiences about the strengths and weaknesses of
the tested electric two-wheeler and their view on the marketpotential of pedelecs.
The results of this questionnaire are discussed in section2.3. The test persons also
had to fill in a log with their daily trips. In those books a lot of interesting free remarks
were given. They are seperately discussed in section2.4.

2.1 The E-Tour project

The European E-Tour (Electric Two wheelers On Urban Roads) project has been
set up to demonstrate, evaluate and promote the advantages of electric two-wheelers
as a substantial contribution to sustainable mobility in urban areas [21]. It was ap-
proved for funding under the Energy Program of the European Commission. The
E-tour project ran from January 2000 until January 2003 and involved 7 European
cities, 2 Mediterranean islands, 3 universities, the network organisations CITELEC
and ISLENET and several private companies. The project was coordinated by the
Public Works Department of the city of Rotterdam in the Netherlands. The major
aims of E-tour were [21]:

• To demonstrate the suitability of electric two-wheelers asa practical mobility
means in urban and/or other restricted areas.
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• To promote these vehicles as an environmentally friendly alternative for (pri-
vate) cars and scooters with an internal combustion engine.

• To evaluate the practical and technical experiences from the users
• To set up a valid evaluation methodology for the comparativeassessment at

local level (cities/islands) on a European scale.
• To link alternatively generated (renewable) energy sources to mobility means.
• To analyse the attainable reduction in energy use and polluting emissions.
• To gain insight in the physiological and bio-mechanical aspects of the physical

impact of using an electric power assisted bike.

The contribution of this PhD to the project laid in the evaluation of pedelecs by
polling their users and the development of an objective performance test for ped-
elecs. The first item is discussed in the next sections, the last item is discussed in part
II of this book.

2.2 The objectives of the lending service

A lending service for pedelecs is organised to get insight inthe pleasures and an-
noyances pedelec users are dealing with, if they use the pedelec for a longer period.
There were already different demonstration projects for pedelecs, but the participants
could only make a single test ride. The experience learned that some problems only
showed up when the pedelec was used on a more frequent base.
The lending service also wants to evaluate the suitability of pedelecs as a practical
mobility means in city environment.
The results of these duration tests are useful for manufacturers because they uncover
a lot of sensitivities of the pedelec’s daily user. The results also delivers input for the
objective performance analysis of part II.
However, because of practical reasons, the sample size of the test population was lim-
ited to 244. According to the formula of Cochran [35], for a 95% confidence level,
the level of precision for this sample size is6.4%. The results in this chapter should
be interpreted according to this sampling error.
Remark that the statistical sample of the test population issomehow biased because
only volunteers that were interested in electric bicycles took effort to participate. So,
the test results could not be used to to sketch the market potential. The market is
sketched by means of the investigation of chapter3.

2.3 The standard questionnaire

When a person decided to test one of the pedelecs of the lending service, he was
asked after the test period to fill in a standard questionnaire including questions on
10 pedelec topics. The complete questionnaire is given in appendixB. The answers
are collected and discussed in the following subsections.
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2.3.1 The pedelecs of the lending service

Type/ bicycles Tests Weight Motor Battery
Brand [#] [#] [kg] Type Type

Yamaha Pas 8
76 28

pedal axis NiCd/NiMh
MBK Axion 2 DC 24V 235W 24V 5/7Ah
Yamaha Easy 2

72 27
pedal axis NiMh

MBK Fizz 9 DC 24V 235W 24V 7Ah

Sachs Elo-bike 10 50 31
Hub NiCd

DC 24V 300W 24V 7Ah
Merida

10 29 29 Pedal axis
Lead acid

Prescoot 2 × 12V 9Ah
Merida

1 4 25 DC 24V 230W
NiMh

Stepscoot 25.2V 9Ah

Flyer F6 5 12 33
Pedal axis NiCd/NiMh

BDC 36V 170W 36V 5/9Ah

Table 2.1: The pedelecs of the lending service

To start up the lending service, the ETEC research group of the Vrije Universiteit
Brusselacquired 47 power assisted bicycles. The test persons couldchoose between
five different power assist systems. They are all mentioned in table2.1 with their
most important characteristics: the available number of each brand, the number of
tests that were performed per pedelec type, the weight, the mounting place of the
motor, the motor power and voltage, and the battery type, voltage and capacity.

2.3.2 The test persons

The participants were mainly interested volunteers who heard about the lending project.
They were equally distributed between male (#133) and female (#111). The question-
naire started with some personal data. All ages between 22 and 80 years old were
represented. Their physical condition differed a lot: their body mass index (BMI)
varied between 17 and 44kg/m2. The age and BMI distributions of all participants
are given in figure2.1. A difference is made between male and female participants.
Most of the test persons used the pedelec for about one month,but the test duration
was varying between 3 days and 10 months. The average test period was about 50
days.

2.3.3 The covered distance

The total distance covered by all users was 44.600km. The histograms of figure
2.2 show the percentage of male and female test persons that cycled a certain total
number of kilometers and a certain daily average. The averages mentioned in figure
2.2 show that the female test persons cycled on the average 25km more than their
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Figure 2.1: Boxplots of the age and BMI of the test persons
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Figure 2.2: Histograms of the total covered distances and the average daily covered
distances

male colleagues. A possible reason can be found in figure2.3. In this figure the
percentage of test persons that were dissatisfied about the ease of use, the weight, the
charging, the motor assistance level, the battery range andthe overall quality of the
pedelec are given seperately for men and women.
Men were more sceptical about all aspects of the pedelec. Maybe the image of an
assisted bicycle is difficult to reconcile with the healthy and sporty image where men
like to be identified with.

By far the most disappointing aspect is the autonomy or battery range. The dissatis-
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Figure 2.3: Percentage of 244 persons that are dissatisfied with different pedelec aspects

faction about the autonomy of the pedelecs is rather remarkable when looking at the
short daily covered distances in table2.2. The energy in the batteries (about 150Wh)
should be enough to drive about 20km on a hilly circuit with 3m/s head wind at
an average speed of 13km/h 1, while the average covered distance is only 4.3km.
However, the capacity of the batteries decreases quickly with lifetime, so the fear of
ending up with an empty battery is not totally groundless.
Figure2.4 shows how many kilometers were ridden per pedelec model. Thewider
boxes and the left vertical axis represent the totally covered distance by all users of
one pedelec model and the smaller boxes (right vertical axis) represent the average
covered distance of these users during their test period.
The first place for the Swiss Flyer in average covered distance is not really a surprise.
They were seen as the upper class pedelecs of the lending service and were mainly
placed at the disposal of people who were used to cycle. The low average covered
distance for the Yamaha Easy may be due to the higher percentage of technical prob-
lems with this model (see figure2.9).

2.3.4 Changes in the behaviour patterns of pedelec users

The addition of an electric auxiliary motor to a conventional bicycle has lead to a
new means of transportation. These electric bicycles will take their own share of
the existing trips and/or may introduce new trips. This may lead to changes in the
mobility patterns of the people. Therefore the test personswere asked which means
of transportation they replaced by their pedelec. Also the main reason for their ped-
elec trips were asked. Three reasons were suggested: commuting (trips home-work),
shopping and leisure. Most of the respondents mentioned several categories. Figure

1simulation with the graphical user interface of chapter12based on the ID drive cycle from chapter
11and a Sparta Ion pedelec
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Figure 2.4: Covered distance versus pedelec model

2.5 summarizes the answers. The height of the bars represent thenumber of people
that replaced the respective means of transportation by their pedelec. The different
fillings represent different reasons for the trip. The high score of the conventional

Figure 2.5: Which means of transportation are replaced by the pedelec and what are
pedelecs used for?

bicycle replacement is not surprising, considering the resemblance with the pedelec.
It is encouraging to see that almost everybody mentioned that at least for some trips
the pedelec could replace King Car [28]. The pedelec was also appreciated as a good
alternative for the public transport, especially in city environment. Except for the
(typically male) motorbike, there was no difference between the sexes. The reasons
for the trips where equally distributed between commuting,shopping and leisure:
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• 66% used the pedelec at least once for commuting.

• Probably due to the first contact of most of the test persons with the phe-
nomenon of the pedelec, 60% of the respondents made trips forpure leisure.

• In spite of some complaints of the bad facilities for shopping, 57% succeed
doing his/her shopping with the pedelec.

• 43% of the respondents also made mention of new trips due to the availability
of the pedelec.

So at first sight people seem to become more mobile with the possession of the ped-
elec.

2.3.5 Time gain

0 5 10 15 20 25 30 35
0

5

10

15

20

25

30

35

%

Time gain for commuting [min]

Histogram of the realized time gains

Average time gain = 10min

Figure 2.6: Histogram of the realized time gains by using thepedelec for commuting

A time gain was realized by 37% of the test persons when using the electric two-
wheeler for commuting instead of their normal commuting vehicle. The histogram
of the time gains realized by those test persons is given in figure 2.6. The average
time gain is 10 minutes for a single trip. This means that a pedelec commuter may
gain about 76 hours on a yearly base. This is time that otherwise would be passed
getting stuck in traffic, or waiting for a bus/tram. Althoughthe pedelec is intrinsic
slower than cars or public transport, the waiting time may bemuch shorter.

2.3.6 Appreciation of the pedelec

The test persons were asked about the performance of the tested pedelec on 6 do-
mains: the global ease of use, the weight, the ease of charging, the level of the motor
assistance, the autonomy and the global quality and reliability.
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Figure 2.7: Appreciation of some pedelec aspects: excellent=5, very poor=1

In figure2.7the appreciation scores are given per pedelec model. A scoreof 5 means
an excellent performance on the topic, a score of 1 means a very poor performance.
A two-sided rank sum test was performed to quantify the differences in appreciation
between the different models. Because the rather small number of test persons per
pedelec, the following assertions only have a limited probability (p).

• The Merida scores worst for ease of use (p=90%)
• The users of the Flyer seem to suffer the most of the weight (p=75%)
• The limited autonomy is more experienced by Sachs and Flyer riders (p=90%)

The last two remarks can be partly explained by the fact that the Flyer users were
mostly trained cyclists with other expectations from a pedelec. Except for the auton-
omy the pedelec seems to pass for all mentioned categories, although the results (see
also figure2.3betray that there are still a lot of things to improve:

• 8% of the respondents found the level of assistance inefficient
• 12% had doubts about the quality/reliability of the tested pedelec
• 13% disagreed with the quote ‘the charging is easy’
• 58% wanted the pedelec to have a greater autonomy

2.3.7 After the test

One of the positive effects of the test period is the changed cycling behaviour of the
participants. At least 36% said that they ride more kilometres with their conventional
bicycle since they finished the test.
About purchasing pedelecs there was more doubt: Mentioninga (rather low) cata-
logue price of¤1000, 56% of the male respondents called themselves prepared to
buy an electric bicycle, although only less than 3% really bought one. From the
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female participants only 43% was prepared to buy one despitetheir more positive
remarks.

2.3.8 Infrastructure

Everybody that cycled once in a city like Brussels knows thatthe cycle infrastructure
is often inadequate. So also in this test 79% of the respondents complained about
the lack of cycle tracks. 65% was dissatisfied about the number of parking places for
bicycles.

2.3.9 The most typical user

Another question asked to all participants was: ‘Who is, according to you, the most
typical pedelec user?’ The answers were very different and are categorized in table
2.2. Only 197 test persons gave a valid answer on this question.

Most typical user %

1 Commuters 61.4
2 (Middle)aged people 32.5
3 Less sporty people looking for physical training24.9
4 People in hilly regions 12.7
5 Everybody 11.7
6 Disabled persons 10.7
7 Sporty people 6.6
8 Shopping people 5.6
9 Recreational users 4.6
10 Workers in suit 3.6
11 People living in rather flat areas 3.6
12 Long distance cyclists 1.5
13 Students and daredevils 1.5

Table 2.2: The most typical user according to 197 respondents

Commuters are supposed to be the main target group. Of coursethe distance between
work and place of residence cannot be too long. If the distance is out of the autonomy
range, a combination of public transport and pedelec may be asolution. Considering
the fear for theft (table2.3) there should be at least a guarded parking place at work
or at the station. Because of the time people spend at their job, charging at work is
no problem. In that case a portable battery is certainly an advantage.
There were some remarkable things about the answers on this question: The young
and sporty participants mentioned the elder and less sportypeople as target group.
They mainly mentioned the categories 2, 3, 4 and 6 of table2.2. The elder and less
sporty participants on the other hand mainly answered that apedelec is something for
young and dynamic people (categories 7, 9, 10 and 13).
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Should we conclude that these bicycles are still too much human powered for the
people who already gave up cycling long time ago and give too few surplus value for
the real cyclists?
According to 11% of the respondents the pedelec is a typical product for slightly dis-
abled people (people with heart or breathing problems, withlimited force,...) while
the test persons with heart problems still doubted about theproduct.
Also the contrast in opinion about the adequacy for hilly regions (table2.2) is re-
markable. This is not merely a subjective feeling, because the performance analysis
of part II also shows that different pedelecs can have very different climbing-abilities.
Other rather unexpected target groups were ‘people with a lot of time’ and ‘environ-
mental conscious people’. Some participants explicitly told us that the pedelec is
neither suitable for the busy city traffic nor for leisure cycling.

2.4 Analysis of the logs

2.4.1 General remarks

Remarks %

1 Technical problems 51.6
2 Too heavy 46.7
3 Small autonomy 42.9
4 Lack of cycling infrastructure in the city 25.8
5 Dangerous in busy traffic 22.0
6 I used the eco-assistance 22.0
7 It is a real pleasure to cycle 21.4
8 Too expensive 19.8
9 Fear of theft 19.8
10 The weather conditions influenced my cycling behaviour19.8
11 Parking place on ground floor without treshold is needed18.7
12 Insufficient assistance power 15.9
13 Inadequate gearbox 15.4
14 Electric cycling needs a learning process 13.7
15 Luggage problems 9.9
16 Bad seat comfort 9.3
17 Needs extra suspension 6.0
18 Assistance should last above 25km/h 6.0
19 Poor design 4.9
20 I enjoyed the curiosity of the people in the street 4.9
21 Assisted cycling results in laziness 3.8
22 I was really dissatisfied 3.8

Table 2.3: General remarks of 182 respondents
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Next to the standard questionnaire of appendixB, people were asked to keep a log
with daily trip information. A textbox for remarks was available per trip. In the
logs people gave a lot of comment about their experiences with the electrical bicycle.
An attempt is made to categorize this spontaneous information. The reference group
became smaller because not everyone took the time to write down his experience. So
only people giving at least 2 remarks were seen as valuable. This resulted in a group
of 182 test persons. The most quoted remarks with the percentage of respondents by
whom they were mentioned are given in table2.3.

2.4.2 Technical problems

Figure 2.8: Percentage of technical problems

Technical problems were the number one cause for annoyance among respondents:
more than 50% of the participants had to cope with one or another technical problem
during the test period. A distinction has been made between mechanical problems
that could have happened with a conventional bike too and problems due to the elec-
trical character of the bicycle. As shown in figure2.8 most of the problems (31%)
were mechanical. A selection of the most occurring mechanical problems is given
below:

• flat tyre
• malfunctioning of the mileometer
• defective light
• problems with gears
• chain problems
• bad seat attachment
• problems with pedal brake
• ...
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A problem was considered electric if it was due to the presence of the battery and/or
motor. The following problems were mentioned:

• sudden break down of the motor

• annoying noise while charging

• difficulties with charging during cold weather

• unreliable assistance

• inadequate brakes for the heavy motor and battery weight

• battery charging problems

• bad mounting of the battery

• instability due to the heavy motor and battery weight

• ...

Figure 2.9: Percentage of technical problems per pedelec. The size n of the samples are
given for every pedelec.

The share of technical problems seems to be high. The percentages of mechanical
and electrical problems per pedelec are shown in figure2.9. Concluding that all those
pedelecs are worthless, would be unfair. The pedelecs were lent to a lot of people who
were not always taking enough care of them. Of course the opinion about pedelecs
will be hardly influenced by the number of technical problemspeople had to cope
with. Moreover the users were asked not to repair the bikes themselves, but to bring
the defective pedelecs back to the university to repair. This extra effort also may have
caused annoyance.

2.4.3 The weight and suspension

The second most occurring remark concerned the weight of thepedelecs. While
the respondents were rather mild in the condemnation of the weight in the standard
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form (see figure2.7), 47% complained about weight and ease of use in their spon-
taneous comment. These remarks were often given by people ending up without
battery power during a cycling tour. It is a fact that although a pedelec can be used
without assistance, the efficiency is often lower than that of a common city bike. The
remarks learnt that the users of the Yamaha Easy suffered statistically more from the
extra weight (64% against 40% for the users of other pedelecs) although it is one of
the lighter pedelecs. The demand for extra suspension is most mentioned by the users
of the Sachs.

2.4.4 Other remarks

Table2.3 with general remarks also shows the importance of a parking place on the
ground floor. 19% of the test persons mentioned that they had parking problems be-
cause of one or more steps. The extra effort to lift the pedelec out of its parking
place, combined with the multiple anti-theft systems make the pedelec less attractive
for very short distances. Knowing that their autonomy is also rather small, we can
conclude that the electrically assisted bicycle is most interesting for distances be-
tween 5 and 15km: a distance within conventional bicycle range, but often covered
by car...

2.4.5 The correlation of the remarks with the covered distance

Figure 2.10: Subcategories of respondents according to thecovered distance during the test
period

In order to investigate the correlation of the remarks with the covered distance, the
respondents were divided into three subcategories: respondents who rode less than
100km, respondents who rode more than 100km but less than 250km and respon-
dents who rode over 250km during the test period. There relative numbers are given
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in figure2.10.
The remarks mentioned on the abscis of figure2.11seemed to correlate with the cov-
ered distance. If one uses the common statistical significance level of 95% to reject
the null hypothesis, only the number of complaints about theweight correlate with
covered distance.

Figure 2.11: Correlation of the remarks with the covered distance

• The problems of the weight and the autonomy become bigger by covered dis-
tance. Knowing that people of the third category (> 250km) were used to
cycle, they had different expectations from their pedelec.Some of them sug-
gested that they were faster with their light conventional bicycle. However
speed seems to be of secondary importance for most of the manufacturers: the
reduction of the effort has the priority. Also the restriction by law cannot be
denied (see section1.5).

• It may sound contradictory, but those who cycled least kilometres were com-
plaining the most about the busy traffic.

• It is mainly the middle category that enjoyed riding. That can be partly ex-
plained by the smaller number of technical problems that this category experi-
enced.

2.5 Conclusions of the lending service

Three years of organized test rides with pedelecs yielded a lot of feedback from the
users. The standard questionnaire and the logs of the test persons gave a good idea of
the appreciation by the daily users. Unfortunately, the number of tests was too small
to make statistically significant differences between the different pedelec and battery
types concerning the free remarks, the typical user, the time gain,...
The results of the lending service are summarized as follows:
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• The pedelecs are well appreciated according to the results of the standard ques-
tionnaire. Only the small battery range is seen as a real problem.

• The log books somehow shade the positive feedback of the standard question-
naire: A lot of test persons find them too heavy, not attractive enough and are
frightened by the many technical problems. Although the last generation of
pedelecs countered a lot of the complaints, still prices andweights stay above
the client’s wish.

• The electric bicycle is certainly not a simple alternative for normal bikes, but a
new mobility means, especially suited for distances between 5 and 15 km.

• Pedelecs are suitable for commuting as well as shopping and leisure.

• A substantial time gain can be realized when using the pedelec for commuting.

• Appreciation of the tested pedelecs is highly dependent on the cycling history
of its user.

• Cycling infrastructure still has to be optimized for a real breakthrough.

A repetition of the lending service could already be interesting to see how things
changed since the finishing of the last tests. The city of Brussels, for instance, made
quite some effort to improve the poor cycling infrastructure [27]. Also the pedelec
technology has evolved a lot (better batteries, lighter weights,...) since the introduc-
tion of Yamaha’s PAS system in 1995. And as is proved in the next chapter, a lot of
new bicycle manufacturers joined the pedelec market.
Based on the knowledge from these lending service, a better experimental design is
possible and would lead to more distinctive results with thesame research efforts.





3
The Pedelec Market in Flanders

As a first part of the subjective performance analysis of pedelecs, chapter2 polled for
the user’s needs. This chapter will focus on the Flemish pedelec market as it is seen
through the bicycles dealer’s eyes.
The worldwide pedelec market has been growing fast during the last ten years. Many
bicycle producers introduced a motor assisted bicycle model and launched it under
a promising ’e-name’. According to the National Institute of Statistics of Belgium,
there are about 4 million bicycles in Flanders. Compared to atotal number of 6
million inhabitants, Flanders might be called a bicycle region. Estimated 400.000 bi-
cycles are bought each year. 30% of the commuters in cities use the bicycle and 53%
of the displacements to school are done by bicycle [26]. Looking at the resemblence
of the pedelec with the bicycle, these figures prove that Flanders is a potential market
for pedelecs.
Research by a Flemish consumer organization for bicycles showed that 82% of the
Flemish cyclists bought their (conventional) bicycle in a specialized bicycle dealer
shop [29]. This means that Flemish people trust the advice and service of these deal-
ers for making their bicycle choice.
In december 2005, 450 of these dealers were asked to fill in an electronic question-
naire about their pedelec experiences. More than hundred ofthem were prepared to
answer and helped sketching the market situation. The answers also clearly show
how dealers appreciate today’s pedelec generation. Next tothis questionnaire 110
websites of bicycle shops were checked for data about pedelecs. The data of the
dealer inquiry and the websites are discussed in this chapter.
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3.1 The questionnaire

Searching the Flemish ‘Gouden Gids’ and the internet yielded 866 addresses of dealer
shops. The option of sending them a letter with a questionnaire was left when ap-
peared that 468 of them could be reach by e-mail. The electronic questionnaire was
kept simple to increase the reply rate. Table3.1shows the queries. The answers are
discussed in the next sections.

Do you offer pedelecs or power kits to your clients?
� Yes
1. Which brands/types do you offer?
2. What is the shop price of these products?
3. How many pedelecs did you approximately sell in the past year?
4. How many conventional bicycles did you sell in the same period?
5. Do you get enough information from the manufacturer to be able

to repair/test the electric parts (motor, controller,
battery,...) in your own workshop?

6. Are you satisfied yourself about the performance of these products?
7. What could be improved to the technology?
� No
1. What is the main reason for not offering pedelecs?

Table 3.1: The electronic questionnaire sent to the bicycleshops

3.2 Brands on the Flemish market

In table3.2all occurring brands are alphabetically listed in the first column. The sec-
ond column mentions whether this brand represents a full mounted pedelec, a power
kit or both. Also two folding bicycles are mentioned. The third column is a link to
the website of the manufacturer, or a link to a website where the discussed pedelec
can be found.
The total number of reached dealers was 212: 102 via e-mail, 110 via their website.
According to the formula of Cochran adapted for small populations [35], for a 95%
confidence level, the level of precision for the sample size of 212 is6.0% and for a
sample size of 102,9.3%. The results in this chapter should be interpreted according
to these sampling errors.
In figure3.1the absolute number of contacted dealers selling a certain brand is given.
Brands that only occurred once were excluded. Also some brands were put together
because of the similarity in their electric drive system.
The most occurring brand in the inquiry was Electronic Bike Developments, a Flem-
ish firm offering the pedelecs called E-move and E-manuel. EBD is followed by two
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brand type website
Antec pedelec/kit www.antec.nl

Batavus (Ion) pedelec www.onzichtbaremotor.nl
Bertin/Sparc pedelec www.fietsenvanneste.be

Binbike pedelec/kit www.euromoto.be
Bionx kit/pedelec www.bionx.be

Eazy mouv pedelec www.eazymouv.com
Electronic

pedelec www.ebd.be
Bike Development

Enik/bionx pedelec www.elektrischefiets.be/elekfietsenbionx.html
Enik/sparc pedelec www.elektrischefiets.be/elekfietsenenik.html
E-zee bike pedelec www.ezeebike.com/home.htm

Flyer pedelec www.flyer.ch
Gazelle pedelec www.gazelle.nl/www2/easyglider
Giant pedelec www.lafree.com

Heinzmann kit/pedelec
www.heinzmann.de
www.estelle.de/e/fahrradmodelle.asp

Joris E-bike pedelec www.joris-e-bike.com
Koga Miyata (Ion) pedelec www.koga.com/nl

Kynast pedelec www.extraenergy.org
l’Avenir pedelec www.lavenir.be
MBK pedelec www.mbk-cycles.com

Panasonic folding bicycle www.pocketnsoul.com/evstart
Piaggio pedelec www.piaggio.com

Powabyke pedelec www.powabyke.com
Renault zapping folding bicycle www.pocketnsoul.com/evstart

Sachs pedelec www.sachs.be
Schachner pedelec/kit www.elektrobikes.com
Sparta Ion pedelec www.sparta.nl

SRAM sparc kit www.sram.com
Swizzbee pedelec www.swizzbee.ch

Thompson/bionx pedelec
Venturelli pedelec www.venturelli.be
Yamaha pedelec www.yamaha-motor.co.jp

Table 3.2: Alphabetic list of pedelec brands found in flemishbicycle shops

dutch firms, Sparta and Batavus, who both use the same electric drive technology. In
the top ten also two other dutch firms, Gazelle and Antec, are present. Remarkable is
also the presence of 2 North American products: Bionx from Canada, and Sram from
the USA. The only other Belgian manufacturer in the top ten isl’Avenir. Giant and
the Yamaha PAS system are representing Asia in the top ten.
Figure3.2 learns that 71% of the brands have their origin in Europe. Although the
pedelec is far more popular in many Asian countries, (e.g. China sold 1 million ped-
elecs in 2002 [30]) only 13% is from Asian origin.
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www.onzichtbaremotor.nl
www.fietsenvanneste.be
www.euromoto.be
www.bionx.be
www.eazymouv.com
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www.piaggio.com
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Figure 3.1: Percent of offering dealers per brand (the sample size is 212 dealers).

71%

13%

16%

Europe
Asia
America

Figure 3.2: Origin regions of the brands

3.3 Dealers and pedelecs

About 85% of the responding dealers were offering pedelecs or power kits. One third
of the dealers offer one single brand. More than 50% offer at least 2 different brands
of pedelecs. The maximum number of brands for one dealer was 8! Most of them
were selling full mounted pedelecs. The main reason may be that most of the oc-
curring brands were only offering full mounted pedelecs. But even the power kits of
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Average number of pedelecs per dealer 13.4
Average number of conventional bicycles 402
Maximum number of pedelecs for 1 dealer200

Average number of brands per dealer 2

Table 3.3: Sales figures of the year 2005 for dealers offeringpedelecs

Pedelecs Conventional bicycles
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Figure 3.3: Boxplots of the sales figures for pedelecs and conventional bicycles for the year
2005

the manufacturers were sold already mounted by the dealer ina conventional bicycle.
Only two dealers mentioned the sale of power kits without a bicycle.
Hardly 38% of the visited websites were mentioning pedelecs. This is much less
than what would be expected from the results of the responding dealers. Whether
the result may be skewed either because dealers who do not offer pedelecs did not
take trouble to answer the inquiry, or because the dealers find it unnecessary to make
publicity for these products on their websites. This means that a lot of dealers are
not actively promoting the pedelec. Their main concern is the conventional human
powered bicycle.
The last reason is understandable if one looks at the averagesales number of pedelecs
and conventional bicycles in table3.3 and figure3.3. For dealers offering pedelecs,
only 3.3% of the sold bicycles are pedelecs. And as 3 dealers did not want to offer
pedelecs because of the small profit margin, the profit part coming from pedelecs
sales will be even less than 3.3% of the total dealer profit.
Of course there were some proverbial exceptions: one respondent stated to be special-
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ized in electric bicycles and two visited websites were onlyoffering electric bicycles.
However, the conclusion may be that one cannot expect a market boost by the mar-
keting efforts of the dealers. They seem not to be waiting fora breakthrough. The
marketing has to be done by the manufacturers or by the government.
The pedelec offering dealers in Flanders were divided in 4 categories:

1. dealers who sold less than 5 pedelecs in 2005

2. dealers who sold less than 10, but at least 5 pedelecs in 2005

3. dealers who sold less than 20, but at least 10 pedelecs in 2005

4. dealers who sold more than 20 pedelecs in 2005

Table3.4shows the percentage of dealers belonging to each of these categories, and
the relative number of pedelecs that they represent.

Category Dealers percentagePedelecs percentage

0 < # < 5 29 6
5 ≤ # < 10 29 13
10 ≤ # < 20 24 21

# > 20 18 60

Table 3.4: The division of dealers in 4 categories

So 15% (18% of the 85% offering dealers) of all responding dealers account for more
than 60% of the pedelec sales.

3.4 The number of pedelecs in Flanders

An idea of the total number of pedelecs (TNP ) sold in Flanders in 2005 is obtained
by a combination of the following data:

• 82% (p1) of flemish cyclists buy their bicycle in the specialized dealer shop
[29]

• There are about 950 (dn) bicycle dealer shops in Flanders [31]

• 13.4 (pn) is the average sales number of pedelecs per dealer in 2005

• 402 (cn) is the average sales number of conventional bicycles

• 61% (p2) of the dealers offer pedelecs (combined data of visited websites and
inquiries)

TNP =
dn · p2 · pn

p1

=
950 · 0.61 · 13.4

0.82
= 9470 (3.1)
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Verification of this total pedelec sales number of 9470 in Flanders in 2005 can be
done by calculating the number of conventional bicycle sales (TNC) in the same
way:

TNC =
dn · cn

p1

=
950 · 402

0.82
≈ 466000 (3.2)

This number is close to the number given by the national institute of statistics [26].

In the Netherlands, the year 2005 was good for 1,2 million conventional bicycle sales
and 30000 electric bicycles. For the latter category, this was an increase of 50%
compared to 2004 [32]. So, the Netherlands as well as Flanders have about 1 pedelec
for 600 people, but the Netherlands have a small lead to Flanders.

3.5 Pedelec prices in Flanders

Many dealers gave detailed customer prices for their products. Other dealers only
gave minimum and maximum prices. For the latter category, all prices between the
minimum and maximum were also included in order to get a distribution of prices
between the all dealer minimum (see table ref3.5) and the all dealer maximum. This
distribution is presented in figure3.4.
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Figure 3.4: The distribution of pedelec prices in Flanders

Compared to the international prices given in table3.6 these prices seem to be at
the high end. One may conclude from this price discrepancy that pedelec prices
are increased the last years, or that the prices for Europe inreference [30] are a bit
underestimated.
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Minimum price ¤695
Maximum price ¤3600
Average price ¤1691

Table 3.5: The 2005 market price of pedelecs in Flanders

Region Average price Sales number 2003 [x1000 units]

China ¤260 1000
Japan ¤650 180
EU ¤900 65

USA ¤1300 35

Table 3.6: The market price of pedelecs in the world in the year 2003 [30]

3.6 Main reasons for not distributing pedelecs
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Figure 3.5: Reasons for not distributing pedelecs

The 15% respondents who told not to offer pedelecs gave many different reasons for
this absence. These reasons are collected in figure3.5 in order of importance.
These reasons are subdivided in 4 categories shown in table3.7. More than one half
of the reasons deals with a distrust in the pedelec technology. A lot of work is left
to be done by manufacturers to convince the dealers of their product quality. At
the same time we have to admit that sellers of the best sellingpedelecs were quite
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Reason Occurrences [% of n=46]

Distrust in pedelec technology 52
Price 26

Practical reasons 11
Lack of pedelec knowledge 11

Table 3.7: Main Reasons for not distributing pedelecs and their relative occurrence

satisfied with the two-wheelers and the support of the manufacturers (see3.7).

3.7 Satisfaction with the technology and the manufacturer
support
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Figure 3.6: The shortcomings of the pedelec through the dealer’s eyes

Generally, the dealers offering pedelecs are satisfied withthe performance of their
pedelecs. Although only 11% was really disappointed about the technology, a lot of
possible improvements were given as an answer to question 7 of the questionnaire
(table3.1).
The shortcomings that were mentioned are ordered by importance in figure3.6. For
the matter of the shortcomings, the dealer response paralleled user response2.3.6:
also dealers would like to see a higher autonomy and a lower weight and price. Table
3.8split up the mentioned shortcomings in 4 categories that were also mentioned by
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the users. The total number of shortcomings mentioned by allusers was 743, the total
number of shortcomings mentioned by all dealers was 100.

Shortcomings Dealers Users
n=100 n=743

Technical shortcomings 81% 55%
The high market price 12% 7%

The lack of information 5% 4%
The external barriers 2% 34%

Table 3.8: Comparison between mentioned shortcomings fromdealers and users

The second column is the percentage of dealers that mentioned the shortcoming spec-
ified in the first column. The third column of table3.8is the percentage of test persons
(derived from section2.3) that mentioned the same shortcoming.
More than 80% of the mentioned remarks by dealers are complaints about the im-
perfect technology. Although only 7% of the given remarks bythe test persons is a
complaint about the price, still 20% of these persons would like to see a lower price
(table2.3). Only 11% of the dealers think a lower price is required to convince the
client.
Concerning the external barriers, only the legislative speed limit was mentioned by
the dealers. Users had many more remarks about external barriers such as infrastruc-
ture problems, fear of theft,weather dependency,... This could be an indication of the
lack of real world riding experience of the dealers with the pedelecs.
According to figure3.7 79% of the dealers was satisfied with the support of the

21%

26%

53%

Not satisfying
satisfying
very well

Figure 3.7: The appreciation of the support from the manufacturers

manufacturer. Most manufacturers are aware of the need for support, looking at the
positive feedback that many dealers gave about service points, education and the ease
of getting spare parts. 21% was dissappointed about the service of the manufacturer.
Part of them decided on this base to stop the cooperation.
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3.8 Misunderstandings

Another conclusion withdrawn from the answers of the dealers is that there are still a
lot of misunderstandings about the technical working principle of the pedelec. Some
dealers persistently ignore the first law of thermodynamicsand wonder why one has
to reload the battery from the grid, while a simple dynamo could do the same during
cycling.
Other dealers suggest a financial intervention of the National Health service, to help
disabled people to purchase their pedelec.

3.9 Conclusions of the market research

The electronic questionnaire to the dealer shops learned a lot about the pedelec pen-
etration into the Flemish market and the dealer’s experiences with pedelecs.

• A lot of brands are found on the Flemish market and most of themare European
products.

• About 10.000 pedelecs are sold in Flanders in 2005.

• A minority of the dealers account for a majority of the pedelecs sales.

• For the matter of the shortcomings, the dealer response paralleled the user
response.

• Quite some effort is left to be done by the manufacturers to convince the dealers
of their product quality.

• Although most dealers are satisfied with the electrical assistance, they are not
actively promoting the pedelec.

• However, promotion of pedelecs is justified and necessary, because

– they might be a possible solution for the traffic congestions(see figure
2.5) within cities, as far as they move people from car-driving to cycling.

– frequent cycling on a pedelec can also improve physical condition [33].
– they move people with light physical constraints to (re)discover the ben-

efits of cycling.
– and they could free us from road unsafety, noise pollution,CO2-emissions,

alienation amongst people, corpulence, lack of space, oil problems,...[3]
– Recent research stated that there are also psychological benefits of cy-

cling to work [34].

• The condemnation as ‘bicycle for disabled people’ is never far away nor by
users neither by dealers (see chapter2).

• Some persistent misunderstandings about the working principle of pedelecs
(by users as well as dealers) still have to be removed.





Part II

An Objective Approach of the
Pedelec’s Performance



User feedback is far from sufficient to get an objective idea of the performances of
a pedelec. The smoother the motor power assists, the less people noticed that they
really got motor help. Reversely, some users praised the electrical assistance to the
sky while it was not even turned on. So the perception did not always parrallel the
amount of assisted power. There is need for a standard testing method to quantify the
net motor contribution and the battery range.
The standard test results could be used

• to enable the consumers to compare different pedelecs independent from man-
ufacturer data

• to help manufacturers in the design process of their pedelecs

• to check whether the pedelecs are conform the legislation (see section1.5).

Part II of this work describes the development of a test installation and a test method
to measure the performance of a pedelec in an objective way.



4
The Performance Analysis of a Pedelec

4.1 Objectives of the performance analysis

There were two major goals for the intended performance analysis:

• The development of a test method for measuring the performances of the com-
plete drive train of a pedelec under realistic driving conditions.
Therefore a new test application is designed. This testbench design is explained
in chapter5. The applied measuring method is described in chapter6.

• The defining of unambiguous performance parameters.
This will be the main topic of this part II. Before the performance parameters
can be calculated, the pedelecs were modelled to estimate their behaviour in
every possible operation point. The regression modelling that is used for this
purpose is discussed in chapter7. Chapter8 discusses the application of this
regression technique on the pedelecs. The visualisation ofthe models is a first
tool to interprete the performance of a pedelec. This is shown in chapter9.
The definition of the performance parameters is given in chapter 10. In chap-
ter 11 the introduction of a standard drive cycle is discussed. Theobjective
performance analysis is concluded by the presentation of a graphical user in-
terface that enables a faster and easier processing from themeasurements to
the performance parameters chapter12).

Of course there are standard methods to measure separately battery efficiency, motor
efficiency and bicycle drive train efficiency under laboratory conditions. Test installa-
tions for complete bicycles do exist (e.g. figure4.1), although the working conditions
often differ a lot from the road conditions. In contrast to these installations, fixing the
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Figure 4.1: Existing test bench [36]

frame or removing a wheel is considered as no option for this performance analysis.
The performance of the pedelec has to be considered in normalposition, both wheels
rolling freely on a flat surface. Because of their poor reproducibility, simple road
tests are also rejected.

4.2 Basic idea

C D
E

Pc Pt

Figure 4.2: Comparing input and output power of a pedelec

The basic idea for the performance analysis of pedal electric cycles is to consider the
pedelec as a black box. The cyclist is supplying a certain human input power (Pc)
to this box. Based on one or more measurements, the pedelec controller reacts by
adding a certain amount of auxiliary power resulting in a total ‘useful’ traction power
(Pt). This control strategy will differ by manufacturer and by pedelec. Analyzing the
relation between both power flows in the normal operation area (6.2) will be sufficient
to model the pedelec behaviour.
This analysis is enabled by the construction of a pedelec test installation. Figure4.3
shows the schematic line-up of the pedelec test installation. The implementation of
the basic idea is realized by controlling two input parameters:

• Thebicycle speedv
• Thetorque on the pedalsor thecyclist torqueTc

The combination of both inputs should result in an acceleration of the bicycle on a
conveyor belt, but a chain fastening the back of the bicycle to a fixed point keeps the
bicycle from moving forward. Thetraction forceFt on this chain is a measure for
the withdrawn acceleration, and thus for the developed traction power (see figure4.3
and section6).
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Figure 4.3: The line-up for the pedelec performance tests





5
The Design of a Pedelec Testbench

This chapter will discuss the practical realization of a testbench enabling the perfor-
mance analysis of a pedelec.

5.1 The treadmill

Figure 5.1: The treadmill

An old runner’s treadmill is extended to a3m long bicycle treadmill and equipped
with a new conveyor belt. The result is shown in figure5.1. The belt has a width
of 0.5m and is composed of four layers (total thickness =2.8mm) of which the
uppermost is a smooth adhesive PVC layer, imitating the roadsurface. The belt is
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driven by a speed controlled induction machine (frequency controller = ABB Sami
GS, rated power =4.0kW ). So, any linear speed of the conveyor belt between0 and
30km/h can be forced to the pedelec.

5.2 The dummy cyclist

Figure 5.2: The ‘dummy cyclist’

Figure 5.3: The automate torque control of the dummy cyclist

In order to quantify the human power input on the pedals, a controllable ‘dummy
cyclist’ is required. Therefore a DC-motor with an angular gearbox is mounted on
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the saddle rod. A pulley replaces the pedals and their cranks. The transmission is
performed by a V-belt. The DC motor (rated power =2.3kW ) is current-controlled
(figure5.3) by means of a power converter (ABB DCS500).
The weight of the motor, the gearbox, the pulley and the torque sensor is approx-
imately that of a human being and also the position of the center of gravity corre-
sponds more or less with the real cycling situation.

5.3 The sensors

5.3.1 The traction force

Figure 5.4: The load cell

A load cell is attached to the chain (see figures4.3 and5.4) to measure the traction
force resulting from a certain forced conveyor belt speed and pedal torque. Because
of the mass of this load cell, gravity may influence the measurement of the force
when the chain is not completely stressed. This influence is negligible when the load
cell is mounted in the middle of the chain.
The load cell is a Sensy model 2712 of50daN calibrated to reach its full-scale range
for 15daN (accuracy class 0.1). This showed to be useful for measuringat relative
low traction forces while protecting against peak forces atthe same time. The output
signal is a4 − 20mA current signal.

5.3.2 The cyclist torque

The torque exercised on the crankshaft is measured by a torque sensor (Lorenz MR-
12, 500Nm), which is mounted onto the pulley and has an accuracy class of 0.15.
The output is a voltage signal between0 − 10V .

5.3.3 The bicycle speed

An optical encoder in the torque sensor delivers a TTL-signal from which the angular
speed of the pulley can be derived. There is no slip established between the pulley
and the bicycle chain, neither between the bicycle chain andthe back wheel nor be-
tween the rear wheel and the conveyor belt. So the TTL-signalis a good measure for
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Figure 5.5: The torque sensor

the linear speed of the conveyor belt and thus the bicycle wheels, supposing that the
transmission ratio Z (see6.1) is known.

5.4 The data acquisition system

Figure 5.6: The VXI system for the data acquisition [37]

The data acquisition applied for the tests is a VXI system of HP combined with a
Labview user interface (see figure5.6) . The data acquisition system is slightly over-
sized, so certainly not the cheapest solution for this purpose, but is used because of
its availability at the ETEC laboratory. The system was developed in the framework
of a master thesis [37] and will be discussed in more detail in the next subsections.

5.4.1 The controller

The HP 8491A controller enables (400Mb/sec) communication between the main-
frame with all measurement equipment and the PC by an IEEE 1394 interface.



CHAPTER 5 53

5.4.2 The digital multimeter

The HP E1411B5
1

2 digit multimeter is made for DC and AC voltage measurements,
or 2- or 4-wire resistance measurements at a maximum frequency of 13kHz. This
multimeter performs in the latest line-up only the offset measurements of the force
and the torque, which are taken once every time the test benchis restarted. The load
cell current signal is converted by a100Ω resistance to obtain a voltage signal.

5.4.3 The multiplexer

The measurement of multiple signals (torque and force) withthe multimeter was first
realised with the multiplexer HP E1343. The switching relais time is about 50ms,
which was considered to be too slow for the simultaneous measurement of torque
and force. Only for the offset measurements, the multiplexer is still used.

5.4.4 The time interval analyser

The TTL signal coming from the torque sensor is used to measure the angular speed
of the pedal axis (=ω). The TIA HP1740A enables us to measure frequencies up
to 80Mhz. The biggest time interval that can be measured is only 26.2ms. The
torque sensor gives 360 pulses per rotation, which means that the minimal measurable
pedalling frequencyfmin could be derived as

fmin =
1

26.2 · 10−3·360
= 0.106Hz (5.1)

This shows that the TIA was not really adapted for the slow frequencies of the pedal
turns. However this is still considered to be good enough because a pedalling fre-
quency of0.106 is rather unrealistic in steady-state driving conditions (≈ driving
less than 3 km/h in the highest gear). The TTL signal had to pass through a low-pass
filter and a differential amplifier to filter out higher frequencies and common mode
noise before giving good results.

5.4.5 The 2-channels digitizer

If one wants to measure the power balance in case of pulsatingforces and torques,
simultaneous measuring of both signals is necessary. This is realised with the HP
E1429B 2 channels digitizer. Using a 12 bit conversion and a±5, 1175V range, the
accuracy is about2, 5mV , which is considered to be more than enough.

5.4.6 The labview measuring program

The Labview 6.0 graphical programming was used for controlling the VXI system
through a personal computer. One measurement is a10s record of the angular speed
of the pedal axis, the torque of the dummy cyclist and the developed traction force
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Figure 5.7: The front panel of the Labview 6.0 interface

(a) (b) (c) (d) (e)

Figure 5.8: Developed subVIs for the use by the Laview program

of the bicycle on the testbench. The goal of the program is to write average values
for the torque, the force and the speed of this record to a datafile. For this task, the
labview program needs 2 extra inputs next to the measuring signals: The transmission
ratio Z (see6.1) and the sampling rate for the input channels.
Visualisation of the 10 second record enables the operator to judge the quality of the
measurements and there is always the possibility to reject the given record. The user
interface for measurement controls is given in figure5.7. For every subtask of the
measuring program, a subVI was developed. SubVIs are Labview subroutines that
maybe called from the main program. They are shown in figure5.8.

(a) offset.vi initialises and configures the multimeter and multiplexer to get the off-



CHAPTER 5 55

set values of torque and force.

(b) metingen.vi initialises and configures the digitizer and executes the given num-
ber of measurements of the two voltage signals.

(c) vanvoltnaarnewton.viconverts the value in volts to values in Nm and N.

(d) snelheidsmeting.vifilters out the frequency of the TTL-signal coming from the
torque sensor, and calculates the speed of the bicycle by using the transmission
ratio Z.

(e) write2file.vi averages out the values of speed, force and torque and writesthem
(if not rejected) to one of two separate Excel-files depending whether the mea-
surement was executed with or without assisting motor power.

The complete block diagram of the main Labview program is shown in figure5.9.
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Figure 5.9: The block diagram of the Labview measurement program
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5.5 The control of the test bench

Figure 5.10: The Labview interface for the setting of the speed and torque references

The characterisation of a pedelec’s performance is done by the measurement of the
traction forces at different speeds and torques. The reference values for the speed
and the torque are adjustable via another labview interfacepresented in figure5.10.
There is the possibility to choose between a pulsating or a constant torque. An open
loop control system is considered to be sufficient, because only roughly scattered
measurement samples are necessary for the intended performance analysis.
In accordance with the data acquisition system, a VXI D/A converter (HP E1328) is
used for the setting of these reference values. The Labview block diagram is designed
to convert the two chosen 16 bits values to analog voltage signals that have to be sent
to the DC motor drive and the induction motor drive respectively. In a short time, the
speed and torque of the bicycle can be adjusted to perform a new measurement.

5.6 The electrical design

After the first provisional line-up it became clear that it would be impossible to trans-
port the test bench because of the many connections to external devices. Therefore
all electric equipment (power supply, drives, control switches, electrical protection,
emergency stops,...) is put together in one enclosure with one connection for a power
supply of3 × 380V [38]. The electric diagram of figure5.11shows:

• the power supply for the drives
• the connection of some supplementary sockets
• the transformers
• the extra DC power supply
• the electrical protection equipment

Because the total loss power inside the enclosure is estimated at 1100W also a fan
and air intake grid had to be installed to keep the temperature under control.
For demonstration reasons a remote control is also installed (figure5.12). The remote
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Figure 5.11: Power supply
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control has a power button, an emergency stop, 2 signal lights (‘green’ when main
power is on, ‘red’ when motor drives are operating). Potentiometers allow to set
the references for the torque and speed when the standard data acquisition is not
available.

Figure 5.12: The remote control

5.7 Safety measures

Figure 5.13: The pull safety device

Next to the electrical safety measures, the test bench has tomeet the specifications
of the European machinery directive. Dangerous situationscan originate from the
movement of the conveyor belt (≥ 25km/h), the wheels, the V-belt or the torques
developed at the pedalling axis (peak values of125Nm can be reached). The person
holding the bicycle has to stay on a safe distance of the moving parts. This is realised
by the construction of a cage enclosing the test bench (figure5.1). At this cage an
emergency stop is fixed within reach of the operator.
When the load cell connection at the back would break loose for one or another rea-
son, all drives will be stopped. The used pull safety device is shown in figure5.13.
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For the torque and speed drivers, it is important to bring thereference values to zero
before cutting the power.
Other emergency stops are found at the electrical switchboard: one fixed at the
switchboard and one at the remote control. The practical implementation of the emer-
gency electrical circuit of the relays is given in figure5.14[38].

Figure 5.14: The emergency circuit

5.8 Remarks before Testing

A number of things are worth mentioning before one decides tostart the measure-
ments.

• The preparation of the pedelec for the performance analysismay take more
time than could be expected at first sight:

– One pedal crank has to be removed to install the pulley for thedummy
cyclist (figure5.2)

– There seems to be no standard size for the saddle rod of a pedelec. Most
of the time, a new coupling part had to be manufactured to fix the DC-
motor (which is part of the ‘dummy cyclist’ of figure5.2) on the bicycle.

• Two persons are required to perform the test bench measurements: One has to
prevent the bicycle from falling by steering, the other one has to control the
speed and the torque and has to execute the effective measurement.

• It is recommended to wear ear protection because of the high noise level which
is increasing with the belt speed.
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• It turned out to be very important to correctly stretch the V-belt, to prevent slip
between the V-belt and its pulleys.

• It is not necessarily required to measure the pedelec in all its different gears to
characterize its performance. Depending on the place wherethe input signals
for the controller (torque and/or speed) are taken, the influence of gear on the
pedelec behaviour may be negligible or not.

5.9 Conclusions

A complete testbench is designed to enable the performance analysis of a pedelec.
An effort is made to get as close as possible to the road situation.
A speed can be imposed to a conveyor belt of an old runner’s treadmill on which
the pedelec is rolling. A torque can be independently imposed to the pedal axis.
The resulting traction force is measurable via a loadcell mounted at the back of the
bicycle.
A data acquisition is developed to control the speed and torque and to read the sensor
signals. Also different safety measures are taken to protect the pedelec as well as the
steering person.





6
The Measuring Method

6.1 Determination of the transmission ratio

ω

Tc

v

Ft

Figure 6.1: The input and output parameters of the test bench

For the determination of the input and output power described in section4.2, normally
4 measurements are required:

• Tc = the cyclist torque applied to the pedal axis

• ω = the angular speed of the pedal axis

• Ft = the traction force measured at the load cell

• v = the linear speed of the bicycle

The transmission ratio Z between the linear speed (v) of the wheels and the angular
speed of the pedals (ω) is used to eliminate one speed measurement for the bicycles
tested on the bench. Because there was no noticeable slip between the bicycle wheels
and the belt, nor between the pedal axis and the rear wheel, the transmission ratio is
a constant depending on the chosen gear, and the wheel radius. The angular speed of
the pedal axis (=ω) multiplied by the transmission ratio (=Z) is a good measurefor
the average linear speed.
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Z =
2πnrrr

2πnp
=

v

ω
(6.1)

These transmission ratios are determined for every measured gear by counting the
number of turns of the pedal axis (np measured by the TTL sensor) while the rear
wheel was making a whole number of turns (nr). Also the radius of the rear wheel
(rr) had to be measured. For the tested pedelecs, Z is varying between 0.37 and 1.44.
The exact Z-values per pedelec are represented in table13.1.

6.2 The area of operation

The bicycles are measured in the on-road operation area:

• The pedalling frequency is changed from 0 to 120rpm

• The average torque is controlled between 0 and 75Nm

• The average power is limited at 400W

In this way we get the marking out of the operation area as illustrated in figure6.2.

Figure 6.2: The applied limits for power [W], torque [Nm] andpedalling frequency [rpm]

6.2.1 The pedalling frequency limit

The top value of120rpm is experimentally determined as hardly ever reached in city
cycling situations. This roughly agrees with riding20km/h in the first gear.
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6.2.2 The torque limit

The torque limit is justified by the following reasoning: when a person of75kg
pushes the pedals with his full mass, the peak torque on a crank of 17cm will reach

Tmax = Fg · l = m · g · l = 75 · 9.81 · 0.17 = 125Nm (6.2)

A single recording of the torque during cycling is shown in figure 6.3. The torque
can be approximated by a sine wave of twice the pedalling frequency, and an offset
of 135% of the amplitude.

Tc(t) = T̄c (1 + 0, 74sin (2ω̄t)) (6.3)

For a peak torque of125Nm, an average torque of

Ta = 1.35 ·
Tmax

1 + 1.35
= 72Nm (6.4)

is reached.
The transport services of the French postal operator specifies a maximum human
force of 40daN exercised by a postman on the pedals. With a crank of17cm this
corresponds with a peak torque of68Nm.
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Figure 6.3: A record of the cyclist’s torque as a function of time during cycling

6.2.3 The power limit

As experienced during tests on a home trainer, the production of 400W can be taken
as upper limit for a person of excellent fitness. By comparison, Eddy Merckx needed
an average power of485W for his world hour record in 1972 [39]. In figure 6.4 the
power of a touring cyclist of85kg (frontal area=0.511m2 , tyre pressure=345kPa) and
a racer of75kg (frontal area=0.340m2, tyre pressure=689kPa) is given as a function
of speed [40]. This reference also takes400W as a power limit.
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Figure 6.4: The power of a cyclist as a function of speed

6.3 Measurements

According to section6.1, three parameters left to be recorded: the dummy cyclist
torque imposed by the DC-motor, the bicycle speed imposed bythe treadmill, and
the resulting traction force.
The data acquisition system averages out these parameters over a time interval of
10s:

T̄c =
1

T

∫ T

0

Tc(t)dt (6.5)

ω̄ =
1

T

∫ T

0

ω(t)dt (6.6)

F̄t =
1

T

∫ T

0

Ft(t)dt (6.7)

where

• ω = the angular speed of the pedal axis
• Tc = the torque applied to the pedal axis
• Ft = the traction force measured at the load cell
• T = the 10s time of recording.

The measurements are taken in a limited number of operation points: Randomly
chosen speed and torque combinations are applied and the resulting traction force of
the bicycle is measured. Interpolation of these discrete measurements helps to get an
idea of the traction force in every point of the whole operation area. The interpolation
and averaging techniques are described in chapter7.
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6.4 Power definitions

The characterisation of the performance of a pedelec is based on a power flow rea-
soning. Therefore the cyclist’s power and the traction power will be defined first.

6.4.1 The cyclist’s power

When applying a torque, the calculation of the average powerdelivered by the (dummy)
cyclist can be written as:

Pc =
1

T

∫ T

0

Tc(t)ω(t)dt (6.8)

For steady-state measurements (constant speed and torque)the integral can be re-
duced to

Pc = T̄c · ω̄ (6.9)

In the case of a pulsating torque (expression6.3) combined with a constant speed, the
average cyclist’s power would be theoretically:

Pc =
1

T

∫ T

0

T̄c (1 + 0.74sin (2ω̄t)) ω̄dt (6.10)

= T̄cω̄ + T̄cω̄ ·
1

T

∫ T

0

0.74sin(2ω̄t)dt (6.11)

The integral of the second term in this expression is zero ifT encloses a whole num-
ber of evolutions. BecauseT is fixed for our data acquisition, an error will be intro-
duced depending on the pedalling frequency. The error will be maximum 5.3% for a
pedalling frequency of 20rpm. For a pedalling frequency of 120rpm the maximum
error is reduced to 0.9%.
No further effort is made to make the intervalT variable, because the dynamics of
the test bench make it impossible to keep the speed constant for a pulsating torque.
The elasticity of the load cell connection at the back of the bicycle causes oscillations
in the bicycle movement. So the traction force and speed are also pulsating. There
are also phase shifts between those oscillations, what makes a separate averaging of
the signals useless.
The correct way of determining the cyclist’s power in the oscillatory case is to simul-
taneously sample the torque and speed, and average the product of both signals.
Experiments with an extra spring at the load cell are performed to improve the dy-
namic response. However, these experiments were ended because the existing data
acquisition could not perform the required simultaneous measurements without extra
investment (read also chapter15).
The steady-state case is seen as sufficiently accurate for the intended performance
analysis.
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6.4.2 The traction power

On the road, the cyclist’s power is required to maintain a certain speed because there
are several forces resisting forward motion:

• the mechanical losses in the transmissions of the bicycle
• the rolling resistance
• the air-resistance
• the slope resistance

Using Newton’s law, one can state that a propulsive force
→

F p is needed to overcome
the above mentioned resistances and to be able to accelerate.

→

F p= mtot
d

→
v

dt
+

→

F air +
→

F slope +
→

F roll +
→

F loss (6.12)

On the test bench, the rolling resistance and the mechanicallosses are comparable to
the road situation and are not included in the measured traction force.
The air and slope resistances are absent.1 However, the bicycle exercises a traction

force
→

F t (equation6.13) on the loadcell that is a measure for the net propulsive power
or the traction powerPt. This is the power that in normal road condition can be used
to

• accelerate
• defeat the air resistance
• defeat the slope resistance

→

F t=
→

F p −
(

→

F roll +
→

F loss

)

= mtot
d

→
v

dt
+

→

F air +
→

F slope (6.13)

In steady-state conditions the traction power can be written as:

Pt =
1

T

∫ T

0

Ft(t)v(t)dt = F̄tv̄ (6.14)

where

• F̄t=average traction force
• v̄=average linear speed

The traction power can be derived from the measured quantities (Ft andω), by elim-
inating the linear speed.

Pt = F̄tv̄ = F̄tZω̄ (6.15)

In the next chapters only steady state measurements will be discussed.
1In the first design of the test bench also a slope resistance could be introduced by lifting the bench

with a hydraulic pump, unfortunately the dynamics of the existing pump were to slow to react on the
cyclist’s power variation (read also chapter15).
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6.5 Conclusions

The intended performance analysis will model the pedelec’sbehaviour by means of
the relationship between the cyclist’s input power and the traction output power. The
definitions of these powers are given in this chapter.
The measurement method is based on 4 quantities: the pedal torque, the traction
force, the angular speed of the pedal axis and the linear speed of the wheels. One of
the speeds can be eliminated by introducing the transmission rate.
The measuring of three remaining quantities is limited to the real area of operation
of a pedelec on the road. This area is marked out based on measurements and scien-
tific references. The next chapters will show how these quantities are translated into
performance plots and performance parameters of a pedelec.





7
Regression Modelling

The intended objective analysis of the pedelec’s perfomance will be based on two
presentation techniques

• The performance plots (chapter9)

• The performance parameters (chapter10)

Both techniques will rely on the same test bench measurements. A measurement data
set is an × 3 matrix, where n represents the number ofsteady statemeasurements.
The three columns represent respectively the speed, the cyclist torque and the traction
force.
The behaviour of a pedelec on the test bench is a relative complex phenomenon.
There are several energy sources, motor drives and internaland external measure-
ments involved during testing. All these apparatus have a limited accuracy. So the
recorded measurement data are subject to measurement errors. The relationship be-
tween the torque, the speed and the traction force during thetests is not deterministic,
but has to be interpreted in a probabilistic way. Moreover measurements can only be
taken in a limited number of operation points, a regression technique will be neces-
sary to predict the behaviour in the whole operation area.
Because of these difficulties, differentregression modelswill be derived from the
measurement data set. These models will be used to highlightdifferent aspects of
the pedelec’s behaviour. The description of these models will be treated in detail in
chapter8.
Many ways of solving multiple regression analysis problemsare available in the lit-
erature (for example [41],[42],[43]). This chapter will look for a suitable one for the
test bench measurements.
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7.1 Regression analysis for the test bench measurements

x1 = (x11, ..., x1n)T

x2 = (x21, ..., x2n)T
Y = (y1, ..., yn)TTest

Application

Figure 7.1: The test bench measurement as a datagenerator for the regression analysis

In the case of the modelling of a pedelec’s behaviour, the measurement of the pedelec
on the test bench is the experiment that serves as a data generator for the regression
analysis. This regression analysis should result in a measurable function (the model)
that predicts the output̂Y given any new input dataX∗ = (x∗

1, x
∗
2). This is repre-

sented in figure7.2.

x∗
1

x∗
2

ŶRegression
Model

Figure 7.2: The regression model as output prediction for new inputs

Which variables or combination of variables that will be considered as input and
which ones as output will depend on the intended performanceplot or parameter. All
combinations of interest are given in chapter8.
In all cases, the input exists of two of the three measured quantities (e.g. the pedelec
speed and cyclist torque) and will be referred to asX = (x1, x2). The third measure-
ment (e.g. the traction force) or a combination of measurements will be considered
as the output Y. This is schematically represented in figure7.1.
In the next sections, the following notation will be used:

• X = (x1, x2) ∈ X ⊆ R
2, whereX are all possible pairs of the input

• Y ∈ Y ⊆ R , whereY are all possible values of the output

The regression problem can be stated as follows:
Find a measurable functionm : X → Y, such thatm (X) is an ‘optimal approxima-
tion’ of Y .
Distinction between different ‘well approximating functionsf ’ are made by a penal-
ization of the errors. Therefore the mean squared error criterium is typically used. In
this case, the theoretical risk functionalRtheor (f) of expression7.1 is to be mini-
mized .

Rtheor (f) = E
[

(f (X) − Y )2
]

(7.1)

So the ‘optimal’ approximationm will be the one where [43]

E
[

(m (X) − Y )2
]

= min
f :R2→R

E
[

(f (X) − Y )2
]

(7.2)
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The functionm (X) is called the regression function. This function can be obtained
explicitly as follows:

m (x1, x2) = E [Y |X = (x1, x2)] (7.3)

Since the output Y is only given for a limited number of measurement data, finding
the exact mininum of expression7.1 is impossible. So, one is obliged toestimatethe
regression functionm (X) from these measurement data.

7.2 The regression estimation problem

For the modelling of the behaviour of the pedelec on the test bench, one wants to use
a dataset ofn measurementsDn = {(X1, Y1) , ..., (Xn, Yn)} in order to construct an
optimal estimatêmn : X → Y of the regression functionm. The hat on the function
namem̂n indicates that it concerns an estimate for the regression function, the index
n indicates how many measurement data there are considered.

In general, estimates will not equal the regression function. Several error criteria,
which measure the difference between the regression function and an arbitrary esti-
matef are used [43]. In this case theL2 risk functionalRemp of expression7.4will
be used to measure the quality of an estimatef .

Remp (f) =
1

n

n
∑

k=1

(f (Xk) − Yk)
2 , (7.4)

The smallerRemp (f), the better the estimatorf . Unfortunately minimizing the em-
pirical L2 risk functional leads to infinitely many solutions: any function passing
through the measurement pointsDn is a solution.
In order to obtain useful results for finiten, one mustrestrict the possible solutions
by choosing a suitable function classF for the functionsf .
The restricted regression estimation problem can be statedas follows: Findm̂n ∈ F
such that

1

n

n
∑

k=1

(m̂n (xk) − Yk)
2 = min

f∈F

1

n

n
∑

k=1

(f (Xk) − Yk)
2 . (7.5)

In the test bench measurement system, the input-output pairs (X,Y ) do not have a
deterministic relationshipYk = m (Xk). There are unmeasurable variables that also
contribute toY , including measurement errors.
The additive error model of expression7.6 assumesthat one can capture all these
deviations via an errore.
In this way, an arbitrary outputYk may be written as

Yk = m (Xk) + ek. (7.6)

Here the Gauss-Markov conditions are assumed:
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• the error term in the model is supposed to have mean zero (E[ek] = 0)
• the error term in the model is supposed to have a constant variance (E[e2

k] =
σ2 < ∞)

• the{ek} are uncorrelated random variables (E[ek, el] = 0;∀k 6= l)

The choice of the function classF and the above mentioned assumptions lead to
different classes of restricted regression estimators.
For the applied performance analysis of pedelecs, two different regression estimate
methods are tried out: a parametric and a non-parametric one. They are described
and illustrated with an example in the next sections.

7.3 Parametric modelling

The classical approach for estimating a regression function is the parametric regres-
sion estimation. One assumes that the structure of the regression function is known
and depends only on a finite number of parameters.

7.3.1 Polynomial regression

The parametric modelling used for the test bench is apolynomial regression. Because
of the presence of the assistance motor, and internal losses, linear regression will
not suffice. In all probability there will be higher order andinteraction effects. In
the case of the test bench, a typical dataset ofn measurements may be written as
Dn = {(X1, Y1) , ..., (Xn, Yn)}, whereXi represents the input existing of a pair of
two measurements(x1i, x2i).
The polynomial regression estimate function should be a polynomial of 2 variables
x1 andx2. The highest degree of variablex1 is calledp, the highest degree of variable
x2 is calledq. The regression estimate function should be an element of the function
classF of expression7.7.

F =







f : f (x1, x2) =

p
∑

i=0

q
∑

j=0

βijx
i
1x

j
2, βij ∈ R







(7.7)

The coefficientŝβ00, . . . , β̂kl ∈ R of the optimal regression estimator

m̂n(x1, x2) =

p
∑

i=0

q
∑

j=0

β̂ijx
i
1x

j
2 (7.8)

may be calculated by minimalizing the empirical risk functional.

(

β̂00, ..., β̂kl

)

= min
β00,...,βkl∈R





1

n

n
∑

k=1



Yk −

p
∑

i=0

q
∑

j=0

βijx
i
1x

j
2)





2

 (7.9)
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This minimization may be executed by a numerical computing program. In this
work the Matlab toolbox ‘Polybase’ was used, which offers tools for multidimen-
sional polynomial interpolation and approximation. This toolbox is developed by
Giampiero Campa [44].

7.3.2 Example
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Figure 7.3: Random split of measurement data in a training (*) and test (o) data set

As an example the polynomial regression will be applied on the measurement data of
the Sparta Ion without motor assistance and with normal motor assistance. The speed
and the cyclist torque will be considered as the inputX, the resulting traction force
as the outputY . Or more specifically,

• x1i represents the recorded speed during the i-th measurement
• x2i represents the recorded torque during the i-th measurement
• Yi represents the recorded traction force during the i-th measurement

If all the measurement data would be used to determine the coefficients, there would
be no data left to evaluate how ’good’ the polynomial predicts the output for new
inputs. Therefore, it is common sense to split the measurement data randomly in a
training data set and a test data set as shown in figure7.3. In this case, there is cho-
sen to withhold 75% of the measurements as training data to estimate the regression
function. The other 25% are used as test data to verify the model using the RMSE.
The choice for the 75-25% split is based on the fact that this RMSE should be statisti-
cally relevant even with the rather small number of measurement data available. The
splitting of data in training and test data is extensively discussed in reference [45].

RMSE =

√

√

√

√

1

nt

nt
∑

k=1

(Yk − m̂(x1k, x2k))
2 (7.10)
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wherent is the number of test data. Note that the RMSE on the training data is not
a good indicator for the ‘goodness’ of the estimation since it does not tell anything
about the output for new data and because the algoritms for minimization of expres-
sion7.9 try to bring this RMSE to zero. So only the RMSE on the test datawill be
used to compare the estimations.

One can imagine that the traction force will be proportionalto the cyclist’s torque
in the case without assistance power. There might be only a small influence of the
speed due to internal losses of the transmission. So the highest degree for both input
variablesx1 = v andx2 = T is chosen to be 1.
A Matlabscript is written to calculate the coefficients of the polynomial according
to the least square criterium of expression7.9. The resulting regression estimation
functionm̂t(v, T ) for the tractionFt force looks like

F̂t = m̂(v, T ) = −2.67 + 0.053v + 1.20T + 0.0007vT (7.11)

Comparing the coefficients is difficult in this absolute formbecause they all have dif-
ferent dimensions. It is better to rescale the polynomial bydividing it by a reference
value, so that all coefficients become dimensionless. Basedon a single set of values
that are measured without assistance, the references will be:

• vref = 25km/h

• Tref = 75Nm

• Fref = 90N

The notation of the dimensionless or per unit variables willbe the originally variable
names with the subscriptpu. The rescaled polynomial becomes in per unit

F̂tpu = −0.0295 + 0.0147vpu + 1.00Tpu + 0.0145vpuTpu (7.12)

The function7.11 is visualised in the left plot of figure7.4. The independency of
speed is visuable as well in the coefficients as in the figure7.4. The RMSE of this
estimation is2.1N or 0.023 per unit.
Including higher order terms seems not to be interesting, but was done to see if the
suggestion of linearity was a good starting point. The result of a third order approx-
imation is shown on the right plot of figure7.4. Except of some borderphenomena,
both plots are very simular. The RMSE in the latter case is1.8N or 0.020 per unit.

Performing the same regression analysis on the measurements of the Sparta Ion with
normal assistance, the assumption of linearity has to be quit. The behaviour of the
controller is not known in advance, and higher order terms will have to be included.
An estimate of the highest degree has to be made for the inputx1 = v (degreep) and
the inputx2 = T (degreeq) as written in expression7.9.
The resulting per unit regression estimation functionF̂tpu(vpu, Tpu) with

• the highest order forvpu : p = 2
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Figure 7.4: Polynomial regression estimation for the Sparta Ion without assistance with first
order approximation (left) and with third order approximation (right)

• the highest order forTpu : q = 4

looks like

F̂tpu = −0.0053 + 0.111vpu − 0.0849v2
pu + 0.397Tpu − 0.609vpuTpu +

0.692v2
puTpu + 4.94T 2

pu + 17.2vpuT 2
pu − 20.4v2

puT 2
pu − 6.21T 3

pu

−42.5vpuT 3
pu + 47.1v2

puT 3
pu + 2.67T 4

pu + 26.0vpuT 4
pu

−27.0v2
puT 4

pu (7.13)

This function (in absolute values) is visualised in the leftplot of figure7.5.
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Figure 7.5: Polynomial regression estimation for the Sparta Ion with normal assistance
lower order approximation (left) and higher order approximation (right)

The lower degree terms in expression7.13 may be neglected in comparison to the
higher degree terms. The RMSE of the estimation for the described case with assis-
tance is2.6N or 0.029 per unit.
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Chosing higher numbers forp andq results in higher root mean squared errors and
unreliable side effects as shown in the right plot of figure7.5. For this plotp = 4 and
q = 6 is chosen. The RMSE on the test data is5.1N or 0.056 per unit. Chosing a
‘good’ highest order term seems to be an important issue: with p = 6 andq = 8 the
RMSE becomes already22.5N or 0.25 per unit.

As shown in the example, parametric estimates have a drawback. Choosing the order
of the polynomial stays a bit arbitrary and has to be done overfor every new set of
measurement data. Regardless of the data, a parametric estimate cannot approximate
the regression function better than the best function with the assumed parametric
structure. This inflexibility concerning the structure of the regression function is
avoided by non-parametric regression estimates [43].

7.4 Non-parametric modelling

Different classes of non-parametric modelling methods canbe found in literature:

• local averaging and local modelling
• global modelling
• penalized modelling

7.4.1 LS-SVM

For the performance analysis of pedelecs, a combination of local and penalized mod-
elling will be used: Least Squares Support Vector Machines or LS-SVM regression
modelling. The key ingredient of the support vector machineis the following[43]:
It maps the random input vectorX ∈ X ⊆ R

2 into a high-dimensional feature space
Ψ ⊆ R

nf through some nonlinear mappingϕ : X →Ψ . In this space, one consider
the class of linear functions

FΨ =
{

f : f(x1, x2) = wT ϕ (x1, x2) + b, ϕ : X →Ψ, w ∈ R
nf , b ∈ R

}

(7.14)

The goal is to find the parametersw andb (primal space) that minimize the empirical
risk functional

Remp (w, b) =
1

n

n
∑

k=1

((

wT ϕ (x1k, x2k) + b
)

− Yk

)2
(7.15)

under constraint‖w‖
2
≤ a, a ∈ R+.

The optimization problem can be reduced by finding the vectorw and b ∈ R by
solving the following optimization problem [43]

min
w,b,e

J (w, e) =
1

2
wT w +

1

2
γ

n
∑

k=1

e2
k, (7.16)
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such that
Yk = wT ϕ (x1k, x2k) + b + ek, k = 1, ..., n (7.17)

Note that the cost functionJ consists of a fitting error and a regularization term. The
relative importance of these terms is determined by the positive real constantγ. In
the case of noisy data one avoids overfitting by taking a smaller γ value.
Constructring the linear function7.17in the feature space can be done without con-
sidering this feature space in explicit form. One may replace the inner product
ϕ (x1k, x2k)

T ϕ (x1l, x2l) with the corresponding KernelK((x1k, x2k), (x1l, x2l)) sat-
isfying Mercer’s condition. The resulting LS-SVM model forfunction estimation
becomes [43]

m̂n (x1, x2) =

n
∑

k=1

α̂kK ((x1, x2), (x1k, x2k)) + b̂, (7.18)

whereα̂ and b̂ can be derived using Lagrangian functionals and Mercer’s theorem
[47]. This complete optimization process is automatically performed by the LS-SVM
toolbox developed for Matlab [46].

7.4.2 Example

As an example the LS-SVM regression method will be applied onthe same measure-
ment data of the Sparta Ion as in section7.3.2. The LS-SVM toolbox [46] is adapted
to give the estimated regression function of the traction force.
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Figure 7.6: LS-SVM regression estimation for the Sparta Ionwithout motor assistance (left)
and with normal motor assistance (right)

The same training and test data set of figure7.3 are used. The training data set
helps to construct the regression estimator and the data setwill help to evaluate the
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predictabitity for new data. The RMSE on these test data willbe used to compare the
LS-SVM estimations with the polynomial ones.
In the case without assistance, the regression estimate plot looks like the left surface
of figure7.6.
The RMSE on the test data is2.2N .
In the case of normal motor assistance, the regression estimate plot looks like the right
surface of figure7.6. The RMSE is2.3N , which is smaller than in the polynomial
case.
The more non-linear the assistance power, the more interesting it will be to use the
LS-SVM. Because the behaviour of an assisted pedelec is rather unpredictable, the
LS-SVM was chosen to create the pedelec models.
For the analysis of the pedelec’s performance more than one regression function will
be used. They are all discussed in chapter8.

7.5 Conclusions

Regression analysis is necessary to estimate the output foran input that was lying in
between different testbench measurements. After all, the calculation of the perfor-
mance parameters and the presentation of the performance plots require all interme-
diate values. In this chapter different regression techniques were tried out to make a
regression model of the behaviour of the pedelec on the testbench. In order to choose
the best regression method, the measurements were split into a training and test data
set. Each regression estimate was derived by means of the same training set and was
evaluated by calculating the root mean squared error (RMSE)on the same test data
set. The non-parametric LS-SVM method turned out to give thesmallest RMSE and
will be used in the next chapters.



8
The Regression Models for a Pedelec

The data acquisition system described in chapter5.4automatically generates lists of
measurement data sets. They are saved as tables where every row represents a mea-
suring point with 3 columns: the speed, the cyclist torque and the traction force. The
place where these quantities are measured are found in figure4.3.
These data sets are transformed by regression analysis in different models describ-
ing the pedelec’s behaviour. These models are obtained by different choices for the
(independent changing) input variablesX and the (dependent changing) output vari-
ablesY . The preferred regression technique is the LS-SVM method according to the
qualities described in chapter7.
Normally a set of three LS-SVM models will be worked out for one measurement
data set:

• The traction force model
• The required cyclist torque model
• The efficiency model

A fourth type of regression model,the assistance factor model, is derived by com-
paring two traction force models (see section8.4) of the same pedelec.
All investigated pedelecs have the possibility to ride withor without the motor power
switched on. And although most manufacturers have a pre-programmed control strat-
egy, the user can often choose between different assistancemodes.
The measurement of one pedelec may so exist of different datasets corresponding
with

• different motor assistance levels or power modes
• different gears
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• different battery charging levels

• different peripheral conditions: tyre conditions, lubricating conditions,motor
temperature...

This would lead to a multitude of regression models, which will not always be useful.
The standard method choosen is to record one data set withoutmotor power and one
data set per motor assistance level with a fully charged battery. Only one representa-
tive gear has been recorded.

8.1 The traction force model

The basic LS-SVM models are the traction force models. They estimate the regres-
sion functionm1(v̄, T̄c) for the traction force. The combination of a bicycle speed (v̄
in km/h) and a cyclist torque (̄Tc in Nm) will be considered as the input variables
X. The traction force (̄Ft expressed inN ) is the outputY of the regression prob-
lem. All variables are average values taken over10s of steady-state operation. The
LS-SVM model gives an estimatêFt of the traction force in an arbitrary point of the
operation area.

F̂t = m̂1(v̄, T̄c) (8.1)

Instead of the notation8.1, the shorter notation̂Ft(v̄, T̄c) for this traction force model
will be used in the remaining of the text.
The LS-SVM modelF̂t(v̄, T̄c) is derived for all measured assistance levels. The data
set is randomly splitted in 75% training data and 25% test data. The model is derived
by only using the training data as explained in chapter7.
The graphical user interface (developed to handle the test bench measurements and
discussed in chapter12) foresees a standard of 4 traction force models for a single
pedelec:

• Ft ModelZA: the traction force model of the pedelec without motor assis-
tance (Zero Assistance)

• Ft ModelMAe: the traction force model of the pedelec with a low motor
assistance (Motor Assists Economically)

• Ft ModelMAn: the traction force model of the pedelec with normal motor
assistance (Motor Assists Normally)

• Ft ModelMAp: the traction force model of the pedelec with extra motor
power (Motor Assists Powerfully)

Two graphical representations of traction force models arealready shown in the figure
7.6.
The predictive capacity of the models is evaluated by looking at the RMSE on the test
data. These RMSE values are available for all models via the graphical user interface.
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8.2 The required torque model
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Figure 8.1: Graphical representation of a required torque model

The traction force model gives an idea of the traction power resulting from the cy-
clist’s efforts and the assistance motor contribution. Another idea is to model the
cyclist’s efforts required to reach a certain traction power. Rather than merely invert-
ing the traction force model, a new model is calculated. Therefore the speed and the
traction force of the measurement data are considered as theinput X and the torque
will be the outputY for the estimate of the regression functionm2(v̄, F̄t) for the
torque.
So, the required torque LS-SVM model will give an estimateT̂c = m̂2(v̄, F̄t) for the
steady state torque that is necessary to realize a certain (steady-state) traction force
at a certain speed. Similar to the shorter traction force model notation, the notation
T̂c(v̄, F̄t) will be used to indicate this regression model.
The model will be derived by using the training data set. The estimation will be
checked by calculating the RMSE on the testdata as defined in equation7.10.
The graphical user interface of chapter12 foresees a standard of 4 required torque
models for a single pedelec:

• Tc ModelZA: the required cyclist torque model of the pedelec without motor
assistance

• Tc ModelMAe: the required cyclist torque model of the pedelec with a low
motor assistance

• Tc ModelMAn: the required cyclist torque model of the pedelec with normal
motor assistance
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• Tc ModelMAp: the required cyclist torque model of the pedelec with extra
motor power

The graphical representation of aTc ModelMAn model is shown in the figure8.1.

8.3 The efficiency model
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Figure 8.2: Results of an exploring road test

Pedelecs are heavier and have a more complex drivetrain thana common bicycle.
This might result in a worse mechanical efficiency. One of thefirst pedelec tests per-
formed at theVrije Universiteit Brusselis a road test with a heart rate measurement
to get an idea of the power that is required to cover a distanceon a pedelec with and
without motor assistance. The same distance is also coveredwith a common moun-
tainbike [37] to compare the required efforts. The result of this small road test is
given in figure8.2. It looks like the pedelec without assistance has a worse efficiency
than the (old and heavy) mountainbike. That is the reason whyalso the mechanical
efficiency of the pedelecs is investigated over the whole operation area.
The mechanical efficiency of the non-assisted pedelec on the test benchwill be de-
fined as the ratio of the output traction power without motor power (PtZA

) and the
cyclist’s input power (Pc).

η =
PtZA

Pc
(8.2)

Because there are no power flows measured, only a steady-state efficiencyη̄ can be
derived from the test bench measurements without assistance using the equations6.9
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and6.14.

η̄ =
PtZA

Pc

=
F̄tZA

v̄

T̄cω̄
=

F̄tZA

T̄c

Z (8.3)

The constant Z is the transmission ratio of the measured gearas defined in6.1.
Two possibilities for the calculation of the efficiency of the pedelecs in the whole
operation area starting from the discrete measurement dataare considered.

1. The calculation of the efficiencies by applying equation8.3 for the whole op-
eration area using the LS-SVM regression modelF̂tZA

(v̄, T̄c) (section8.1).
2. The creation of a new LS-SVM regression model starting from the calculated

efficiencies of the measurement data only.

The second possibility is preferred because it gave a smaller RMSE error when ap-
plied on a new test data set.
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Figure 8.3: Graphical representation of an efficiency model

So, the efficiencȳη is first evaluated in all the measurement points of the pedelec
without motor assistance. As a result, the data set without assistance is extended
with an extra column of efficiency data. Considering the speed and the torque as the
input variablesX and the efficiency as the output variableY , a LS-SVM regression
model for the efficiencym3(v̄, T̄c) over the whole operation area may be calculated
1. Again only 75% of this data set is used to derive the LS-SVM model that estimates
the steady-state efficiencŷη.

η̂ = m̂3(v̄, T̄c) (8.4)

1The efficiency could also be modelled as a function of the speed and the traction forcêη2 =
m̂3b(v̄, F̄t) but this was seen as unuseful for the rest of the performance analysis (see section10).



86 THE REGRESSIONMODELS FOR APEDELEC

The efficiency model will also be noted shorter asη̂(v̄, T̄c). It may be clear from ex-
pression8.3 that the accuracy of this LS-SVM model will be rather poor forsmaller
torques and speeds. The ability of the model to predict the efficiency for new data
points is again evaluated by calculating the RMSE on the remaining 25% of the data
set.

The graphical user interface of chapter12 foresees the calculation of one efficiency
model per pedelec. It is called theETA model.
The graphical representation of an example efficiency modelis given in figure8.3.

8.4 The assistance factor model

In the case of a pedelec, the resulting traction power (Pt) is partly coming from the
cyclist’s effort (Ptc) and partly from the electric assistance motor (Ptm).

Pt = Ptc + Ptm (8.5)

An important parameter for the pedelecs will be the relationship between those two
power sources. This is expressed in the so-called assistance factor (ξ), the net contri-
bution of the motor divided by the total traction power.

ξ =
Ptm

Pt
(8.6)

The assistance factor is a number between 0 and 1.

• ξ = 0: all traction power is coming from the cyclist’s efforts

• ξ = 1: all traction power is coming from the motor

The motor power is not directly measured. This could have been done by measuring
the voltage and current at the motor connection, but this wasnot always within easy
reach (see section15). Moreover our main interest is not the electrical power of the
motor, but the net contribution of the battery-motor systemto the traction power. This
net contributionPtm can be derived from the comparison of the traction power with
electrical assistancePtMA

and without electrical assistancePtZA
for the same input

speed and torque.

Ptm = PtMA
− PtZA

(8.7)

Expression8.6 is in this way changed in expression8.8.

ξ =
PtMA

− PtZA

PtMA

= 1 −
PtZA

PtMA

(8.8)
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Using equation6.14 for the cases with (MA) and without (ZA) assistance power
results in a practical formula8.9 for the calculation of the steady-state assistance
factor ξ̄ starting from the measurement data:

ξ̄ = 1 −
F̄tZA

F̄tMA

(8.9)

F̄tZA
is the measured traction force at a given speed v resulting from the cyclist torque

Tc without motor power.
F̄tMA

is the traction force at the same speed v and for the same cyclist torqueTc while
the motor assists.

Two possibilities for the modelling of the assistance factor of the pedelecs in their
operation area starting from the discrete measurement dataare considered:

• The calculation of the assistance factors by applying equation 8.9for the whole
operation area using the LS-SVM regression modelsF̂tZA

(v̄, T̄c) and
F̂tMA

(v̄, T̄c) (section8.1).
• The creation of a new LS-SVM regression model starting from the calculated

assistance factors in the measurement points only.
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Figure 8.4: Graphical representation of an assistance factor model

The second possibility is difficult with the applied open loop control of the test bench.
The calculation of equation8.9requires the traction forcesFtZA

andFtMA
at exactly

the same speed and cyclist torque.
So for the estimation of the assistance factorξ̂ over the whole operation area, there
is decided in favour of the first method. The determination ofthe assistance factor
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model ξ̂(v̄, T̄c) requires no extra LS-SVM modelling but is derived from two other
LS-SVM models as is shown in equation8.10.

ξ̂(v̄, T̄c) = 1 −
F̂tZA

(v̄, T̄c)

F̂tMA
(v̄, T̄c)

(8.10)

An estimation of the RMSE is given by applying the fault analysis on the formula
of equation8.10. The percent error on the estimation of the assistance factor δξ̂ is
estimated to be the sum of the percent errors on the traction force measurements. This
is expressed in equation8.11where∆ξ̂, ∆F̂tZA

and∆F̂tMA
represents respectively

the absolute errors on the assistance factor, the traction force without and the traction
force with assistance.

δξ =
∆ξ̂

ξ̂
=

∆F̂tZA

F̂ tZA

+
∆F̂tMA

F̂tMA

(8.11)

Using the RMSEs of the LS-SVM models for the traction forces as absolute error
estimators, the RMSE of the assistance factor is estimated by using equation8.11.
The graphical user interface of chapter12 foresees a standard of 3 assistance factor
models for a single pedelec:

• XI ModelMAe: the assistance factor with low motor assistance (Motor As-
sists Economically)

• XI ModelMAn: the assistance factor with normal motor assistance (Motor
Assists Normally)

• XI ModelMAp: the assistance factor with extra motor power (Motor Assists
Powerfully)

A graphical representation of an assistance factor modelXI ModelMAn is given
in figure8.4.

8.5 Conclusions

In this chapter four regression models are introduced, starting from one measurement
set of speeds, cyclist torques and traction forces. Thetraction force modelestimates
the traction force that should be measured on the testbench for a given cyclist torque
and pedelec speed. Therequired cyclist torque modelestimates the torque that should
be exercised at the pedal axis to realize a certain traction force at a given speed.
Theefficiency modelgives the relationship between the cyclist’s input power and the
resulting output power when the motor is switched off. Theassistance factor model
splits the traction power in the part coming from the motor and the part coming from
the cyclist’s efforts and expresses this in a dimensionlessway. These models are used
in the following chapters to derive performance plots and performance parameters of
the measured pedelec.



9
The Performance Plots of a Pedelec

In chapter10 a number of performance parameters are defined. Although these pa-
rameters give valuable information about the performance of a pedelec, they only
focus on a single aspect of the behaviour of a pedelec. A better idea of the complete
control strategy may be obtained by the analysis of a number of plots derived from
the different pedelec models of chapter8.
This chapter discusses which aspects of the pedelec models that are the most interest-
ing to plot, and which plottypes that fits the best to analyse the pedelecs performance.

9.1 The plots and plottypes

There are different aspects of the measured pedelec that areinteresting to plot. From
the models of chapter8, the next aspects are derived:

• The traction force
• The climbing-ability
• The required cyclist torque
• The mechanical efficiency
• The motor assistance factor

These aspects may be represented by using different plottypes:

• 3D plots
• Contourplots
• Slice plots

Different interesting combinations of plot and plottypes are given in the next sections.
These plots may all be evoked via the graphical user interface of chapter12.
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9.2 The traction force plots

Based on the traction force modelsF̂t(v̄, T̄c) of section8.1a number of traction force
plots can be created.

9.2.1 The 3D traction force plot
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Figure 9.1: Example of a3D plot of the traction force of the Sparta Ion without motor
power (green lower surface) and with economic motor power (grey upper surface)

The3D traction force plot is a direct plot of the traction force regression estimation
F̂t(v̄, T̄c) in an orthogonalx, y, z axes system. The traction force plot for a single
assistance mode and a fixed gear already gives a first idea of the implemented control
strategy of a pedelec. Examples of traction force surfaces are already given in the
figure 7.6. It may be interesting to put the surfaces of different assistance modes
together in one graph. The more motor power, the higher the traction force surface
will be situated. The vertical distance between the two surfaces is a measure for the
difference in motor power. An example of a3D traction force plot for two assistances
modes of one pedelec is shown in figure9.1.
Because3D plots are not always easy to interprete, also two types of2D plots (de-
rived from these traction force plots) are used for the performance analysis of the
pedelecs.

9.2.2 The contourplot of the traction force

The contourplot of the traction force displays isolines (= lines with the same traction
force) in the operation area of the pedelec. Given the speed of the pedelec and the
torque of the cyclist, the upper and lower limits of the traction force value in that
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Figure 9.2: Contourplot of the Sparta Ion traction force [N]without assistance and with
economic assistance

operation point can be easily read. An example of a traction force contourplot can be
found in figure9.2. The traction forces are expressed in newton.

9.2.3 Slice plots of the traction force
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Figure 9.3: Slices of the traction force with (blue dashed) and without (grey solid)
assistance for the Sparta Ion for constant speed (left) and for constant torque (right)

By making slices of the3D plot a good idea of the applied assistance motor control
strategy can be obtained. One possibility is making slices of constant speed. The
traction force is plotted versus the cyclist’s torque for a certain speed. The vertical
distance between slices of the traction force with and without motor assistance is a
measure for the added motor power. An example of constant speed slices are given in
the left plot of figure9.3 for speeds of 5, 10 and 15km/h. The traction force hardly
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changes with speed but is almost proportional to the torque input.
Another possibility are the slices of constant torques. Thetraction force is plotted
versus the speed for a certain cyclist’s torque. These plotsmay be interesting to see
at which speed the controller stops adding motor power. An example of constant
torque slices is given in the right plot of figure9.3 for 20, 40 and 60Nm.

9.3 The cyclist torque plots

Based on the required cyclist torque modelsT̂c(v̄, F̄t) of section8.2 a number of
torque plots may be created.

9.3.1 The 3D cyclist torque plot
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Figure 9.4: Example of a3D plot of the required cyclist torque for the Sparta Ion without
motor power (grey upper surface) and with normal motor power(green lower surface)

The3D cyclist torque plot is a direct plot of the cyclist torque regression estimation
T̂c(v̄, F̄t) in an orthogonalx, y, z axes system. This results in a surface as is already
shown in figure8.1. This surface will be used to calculate the required energy to
cover a certain drive cycle as is explained in section10.2. The more motor power
is added, the lower the required cyclist torque surface willbe situated. So when
plotting different assistance modes in one figure, the highest surface will be the one
without assistance. Again the vertical distance between the surfaces is a measure for
the difference in motor power. An example of a3D cyclist torque plot for different
assistance levels is given in figure9.4.
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Figure 9.5:2D plots of the required cyclist torque for the Sparta Ion:
Left: the contourplot in normal assistance mode

Right: slices of constant speed without (grey solid) and with (blue dashed) normal assistance

9.3.2 2D plots of the cyclist torque

Two derived2D plots for the cyclist torque are shown in figure9.5: the contourplot
and the slices of constant speed. The contourplot is an interesting tool to find the
upper and lower limit of the required cyclist torque to reacha certain speed and
traction force. For instance, to reach a traction force of 40N at a speed of 15km/h
with the pedelec of figure9.5, the cyclist need to deliver a pedal torque of about
20Nm.
On the slice plot one can for instance read that at a speed of 15km/h and for a desired
traction force of 40N, the assistance motor reduces the required cyclist torque from
36 to 20Nm.

9.4 The climbing-ability plots

Using the traction force to characterize the performance ofa pedelec may be inter-
esting and unambiguous, the practical interpretation is not directly clear for the daily
user. Therefore the traction force may be transformed into the ability to overcome a
certain percentage of slope in steady state.
The climbing-abilitity or slope-ability in a point of the operation area is defined as
the maximum slope that can be overcome with the pedelec at a constant speed and
with a constant cyclist torque input accepting a zero air-resistance.
The climbing-ability is calculated from the measured traction force by means of equa-
tion 6.13, by accepting a constant speed (dv

dt
= 0) and a zero air-resistance. Equation

9.1states that the traction forceFt needed to climb a slope ofα degrees should equal
the slope forceFslope as illustrated in figure9.6.

Ft = mtot · g · sinα (9.1)
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Figure 9.6: Calculation of the climbing-ability

The slope that can be overcome is finally calculated using equation9.2.

Slope[%] = 100 · tan

(

arcsin

(

Ft

mtot · g

))

(9.2)

As an extra input parameter, the total massmtot appears. This mass should include
the weight of the pedelec, the cyclist and, if any, the luggage. the letterg represents
the gravitational constant.

9.4.1 The 3D climbing-ability plot
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Figure 9.7: Example of a3D plot of the climbing-ability of the Sparta Ion without motor
power (grey lower surface) and with economic motor power (green upper surface) for a

total mass of 100kg
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Rescaling the3D traction force model̂Ft(v̄, T̄c) of section8.1with equation9.2 re-
sults in the3D climbing-ability plots. These plots give the maximum slopepercent-
age that can be overcome as a function of the given pedelec speed and the cyclist’s
effort. Again different assistance modes can be put together to evaluate the extra
power coming from the motor-battery system. An example is given in figure9.7.
The climbing-ability can be further investigated by deriving several two-dimensional
plots.

9.4.2 The contourplot of the climbing-ability
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Figure 9.8: Contourplot of the Sparta Ion climbing-ability(mtot=100kg) without assistance
and with eco-assistance

Similar to the traction force contourplot, the contourplotof the climbing-abilitiy dis-
plays lines with the same climbing-ability in the operationarea of the pedelec. The
contourplots of figure9.8are rescaled versions of figure9.2. The applied total mass
is 100kg. With a cyclist torque of30Nm at a speed of10km/h for instance, this
pedelec can climb almost 4% slope without assistance and already a 5.5% slope with
the lowest assistance level.

9.4.3 Slice plots of the climbing-ability

Also slices of the climbing-ability can contribute to interprete the behaviour of the
controller of the pedelec. The plots are the same as for the traction force slices, but
the vertical axis shows the more comprehensible slope percentage.

9.5 The efficiency plots

Based on the efficiency regression modelη̂(v̄, T̄c) of section8.3 also a number of
efficiency plots can be created via the graphical user interface of chapter12.
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Figure 9.9: Slices of climbing-ability (mtot=100kg) with (blue dashed) and without (grey
solid) assistance for the Sparta Ion for constant speed (left) and constant torque (right)

9.5.1 The 3D efficiency plot

Plotting the efficiencŷη versus the cyclist’s torquēTc and the pedelec speed̄v for a
certain gear, results in an efficiency surface above the operation area. An example of
a three dimensional efficiency surface is already given in figure8.3.

9.5.2 The efficiency contourplot
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Figure 9.10: Example of the efficiency contourplot for the Sachs Elo Bike in the 1◦ gear

The interpretation of the efficiency along the area of operation is much easier using a
contourplot. An example of such a contourplot is given in figure 9.10.



CHAPTER 9 97

2D slice plots of the efficiency are seen as less interesting andare not included in the
graphical user interface.

9.6 The assistance factor plots

Based on the assistance factor regression modelξ̂(v̄, T̄c) of section8.4 a number of
assistance factor plots are made available via the graphical user interface of chapter
12.

9.6.1 The 3D assistance factor plot

The plotting of the assistance factorξ̂ versus the cyclist’s torquēTc and the pedelec
speedv̄ for a certain gear, results in an assistance factor surface lying above the
operation area. An example of such a3D assistance factor surface is already given
in figure8.4.

9.6.2 The contourplot of the assistance factor

10 10

10

10

20

20

20

20

20

30

30 30

30

30

30

30

40

40

40

40

40

40

50

50

50

50

50

60 6070 7080 80

Assistance factor in normal assistance mode [%]

Speed [km/h]

T
or

qu
e 

[N
m

]

0 5 10 15 20 25
0

10

20

30

40

50

60

70

80

Figure 9.11: Contourplot of the assistance factor for the Sparta Ion in normal assistance
mode

The contourplot of the assistance factor may be one of the more interesting instru-
ments to interpret the behaviour of the pedelec. It shows lines of constant relative
motor contribution to the traction power. An example is given in figure9.11. The
assistance factor for a cyclist torque of30Nm at a speed of10km/h is 50%. This
means that both the motor as well as the cyclist deliver half of the traction power.
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9.6.3 Slice plots of the assistance factor
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Figure 9.12: Slice plots of the assistance factor for the Sparta Ion in economic (grey solid)
and normal (blue dashed) assistance mode

The slices may be interesting to evaluate the evolution of the assistance factor with
speed changes for a constant cyclist torque or with torque changes for a constant
speed. Both type of slices are given in figure9.12for 2 different assistance modes.
For this particular case there is little difference betweenthe two assistance modes for
small torques. A maximum assistance factor of almost 60% is reached near a cyclist
torque of40Nm.

9.7 Conclusion

In this chapter a first tool to analyse the performance of the pedelec by means of
the derived models is shown.3D-plots, contourplots and slice plots of the traction
force, the climbing-ability, the required cyclist torque,the mechanical efficiency and
the assistance factor are introduced. These plots help to get an idea how the pedelec
system with its different assistance levels behave in its operation area. Next to this
visual analysis tool, performance parameters will be introduced in the next chapter.



10
The Performance Parameters of a Pedelec

In chapter7 different regression pedelec models are derived by using the LS-SVM
regression technique. These models are worked out in order to visualise different
aspects of the pedelec in chapter9. In this chapter an objective measure for the
comparison of the performance of different pedelecs will beintroduced. For that
reason a number of performance parameters will be defined. These parameters are
well defined combinations of different measurements that can be expressed as a single
number.
Two groups of performance parameters will be distinguished.

• The user-independent performance parametersthat are totally determined by
the pedelec itself:

– The100W efficiency
– The75W assistance factor
– The100W slope-ability

• The user-dependent performance parametersthat may change by the way the
cyclist is using the pedelec:

– The drive cycle efficiency
– The drive cycle assistance factor
– The human energy need during a drive cycle
– The motor energy need during a drive cycle
– The drive cycle battery range

For the calculation of these performance parameters, the pedelec models described in
chapter8 are supposed to be known. More specifically the regression functions for
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• the traction forceF̂t(v̄, T̄c) without and with (different) motor assistance(s)

• the required cyclist’s torquêTc(v̄, F̄t) without and with (different) motor assis-
tance(s)

• the efficiencyη̂(v̄, T̄c)

• the assistance factor̂ξ(v̄, T̄c) with (different) motor assistance(s)

should be known along the area of operation.

10.1 The user-indepent performance parameters

10.1.1 The 100W efficiency
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Figure 10.1: The determination of the 100W-efficiency for the Sparta Ion

As stated by James B. Spicer [48] it is tough to beat a bicycle when it comes to ef-
ficient use of energy. The energy losses in a well designed chain drive are less than
2%. The worse efficiency of a series of conventional bicycle chain tests was still 81%
[48].
The introduction of the motor and transmission system mightlower this high me-
chanical efficiency. At first sight, some pedelec motor systems seem hardly able to
compensate their own introduction of extra friction.
The energy losses in the chain are not measured seperately. The test bench measures
the global efficiency as defined in section8.3. This means that next to the chain
losses also the friction losses of the rolling wheels are included. The100W-efficiency
quantifies this global efficiency loss.
If one wants to catch the efficiency as a single number, averaging out the estimated
efficiency η̂(v̄, T̄c) over the whole operation area would be a possible performance
parameter. However, to reduce the influence of the boundary effects introduced by
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interpolation, another strategy is chosen, based on what isfound in reference [48].
The efficiency will be considered in all the operating pointswith 100 watt human
input power and the average of these efficiencies will be called the100W efficiency
η100. The value of100W is used because it approaches the limit of what a person of
common fitness is able to deliver on a continuous base [49].
The 100W efficiency is derived from the calculation of the intersection (the black
line in figure10.1) of two surfaces:

• The surface of the3D efficiency plot as defined in section9.5 (The horizontal
surface in figure10.1)

• The100W human input surface (The vertical surface in figure10.1)

In other words, the100W effiency is the average of the locus of points that are a
solution of the system of equations10.1.

{

η̂ = m̂3(v̄, T̄c)
T̄c · v̄ = c

(10.1)

If the speed is given inkm/h, the constantc is determined by equation10.2

c = 100 · 3, 6 · Z (10.2)

This locus can also be written in its parametric form in the parameters: wherem̂3







v̄ = s
T̄c = c

s

η̂ = m̂3(s,
c
s
)

g(s) =
[

s, c
s
, m̂3

(

s, c
s

)]

represents the regression function for the mechanical efficiency from section8.3. The
average of these locus points can be analytically expressedwith equation10.3[50].

η100 =

∫ s1

s0

∣

∣

d
ds

g (s)
∣

∣ ds
∫ s1

s0

√

1 + c2

s4 ds
(10.3)

The integrals ofη100 are numerically solved. This results in a finite number of locus
points for the efficiencies. This number depends on the chosen integration step∆s.
The default value for∆s was chosen to be 1. The borderss0 ands1 are determined
by the borders of the operation area and are shown in figure10.1. The100W effi-
ciency for a number of tested pedelecs is given in table13.2.

Instead of only comparing a single numberη100 of equation10.3 for different ped-
elecs, it is more suitable to compare thedistributionsof the efficiencies along the
100W path. Therefore the graphical user interface of chapter12allows the represen-
tation of the distribution of the100W efficiencies as a boxplot. Such a boxplot is a
graphical representation showing five important numbers ofa distribution:
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• the smallest value
• the lower quartile
• the median
• the upper quartile
• the largest value

An example of these boxplot distribution is given in figure10.2.
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Figure 10.2: Boxplots of the100W efficiencies of two different pedelecs

A wilcoxon testis used to compare the distributions of two different pedelec efficien-
cies. In casu theranksumpreprogrammed function of Matlab is used. The smaller
the result of this test, the more unprobable the hypothesis that the two independent
samples come from distributions with equal medians, or the more unprobable that the
efficiencies of both pedelecs are equal. In this way, the comparison of two pedelec
efficiencies is reduced to a merely objective mathematical procedure.

10.1.2 The 75W assistance factor

Next to the qualitative approach with the assistance factorplots of section9.6, there
is need for a more quantitative approach to compare assistance strategies. How can
one quantify the difference between

• the assistance strategy of two pedelecs?
• the assistance levels of two assistance modes of the same pedelec?

A global averaging of the assistance factor over the whole operation area is rejected
because the pedelec’s behaviour is described by means of estimations of regression
models. A solution is found in the 75W assistance factorξ75.
The value of75W is justified with the following reasoning. Most pedelecs have the
possibility to ride with an assistance factor of almost 50%.Theoretically, the cy-
clists who decide to replace their conventional bicycle by such a pedelec may choose
between two ways of using their pedelec.
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• whether they decide to deliver only half of the power they would use with a
conventional bicycle, having the same traction performances with the pedelec
as with their conventional bicycle (≈ 100W output requires only50W input)

• or they decide not to lower the effort, roughly resulting in doubling their former
traction performances (≈ 100W input results in200W output).

The truth will lie in between these two extrema. That’s why there is decided to take
75W of human input power as a reference line to average out the assistance factor of
a pedelec.
The75W assistance factorξ75 will be defined as the average of all assistance factors
of the operating points with 75 watt human input power.
Therefore, similar to the100W efficiency, the intersection of two surfaces has to be
calculated:

• The assistance factor surface as defined in9.6
• The 75W human input surface (analog with the100W surface of section)

10.1.1

A number of measuredξ75 values are given in table13.2.
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Figure 10.3: Boxplots of the75W assistance factors of the 3 assistance modes of the Sparta
Ion

All the assistance factors with 75 watt human power input, evaluated with a numeric
step∆s (see theη100 calculation), represent a distribution of assistance factors. In-
stead of only comparing the average valuesξ75, it is more appropriate to compare the
distributions of this75W assistance factors. Therefore, the intersection of the two
surfaces will be displayed as a boxplot. This is illustratedin figure 10.3 for the 3
assistance modes of a pedelec. The results of the wilcoxon hypothesis test (function
ranksumin Matlab) between every two assistance modes is shown in table 10.1. P
is a measure for the probability that the two modes have the same distribution. The
conclusion here is that the 3 assistance modes are well distinguished. But the differ-
ence between the normal and power mode is smaller than the difference between the
economic and the normal assistance mode.
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Two modes Probability P

Economic vs. Normal assistance mode 5.7e-018
Normal vs. Power assistance mode 6.7e-008

Economic vs. Power assistance mode 6.0e-019

Table 10.1: Results of the Wilcoxon hypothesis test on the boxplots of figure10.3

10.1.3 100W climbing-ability
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Figure 10.4: Calculation of the100W climbing-ability

Another user-independent performance parameter, the100W climbing-ability, is in-
troduced to have a comprehensible comparison tool. Most users have no idea of the
magnitudes of traction forces, but clearly understand the meaning of a slope percent-
age.
The comparison of the climbing-ability of pedelecs or pedelec assistance modes in a
single arbitrary point of the operation area, will be too much influenced by the choice
of that operation point. The average of the climbing-ability along the operation area
is not really meaningful, because the climbing-ability is highly dependent on the cy-
clist’s torque input. A solution is found in the averaging ofthe climbing-ability in all
operation points with a human power input of100W .
Although the climbing-ability is depending on the weight ofthe user, there is decided
not to consider this performance parameters as user-dependent. The total mass will
be set to100kg as a standard value. If necessary, the value can be changed bythe
graphical user interface described in chapter12. The choice for100W is based on
the fact that for the weaker pedelec users, this might be the physical limit to climb a
slope. In this way, the100W climbing-ability is another measure for the maximum
slope that can be climbed.
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Also the100W climbing-ability is the average of the intersection of 2 surfaces. This
is graphically represented in figure10.4:

• the surface represents the climbing-ability along the operation area,
• the lower line represents the operation points with100W human input
• and the upper line is the projection of the former one in the surface.

The average of all the values of the upper line is called the100W climbing-ability.
The distribution of these values is used to compare different assistance levels.
An example of boxplot representations of these distributions is given in figure10.5
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Figure 10.5: Boxplots of the distribution of the100W climbing-abilities for the 4 assistance
modes of the Sparta Ion

for the 4 motor assistance modes of one pedelec. The first boxplot is the one without
motor assistance, the 3 others are motor assisted levels. The medians of the100W
climbing-ability are proportional to the assistance level. All the distributions are quite
symmetrical, but the normal assistance level has the widestspreading.
Again a wilcoxon hypothesis test on the distributions of the100W climbing-abilities
can be used to quantify the resemblence of 2 assistance levels. This test is made
available via the graphical user interface.

10.2 The user-dependent performance parameters

The market study brougth to light that there is not really a specific ‘target group’ for
pedelec buyers (section2.3.9). This means that pedelecs will be used by people with
quite different expectations from their pedelec. The best pedelec buy for one rider
will not necessarily be the best one for another rider. That’s why the performance
analysis cannot be totally be seperated from the way the pedelec will be used [51].
That’s why a number of user-dependent performance parameters are introduced.
The behaviour of the pedelec driver will be analysed byrecordinga typical ride or
by using a synthetical drive cycle. Both options are aplied in chapter13.2 where
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all the performance parameters for a number of test pedelecsare discussed. The
determination of drive cycles will be discussed in chapter11.
In this chapter the drive cycle is supposed to be known: the values for the speed and
the percentage of slope are known at each moment in the drive cycle. An example of
a drive cycle is given in figure11.1.

10.2.1 The drive cycle efficiency

Although the tests learn that the mechanical efficiency of formula 8.3 varies little
over the operation area, it is interesting to calcule the mechanical efficiency during
a drive cycle. A global drive cycle efficiency as well as an instantaneous drive cycle
efficiency are considered.

The global drive cycle efficiency

0 50 100 150 200 250 300
−60

−40

−20

0

20

40

60

80
The minimal traction force during the Drive Cycle

time [s]

F
t [N

]

0 5 10 15 20 25
−60

−40

−20

0

20

40

60

80
Example of a drive cycle in the v−Ft plane

v [km/h]

F
t [N

]

Figure 10.6: The minimal traction force as a function of timeand speed during the drive
cycle of figure11.1

The globaldrive cycle efficiencyηcycle is defined as the quotient of the traction energy
without motor assistanceWtZA

and the human input energyWc at the pedal axis that
is required to cover the drive cycle.

ηcycle =
WtZA

Wc

(10.4)

The required cyclist energyWc is indirectly measurable via the heart rate, or by
simultaneously logging a torque and speed sensor, but the traction energyWtZA

(as
defined in equation6.13) is not easily measurable during cycling.
That makes the definition of equation10.4little useful. This problem was bypassed
by using
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• the bicycle model of section6.4to calculate the traction energy that is required
to cover the drive cycle inideal circumstances

• the (steady-state) LS-SVM torque modelT̂c(v̄, F̄t) of section8.2 to estimate
the required cyclist energy

The ideal circumstancesmentioned in the first item are accepted to be a pedelec ride

• without rolling resistance
• without internal mechanical losses
• with zero windspeed

In theseideal circumstancesthere is no difference between the propulsive force and
the traction force (see6.12). So, theideal (or minimal) traction forceFtmin

required
to cover the drive cycle with a lossless pedelec can be calculated as:

→

F tmin
=

→

F p= mtot
d

→
v

dt
+

→

F air +
→

F slope (10.5)

Thus, next to the inertial force, only the following forces have to be modelled:

• the air-resistanceFair

• the slope resistanceFslope

The slope resistance is calculated using equation9.2, so a value for the total mass of
the pedelec and the driver is required.
The air-resistance is modelled as

Fair =
1

2
cdAρv2

r (10.6)

where

• Cd = drag coefficient
• A = frontal area [m2]
• ρ = density of air [kg/m3]
• vr = vcycle − vheadwind = velocity of the pedelec relative to the air [m/s]

Typical values forCdA were found in reference [52].
The default values for these parameters applied in this workare shown in table10.2.
It is possible to change them via the graphical user interface of section12 if more
precise measurements would be available.
Combining equations9.2and10.6with equation10.5for a given drive cycle results
in a traction force as a time functionFt(t) for this drive cycle. An example is shown
in figure10.6for the drive cycle of figure11.1. The traction force plotted versus the
speed shows the same drive cycle in thev − Ft plane. This is represented in figure
10.6b.
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ρ [kg/m3] 1.21
vheadwind [m/s] 0

cd [-] 0.9
A [m2] 0.6

mtot [kg] 100

Table 10.2: Default values for the calculation ofFtmin

The LS-SVM model for the cyclist torquêTc(v̄, F̄t) derived from the measurements
(see section8.2) will be used to estimate the cyclist’s torquêTc that is required to
reach a point of the drive cycle in thev − Ft plane.
So the time function̂Tc (t) will be derived from the steady state testbench measure-
ments.
A problem of theT̂c(v̄, F̄t) LS-SVM model is the lack of information about the neg-
ative traction forces in braking situations. They cannot bemeasured by the load cell
of the test application, and as a consequence not be transferred into a meaningfull
negative torque for the pedelec.
For every two time momentst1 andt2 wherein between the traction force becomes
negative, the integral of equation10.7represents the braking energyEb that is avail-
able betweent1 andt2.

Eb =

∫ t2

t1

|Ft(t)| v(t)dt (10.7)

For the calculation of the efficiency during the drive cycle,these braking moments
are neglected.
For the rest of the discussion, the drive cycle will be considered as the succession of
only the positive sequences of the traction force. This modified drive cycle covers
a time period T. The function̂Tc (t) is the projection of the modified drive cycle of
figure 10.6b on the LS-SVM torque model. This is graphically presented in figure
10.7for the drive cycle of figure11.1.

So, if covering the drive cycle requires a timeT , the efficiency of equation10.4may
be written as a function of the instantaneous minimal traction forceFtmin

(t) and the
instantaneous cyclist torquêTc (equation10.8). The speedv(t) is the instantaneous
speed of the bicycle andω(t) is the instantaneous angular speed of the pedal axis.

ηcycle =

∫ T

0
PtZA

(t)dt
∫ T

0
Pc(t)dt

=

∫ T

0
Ftmin

(t)v(t)dt
∫ T

0
T̂c(t)ω(t)dt

(10.8)

This expression is directly applicable for all kinds of drive cycles and will be used to
calculate the drive cycle efficiencyηcycle.
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Figure 10.7: Projection of the drive cycle of figure11.1(neglecting the braking parts) on the
3D torque plot of the sparta Ion
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Figure 10.8: Boxplot of the distribution of the efficiency ofthe drive cycle from figure11.1
for the Sparta Ion

Next to the global drive cycle efficiencyηcycle, also an instantaneous efficiencyη(t)
could be determined. The efficiency at timet of the drive cycle with speedv(t) and
minimal traction forceFtmin

(t) becomes:

η(t) =
PtZA

(t)

Pc(t)
=

Ftmin
(t)v(t)

T̂c(t)ω(t)
= Z

Ftmin
(t)

T̂c(t)
(10.9)

This η(t) function is evaluated at discrete time intervals with a timestep∆t that is
adjustable via the graphical user interface. The default value will be ∆t = 1s. The
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distribution of theη values can be presented in a boxplot to get an idea of the spread-
ing. An example is given in figure10.8. The outliers are the consequence of the
numeric instability of the quotient10.9for smaller torques.

The comparison ofthe drive cycle efficienciesof two pedelecs will be performed by
a wilcoxon test on the distribution of the instantaneous efficiencies. In this way a
ranking can be made for the mechanical performances of the pedelecs for the given
drive cycle.

10.2.2 The drive cycle assistance factor

In the same way as thedrive cycle efficiencythe drive cycle assistance factorwill
be introduced as a user-dependent performance parameter. First a global drive cycle
assistance factor will be defined, followed by an expressionfor the instantaneous
drive cycle assistance factor.

The global drive cycle assistance factor
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Figure 10.9: The determination of the drive cycle assistance factor. The curves in the
surfaces represent the required cyclist torques during a drive cycle:T̂cMA

(t) in the lower
surface,T̂cZA

(t) in the upper surface

The globaldrive cycle assistance factoris defined as the quotient of the net contribu-
tion of the motor to the traction energy (=Wtm) and the total traction energyWt that
is required to cover the whole drive cycle.

ξcycle =
Wtm

Wt
(10.10)
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This assistance factor will be

• 1 : if the motor delivers all the traction energy
• 0 : if the cyclist delivers all the traction energy

The drive cycle assistance factor can be calculated for all the different power modes
of a pedelec.
However, the determination of the drive cycle assistance factor by on-road measure-
ment of the traction energy is difficult. Therefore the test bench measurements will
be used to estimate the drive cycle assistance factor.
The determination of the motor tractionWtm by looking at a difference in traction
force with and without motor power (as applied in section8.4) is not applicable here,
because the traction force is imposed by the drive cycle and thus the same while rid-
ing assisted or non-assisted. A difference is rather found at the level of the cyclist’s
efforts. The difference between the human energy needWcZA

to cover the drive cycle
without assistance power and the human energy needWcMA

to cover the drive cycle
with motor power is a measure for the added motor power. It cannot be equated to the
net motor traction energyWtm, because the transmission losses are not considered.
The differenceWcZA

−WcMA
will be called the motor propulsion energyWpm. η1 is

the efficiency of the conversion between propulsion and traction energy needs during
the drive cycle.

Wtm = η1Wpm = η1 (WcZA
− WcMA

) (10.11)

The energyWcZA
delivered by the cyclist whenever the motor is switched off,equals

the total propulsion energy required to cover the cycle. There should be noted again
that this total propulsion energy differs from the tractionenergyWt. The traction
energy is what is left from the propulsion energy after the transmission losses. Con-
sidering a similar energy conversion as in equation10.11the total traction energy
may be written as:

Wt = η1Wp = η1WcZA
(10.12)

The calculation of the drive cycle assistance factor will bebased on equation10.13.

ξcycle =
Wtm

Wt
=

Wpm

Wp
= 1 −

WcMA

WcZA

(10.13)

The determination of the global drive cycle assistance factor ξcycle requires the know-
ledge of the angular speed of the pedals, and the instantaneous values for the cyclist
torque with (TcMA

(t)) and without (TcZA
(t)) assistance in order to calculate the cy-

clist energy needsWc.
To get these time variables, the drive cycle is converted from a speed and slope per-
centage to a speed and minimal traction force as a function oftime (see equation
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10.5). Again the braking parts of the cycle will be excluded for the parameter deter-
mination, and the modified drive cycle from section10.2.1will be used.
The projection of the modifiedv − Ft drive cycle on the LS-SVM torque model
T̂c(v̄, F̄t) results in an estimate for the required cyclist torque as a function of time
T̂c(t). This is illustrated in figure10.9for two different assistance modes.
The practical formula for the estimation of the drive cycle assistance factor is given
in equation10.14.

ξcycle = 1 −

∫ T

0
T̂cMA

ω(t)dt
∫ T

0
T̂cZA

ω(t)dt
(10.14)

The instantaneous drive cycle assistance factor

The instantaneousdrive cycle assistance factoris defined as the contribution of the
motor to the traction powerPtm(t) in proportion to the total available traction power
Pt(t).

ξ(t) =
Ptm(t)

Pt(t)
(10.15)

It will appear to be more convenient to write this traction power in cyclist related
quantities in the same way as for the global drive cycle assistance factor.

ξ(t) = 1 −
T̂cMA

(t)

T̂cZA
(t)

(10.16)

The factorsT̂c(t) in equation10.16represent the (steady-state) cyclist torques re-
quired to reach the operation point with speedv(t) and traction forceFt(t). The
subscriptMA means the case with motor power and the subscript ZA means thecase
without motor power.
The ratio in equation10.16 is the quotient of the corresponding torques with and
without motor power. As an example two corresponding torques are marked on fig-
ure10.9with a red (with motor power) and black (without motor power)point.
The ξ(t) function is evaluated at discrete time intervals with a timestep∆t that is
adjustable via the graphical user interface. The default value is∆t = 1s.
As may be clear from equation10.16there might be numeric problems for the smaller
input powers. That is why the calculation ofξ(t) was not considered for cyclist pow-
ers less than 2W!
The (limited) distribution of the calculatedξ of a drive cycle can be presented in a
boxplot to get an idea of the spreading of allξ-values. An example is given in figure
10.10for 3 different assistance modes of the same pedelec.
The distribution ofξ(t) is used to compare the assistance factors for

• different assistance modes of the same pedelec
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Figure 10.10: Boxplots of the distribution of the drive cycle assistance factor of the drive
cycle from figure11.1for the Sparta Ion in its 3 assistance modes

• different pedelecs

• different drive cycles with the same pedelec

The comparison between two distributions will again be based on the wilcoxon test.
Also the ranking of pedelec assistance behaviours along a drive cycle is now reduced
to a merely mathematical procedure.

10.2.3 Human energy need during a drive cycle

While using the drive cycle efficiencyηcycle and the drive cycle assistance factor
ξcycle as performance parameters, the information about the absolute energy require-
ments gets lost. However, the human energy need during a drive cycle with a pedelec
in a given assistance modeWcmode

is implicitly used to calculate theξcycle.

Wcmode
=

∫

cycle

Tcmode
(t)ω(t)dt (10.17)

The comparison between different assistance modes is better understandable on the
basis of this absolute performance parameterWcmode

, instead of using the assistance
factor.
This value is therefore made available via the graphical user interface for all assis-
tance modes to help to interprete the adequacy of a certain pedelec for a given drive
cycle.

10.2.4 Motor energy need during a drive cycle

The determination ofthe drive cycle assistance factorξcycle is based on the net con-
tribution of the motorWtm to the traction energy. The reason for that is the fact that
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the testbench measurements are based on the traction force.The real required me-
chanical motor energyWm will be higher because of the losses in the transmissions.
This means that one shouldn’t use the net motor energy to conclude something about
the evolution of the battery state of charge. The relation between the net motor energy
and the real motor energy is determined by the often complex drive train and will be
called the motor transmission efficiencyηmt.

ηmt =
Wtm

Wm
(10.18)

For pedelecs with the motor mounted near the bracket the efficiency of the motor
power transmission will almost be the same as the efficiency for the human power
transmission. The calculation of this last one is explainedin equation10.8. For such
pedelecs there seemed to be no difference between the propulsion motor energyWpm

(defined in equation10.11) and the mechanical energy of the motorWm.
For hub motors, the motor power transmission will normally be more efficient be-
cause there is no chain transmission involved. Consequently there might be a small
difference betweenWpm andWm.
Unfortunately, with todays available measurements, no further conclusions can be
taken concerning this transmission efficiency.
Nevertheless, the motor energy need during a drive cycleWm will be estimated in all
cases as

Wm = ηcycleWpm = ηcycle (WcZA
− WcMA

) (10.19)

WcZA
andWcMA

in equation10.19are the required cyclist energy with and without
motor assistance as defined in equation10.13. A suggestion for a real measurement
of this performance parameters is given in chapter15.

10.2.5 Drive cycle battery range

The translation of the real motor energy need into a battery energy need assumes the
knowledge of another efficiencyηbm. This is the efficiency of the transmission from
electrical (battery) energyWb to mechanical energyWm.

ηbm =
Wm

Wb

(10.20)

Until now, this efficiency is not measured on the testbench, but some information may
be retrieved in the manufacturer data. Chapter15 describes a way to add extra test
facilities to perform anηbm measurement. The often applied brushlessDC motors
lead all electric motor types in terms of efficiency. Values up to 97% (at rated power)
are found in literature [53]. However, at no load conditions this efficiency may drop
to 20% [54], , [55]. Knowing that the pedelec does not always work in the most per-
forming operation point for these motors, a default averagevalue ofηbm = 0.6 will
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be used. This value is adaptable via the graphical user interface.

With this efficiency and the motor energy need, a rough estimate of the drive cycle
radiusDcycle may be achieved. Therefore the energy capacity of the battery needs to
be known. Although the amount of energy that can be extractedfrom a fully charged
battery is difficult to specify in a single number (this highly depends on temperature,
the rate of discharge, battery age, battery type,...), a fixed energy capacityWbat is
supposed. Assuming a depth of dischargeDOD of 80%, the energy capacity may be
estimated at

Wbat = 0.8 · Vbat [V ] · CAPbat [Ah] (10.21)

The time between two charges of the battery or battery cycle timeTbat while contin-
uously performing the drive cycle is calculated in equation10.22.

Tbat =
Wbat

Wb

· Tcycle (10.22)

This battery cycle time may be transferred into a distance byusing equation10.23,
wherev(t) is the periodic extension of the drive cycle speed with period Tcycle.

Dcycle =

∫ Tbat

0

v(t)dt (10.23)

Because of the use of the steady-state measurements to draw conclusions for tran-
sient phenomena, the absolute battery ranges are a bit overestimated. But this per-
formance parameter stays very interesting for comparison between pedelecs and/or
drive cycles. A more suitable method to estimate the drive cycle range, is suggested
in chapter15.

10.3 Conclusions

In this chapter, a number of performance parameters were defined. These parameters
are well defined combinations of different measurements that can be expressed as a
single number. These parameters enable the ranking of different aspects of the ped-
elecs performances in a scientific way.
Two groups of performance parameters are distinguished: the user-independent per-
formance parameters that are totally determined by the pedelec itself and the user-
dependent performance parameters that may change by the waythe cyclist is using
the pedelec.
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Towards a Standard Drive Cycle

The use of a standard drive cycle is very common in vehicle testing. By using such
drive cycles, the fuel consumption and emissions of cars canbe easily compared.
These cycles simulate urban driving, out-of-town or highway driving. Some try to be
as general as possible, others are even city specific (LA-4, New York City Cycle,...)
[56]
In the European Union, the emission standard for petrol vehicles is based on the urban
and sub-urban drive cycles ECE 15 and EUDC[58],[59], [60]. For electric scooters
and smaller city-only electric vehicles, the SAE J227a-C and the ECE-47 are often
used [56], [57].

Also for electric bicycles a drive cycle would be interesting. The comparison of
the user-dependent performance parameters in chapter13 will bring to light that the
cycling behaviour seriously influences the battery range. The analysis of the user
comments in section2.4 shows that battery range is an important decisive argument
for the users. As long as there is no standard drive cycle, thebattery ranges specified
by the manufacturers are not really scientifically meaningful.
The Dutch firm IDbike started the discussion about a standarddrive cycle for pedelecs
on their website [36] by introducing their own test cycle. This test drive cycle will be
discussed as the first part of this chapter (section11.1).
In the framework of this research, a microcontroller with additional flash memory
is programmed to record the speed during cycling. These records resulted in some
more realistic drive cycles that are used as an input for the performance analysis on
the measured pedelecs (chapter13). The measurement system for the speed logging
is explained in section11.2 of this chapter. The chapter is concluded with some
remarks about the development of a standard drive cycle.
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11.1 The IDbike drive cycle

11.1.1 Description of the IDbike drive cycle
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Figure 11.1: Representation of the ‘IDcycle’: The bicycle speed and percentage of slope as
a function of time

The IDbike drive cycle (referred to as the ‘IDcycle’) is a synthetic drive cycle. The
drive cycle is designed with the aim to include all possible real life difficulties within
a limited cycle time: different constant speeds, differentaccelerations and decelera-
tions, a few start/stops, headwind and/or slope loads,...

The ‘IDcycle’ is graphically represented at figure11.1 and is described as follows
[36]:
“The bicycle fastly accelerates to14km/h and keeps this speed for 40 seconds. After
a stop it accelerates to18km/h and keeps this speed for 60 seconds. It stops again
and accelerates slowly to22km/h and keeps this speed for 20 seconds. After a last
stop an extra brake load is applied, simulating a slope of 2%.The bicycle accelerates
to 15km/h and stays at this speed for 50 seconds. Then the brake load is increased to
a slope of 4%. After 35 seconds the bicycle decelerates and stops. The total distance
of the ‘IDcycle’ is 1050 meters and the average speed is13.5km/h.”

11.1.2 Analysis of the IDbike drive cycle

In this work the ‘IDcycle’ is used to calculate and compare some user-dependent
performance parameters (chapters10 and13). Different qualities of the drive cycle
are represented in figure11.2:

• TheSpeed Duration Curveof figure11.2a shows the monotonous diagram of



CHAPTER 11 119

0 50 100 150 200 250 300
0

5

10

15

20

Speed duration curve for the IDCycle

time [s]

sp
ee

d 
[k

m
/h

]

(a) The speed duration curve

0 5 10 15 20
0

5

10

15

20

Speed distribution of the IDCycle

Speed [km/h]

P
er

ce
nt

Average speed = 13.4942 km/h
max speed = 22 km/h
most frequent speed = 18 to 19km/h

(b) The speed distribution

0 50 100 150 200 250 300

−0.4

−0.2

0

0.2

0.4

A
cc

el
er

at
io

n 
[m

/s
2 ]

time [s]

maximal acceleration = 0.5 m/s2

maximal deceleration = 0.48611 m/s2

cruising = 70.7155 %

(c) The acceleration plot

Idle
2%

Cruising
69%

Acceleration
14%

Deceleration
15%

Cycling state durations for the IDCycle

 

 

(d) The state plot

Figure 11.2: Extra plot options for the ‘IDcycle’ of figure11.1

the speed distribution. For every speed on they-axis, one can read how long
the cyclist is riding above this speed on thex-axis.

• TheWeibull Distributionof figure11.2b shows for every speed interval on the
x-axis which percentage of the time the cyclist is riding at a speed within this
interval. The average speed, the maximum speed and the most frequent speed
interval are displayed as text in the figure window.

• The Acceleration Plotof figure 11.2c plots the acceleration versus the time.
The maximum values for the acceleration and decelaration are displayed as
text in the figure window.

• TheState Plotof figure11.2d shows a pie with the percentages of the time that
the cyclist is cruising, accelerating, decelerating and standing still.

All these plottypes can be automatically generated with thegraphical interface of
chapter12.
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11.2 Recording drive cycles

Figure 11.3: On-road speed logging system

An on-road speed logging system is developed with availableand cheap equipment,
because

• gathering information about the driving behaviour of cyclists in different cir-
cumstances is a first step to develop a standard cycle.

• in this work the performance is analysed by means of user-dependent perfor-
mance parameters (chapter10) which requires a realistic drive cycle of the user
as an input.

A picture of the on-road speed logging system is shown in figure 11.3. The left
picture shows the speed sensing magnets and the connection of the reed contact to
the microcontroller. The right picture zooms on the microcontroller and its stabilized
battery power supply.

11.2.1 The speed sensors

Nine magnets are equidistantly mounted in the frontwheel ofthe measurement bicy-
cle. A reed contact of a common bicycle computer is connectedto the bicycle’s front
fork. The reed contact gets its power from a5V PWM-output of a microcontroller
with duty cycle kept permanently at 100%. Every time a magnetpasses by the reed
contact, a counter (referred to as counter 1) is increased by1.

11.2.2 The microcontroller

The phyCore-167 16-bit single-chip microcontroller withfcpu = 20Mhz is pro-
grammed to log the speed of the bicycle. There are 2 differentways to calculate the
speed using the pulses caused by the speed sensors:

• measuring the time between two pulses
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• or measuring the number of pulses in a fixed time interval

The easiest way to program is the second one. The fixed interval is determined by
a second counter (counter 2). Counter 2 generates an interrupt at overflow every
838.86ms 1. The major drawback of this system is the rather high minimaldiscrete
speed step∆v. This smallest detectable speed step∆v is calculated in equation11.1.
Therefore the wheel perimeter of the test bicycle is required. A single rotation of the
frontwheel of the test bicycle represents2.2m.

∆v =
1

838.86
pulses/ms =

1

9
2.2

0.83886
m/s = 0.29m/s = 1.0km/h (11.1)

11.2.3 The flash memory

When the interrupt of counter 2 is given, the microcontroller writes the value (in
pulses/s) into an AMD flash memory. In order to keep the driverinformed about the
state of the measurement equipment a LED is lighted everytime the data transfer to
the flash memory takes place. A great advantage of using flash memory is appeared
to be the non-volatile property, preventing the erasing of data when the power supply
is interrupted.

11.2.4 The power supply

The standard phyCore-167 is delivered with a grid power supply. There is need for
a conversion to battery power to make the log system portable. For this reason a
stabilized power supply is designed using the battery and charger of a9V electric
drill.

11.2.5 Example of a recorded cycle

The systematic logging of the cycling behaviour of different user groups is now pos-
sible but is not yet included in this work. Only one measured drive cycle will be
discussed here to show the possibilities of the log system. This drive cycle will be
referred to as the ‘Commutercycle’. The speed and slope of this cycle as a function
of time is represented in figure11.4. The difference between this cycle and the syn-
thetic ‘IDcycle’ is already clear from this figure, but can befurtherly quantified by
the comparison of the plots of figure11.5with those of figure11.2:

• The maximum and average speed of the ‘Commutercycle’ is about 13% higher
than the maximum and average speed of the ‘IDcycle’.

• The speed distribution is much more continuous
• The acceleration and deceleration maxima are almost twice as high
• There is much less cruising time in the recorded cycle

1This value is obtained by counting at a clock speed offcpu/256
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Figure 11.4: Representation of the ‘Commutercycle’: The bicycle speed and percentage of
slope as a function of time
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Figure 11.5: Extra plot options for the ‘Commutercycle’ of figure11.4



CHAPTER 11 123

• The cycle states cruising, deceleration and acceleration are equally distributed
in time (this phenomenon is noticed in most of the recorded cycles)

11.3 Developing a standard drive cycle

The results of the user-dependent performance parameters in chapter13clearly show
the dependency of the pedelec’s performance on the used drive cycle. The develop-
ment of a standard drive cycle for pedelecs should be discussed among researchers,
consumer organisations and manufucturers and is out of the scope of this work. The
two drive cycles discussed in the previous sections alreadylearn that the definition
of a standard drive cycle for pedelecs will always be a bit arbitrary. Moreover, the
proposal of a standard requires much more road measurements. Not only speed mea-
surements are valuable but also the cyclist’s torque shouldbe measured to analyse
the cycling behaviour on the road.





12
A Graphical User Interface for the Pedelec’s

Performance Analysis

The characterisation of a pedelec with the developed test installation of section5
happens in several steps:

1. The measuring of the pedelec
2. The LS-SVM modelling
3. The creation of the performance plots
4. The calculation of the performance parameters
5. The comparison with other pedelecs

The first step is rather time consuming. Plenty of measurements have to be taken
for every assistance mode. The record of the cyclist torque,the pedelec speed and
the traction force in one operation point takes about 20 seconds. The availabitity of
a second battery is recommended to be able to measure withoutreload breaks. All
together, the measurement step quickly takes some hours.
The time for the other steps is kept under control by the introduction of a graphical
user interface (GUI) including all the tools for the steps 2 until 5. This chapter will
describe the most important functions of the user interfaceand is written to serve as
a user manual.

12.1 Set-up of the GUI

The GUI is programmed in Matlab mainly because there is aLS-SVM toolboxavail-
able for this numerical computing environment. This toolbox is required for the in-
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tended pedelec performance analysis. It can be downloaded for free fromhttp://
www.esat.kuleuven.ac.be/sista/lssvmlab/ .
A pedelec toolboxis developed with all the function files and required manipulations
for the measurement data. These both toolboxes should be stored in the ‘matlab-
root/toolbox’ path in order to let the GUI work properly.
The GUI is set-up around 5 programfiles or m-files, preferablyexecuted in the given
order.

1. Models Creation.m for the creation of the LS-SVM models
2. Performance Plots.m for the creation of the performance plots
3. DriveCycle.m for the creation and analysis of a user defined drive cycle
4. Performance Parameters.m for the calculation of the performance parame-

ters
5. Comparison.m for the comparison of the performance of different pedelecs

These files may be stored in an arbitrary working directory. The pedelec toolbox
and the complete GUI for the pedelec’s performance analysisare freely available
at http://www.mathworks.com/matlabcentral/fileexchange 1 or may be
obtained by mailing tojancappelle@hotmail.com.

12.2 The creation of the LS-SVM pedelec models

OpeningModelsCreation.mresults in the window of figure12.1. The window has
four fields: the two first fields are reserved to enter the essential measurement and
pedelec data, the last two to edit model related information.

12.2.1 The ‘Files and Folders’ field

The measurement data sets of the pedelec are stored in Excel-files via the Labview
DAQ described in section5.4.6. These files should contain 3 columns:

• Column 1: the speed measurements inm/s

• Column 2: the torque measurements inNm

• Column 3: the force measurements inN

The measurement data of different assistance modes are stored in different files. The
‘datafile’ field enables the user to enter the datafile location on the computer and the
number of the Excel sheet containing the measurements.

Once the models are created, a lot of data will be stored in a matlab file ‘pedelec.mat’
in the folder entered in the ‘Destination folder’-field.
The ‘Pedelec.mat’ file may contain up to 8 objects. The structure of this file and its
objects are represented in figure12.2. The object structures are explained in the next
sections.

1Note that the GUI and the pedelec toolbox is developed for Matlab 7.1 or higher

http://www.esat.kuleuven.ac.be/sista/lssvmlab/
http://www.esat.kuleuven.ac.be/sista/lssvmlab/
http://www.mathworks.com/matlabcentral/fileexchange
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Figure 12.1: Screenshot of the GUI for the creation of the LS-SVM models

Figure 12.2: Structure of the ‘pedelec.mat’-file

12.2.2 The ‘pedelec’ field

In this field the name, the gearnumber and the transmission ratio Z of the recorded
pedelec should be entered. These data are also stored in the ‘pedelec.mat’-file when-
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ever a model is created.

• The ‘pname’-object(figure12.2) of this file is a row matrix of two strings: the
pedelecname and the gearnumber.

• The ‘pZ’-object is the transmission ratio stored as a string.

Pushing the ‘Create Perfomance Plots’-button sends the user to the GUI for the cre-
ation of the performance plots of section12.3. This only makes sense if the re-
quired models are already calculated. These model calculations are controlled by the
‘Models’-field

12.2.3 The ‘Models’ fields

There are two ‘Models’ fields available. The first field enables the user to create all
the models where the speedv and the cyclist torqueTc serves as an input. The second
field helps to create the models where the speedv and the traction forceFt serve as
input variables.
The creation of the LS-SVM models is based on the existing LS-SVM toolbox. The
LS-SVM models structure is given in table12.1. But for this application, the main
interest is the calculation of new data points. The syntax for this interpolation is
found in equation12.1.

Ynew = simlssvm(model,Xnew) (12.1)

Xnew represents the new input andYnew the resulting output quantities.
Before pushing the ‘Create model’-button of the first ‘Models’-field, a model choice
has to be made:

• Choose theFt ModelZAand/orETA modelLS-SVM models if the input datafile
contains measurement data without assistance power.

• Choose theFt ModelMAe, Ft ModelMAn, Ft ModelMApLS-SVM models if
the input file contains measurement data with economic, normal or power as-
sistance respectively.

• Choose theXI modelwhen at least theFt ModelZAand one assisted model
Ft ModelMAx is already calculated.

The name giving as well as more details of all these models arefound in chapter8.
If one is interested in the torque models, the ‘Create model’-button of the second
‘Models’-field has to be used. Again, the choice of 1 out of 4 torque models has to
be made first. This choice depends on the selected measurement datafile.

A push on the ‘Create model’-button has 3 major results:

1. A first warning dialog box informs about models that possibly could be found
in the destination folder. A second dialog box warns for the duration of the
models creation (several minutes per model on a slow computer). If the user
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Field Content Field Content

type ‘f’ x delays 0
implementation ‘CMEX’ y delays 0

x dim 2 steps 1
y dim 1 latent ‘no’

nb data 149 duration 0.0951
preprocess ‘preprocess’ code ‘original’
prestatus ‘ok’ codetype ‘none’

xtrain [149x2 double] pre xscheme ‘cc’
ytrain [149x1 double] pre yscheme ‘c’

selector [1x149 double] pre xmean [13.7457 52.9800]
gam 1.7225e+003 pre xstd [8.7502 35.9091]

kernel type ‘RBF kernel’ pre ymean 27.5396
kernelpars 3.1728 pre ystd 16.5099
cgamax itr 149 status ‘changed’

cgaeps 1.0000e-015 cgastartvalues []
cgafi bound 1.0000e-015 alpha [149x1 double]

cgashow 0 b -0.0069

Table 12.1: An example of a LS-SVM model construction

still decides to go on,the model creationwill start. The axes in the middle of
the ‘Models’-field will show the state of the LS-SVM model creation. If the
state of the LS-SVM calculation is opening in a new window, just close the
window and the right axes will take over.

2. After the creation of the models,the calculation of the RMSE valuesfrom the
testdata applied to the corresponding model is executed following the rules of
chapter8. These RMSE values and the corresponding short model name (ZA,
MAe, MAn, MAp, XI, ETA) are displayed in the 2 RMSE columns within
the ‘Models’-field. Because the creation of a model is based on a random
split up of the input data in testdata and trainingsdata, theRMSE may differ if
calculated more than once. When the user judges the displayed RMSE value
to be too high, a recalculation of the same model might lower this value. If still
not satisfying, more data points should be taken to refine themodel, or more
accurate measurements should be taken!

3. The ‘pedelec.mat’-file is updated:

• The created models of the first field will be stored as subobjects of the
‘vTcModels’-object2. The ‘vTcModels’-objectmay be filled with 5 pos-
sible LS-SVM models and 1XI modelas may be clear from figure12.2.

2The names of the model-objects are based on the input (x,y) variables of their 3D presentation: e.g.
vTc for F̂ (v, T c).
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The created models of the second field will be stored as subobjects of the
‘vFtModels’-object of the ‘pedelec.mat’-file (figure12.2). The‘vFtModels’-
objectmay be filled with 4 possible LS-SVM models.

• The RMSE values are stored as part of the‘vTcRMSE’-objector the
‘vFtRMSE’-objectdepending on the model type.

• The applied training and testdata are stored as part of the‘vTcData’-
objector the‘vFtData’-objectdepending on the model type.

12.3 The creation of the performance plots

Figure 12.3: Screenshot of the GUI for the visualisation of the performance plots

Chapter9 describes the different ways of presenting the pedelec models using perfor-
mance plots. These performance plots are easily created, displayed and saved with
the ‘PerformancePlots.m’-file. Running this m-file opens the graphical user interface
of figure12.3. Five main fields with their own functionalities may be recognized:

1. In the ‘Model Folder’-field the path to the folder with the ‘pedelec.mat’-file
of interest has to be filled in first. Browsing as well as typingthe pathname
is possible. If the user wants to save the performance plot, an eps-file of the
performance plot is saved in the pedelec folder when pushingthe ‘Save Plot
As...’-button. In the ‘plotname’-field, the desired name ofthis eps-file may be
typed.
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2. The‘Performance Plot’-fieldenables the user to switch between the different
performance plots. The radio buttons assure exclusive selection.

• Choose ‘Measurements’ to select the measurement data splitted up be-
tween trainings- and testdata.

• Choose ‘Traction force’ to select thêFt(v̄, T̄c) LS-SVM model

• Choose ‘Required Cyclist Torque’ to select theT̂c(v̄, F̄t) LS-SVM model

• Choose ‘Efficiency’ to select thêηt(v̄, T̄c) LS-SVM model

• Choose ‘Assistance Factor’ to select theξ̂t(v̄, T̄c) model

• Fill in the weights of the pedelec and the cyclist and choose ‘Slope-
abibity’ to select the maximal slope that can be overcome by agiven
torque and speed.

3. The desired assistance mode or modes may be selected in the‘Assistance
Mode’-field.

4. The way of presenting the models may also be changed: The popup-menu
in the ‘Representation’-fieldallows 3D-plots, contourplots, slices of constant
speed or slices of constant torque. For the slice plots, the number of slices is
adaptable by giving the values of the constant torques or constant speeds as a
matrix [a1 a2 .. an].

5. A push on the ‘Create plot’-button is required every time anew selection has
been made. Then a plot of the selection is displayed in the‘Axes’-field. If one
would like to edit the plot, a new editable figure window will be opened after a
push on the ‘Edit current plot’-button.

If ‘weird’ combinations are selected, or if some data is missing a warning dialog box
appears.

12.4 The creation and analysis of a drive cycle

A number of performance parameters are labelled as ‘user-dependent’. They are ex-
plained in chapter10. The calculation of these user-dependent performance parame-
ters requires data about a drive cycle, the environment, thedriver and his position on
the bicycle. These data may be entered via a new graphical user interface ‘DriveCy-
cle.m’ which is shown in figure12.4. This GUI allows the calculation and visuali-
sation of the different forces and the energy consumption during the cycle coverage.
After running this file, all relevant drive cycle data are stored in one ‘cycledata.mat’-
file.
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Figure 12.4: The graphical user interface to create and analyze drive cycles

12.4.1 The input fields

File and Folder

The user may introduce his own cycling trip (= ‘drive cycle’)to compare the perfor-
mances of different pedelecs to cover his trip.
The base format for entering a drive cycle in the graphical user interface is an Excel
file with 3 columns including in column:

1. the time in seconds (start byt = 0),

2. the speed inkm/h,

3. the percent slope.

At least, each change in the percent slope or acceleration requires a new row entry in
the Excel file. A possible Excel file for the drive cycle of figure 11.1is given in table
12.2.
The absolute pathname to this Excel file has to be entered in the ‘Cycle File’-field.
This may happen by typing or browsing.
In this GUI there is also a built-in tool to analyse the ‘drivecycle’ behaviour of
a particular pedelec. Therefore the directory of the folderwhere the concerning
‘pedelec.mat’-file (section12.2) is stored has to be entered in the ‘Pedelec Folder’-
field. Again, both typing and browsing are possible.
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%Time [s] %Speed [km/h] %Slope [%]

0 0 0
8 14 0
48 14 0
56 0 0
58 0 0
68 18 0
129 18 0
140 0 0
142 0 0
157 22 0
177 22 0
192 0 0
194 0 2
204 15 2
254 15 2
256 12 4
291 12 4
300 0 4

Table 12.2: An example of a drive cycle entry for the GUI

Constants

The ‘Constants’-field enables the user to enter informationthat may be helpful to
estimate the forces during the drive cycle.

• The total massmtot of the bicycle, the cyclist and, if any, the luggage.
• The coefficient of frictionCrr between the pedelec and the road surface.
• The frontal areaof the cyclist and his bicycle.
• The headwind speed
• The drag coefficientCd

• Deltat is the time step which will be used to linearly interpolate the rows of the
drive cycle Excel-file. So an estimate of the percent slope and speed is obtained
for all moments between the time entries of the first and the last row of the file.

The total mass and the coefficient of friction are required toestimate the rolling re-
sistance during the drive cycle. The dynamic rolling resistance may be modelled by
equation12.2where g represents the gravitational acceleration andα the angle of the
slope.

Froll = Crr · mtot · g · cosα (12.2)

The frontal area, the headwind speed and the drag coefficientare required to estimate
the air resistance using equation10.6. The default value for the coefficient of friction
will be 0.005 as proposed in reference [61]. The other default values were already
specified in table10.2.
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Cycle Name

In the ‘Cycle Name’-field a name may be entered for the drive cycle. This name will
appear in the title of the created plots.

Graph Units

The units for the speed and the slope applied in the plots can be adjusted in the ‘Graph
Units’-fields. The speed may be displayed in km/h or m/s, the slope in degrees or as
a percentage.

12.4.2 The creation of a drive Cycle

The ‘Create Drive Cycle’-button

If all the input fields are checked, the ‘Create Drive Cycle’-button may be pushed.
This results in

• thevisualisation of the drive cyclein the left axes-field, which means that the
slope as well as the speed will be displayed as a function of time

• thecalculation of the resisting forcesas time functions
• thecreation of a ‘Cycleforces’-object(see next section)
• thesaving of the ‘Cycleforces’-objectin a cycledata.mat file in the folder of the

input drive cycle Excel-file.

The structure of a ‘Cycleforces’-object

Figure 12.5: The structure of a ‘Cycleforces’-object

Information that is essential to calculate the user-dependent performance parameters
(with the m-file described in section12.5) is stored in the ‘cycledata.mat’-file as a
‘Cycleforces’-object with 7 subobjects. This is represented in figure12.5.

• The ‘cycle’-subobjectincludes:

– thename of the cycle
– the applied interpolation stepdt
– all timest going from zero to the total cycling time with time stepdt
– the values of the speedv at the momentst
– the values of the slopes at the momentst
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– the values of the accelerationa at the momentst

• Thepropulsion forcefprop at each momentt, calculated with equation6.12,
but considering a bicycle without internal mechanical losses

• Theminimal traction forceft at each momentt, equals theFtmin
from equa-

tion 10.5

• Theminimal traction forceftpos at each moment t equals the previous item,
but ignores the negative (or braking) parts

• Theair resistancefair at each moment t, using equation10.6

• Therolling resistancefrol at each moment t, using equation12.2

• Theslope resistancefslope at each moment t, using equation9.1

12.4.3 Forces Preview

The axes-field at the right side of the GUI will be used to plot the forces and torques
as a function of time.
When the ‘Minimal values’-checkbox is checked while pushing the ‘Show Plot’-
button, the plot selected in the pop-up menu will be displayed. These ‘Minimal
values’-plots are all based on the coverage of the drive cycle with a lossless bicycle.
The options are

• thePropulsion Forceto seefprop

• theTraction Force on testbenchto seeftmin

• theRolling, Slope or Air Resistance

• and theRequired Cyclist Torque

The Required Cyclist Torquerepresents the torque that should be delivered by the
(dummy) cyclist on the testbench to reach the speed and traction force of the drive
cycle with a lossless non-assisted pedelec.
When the ‘Measured values’-checkbox is checked, thisRequired Cyclist Torqueop-
tion of the pop-up menu is the only one that makes sense! In this case, the torque
is calculated using the data from the ‘pedelec.mat’-file that are found in the given
pedelec folder. Here, also another choice has to be made by the user.

• checkingZA will display the cyclist torque that should be delivered by the
cyclist with the pedelec without motor assistance

• checkingMAewill display the cyclist torque with low motor assistance

• checkingMAnwill display the cyclist torque with normal motor assistance

• checkingMApwill display the cyclist torque with high motor assistance
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12.4.4 Energy and power

By pushing the ‘Show Plot’-button while the ‘Required Cyclist Torque’ is selected,
also the ‘Energy and power’-field will be edited.
Here, the user may readthe human energyandaverage human powerthat is required
to cover the drive cycle

• with a lossless bicycle if the ‘Minimal values’-checkbox ischecked
• with the pedelec from the entered ‘pedelec.mat’-file in the indicated assistance

mode if the ‘Measured values’-checkbox is checked

The units for the displayed energies may be switched betweenwatthour [Wh] and
joule [J] by a pop-up menu.

12.4.5 Extra Plot Options

The analysis of the cycling behaviour using the road measurements of chapter11and
also the comparison between different drive cycles is facilitated by means of the extra
plot options in this GUI.
Choosing an option of the pop-up menu will open a new figure window when the
‘Create Plot’-button is pushed. The next plot options are available:

• The speed duration curve
• The weibull distribution
• The acceleration plot
• The state plot
• The drive cycle plot (opens the left-axes field in a new figure window that is

easily editable by the user)

The meaning and some examples of these plots are already discussed in chapter11.

12.5 Calculation of the performance parameters

The objective performance analysis described in chapter10 requires many data ma-
nipulations. An automation of these manipulations is recommended. By running
the ‘PerformanceParameters.m’-file, the graphical user interface of figure12.6will
open. This GUI allows the user to calculate the user-independent as well as the user-
dependent parameters.
Both parameter types require the input of a ‘pedelec.mat’-file that may be developed
by the ‘ModelsCreation.m’ GUI of section12.2. The directory where this file is
stored has to be entered in the ‘Pedelec Folder’-field. Typing as well as browsing is
possible. The calculation of the user-dependent parameters also requires drive cycle
data. The directory of a ‘cycledata.mat’-file developed by the ‘DriveCycle.m’-GUI
of section12.4has to be entered in the ‘Drive Cycle Folder’-field.
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Figure 12.6: Screenshot of the GUI for the calculation of theperformance parameters

12.5.1 The user-independent performance parameters

The ‘Calculate’-button

A push on the ‘Calculate’-button in the ‘User-Indepent Performance Parameters’-
field results in the calculation of

• the100W efficiency (ETA)
• the75W assistance factors (XI)
• the100W climbing-(or slope-) abilities (SA)

as explained in chapter10 for the pedelec described in the entered ‘pedelec.mat’-file.
The abbreviations between brackets are used to refer to the corresponding parameters
in the ‘data.mat’-file that will be introduced in the next section. The calculation of
the climbing-ability requires an input for the total mass ofthe cyclist, the pedelec and
the luggage. The default value is100kg
The user-independent parameters are displayed for all assistance modes that are found
in the ‘pedelec.mat’-file. The names given in the ‘ModelsCreation.m’ (section12.2)
determine which fields that are available in this file. Maximum 4 modes may be
displayed: A non-assisted mode (ZA), an economic mode (MAe), a normal mode
(MAn) and a power mode (MAp). If there are less assistance modes available, not
all the fields will be filled.
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The ‘Boxplot’-buttons

There are many points of the operation area that represent100W or 75W input. The
values that appear in the ‘?’-fields are the averages of all these points for the cor-
responding performance parameters as explained in chapter10. The distribution of
these points may be displayed in a boxplot by pushing the corresponding ‘boxplot’-
button. This representation enables the user to quantify the differences in efficiency,
motor assistance or climbing-ability for the different power modes from the consid-
ered pedelec. This could be done by a simple comparison between the average values,
but by preference, a comparison should be based on the distributions of the perfor-
mance parameter. This is discussed in more detail in chapter10. The values that
appear between each two boxplots are the results of the wilcoxon hypothesis tests
applied on the two adjacent assistance modes. The smaller this number, the smaller
the change that both data samples are coming from equally distributed models, and
so the smaller the change that both assistance modes are equal.

12.5.2 The user-dependent performance parameters

The ‘Calculate’-button

The calculation of the user-dependent performance parameters requires the input of
the cycling behaviour of the user. So, a push on the ‘Calculate’-button in the ‘User-
Indepent Performance Parameters’-field will only fill in the‘?’-fields if a ‘cycledata.mat’-
file is entered in the ‘Drive Cycle Folder’-field. The fields tobe filled are

• the drive cycle efficiency (ETA)

• the drive cycle assistance factor (XI)

• the required human energy input to cover the drive cycle (HEI)

• the required motor energy input to cover the drive cycle

• the drive cycle battery range (BR)

The quantities of energy may be expressed in joules or watthours, as indicated by
the pop-up menus. The number of fields that will be filled depends on the number
of assistance modes that are available in the ‘pedelec.mat’-file as is earlier explained
for the user-dependent performance parameters. The calculation of the drive cycle
battery range requires the following input data:

• the battery voltage (24V )

• the battery capacity (7Ah)

• the allowed Depth of Discharge (80%)

• the efficiency of the energy conversion (60%)

The default values are given between brackets but may be changed by filling in the
corresponding fields of the GUI.
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The ‘Boxplot’-buttons

The distributions of the efficiency and the assistance factor along the drive cycle
may be expressed in a boxplot by pushing the corresponding ‘boxplot’-button. If
more assistance modes are available, the results of the wilcoxon hypothesis tests are
displayed between each two adjacent assistance modes. The smaller the result, the
more probable the hypothesis that both assistance modes differ.

12.5.3 Saving the parameters

Figure 12.7: Structure of the saved performance parameters

Only momentarily representing the performance parameterslead to a lot of manual
datatransfer if the comparison between two different pedelecs is required. This can
be avoided by saving all the performance parameters in a new ‘data.mat-file’. The
average values as wel as the distributions are saved. The name of the ‘data.mat-file’
is editable via the ‘Save as’-field in the upper right corner of the GUI (figure12.6. It
is recommended to choose a name that refers to the pedelec as well as to the drive
cycle applied for the calculation of the user dependent performance parameters.

The structure of this saved results of the performance analysis is given in figure
12.7. The ‘data.mat-file’ contains 2 major objects, the user-independent (UI) per-
formance parameters and the user-dependent (UD) performance parameters. Each
performance parameter consists of the average value (m) as well as its distribution
(d), except for the human energy input (HEI) and the battery range (BR). The low-
est layer distinguishes between the different assistance levels. This ‘data.mat-file’
will serve as an input for the ‘Comparison.m’-file of section12.6.

Example

The values can be recalled by the standard Matlab commands. The Matlab commands
that will recall the list of values (d) of all assistance factor (XI) along a drive cycle
(UD) in normal assistance mode (MAn) is given as an example.

load data.mat
UD.XI.d.MAn
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The first line only loads the stored data-file. The second linesearches the values in
the structure of figure12.7.

12.6 Comparison of the performance of different pedelecs

Figure 12.8: Screenshot of the GUI for the comparison of different pedelecs

Not only a comparison between the different assistance modes of one pedelec is in-
teresting. Also the difference in the performance of different pedelecs, or different
gears of the same pedelec, or the different behaviour for different drive cycles with
the same pedelec, or the influence of different tyre pressures,... are interesting to in-
vestigate.
The previous section reports how the calculated performance parameters are stored
in a single ‘data.mat’-file. Because of this structure, the comparison of twopedelecs
is reduced to the comparison between 2 of these files. The graphical user interface
‘Comparison.m’ enables this comparison based as well on theaverage values as on
the complete distributions. The method is described below,practical results of vari-
ous comparisons are given in chapter13.

12.6.1 Average values

There are 3 main fields in the ‘Comparison.m’-GUI:
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• The ‘Pedelecs’-fieldwhere the 2 ‘data.mat’-files (see figure12.7) for the in-
tended comparison have to be entered.

• The field of theUser-Independent Performance Parameterswhere the100W
efficiency, the75W assistance factor and the100W climbing-ability will be
displayed

• The field of theUser-Dependent Performance Parameterswhere the drive cy-
cle efficiency, the drive cycle assistance factor, the humanenergy input and the
battery range will be displayed.

A push on the ‘Fill in’-Button shows all available performance parameters. The left
columns represent the values for the first pedelec of the‘Pedelecs’-field, the right
columns the second pedelec.

12.6.2 Boxplots

The ‘Boxplot’-buttons under some of the performance parameters enable the user to
compare the distributions of these performance parametersby means of the boxplot
representation. For every available assistance mode, a newfigure window is opened
containing two boxplots, the left one represents the first pedelec, the right one, the
second pedelec. Again, the wilcoxon hypothesis test is performed on the parameters
of both pedelecs, and the result is shown in each figure window. A value near1 raises
the change that both performance parameters are equal, a value near0 means that the
parameters distributions differ.

12.7 Conclusion

A lot of manipulations are required on the data from the testbench measurements be-
fore the performance plots and performance parameters of a pedelec can be derived.
These data manipulations are automated by means of the five Matlab programs intro-
duced in this chapter. Each of these programs have a simple graphical user interface
for data input and output. Next to the performance analysis of a single pedelec, also
comparisons between different pedelecs are automated.





13
Performance Analysis Results

The objective performance analysis method described in part II of this book, is ap-
plied to different pedelecs. This chapter reports about themeasurement of these
pedelecs on the designed test bench.
The tests are not only executed to get an idea of the performance of these pedelecs,
but also to refine and optimize the construction of the testbench and the corresponding
performance analysis method. That is the reason why the spreading of the measure-
ments is not always optimized for the finally intended performance analysis. With an
optimal spreading of the trainingsdata, the testdata errors on the regression models
are expected to be lower.
This chapter will mainly focus on the calculated performance parameters. The per-
formance analysis by means of performance plots is preferably executed directly with
the graphical user interface of chapter12 and thus hard to discuss in a textbook.

13.1 Pedelec tests

Up to now 6 different pedelecs are measured and analysed, they are all given in
table13.1 with their recorded gearnumber, transmission ratiosZ and the available
assistance modes. The last column shows the short name that will be used to indicate
the pedelec in the test results of the next sections.
The Sachs Elo-bike is measured in different gears and is usedto discuss the influence
of the gearnumber on the assistance (see also section5.8).
From the Sparta Ion, two different pedelecs with different motor assistance programs
are put at the disposal by the manufacturer. The first one (labelled as ‘Sparta Ion 1’)
has no gears, the second one (‘Sparta Ion 2’) is equipped witha Shimano Nexave 7
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Pedelec
Gear Z Assistance Short

number [m/rad] Modes Name

L’avenir pre-scoot MERIDA 2 0.679 MAn MER
Yamaha PAS easy 2 0.654 MAe-MAp PAS

SACHS Elo-bike touring
1 0.506 MAn SA1
2 0.674 MAn SA2
3 0.897 MAn SA3

Swiss FLYER F6 2-4 0.700 MAn FLY
Sparta ION 1 1 0.827 MAe-MAn-MAp IO1
Sparta ION 2 5 0.783 MAe-MAn-MAp IO2

Table 13.1: Tested pedelecs

gear apparatus. To measure the last one, its transmission ratio was set similar to the
first one.

13.2 Performance Plot Results
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Figure 13.1: Absolute contribution (expressed in watts) ofthe motor to the traction power
for the Sparta Ion

The performance analysis by means of the performance plots is fast and easy with
the graphical user interface (see chapter12). The dynamic production of different
plottypes and slices learns a lot about the behaviour of the pedelecs. However the
representation of all possible plots for all test pedelecs would lead to too much figures
in this book.
It is nevertheless interesting to have a look at the contourplots for the assistance
factor of all tested pedelecs that are given in AppendixC. They give a good idea of
the applied control strategy for the different motor assistance modes.
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Some things attract attention:

• Looking at the operation point were the assistance factor reaches a maximum,
many different control strategies are discovered:

– Maximum assistance for small speeds and high torques for theMerida
and Yamaha PAS.

– Maximum assistance extended for small torques and low speedfor the
Sachs.

– Maximum assistance for higher speeds and lower torques for the Sparta
Ion pedelecs.

• The Merida, the Yamaha PAS and the Sachs in3rd gear provide motor assis-
tance almost independently from the input torque. The Sparta Ion and Swiss
Flyer introduce a torque dependency.

• The Merida and Yamaha PAS decrease the assistance level veryfast with speed.

• The Flyer also seemed to stop assisting for speeds above 17km/h. This might
be due to an internal error of the controller during the tests. This error was
only discovered when the tested Flyer was put again on the road. A reset of
the controller could solve the problem, but so far the measurements are not yet
retaken.So, for the further analysis of the test results, the Flyer isleft out of
consideration!

• The assistance values for small torques of all pedelecs are rather high because
of the numeric instability of the calculation method in thisregion.

• The Sachs in 3rd gear assists up to higher speeds than the lower gears.

• The Sparta Ion also assists for speeds above 25km/h. This is contrary to the
pedelec speed limit used in the preliminary standard prEN15194 which is dis-
cussed in section1.5.4. A more detailed look on this fact is given in figure
13.1. The assistance cuts off at around 30km/h, which is 20% over the permit-
ted speed limit.

Anyway, the contourplots of the assistance factors show that the effective assis-
tance level is a result of the interaction between the pre-programmed controller,
the measurement techniques for speed and/or torque, and thebehaviour of the ped-
elec/cyclist/road system.
The comparison of the assistance levels of all the tested pedelecs is furtherly investi-
gated in the next sections on the performance parameter basis.
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MER PAS SA1 SA2 SA3 IO1 IO2

η (100W ) [%]
ZA 73±8 81±6 87±5 95±7 88±9 94±7 100±5

ξ (75W )
MAe - 0.38±0.03 - - - 0.3±0.04 0.28±0.04
MAn 0.48±0.08 0.52±0.04 0.44±0.03 0.43±0.06 0.47±0.08 0.39±0.04 0.39±0.06
MAp - - - - - 0.52±0.06 0.48±0.07

SA (100W ) [%]
ZA 4.6±0.5 5±0.3 6.6±0.6 5.8±0.5 4.4±0.3 4.9±0.2 5.3±0.4

MAe - 8.9±0.5 - - - 7.1±0.3 7.4±0.4
MAn 9.9±1.1 13±0.6 14±1.1 11±1.1 8.6±0.7 8.2±0.2 8.5±0.5
MAp - - - - - 9.3±0.4 10±0.5

Table 13.2: Results for the user-independent performance parameters of all tested pedelecs

13.3 The user-independent performance parameters

13.3.1 The Average Values and the RMSE

Table13.2shows the average values of the user-independent performance parameters
for all pedelecs of table13.1: the100W efficiency (η), the75W assistance factor (ξ)
and the100W climbing-ability (SA). The assistance modes to which the values
belong are displayed in the first column. The values for the efficiencies are only
available without motor power (ZA), the assistance factor and climbing-abilities may
be available in different assistance modes (MAe, MAn, MAp).
Chapter8 explains how an idea of the accurracy of the regression models is obtained
by using the RMSE on a serie of testdata applied to the models.The results for these
RMSE are also given in table13.11.

A graphical representation of the average values (as central spots) and the errorbars
of ±1σ (as grey bars) for the user-independent performance parameters is given in
figure13.2. If more than one assistance mode is available, more than onebar is shown
in the pedelec column. This is the case for the Yamaha PAS and the Sparta Ions.
Some conclusions drawn out of these figures are collected below:

• The Merida and the YamahaPAS have a significant lower efficiency than the
other pedelecs at100W human power input.

• The pedelecs with a hub motor (Sachs Elo-bike and Sparta Ion)have a greater
mechanical efficiency.

• The assistance factors for most pedelecs are slightly below0.5. This means
that a bit more than 50% of the traction power is coming from the cyclist’s
efforts.

• The different assistance modes of the YamahaPAS as well as those of the Sparta
Ions are well distinguished for a human input power of75W .

1The RMSE values for the climbing-ability (SA) are derived from the RSME values of the traction
force models using the conversion of equation9.2with a (default) total mass of100kg.
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Figure 13.2: The average values and the RMSE errorbars for the user-independent
performance parameters of the pedelecs from table13.1.

• All pedelecs double their climbing-ability by adding motorpower. The Yama-
haPAS almost triples the climbing-ability by applying its highest assistance
mode.

• The Sachs Elo-bike in first gear may overcome a percent slope of 14% with a
human power input of100W !

• Remark that the climbing-ability is (logically) graduallydecreasing by increas-
ing gearnumber. The climbing ability for all bicycles is therefore rescaled to a
transmission ratio ofZ = 0.715m/rad (the average of the measured pedelec)
resulting in figure13.2(d).

• The predictability of the models for the testdata can be approved by a more
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aimed test program for the pedelecs. The spreading of the measurements in
the operation area of the cyclist is not always well considered during the tests
(read the suggestions for future measurements in chapter15).

13.3.2 The distributions
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(c) 100W climbing-ability without motor
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Figure 13.3: The boxplots of the distributions of the user-independent performance
parameters for the pedelecs of table13.1

Chapter10 indicated already that a comparison between the average values of the
performance parameters is only a part of the performance analysis. Two average
values of a performance parameter can be the same, while the behaviour of the ped-
elec is completely different over the operation area. The100W efficiency, the75W
assistance factor as well as the100W climbing-ability are obtained by considering
well-defined parts of the regression models. The representation of the distribution of
these constant power parts tells how much the performance parameters are changing
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with a constant power input.
The boxplots representing the distributions of the user independent performance pa-
rameters of the considered pedelecs are given in figure13.3.

The analysis of these figures lead to the following conclusions:

• A lot of outliers appear for the 100W efficiency and the 75W assistance fac-
tors because both performance parameters are the quotient of two power mea-
surements. This quotient is numerically less stable when the nominator gets
smaller.

• The larger distance between the upper and lower quartiles ofthe efficiency dis-
tributions for the Sachs3 measurements is unexpected, because the efficiency
is supposed to be quite stable over the operation area. Only aslight drop with
higher speeds is expected. Again, the unstable behaviour ofthe quotient calcu-
lation of two powers may be the cause of this problem.

• The distance between the upper and lower quartiles of the assistance factor and
the climbing-ability is explicable by the role of the controller, a different torque
and speed input may result in a different motor assistance and so a different
climbing-ability and assistance factor.

• The distributions seems to be quite symmetrical. The medianand average val-
ues will be close to each other.

13.4 The user-dependent performance parameters

The assistance levels seem to fluctuate a lot over the operation area as shown in the
former section. To show the impact of these fluctuations on the driving experience,
the behaviour of the cyclist has to be introduced by means of adrive cycle. The
instruments that are used in this work are the user dependentperformance parameters
of chapter10:

• The drive cycle efficiency
• The drive cycle assistance factor
• The human energy need to cover the drive cycle

• The motor energy need to cover the drive cycle
• The drive cycle battery range

The user-dependent performance parameters are calculatedfor 2 different drive cy-
cles:

• The ‘IDcycle’, which is the drive cycle of figure11.1. It is a synthetic cycle of
300s with a few slopes introduced.
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• The ‘CommuterCycle’ introduced in section11.2.5as a recorded commuting
cycle of 3670s without slopes.

The difference in the speed distributions of both drive cycles are given in figures
11.2 and 11.5. The average values as well as the distributions for the drive cycle
efficiency and the drive cycle assistance factor, are given in the next two paragraphs.
The energy needs and the battery ranges are just single values where no distribution
has to be considered. These values are discussed in the next paragraph.

13.4.1 The average values

This section shows figures of the average values of the user dependent performance
parameters of all pedelecs of table13.1.
Three things will be considered:

• The mutual differences between the different pedelecs
• The deviation of the user dependent parameters from their user independent

equivalent
• The variation of the user dependent parameters with the driving behaviour

The drive cycle efficiency
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Figure 13.4: The average values and the RMSE errorbars for 2 different drive cycle
efficiencies of the pedelecs from table13.1.

The drive cycle efficiencies of the pedelecs from table13.1for both drive cycles are
represented in figure13.4. The central spots represent the average values of the drive
cycle efficiencies. The grey bars are±1σ errorbars.
The average values does not differ too much from the100W efficiencies that are
given in figure13.2a. This corresponds with the idea that the mechanical efficiency
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is rather constant over the operation area. Although the global mechanical efficiency
average over all pedelecs still changes from

• 89% for the100W efficiency over

• 86% for the ‘IDcycle’ efficiency to

• 83% for the ‘CommuterCycle’ efficiency.

Mainly the first two gears of the Sachs (SA1 andSA2) differ significantly between
figures13.2a,13.4a and13.4b.

The drive cycle assistance factor

Much more variation is noticed when the drive cycle assistance factors are consid-
ered. The drive cycle assistance factors of the pedelecs from table13.1for both drive
cycles are represented in figure13.5with their average values and±1σ errorbars. If
more spots are drawn for one pedelec, the left most represents the smallest assistance
level, the right most the highest assistance level.
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Figure 13.5: The average values and the RMSE errorbars for 2 different drive cycle
assistance factors of the pedelecs from table13.1.

The drive cycle assistance factors of the different pedelecs are ranging from0.1 to
0.6.
The global assistance factor average over all pedelecs changes from

• 0.41 for the75W assistance factor over

• 0.40 for the ‘IDcycle’ assistance factor to

• 0.30 for the ‘CommuterCycle’ assistance factor.
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The reason for the big difference between the 2 drive cycle assistance factors is ex-
plained by the higher speeds of the ‘CommuterCycle’. The Merida and the Yamaha
PAS are hardly assisting above 15 km/h.
The 3 power modes of the Sparta Ion 1 are well distinguished for the (user inde-
pendent)75W assistance factor, but there is hardly some difference leftbetween the
economical and the normal assistance mode for the ‘CommuterCycle’.
The Sachs in its1st gear has an assistance factor over 50% in figure13.5a and seems
to fit perfectly for the hilly ‘IDcycle’.
These facts clearly show that for the same pedelec one user could experience a com-
fortable motor assistance, while another user would legitimately judge that the assis-
tance is too low.

The human and motor energy needs
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Figure 13.6: The human (black) and motor energy (greyscales) needs to cover 2 different
drive cycles with the pedelecs from table13.1in the available assistance modes

The same conclusions as above can be drawn if one looks at the absolute amounts of
human and motor energy that are required to cover the drive cycles. The black parts
of figure13.6represent the human energy needs, the grey parts the motor energy. If
more bars are drawn for one pedelec, the left most representsthe smallest assistance
level, the right most the highest level.

The battery range

Because the motor and human energy needs are depending on thetotal cycle time,
the battery range as defined in chapter10might be a better instrument to compare the
energy consumption during cycling.
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Figure 13.7: The battery range for 2 different drive cycles for the pedelecs from table13.1.

The battery ranges are derived from static measurements anddoes not include the
start currents of the motor. For the figure13.7a 24V , 7Ah battery with a DOD of
80% is used, the motor efficiency is accepted to be 60%. The intention of this static
battery range is to offer a single comprehensible quantity to compare different ped-
elecs, rather than trying to model the real battery range.

The values for the Merida and the YamahaPAS exceed the100km for the ‘Com-
muterCycle’, because the motor is hardly assisting for the higher speeds in this drive
cycle. The variation with driving behaviour is extremely clear for the Yamaha PAS
and the Merida. Remark also that no gear changing is considered in these experi-
ments.

13.4.2 The distributions

The drive cycle efficiency and the drive cycle assistance factor are time varying quan-
tities because the cyclist moves the pedelec to different points in the operation area
during cycling. This is already shown in figure10.6. The distribution of these user
dependent parameters are represented in boxplots in figure13.8.
The distance between the quartiles is larger for the user dependent performance pa-
rameters of figure13.8than for the user independent performance parameters of fig-
ure13.3. Also more outliers appear:
The fixed human power inputs used to calculate the user independent parameters are
situated in the middle of the operation area where a lot of data points were taken.
The positions in the operation area during the drive cycle are much more spread (fig-
ure 10.6) and may lead to the inclusion of more numerically unstable small power
quotient. This is also the reason why some of the boxplots arenot completely repre-
sentable in the expected range.
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Figure 13.8: The boxplots of the distributions of the drive cycle efficiencies and the drive
cycle assistance factors for different drive cycles for thepedelecs from table13.1

For the ‘IDcycle’ assistance factor, the distributions areless symmetrical which might
be due to the presence of slopes and thus higher torques in this drive cycle.

13.5 Conclusions of the performance analysis

In this chapter the first pedelec test results of the testbench are presented. These first
measurements came along with the developing process of the test method. After each
of these measurements the measurement method was slightly changed and optimized.
This optimizing process is now finished and from now on, the systematic testing of
pedelecs can be started. However, these first test results already show that:

• The pedelec performance analysis (based on the testbench measurements and
charted by means of the performance plots and performance parameters) is able
to uncover the differences in control strategy of the different manufacturers.
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• Some pedelecs have really bad mechanical efficiencies, and are in that way
hard to ride without assistance.

• Sometimes the observed differences are inherent to the implemented control
strategy, sometimes the interaction of the pedelec/cyclist/road system caused
extra differences.

• The user-independent 75W assistance factors are for all measured pedelecs
lying between43% and52%. But the user-dependent drive cycle assistance
factors have a much wider range (10% - 60%). So different ways of use may
result in very different experienced driving comforts.

• The introduction of the user dependent performance parameters is interesting
to see the influence of the cycling behaviour on the motor assistance. The
cycling behaviour extremely influences the battery range and is certainly a ma-
nipulative argument for manufacturers to convince the potential client.

• A well-planned spreading of the measurements in the operation area is required
to obtain a substantial decrease in the RMSE values.





Part III

Conclusions and suggestions for
future research
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Conclusions of the performance analysis

This work intended the performance analysis of PEDal ELectric Cycles approached
from two different points of view. The first approach to the performance analysis was
a subjective one:How does the cycling community appreciate bicycles with an elec-
tric assistance motor?The second approach was an objective one.How to quantify
the performance of a pedelec in a technical way?

Many answers on the first question were found in part I of this book. The infor-
mation was gathered by a poll of test persons that lended a pedelec for a limited
period and an inquiry of the bicycle dealer shops.
After the tests, one can say that pedelecs are well appreciated by the users as well as
the dealers. However, the mainly positive feedback was somehow shaded by a lot of
remarks:
Users as well as dealers would like to see

• lighter pedelecs

• a higher battery autonomy

• cheaper pedelecs

• more robust pedelecs

• and pedelecs with a nicer design

There also seemed to be an image problem: while younger people pointed at the elder
people as typical pedelec users, the elder people often still found the physical effort
on a pedelec too heavy.
Another drawback of the pedelec was not found in the technology itself, but in the
lack of cycling infrastructure along the road. With a good infrastructure the test
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persons were able to realize substantial time gains while using the pedelec for com-
muting.
The politicians should give priority to the development of cycling infrastructure in
cities like Brussels. So much the more, because the pedelec was experienced as suit-
able for commuting as well as shopping and leisure.
The market analysis also brought to light that a lot of brandsare available at the
dealershops, but there is certainly place for more native products. Although 10.000
pedelecs were sold in Flanders in 2005, few dealers are actively promoting the ped-
elec. There is still some work to be left for the manufacturers to remove the bad
experiences of the dealers with the first generation pedelecs and convince the dealers
of todays pedelec product quality.

In part II of this book, a technical method is developed to analyse the performance
of a pedelec. Performance plots and performance parametersare defined and calcu-
lated based on a limited number of testbench measurements. With these parameters a
ranking of performances is possible. Six pedelecs were already put on the testbench
to show the possibilities of the developed performance analysis tool:

• A ranking of the measured pedelecs is possible based on different aspects
(=performance parameters)

• The objective performance analysis is able to uncover the differences in control
strategy of the different manufacturers.

• The complaints about the weight and bad mechanical construction of the test
persons can be affirmed by the low measured mechanical efficiency of some
pedelecs.

• The user-independent 75W assistance factors are for all measured pedelecs
lying between43% and52%. But the user-dependent drive cycle assistance
factors have a much wider range (10% - 60%). So different ways of use may
result in very different experienced driving comforts. This partly declares why
the answers of the test persons were sometimes very contradictory.

• The introduction of the user dependent performance parameters clearly quan-
tifies the influence of the cycling behaviour on the motor assistance and bat-
tery autonomy. As long as there is no standard drive cycle, the battery auton-
omy stays a manipulative argument for manufacturers to convince the potential
client. The unrealistic high battery autonomies in the manufacturer’s data sheet
unfortunately contributes to the bad image of the pedelec that are mentioned
by some dealers.

• Now that the optimizing process of the measurement method isfinished, the
systematic testing of pedelecs can be started.
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Linking the objective and subjective approaches of the performance analysis is not
always easy and was not the major intention of this work. The inquiries of the sub-
jective approach in this work focussed on the global appreciation of pedelecs by the
cycling community. The subjective approach contains a broad spectrum of judgement
criteria. Next to a good assistance level and great battery autonomy, the users also
like to have a comfortable seat, a good-looking pedelec, a cheap pedelec, a practical
pedelec,... The objective analysis, on the other hand, is focussed on the modelling of
the motor and pedelec behaviour during cycling.
It would only be possible to link the testbench measurementsof a single pedelec to
the comments given by the users of that pedelec if a substantial number of test persons
should comment the same pedelecs in a very structured way. Subjective differentia-
tion between pedelecs would require a different experimental design, and would be
very time consuming. Fortunately, some consumer organisations recently started this
kind of research and published the first results [62],[63].
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Suggestions for Future Research

The appreciation of pedelecs by their users is investigatedin chapter2 on the basis of
a lending service that ran from 2000 until 2003. The pedelec and battery technology
has evolved a lot in the last years. The organisation of a new lending service with
newer pedelec types could be interesting to see which inconveniences that are already
solved and which annoyances still exist.
The Flemish pedelec dealers poll of chapter3 dates from 2005. Entering a bigger
dealer shop today without noticing the presence of an electric two-wheeler gets rare.
In may 2007, a publicity flyer for pedelecs was distributed inthe letterboxes of the
houses in Ghent city by a local bicycle dealer shop. These facts show that new efforts
have been made by the manufacturers as well as the dealers to promote the pedelec.
The collection of new sales figures would be interesting to follow the evolution of the
pedelec’s prices and popularity.

The objective performance analysis of pedelecs in part II ofthis book focusses on
the amount of traction power that is added by the motor in the operation area. This
is certainly not the only item that determines whether the users like or dislike their
pedelec. The subjective analysis already mentions a lot of other important aspects
(price, driving comfort,...) that also could be involved inthe performance analysis.
For the existing performance analysis a number of improvements are suggested be-
low:

• A well-balanced spreading of the measurements in the operation area of the
cyclist will raise the predictability qualities of the models.

• Further automation of the test bench measurements will reduce the characteri-
sation time. In this way the pedelec could be entirely measured with one bat-
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tery charge. The automated balancing of the pedelec on the bench is already
successful for a fixed operation point, but has to be extendedfor the whole
operation area. This could enable a single person to performthe test bench
measurements instead of the two persons that are required today.

• The performance analysis is based on steady state measurements. If one wants
to measure the real drive cycle behaviour, the simultaneousmeasurement of
speed and torque is required as is expressed by equation6.8.

• The feedback of the speed and torque signals to the control system of the test
bench would enable the imposition of a real drive cycle on thepedelec. There-
fore an adaptation of the data acquisition is required. In this way the real drive
cycle battery range could be measured. Another advantage ofthe feedback is
the possibility to calculate the traction forcesFtZA

andFtMA
at exactly the

same speed and cyclist torque. This would increase the accuracy of the assis-
tance factor model.

• Another extension of the data acquisition could be the logging of the battery
and motor power. So, the efficiency of the power transmissions and the power
losses could be described more precisely.

• The development of a standard drive cycle for pedelecs requires the systematic
logging of the cycling behaviour of different user groups. This can be done
with the test equipment of chapter11 and the analysis tools of the GUI of
chapter12.
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A
EMC measurements on the Yamaha Easy

Figure A.1: Motor current of the Yamaha Easy when easily pedalling in the3◦ gear
delivering a small torque

During the lending service of section2 a complaint is received about an EMC conflict
between the Yamaha Easy pedelec and the Brussels Police communication infrastruc-
ture. In the EMC laboratory of KaHo Sint-Lieven Ghent the EMCradiation of the
Yamaha drive system is measured with an EMC probe with frequency band from 0-
30Mhz. Therefore one person is riding the pedelec on a rollersystem, while another
one handles the probe. The pedelec radiation is situated in the frequency band of
0-5Mhz. No considerable radiation is found in the 150-175 Mhz frequency band that
is used by the local police services.
A closer view on the applied frequencies is obtained by usinga DC probe (bandwidth
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Figure A.2: Motor current of the Yamaha Easy when easily pedalling in the3◦ gear
delivering a higher torque

100kHz, resolution 100mV/A) on one of the supply cables fromthe battery.
The switching frequency of the DC-DC convertor appears to be15,7 kHz in the4◦

gear. The signal captured by the probe is visualized on an oscilloscope. FigureA.1 is
the current signal when the cyclist is easily pedalling in the3◦ gear. The average value
is 1,27A and the estimated frequency 16,4 kHz. The current offigureA.2 is recorded
at the same pedalling frequency and in the same gear, but witha higher cyclist torque.
Here an average current of 2,0A is measured and a switching frequency of 15,4kHz.
These measurements lead to the conclusion that an interference between the pedelec
and the communication system is highly improbable. And moregeneral, it learnt that
EMC problems are not a big issue for pedelecs.



B
The Standard Questionnaire of the Pedelec

Lending Service

Personal data

Sex M� F � Date of birth
Height Weight
Optional
First name Name
Address Postcode/City
Phone E-mail

Appreciation of the pedelec

A.0 Used Pedelec:
Begin Date
Duration of the Test Period:

A.1 Did the pedelec replace another means of transportationduring
the test period? Y� N �

If yes, cross the first column boxes with the means and the other
column boxes with the displacement reasons.
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� Public transport: � Commuting � Shopping � Leisure � Other
� Car: � Commuting � Shopping � Leisure � Other
� Motorcycle: � Commuting � Shopping � Leisure � Other
� Bicycle: � Commuting � Shopping � Leisure � Other
� Walking: � Commuting � Shopping � Leisure � Other
� Other: � Commuting � Shopping � Leisure � Other

A.2 Did you realize a time gain by using the pedelec for commuting?
Y � N �

If yes, what was this average time gain?

A.3 Did you make new trips that you would not have made without
the availability of a pedelec?

Y � N �

A.4 How did you appreciate the pedelec? *5 4 3 2 1
The user-friendlyness of the assistance

The weight of the pedelec
The ease of charging
Assistance on slopes

The battery range
The weight of the pedelec

The quality/reliability
* 5=totally satisfactory, 1=totally unsatisfactory

A.5 Did you use your conventional bicycle more often after the test?
Y � N �

A.6 Did you experience a lack of cycling infrastructure like
cycle tracks? Y� N �

bicycle sheds? Y� N �

A.7 Who is, according to you, the most typical pedelec user?

A.8 Are you prepared to buy a pedelec?
Y � N �

A.9 Did you already buy a pedelec?
Y � N �

A.10 Do you think that¤1000 is a fair price for a pedelec?
Y � N �



THE STANDARD QUESTIONNAIRE OF THEPEDELEC LENDING SERVICE 171

Remarks:





C
Contourplots of the Tested Pedelecs
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Figure C.1: Contourplots of the assistance factors for the Yamaha PAS
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Figure C.2: Contourplots of the assistance factors for the Merida, and the Sachs Elo-bike in
its 3 gears
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Figure C.3: Contourplots of the assistance factors for the 2Sparta ION pedelecs
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