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Abstract. Standard variable-selection procedures, primarily developed for the construction

of outcome prediction models, are routinely applied when assessing exposure effects in observa-

tional studies. We argue that this tradition is sub-optimal and prone to yield bias in exposure

effect estimates as well as their corresponding uncertainty estimates. We weigh the pros and cons

of confounder-selection procedures and propose a procedure directly targeting the quality of the

exposure effect estimator. We further demonstrate that certain strategies for inferring causal

effects have the desirable features (a) of producing (approximately) valid confidence intervals,

even when the confounder-selection process is ignored, and (b) of being robust against certain

forms of misspecification of the association of confounders with both exposure and outcome.

Keywords: Causal inference; Confounder selection; Double robustness; Influential weights;

Model selection; Model uncertainty; Propensity score.

1 Introduction

The primary goal of most observational studies is to assess cause-effect relationships. Model-

selection procedures - in particular variable-selection procedures - are routinely employed in this
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process, but rarely with regard to the ultimate focus on causal effects1,2. In addition, the reliance

on model-selection procedures is commonly ignored when causal inferences are ultimately drawn.

We will reconsider principles of model-selection when the focus is on the estimation of causal

effects. We give a brief outline below.

Decisions to exclude/include covariates in a regression model are commonly based on the

strength of evidence for their (residual) association with the outcome. When the (causal) ef-

fect of a given exposure on the outcome is targeted, then this routine strategy is not ideal and

may result in a potentially substantial bias in the exposure effect estimate. The decision to

include covariates in a regression model must ideally be based on the strength of evidence for

these covariates confounding the association between exposure and outcome. Since by defini-

tion, confounders are simultaneously associated with exposure and outcome, procedures that

ignore the covariate-exposure association can be sub-optimal, especially for covariates that have

strong associations with the exposure3,4. Causal inference procedures that naturally evaluate

the strength of covariate-exposure associations (e.g. propensity score adjusted estimators5) may

thus behave differently than standard (outcome-regression based) procedures, especially when

combined with model-selection strategies.

In Section 2.1, we argue that the set of potential confounders amongst all measured covari-

ates is often high-dimensional in practice and that there is some tension between the desire to

acknowledge all of them through regularization methods, such as ridge regression, and the desire

to reduce the covariate space through confounder-selection procedures. We discuss limitations

of the most commonly adopted confounder-selection procedures in Section 2.3 and argue in Sec-

tion 2.4 that ideally such procedures should directly target the quality of the exposure effect

estimator. One proposal is worked out in detail for logistic regression models and applied in

Section 2.5 to the analysis of an observational study for the effect of right-heart catherization
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on 180-day mortality in critically ill patients. A limitation to the use of confounder-selection

strategies is that they have a tendency to produce under-covering confidence intervals by not

acknowledging model uncertainty. In Section 2.6 we focus on causal inference procedures that

return consistent causal effect estimators when a model for the exposure distribution, given

confounders, is correctly specified. We demonstrate that, surprisingly, these procedures remain

(approximately) confidence valid in the presence of exposure model selection. For this and other

reasons mentioned in the article, they thus succeed better than standard estimation procedures

at quantifying the total degree of uncertainty.

In the remainder of the article, we focus on the broader problem of model building as

opposed to variable-selection. We discuss principles of causal model building in Section 3.1

and examine the consequences of model misspecification in Section 3.2. In particular, we study

misspecification bias affecting so-called doubly robust6 estimation procedures which promise

consistent estimation of causal effects when at least one of two (possibly overlapping) nuisance

working models is correctly specified. This leads to estimation procedures that perform well

under more global forms of working model misspecification, which are seen to substantially

outperform more standard procedures in simulation studies reported in Section 3.3.

2 Confounder-selection

2.1 Confounder-selection versus regularization

Throughout - unless otherwise specified - we assume that a possibly high-dimensional col-

lection of covariates is available, which includes all confounders for the effect of exposure A on

outcome Y , and thus contains at least one subset of covariates that are sufficient to control for

confounding7. Determining such subset is impossible in the absence of background knowledge

on the causal data-generating mechanism8. This is largely because adjustment for covariates
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that are affected by the exposure or the outcome can actually increase bias9–11, which makes

purely associational approaches to confounder selection fallible12. Causal diagrams7,8,10 are

very helpful to communicate and visualize the data-generating mechanism and, subsequently, to

identify covariate sets that are sufficient for confounding control7.

It is presumably true that in most realistic applications, all covariates in a sufficient covariate

set will have some association with both the outcome and the exposure13. From that perspective,

with concern for bias, it seems beneficial to adjust for all available covariates in the set13–15.

This has the further advantage that, by acknowledging the uncertainty regarding all covariate

effects, it returns a more honest reflection of the overall uncertainty regarding the exposure

effect estimator. However, it has the disadvantage that it may induce a bias and inefficiency as

a result of overfitting in the outcome regression model. To guard against this, one could use

regularization methods such as ridge regression (see Greenland13 and Budtz-Jorgensen et al.16

for convincing examples). Alternatively, because propensity-score adjusted estimators can cope

better with some overfitting in the propensity score17,18, one could consider propensity-score

adjustment based on a fitted propensity score model which includes all available covariates14.

The folklore that conditioning on measured covariates reduces bias, must however be taken

with caution. This is not only true because of the increased concerns of model misspecification,

of possible shrinkage bias and of missing or mismeasured covariate data as more covariates are

considered. More fundamentally, evidence is accruing that even adjustment for antecedents

of the exposure may induce or aggravate selection bias. This may happen when, as in the

causal diagram of Figure 1, non-causal relationships are observed between the confounders L

and both exposure A and outcome Y . In that case, the adjustment for L induces a so-called M-

bias7,19–21 by connecting exposure A and outcome Y along the path A ← U1 → L ← U2 → Y .

When the causal effects of L on exposure and outcome are weak, this bias may in principle
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exceed the bias of an unadjusted analysis. In particular, when L affects neither exposure, nor

outcome, then interestingly the unadjusted analysis, but not the adjusted analysis, would be

valid. A further problem occurs when the association between A and Y is confounded through

an unmeasured common cause (i.e., U3 in Figure 1). In that case, the bias of the unadjusted

analysis may surprisingly be amplified upon adjusting for L, provided L is strongly correlated

with the exposure22,23 (see also Section 2.1).

Figure 1 about here.

In view of the concerns for M-bias and bias amplification, it may be advantageous to adjust

for a strictly smaller subset of covariates that are minimally24 sufficient to control for confound-

ing (in the sense that, given these covariates, all remaining covariates are only associated with

either the exposure or the outcome, but not both). Adjusting for a subset of available covari-

ates may have the further advantage of yielding more efficient effect estimators. In particular,

Hahn25 elegantly shows that adjustment for covariates that have no (residual) association with

the outcome can reduce the efficiency of nonparametric estimators of the marginal treatment

effect, unlike adjustment for covariates that have no (residual) association with the exposure. In

view of this and of the aforementioned concerns about bias amplification, it has been suggested

that the selection of confounders should be based on their importance with respect to the out-

come, rather than the exposure23,26. Whether such recommendation to reduce a sufficient set

of confounders is successful, is arguable however. First, the results of Hahn25 refer to settings

where a priori knowledge is available that certain covariates have no residual association with

the outcome. In practice, the selection of confounders is virtually always (at least partly) data-

driven, but the ensuing uncertainty is most often ignored. Upon acknowledging the additional

model uncertainty, one may well find effect estimators obtained after variable-selection being

less efficient than those obtained from a full model which includes all available covariates16,27.
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Second, in the next section we will find that in well designed studies where efforts have been

made to collect data on causal risk factors for the exposure that are also associated with the

outcome, the concerns for M-bias and bias amplification may be more modest. Third, even

when these concerns are justified, then as a result of multicollinearity, it would still be difficult

to measure the importance of a covariate with respect to the outcome whenever that covari-

ate is strongly correlated with the exposure. Standard variable-selection based on hypothesis

testing in outcome regression models may therefore lack power to detect even relatively strong

confounders.

Extensive simulation studies are needed, complementing the early work of Greenland and

collaborators28,29, to be able to gauge the relative importance of the aforementioned pros and

cons of confounder-selection versus no selection. Making a choice between these strategies is

further complicated by the fact that M-bias and bias amplification occur only in the presence of

unmeasured common causes of exposure, outcome and confounders, so that one cannot protect

against it or know to what extent these biases - which primarily affect strategies that avoid

selection - are present. In the following section, which may be skipped by the less interested

reader, we therefore attempt to develop insight into the extent to which the concerns for M-bias

and bias amplification are justified in practical applications.

2.2 M-bias and bias amplification

We compute the magnitude of the biases of the unadjusted and adjusted analysis in the

Appendix for multivariate normal variates following the path diagram of Figure 1, extending the

work of Wooldridge22 and Pearl23. Let ρ1 denote the standardized path coefficients30 between

A and U1, L and U1, L and U2, or Y and U2 (which we assume to be equal for simplicity), ρ2

denote the standardized path coefficients between A and U3, or Y and U3 (which we assume
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to be equal for simplicity), ρal denote the correlation between A and L and ρyl denote the

correlation between Y and L in the absence of an exposure effect (or upon setting A to a

fixed value, uniformly in the population). Then the bias of the adjusted analysis (either based

on standard regression adjustment or based on inverse probability weighting by 1/f(A|L); see

Section 3.2) is

ρ2
2 − ρ4

1

1− ρ2
al

,

where the first term reflects bias due to the unmeasured common cause U3 of A and Y , and

the second term reflects M-bias; that is, the two terms reflect spurious associations along the

paths A ← U3 → Y and A ← U1 → L ← U2 → Y , respectively. The denominator suggests

that strong correlations between exposure and measured confounders not only have a tendency

to amplify bias resulting from unmeasured confounders U3, in line with the conclusions of

others22,23, but also M-bias. The bias of the unadjusted analysis is

ρalρyl − ρ4
1 + ρ2

2,

which does not suffer this amplification. Here, the first two terms encode bias due to not

adjusting for the measured confounder L and the last term measures bias due to the unmeasured

common cause U3 of A and Y ; that is, the three terms reflect spurious associations along the

paths A ← U1 → L → Y , A ← L → Y , A ← L ← U2 → Y and A ← U3 → Y . We thus find

that the adjusted analysis will have larger bias than the unadjusted analysis when the correlation

between Y and L (other than through A) is sufficiently weak in the sense that

ρyl <
ρal

1− ρ2
al

(ρ2
2 − ρ4

1). (1)

Even if the presence of an unmeasured common cause U3 of A and Y could be ruled out, the

existence of unmeasured common causes such as U1 and U2 would be difficult to exclude in any

given application. In particular when L is high-dimensional, it would be difficult to believe that
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all of its components are only linked to A or Y by means of a causal effect. This suggests that

M-bias is likely to arise in practice, although the fourth order terms express that its magnitude

is likely going to be small. Similar findings were obtained by Greenland19 in the all binary case.

An exception occurs when the correlation between A and L is strong, for then even a modest

degree of M-bias may in principle be amplified by a potentially important magnitude.

2.3 Confounder-selection strategies

Amongst the various confounder-selection strategies that are routinely adopted in practice,

backward elimination based on hypothesis tests in outcome regression models is the default

strategy. It is not ideal, however, because it is based on accepting the null hypothesis when

covariates are non-significantly associated with the outcome13 and because it ignores the as-

sociation between exposure and covariates when deciding whether a given covariate confounds

the association between exposure and outcome3. As such, it has a tendency to under-select

important confounders31 by ignoring covariates that have relatively weak associations with the

outcome (conditional on the exposure), but strong associations with the exposure3,4. Such co-

variates are typically dismissed because they induce problems of multicollinearity (arising from

correlation between the exposure and covariates), thereby inflating the uncertainty on the esti-

mated treatment effect. This uncertainty is often interpreted as a sign of inefficiency, which is

justified in some cases but should more generally be viewed as a reflection of the lack of infor-

mation about the exposure effect32. By eliminating these covariates, one thus risks not only to

induce a bias in the estimated exposure effect, but also to understate the actual uncertainty. Pre-

cisely in settings where there is much separation in the covariate distributions of exposed and

unexposed subjects, and therefore much uncertainty about the exposure effect, conventional

backward elimination strategies will tend to remove covariates from the outcome regression

model and, thereby, yield misleadingly precise exposure effect estimates. Similar concerns apply
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to penalization methods such as the lasso or elastic nets33,34 and certain confounder-selection

methods based on identification results for minimally sufficient sets of confounders24,35 because

of their tendency to dismiss covariates that are strongly associated with the exposure.

In epidemiology, some of these concerns have contributed to the popularity of change-in-

estimate procedures which tend to have better success28,29,31 by directly evaluating the impact

of confounder-selection on the magnitude of the exposure effect estimate. While these target

more directly a reduction of confounding bias, also these approaches are not ideal because

they ignore estimation uncertainty and may be inefficient by under-selecting covariates that

are only predictive of the response36. Furthermore, apart from finite-sample imprecision and

model misspecification, inclusion of a covariate in a regression model may induce a change in

treatment effect estimate, even when that covariate is not a confounder of the exposure-outcome

relation. This may happen as a result of non-collapsibility of association measures in nonlinear

models24,28,29, which may change in magnitude upon adjusting for a covariate that is solely

associated with the outcome (but independent of the exposure). This may also happen as a

result of M-bias or bias amplification in both linear and nonlinear models.

2.4 Focused confounder selection

We believe that an ‘optimal’ confounder-selection strategy should focus on the quality of

the exposure effect estimator. We will therefore closely follow the idea of change-in-estimate

procedures, but accommodate their limitations, albeit necessarily presupposing that there are

no unmeasured confounders (i.e. in particular, that U3 and either U1 or U2 are absent in the

causal diagram of Figure 1). Specifically, let τ∗ denote the target effect parameter and τ̂ an

estimator of it. Then we will focus confounder-selection on the precision of the exposure effect

estimator, as measured through its mean squared error E{(τ̂ − τ∗)2}. Our choice not to pursue
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conventional confounder-selection procedures based on the likelihood function (e.g. based on

the AIC or BIC), is further guided by the fact that, as shown in Section 3.2, standard maximum

likelihood inference can be sub-optimal for the estimation of nuisance working models (e.g. for

modeling the association of confounders with either the outcome or exposure). Mean squared

error is also the focus of Claeskens and Hjort2, whose focused information criterion (FIC) is

based on exact or asymptotic calculations in parametric models, and of Brookhart and van

der Laan37 who use cross-validation instead. Alternatively, one could focus model/confounder

selection on the (counterfactual) prediction error, as in Claeskens, Croux and Van Kerckhoven38,

who use a prediction-focused information criterion, and Mortimer et al.39 and Haight et al.40

who use cross-validation instead.

Given our focus on the mean squared error of the exposure effect estimator, an important

consideration is whether the estimators τ̂S corresponding to different models S are all consistently

estimating the same parameter τ∗ under correct model specification. This is not usually the case

for conditional exposure effects due to noncollapsibility of nonlinear association measures24 and

the possibility of effect modification. This makes approaches for model-selection focused on the

mean squared error not entirely appropriate for estimating the usual conditional exposure effects.

This problem can be overcome by targeting confounder-selection at the marginal or population-

averaged exposure effect. For instance, let A be a dichotomous exposure (taking values 0 and 1)

and consider the parameter β∗ indexing logitP (Y = 1|A,L) = ω(L; γ∗)+β∗A, where is ω(L; γ) a

known function, smooth in γ, and γ∗ is an unknown finite-dimensional parameter. For instance,

ω(Li; γ) = γ0 + γlLi in the case of standard regression adjustment, or ω(Li; γ) = γ0 + γpπ(Li; γ)

with π(Li; γ) = P (Ai = 1|Li; γ) = expit(γ1 + γlLi) in the case of propensity score adjustment5.

Then, with Y (a) denoting the counterfactual outcome following exposure level a, the marginal

causal odds ratio τ∗ = odds{Y (1) = 1}/odds{Y (0) = 1} can, for given estimates γ̂ of γ∗ and β̂
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of β∗, be estimated as

τ̂ =

∑n
i=1 expit

{
ω(Li; γ̂) + β̂

}
/

∑n
i=1 expit

{
−ω(Li; γ̂)− β̂

}
∑n

i=1 expit {ω(Li; γ̂)} /
∑n

i=1 expit {−ω(Li; γ̂)} . (2)

Thus focussing on the marginal treatment effect τ∗, we propose the following focused confounder-

selection procedure, which inherits from work by Claeskens et al.38 and Crainiceanu et al.3. We

divide the model space into M + 1 orbits, where M is the number of potential covariates (i.e.,

confounders and/or functions of confounders, such as higher order terms or interactions) and

where the jth orbit, j = 1, . . . ,M +1 comprises all models with j−1 covariates and an intercept.

Within each orbit, we select the outcome regression model that minimizes the mean squared

error of τ̂ . This is done using the following stochastic search method, which is closely linked to

that in Crainiceanu et al.3. Starting from a model in the (j − 1)th orbit, we add the covariate

that provides the largest reduction in mean squared error. The stochastic search then selects at

random one covariate which is in the model and one which is not in the model, and constructs

a new model by interchanging both covariates. The new model is accepted when Lnew < Lold,

where Lold and Lnew are the mean squared errors of τ̂ under the old and new model, respectively.

When Lnew > Lold, the new model is accepted with probability (Lold/Lnew)α, where α is a user-

selected tuning parameter. Alternatively, a deletion/substitution/addition algorithm40 could

be used, which involves exhaustive model search within model subclasses obtained by either

deleting, substituting or adding one covariate to those already available in the model. In this

process, the mean squared error can be estimated based on a cross-validation procedure where

the data are partitioned into a training sample and validation sample V times. That is, the mean

squared error of the estimator τ̂ can be approximated with (1/V )
∑V

v=1 (τ̂v − τ̂0)
2, where τ̂v is

the estimator of τ∗ as obtained under the considered model on the training sample, and where τ̂0

is an estimator of τ∗ as obtained under the full model on the validation sample. Minimization of

this estimated loss function is then equivalent to minimization of the mean squared error when
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the estimator τ̂0 is unbiased37. Computing time can be drastically reduced through asymptotic

approximations of the mean squared error, which can be made under a local misspecification

assumption (see Section 2.6). A framework for this is developed in Hjort and Claeskens41 for

parametric models and adapted to our specific setting in the Appendix.

2.5 Application

We evaluate the proposed confounder-selection procedure in an observational study inves-

tigating the effect of right heart catherization (RHC) on 180 day mortality in 5735 critically ill

patients42. For every patient, the exposure of interest A was coded 1 if RHC was used within

24 hours of admission and 0 otherwise. In total, 61 covariates (L) on the patients’ underlying

health condition within 24h of ICU admission (physiological status), on their underlying comor-

bidity and on demographic information were available for analysis. The original analysis42 used

logistic regression to develop an estimated propensity score for each patient, which was then

used for matching RHC patients to non-RHC patients. In this Section, we will contrast different

confounder-selection methods, including the one proposed in the previous section. R-code for

the analyses can be found on http://users.ugent.be/˜svsteela/Site/Publications.html.

Figure 2 about here.

Figure 2 (left) shows the mean squared error (MSE) for the best model within each orbit

as obtained by minimizing the mean squared error of the marginal log odds ratio (MLOR) (or

equivalently, by minimizing the focused information criterion (FIC) which measures the mean

squared error of the MLOR up to an additive constant, see the Appendix) in the case of standard

covariate adjustment (i.e., ω(Li; γ) = γ0+γlLi in Section 2.4). The MSE is largest for the narrow

(due to large bias) and full model (due to large variance); minimal MSE is attained for simple

models involving 2 covariates only. For illustrative purposes, Figure 2 (right) compares the
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thus obtained estimates for the MLOR under standard covariate adjustment (solid black line)

with the conditional log odds ratios (CLOR) corresponding to the same models (dotted line).

It demonstrates the stability of the estimated MLOR over the different orbits, which is useful

information in itself as the observed stability strengthens confidence in the analysis results. It

suggests also increasing conditional treatment effect estimates over different orbits, which is due

to noncollapsibility of the odds ratio. This underscores the potential limitations of variable-

selection procedures that focus on conditional effect measures, which tend to mix confounding

with non-collapsibility of association measures.

Figure 2 (right) also displays the results obtained upon applying the procedure advocated

in Crainiceanu et al.3. This procedure involves first selecting covariates on the basis of their

association with the exposure as measured in terms of the AIC, and subsequently selecting any

remaining covariates on the basis of their residual association with the outcome, again measured

in terms of the AIC. The estimates for the CLOR (which is the focus of that procedure) are

initially very unstable as a result of selecting covariates that are strongly associated with the

exposure, but not with the outcome. Stability in the estimates is attained only for very large

orbits which, again, may be partly due to non-collapsibility of the odds ratio. Like standard

model selection procedures, it thereby gives a somewhat misleading impression that the asso-

ciation between RHC and mortality is confounded by many of the measured covariates. The

proposed procedure improves upon this (a) by focusing the model selection on a parameter which

is identically defined over the different orbits, and (b) by selecting covariates on the basis of their

potential to increase the precision of the treatment effect estimate, as well as their ability to

reduce confounding in the treatment effect estimate.

Table 1 about here.

Table 1 reports estimates of the effect of RHC on mortality as obtained from these different
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confounder-selection procedures. As shown in Figure 2 (left), minimal MSE is attained for

simple models involving 2 covariates only (age and a covariate which indicates the presence of a

Solid Tumor, Metastatic Disease, Chronic Leukemia/Myeloma, Acute Leukemia or Lymphoma)

and results in a MOR of 1.33 (95% CI 1.21 to 1.46). The unadjusted analysis gave a MOR of

1.25 (95% CI 1.14 to 1.38) with an MSE of 0.0037, versus 0.0035 for the full model. In contrast,

the ‘optimal’ model of Crainiceanu et al.3 includes 36 predictors of right heart catherization,

regardless of their association with the outcome, and 11 additional covariates on the basis of

their residual association with the outcome. Also covariate adjustment and propensity score

adjustment based on backward elimination (BE) strategies tend to select many more covariates

at the expense of accuracy. They do so because the decision to enter covariates into the model

is based on either their association with the outcome (as in standard covariate adjustment), or

their association with the exposure (as in propensity score adjustment), but not on the basis

of a more balanced evaluation in terms of the quality of the treatment effect estimate. Given

the large number of patients in this study, many of these associations are strong in terms of

the evidence provided by p-values, but not necessarily in terms of their potential to distort the

treatment-outcome association by an important magnitude.

2.6 Model uncertainty

In small data sets where the variance of the exposure effect estimator is dominant, focused

confounder-selection strategies might have a tendency to delete confounders when their adjust-

ment causes a large variance inflation. While this may be beneficial to the overall accuracy of

the exposure effect estimator, a concern is that it may come at the expense of confidence valid-

ity, considering that confidence intervals capture sampling variability, but not bias. Confidence

validity may be further compromised by the fact that uncertainty resulting from the data-driven

model building process is commonly ignored. Although the bootstrap or asymptotic approxi-
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mations41 could be used to acknowledge this, these are often not considered in practice. We will

now argue that these concerns can be tempered to some extent by the use of propensity-score

based estimators.

First, propensity-score based estimators which force important predictors of the exposure

into the propensity score (e.g. the procedure advocated by Crainiceanu et al.3) are relatively

less susceptible to bias resulting from insufficient confounding adjustment because the set of

confounders forms a subset of the exposure predictors; the same is not true for approaches

which rely on outcome predictors because the magnitude of the residual association between

outcome and predictor, given the exposure, is difficult to assess for predictors that are strongly

associated with the exposure. A drawback is that such propensity-score based procedures can be

inefficient and more prone to bias amplification when they include predictors that have (almost)

no residual association with the outcome23,26.

Second, in the Appendix, we study the asymptotic behaviour of exposure effect estimators

which solely rely on correct specification of a propensity score model, as obtained after model-

selection. Examples are the G-estimator17 and the inverse probability weighted estimator43

of the average causal effect (see Section 3.2). Because the potential for model misspecifica-

tion cannot be ignored in the presence of model-selection, the asymptotic behaviour of such

estimators is examined within the local misspecification framework of Hjort and Claeskens41.

More precisely, we assume that the true exposure data-generating mechanism is of the form

f(A|L) = f(A|L; α∗1, α
∗
2 + δ/

√
n), with f(A|L; α1, α2) a conditional density function of A, given

L, which is smooth in α1 and α2, where α∗1 and δ are unknown finite-dimensional parameters and

where α∗2 is a chosen finite-dimensional parameter (e.g. α∗2 = 0). Here, α1 encodes the unknown

part of the parameter vector which is shared between all competing submodels. Each exposure

working model, denoted S, thus assumes some of the components α−S of α2 to be known and
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equal to the corresponding components of α∗2, and assumes the remaining components αS to be

unknown. Note that the reason to allow for misspecification of the model parameters within a

1 over root-n distance is because in large samples standard model selection techniques would

systematically choose the narrow model (which assumes α2 equals α∗2) when smaller misspecifi-

cations are considered, and systematically select the wide model (which assumes α2 is unknown)

when larger misspecifications are considered41.

In the Appendix, we then show that interestingly a conservative asymptotic variance of

the considered exposure effect estimators is obtained when imprecision due to estimation and

model-selection on the propensity score is ignored, provided that an efficient estimator is used for

the parameters indexing the propensity score model. This result is of importance as it suggests

that the model/confounder-selection procedure can be ignored in inference about the exposure

effect, provided that the local misspecification assumption holds. It does not immediately fol-

low, however, that confidence intervals which ignore estimation and model uncertainty in the

propensity score will attain the nominal coverage probability. This is because, as shown in the

Appendix, the distribution of the exposure effect estimator in the presence of model-selection

is not centered at zero, but follows a mixture distribution with bias components converging at

root-n rate to zero. Preliminary simulation studies (not shown) confirmed that, nonetheless,

close to nominal coverage levels are attained even when this is ignored.

3 Model building

3.1 Principles of causal model building

We will now broaden the focus from confounder-selection to model building. Though his-

torically, the use of parametric models combined with maximum likelihood inference has been

dominant (cfr. structural equation models (SEMs)), more recently - stimulated by pioneering
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work of James Robins - a trend is now seen towards semi-parametric modeling of causal effects.

Path diagrams, used by SEM practitioners as convenient representations of a multivariate nor-

mal model and as convenient tools for combining path-specific effects into exposure effects of

interest, are substituted by ‘non-parametric’ causal diagrams44; these can be combined with

semi-parametric models directly parameterizing the exposure effect of interest45.

The appeal of semi-parametric inference for causal effects surmounts the usual concerns for

model misspecification and limited flexibility in parametric inference. Parametric likelihood-

based procedures explicitly ignore information on the exposure distribution which has neverthe-

less demonstrated to be relevant for confounder-selection in Sections 2.5 and 2.6. For instance,

in the absence of an exposure effect, the common strategy of forcing the exposure into the model

may lead one to systematically ascribe an effect of extraneous covariates to an exposure effect46.

This can be overcome using propensity score methods which force the propensity score into the

outcome regression model, irrespective of whether it is significantly associated with the outcome.

Robins and Ritov47 underscored more formally the importance of using information on the ex-

posure distribution in causal inference by demonstrating that, due to the curse of dimensionality,

likelihood-based procedures fail to estimate treatment effects in randomized experiments where

randomization is conditional on a high-dimensional covariate; see also48,49.

In further clarification of the philosophical principles behind semi-parametric modeling of

causal effects, suppose that interest lies in the direct effect of A on Y which is not mediated

by M in the causal diagram of Figure 3. SEM procedures would typically dismiss U from the

path diagram and thereby arrive at biased causal effect estimates. Alternatively, they would

include U , thus requiring models for the conditional densities f(Y |A,M,U), f(L|U) and f(U),

and subsequently yield causal effects conditional on U . These are not only difficult to specify,

estimate and interpret by the fact that U is unmeasured, but additionally raise questions as to
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whether the identification of the direct effect under the model comes from structural assumptions

(e.g., assumptions about the absence of specific direct effects or common causes) alone, or from

parametric assumptions (e.g. regarding the distribution of U) in addition. In the latter case, we

say that the considered causal effect is not non-parametrically identified50. This is not ideal as

it can make the results heavily sensitive to the chosen (semi-)parametric modeling assumptions

(see e.g. Little51 and Scharfstein, Rotnitzky and Robins50; see Vansteelandt52 for an exam-

ple illustrating the importance of nonparametric identification in a more general context). G-

computation53 enables identifying the counterfactual mean E{Y (a,m)} corresponding to setting

the exposure A at a and the mediator M at m as
∫

E(Y |A = a,M = m,L)f(L|A = a)dL, where

the conditional mean E(Y |A,M, L) and density f(L|A) could be substituted with parametric

likelihood-based estimators. Also this approach is not ideal as it does not directly parameterize

the (controlled) direct effect54 E{Y (a,m)−Y (a∗,m)} of interest and henceforth does not enable

researchers to express hypotheses of interest (e.g., that a direct effect of A on Y is not modified

by M) in a parsimonious way. In addition, it is essentially impossible to postulate nonlinear

models for E(Y |A,M, L) and f(L|A), which accommodate a dependence on A (as suggested by

Figure 3), and are such that
∫

E(Y |A = a, M = m,L)f(L|A = a)dL does not depend on a for

all m. This is the root cause of the so-called null paradox45 according to which G-computation

based tests of the null hypothesis of no direct effect will with certainty be rejected in large

samples. These subtleties underscore the importance of parameterizing the exposure effect of

interest directly, which may be most naturally approached through the use of semi-parametric

inference55–57.

Figure 3 about here.
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3.2 Model misspecification

Many semi-parametric procedures for causal effects separate the modeling of confounders

from the modeling of the causal effects of interest. The use of complex confounder models thus

need not complicate the interpretation of results; however, their misspecification may induce a

bias in the exposure effect estimator. To enrich our understanding, we study the impact of work-

ing model misspecification in more detail for so-called G-estimators17 and inverse probability

weighted (IPW) estimators43 under the assumption that

E(Y |A,L) = ω∗0(L) + τ∗A

for some unknown function ω∗0(L) of L, where τ∗ encodes the exposure effect. For simplicity of

exposition, we assume that A is a dichotomous exposure, taking values 0 and 1, and that Y is

a continuous outcome. The G-estimator17 is obtained as the solution to an estimating equation

of the form

0 =
n∑

i=1

{Ai − π̂(Li)} {Yi − τAi − φω̂0(Li)} ,

where ω̂0(L) and π̂(L) are estimates of ω∗0(L) and the propensity score π∗(L) = P (A = 1|L),

respectively, based on possibly misspecified models. Further, φ is a user-specified constant. If set

to 0, it yields the so-called G-estimator which is a consistent and asymptotically normal (CAN)

estimator of τ∗ if π̂(L) is a consistent estimator of π∗(L) for all L. In linear models, this estimator

is equivalent with the ordinary least squares estimator obtained via regression adjustment for

the propensity score5. If set to 1, it yields the so-called doubly-robust G-estimator which is a

CAN estimator of τ∗ if for each L, either π̂(L) is a consistent estimator of π∗(L) or ω̂0(L) is a

consistent estimator of ω∗0(L). Here, ω̂0(L) may be obtained via a standard (linear) regression

model for E(Y |A,L); π̂(L) is typically obtained via a standard logistic regression model. The
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resulting (doubly-robust) G-estimator can be calculated as

τ̂G(φ) =
∑n

i=1 {Ai − π̂(Li)} {Yi − φω̂0(Li)}∑n
i=1 {1− π̂(Li)}Ai

.

The (doubly robust) inverse probability weighted (IPW) estimator43 is obtained as

τ̂IPW (φ) =
n∑

i=1

Ai

π̂(Li)
{Yi − φω̂1(Li)} − 1−Ai

1− π̂(Li)
{Yi − φω̂0(Li)}+ φ {ω̂1(Li)− ω̂0(Li)} ,

where ω̂1(L) and ω̂0(L) are estimates of E(Y |A = 1, L) and E(Y |A = 0, L), respectively, based

on possibly misspecified models. Again, φ is a user-specified constant. If set to 0, it yields the

so-called IPW-estimator which is a CAN estimator of τ∗ if π̂(L) is a consistent estimator of

π∗(L) for all L. If set to 1, it yields the so-called doubly-robust IPW-estimator which is a CAN

estimator of τ∗ if either π̂(L) is a consistent estimator of π∗(L) for each L or ω̂j(L), j = 0, 1 is

a consistent estimator of E(Y |A = j, L) for each L58.

Over the past decade, much attention has been given to the development of doubly ro-

bust estimation procedures6. Facing the truth that in practice ‘all’ models are misspecified,

the practical benefit of such doubly robust procedures has been questioned and concerns have

been raised that such procedures may be very sensitive to misspecification affecting both nui-

sance working models59. We therefore evaluate the asymptotic bias (i.e., mean difference be-

tween the estimator and estimand) of the suggested G-estimators and IPW estimators under

misspecification occurring in all nuisance working models. Upon using that the asymptotic

bias of a root-n (asymptotically linear) estimator of τ∗ with estimating function U(τ) equals

E {∂U(τ∗)/∂τ}−1 E {U(τ∗)}, we obtain asymptotic biases of

E [{π∗(L)− π(L)} {ω∗0(L)− φω0(L)}]
E [{1− π(L)}π∗(L)]

(3)

for the G-estimator, and

E

[{
π∗(L)
π(L)

− 1
}
{ω∗0(L) + τ∗ − φω1(L)} −

{
1− π∗(L)
1− π(L)

− 1
}
{ω∗0(L)− φω0(L)}

]
, (4)
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for the IPW-estimator. Here, π(L), ω1(L) and ω0(L) are the probability limits of π̂(L), ω̂1(L)

and ω̂0(L), respectively.

We will first focus on the estimators that set φ equal to zero. These are consistent estimators

of τ∗ under correct specification of the propensity score, but not necessarily otherwise. It

is then seen that any degree of model misspecification in the propensity score of magnitude

δ(L) = π∗(L) − π(L) at a given L, yields a contribution to the bias of the G-estimator of

magnitude

δ(L)ω∗0(L)
E [{1− π(L)}π∗(L)]

(5)

and to the bias of the IPW-estimator of magnitude

δ(L)
[

ω∗0(L)
{1− π(L)}π(L)

+
τ∗

π(L)

]
. (6)

In the absence of an exposure effect (i.e. τ∗ = 0), the bias contribution of the IPW-estimator is

thus

E [{1− π(L)}π∗(L)]
{1− π(L)}π(L)

times that of the G-estimator. This ratio can be substantial within L-regions corresponding to

propensity score values close to 0 or 1. Considering that such regions are typically located in the

tails of the data distribution where model misspecification is more likely, we conclude that the

IPW-estimator will generally be much more vulnerable than the G-estimator to misspecification

of the propensity score.

Interestingly, the G-estimator can be consistent under misspecification of the propensity

score model. This would happen for instance if the propensity score model were of the form

π(L) = expit(α∗′L), α∗ were estimated using a maximum likelihood procedure and ω∗0(L)

happened to be linear in L. In that case, the fitted propensity score would satisfy 0 =
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E [{A− π(L)}ω∗0(L)] = E {δ(L)ω∗0(L)}, thus giving the estimating functions for the G-estimator,

and in particular the bias term (5), mean zero. This is not the case for the IPW estimator when

the propensity score is fitted using maximum likelihood inference as it follows from (6) that its

bias due to propensity score misspecification depends on the magnitude of the exposure effect.

Any cancelation of the bias of the IPW estimator under propensity score misspecification must

thus be accidental in the sense of occurring only at one specific exposure effect size τ∗. Following

a Bayesian argument (with an absolutely continuous prior density on τ), such cancelation occurs

with zero probability. In view of this, it can be desirable to estimate the propensity score in such

a way that consistency of the IPW-estimator is attained within a larger class of data-generating

distributions than those that correspond to a correctly specified propensity score model. In

particular, we recommend calculating the IPW-estimator as

τ̂IPW (φ) =
n∑

i=1

Ai

π̂1(Li)
{Yi − φω̂1(Li)} − 1−Ai

1− π̂0(Li)
{Yi − φω̂0(Li)}+ φ {ω̂1(Li)− ω̂0(Li)} ,

where φ is as before, π̂1(Li) is a consistent estimator of π(Li) obtained by solving an estimating

equation of the form

0 =
n∑

i=1

(
Ai

π(Li)
− 1

)
ϕ(Li), (7)

and π̂0(Li) is a consistent estimator of π(Li) obtained by solving an estimating equation of the

form

0 =
n∑

i=1

(
1−Ai

1− π(Li)
− 1

)
ϕ(Li), (8)

where ϕ(Li) is an arbitrary index function of the dimension of α∗. Note that we use the

same propensity score model, but different consistent estimators for the probability of exposure

versus no exposure. Cancelation of the asymptotic bias may now occur when ϕ(L) includes

the constant 1 and ω∗0(L) happens to be a linear combination of the components in the vec-

tor ϕ(L). This can be seen from (4) with φ = 0 upon noting that (7) and (8) then imply
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E [{π∗(L)/π(L)− 1}ω∗0(L)] = E [{(1− π∗(L))/(1− π(L))− 1}ω∗0(L)] = 0. This would happen

for instance if ϕ(L) = (1, L)′ and ω∗(L) happened to be linear in L. Note also that when ϕ(L)

includes the constant 1, then the asymptotic bias of the IPW-estimator is no longer dependent

upon τ∗ because it follows from equation (7) that E {π∗(L)/π(L)} equals 1 in that case. In

addition, the fitted propensity scores π̂1(Li) (π̂0(Li)) are then such that the sum of the weights

1/π̂1(Li) (1/{1 − π̂0(Li)}) in the exposed (unexposed) subjects equals the total sample size.

We will therefore refer to estimation of the propensity scores following (7) and (8) as stabilized

estimation. With a different attainment goal in mind, namely improving the stability of inverse

weighting procedures, Cao, Tsiatis and Davidian60 make a related, although different proposal

in a missing data context.

We will now focus on doubly-robust estimators obtained by setting φ = 1. It is easily seen

from both bias expressions (3) and (4) that any degree of model misspecification in the propensity

score of magnitude δ(L) = π∗(L)− π(L) at a given L, and in the outcome regression models of

magnitudes ∆1(L) = ω∗0(L) + τ∗ − ω1(L) and ∆0(L) = ω∗0(L) − ω0(L) yields a contribution to

the bias of the doubly-robust G-estimator of magnitude

δ(L)∆0(L)
E [{1− π(L)}π∗(L)]

(9)

and to the bias of the doubly-robust IPW-estimator of magnitude

δ(L)
[
∆1(L)
π(L)

− ∆0(L)
1− π(L)

]
. (10)

It is immediate from these expressions that the doubly-robust G- and IPW-estimator have mean

zero under misspecification of one, but not both nuisance working models. These estimators

will typically also have smaller bias under propensity score misspecification than the previously

considered G-estimator and IPW-estimator because any misspecification of magnitude δ(L) now

gets inflated only proportional to the degree of misspecification in the outcome regression model.
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Interestingly, the doubly-robust G-estimator not only is consistent under the union model

which correctly specifies either the propensity score or the outcome regression, but also under

certain data-generating mechanisms corresponding to misspecification affecting both nuisance

working models. This would occur, for instance, if the misspecified propensity score model were

of the form π(L) = expit(α0 + α1L + α2L
2) and fitted using maximum likelihood inference,

the fitted outcome regression model were of the form ω(L) = γ0 + γ1L and ω∗(L) happened

to be linear in L and L2. Indeed, in that case the fitted propensity score model would sat-

isfy E [{A− π(L)} {ω∗0(L)− ω0(L)}] = E {δ(L)∆0(L)} = 0. The doubly-robust IPW-estimator

with propensity scores fitted through maximum likelihood inference does not satisfy a similar

property. In addition, it follows from (10) that misspecification in the regression model for

E(Y |A = 1, L) (or E(Y |A = 0, L)) can get dramatically inflated in L-regions where data on

exposed subjects (on unexposed subjects) are relatively scarce. These are regions where model

misspecification is also most likely, suggesting that doubly robust IPW-estimators may in fact

exacerbate the extrapolation problem in view of which propensity-score adjusted estimators were

designed. As a way of improving the performance of doubly robust estimators in the presence

of influential weights, Robins et al.61 proposed fitting the outcome regression models ω1(L) and

ω0(L), respectively, via standard weighted regression in the exposed and unexposed subjects,

with weights 1/π(L) and 1/{1− π(L)}, respectively:

0 =
n∑

i=1

Ai

π̂(Li)
{Yi − ω̂1(Li)}ϕ1(Li) (11)

0 =
n∑

i=1

{
1−Ai

1− π̂(Li)

}
{Yi − ω̂0(Li)}ϕ0(Li), (12)

where ϕ1(Li) and ϕ0(Li) are arbitrary vector functions of the dimension of the unknown parame-

ters indexing ω1(Li) and ω0(Li), and including the constant 1. They refer to the resulting doubly

robust estimator of the exposure effect as a regression doubly robust estimator. The advantage of
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this is clear from the fact that the above equations imply that E {(1 + δ(L)/π1(L))∆1(L)} = 0

and E {(1− δ(L)/(1− π0(L)))∆0(L)} = 0 so that the asymptotic bias of the doubly-robust

IPW-estimator becomes

δ(L)
[
∆1(L)
π(L)

− ∆0(L)
1− π(L)

]
= −E {∆1(L)−∆0(L)} .

Bias due to model misspecification in the tails of the data distribution is thereby no longer

inflated. Further robustness against model misspecification is attained by fitting the propensity

score through equations (7) and (8), for then bias due to model misspecification cancels whenever

∆1(L) and ∆0(L) happen to be linear combinations of the components of ϕ(L). This would

occur, for instance, if the misspecified propensity score model were of the form π(L) = expit(α0+

α1L + α2L
2), ϕ(L) = (1, L, L2), the fitted outcome regression model were of the form ω(L) =

γ0 + γ1L and ω∗0(L) happened to be linear in L and L2.

3.3 Simulation study

In this section, we illustrate the impact of global misspecification of the nuisance working

models in G-estimators and IPW-estimators through a small simulation study. In each of 5000

simulation runs, a data set of 500 independent samples was generated with L a standard normal

variate. In the first experiment, Y = −2 + A + 2L + N(0, 1) and π∗(L) = expit(−3 + L). In the

next 4 experiments, Y = −2+A+2L−L2+N(0, 1), with π∗(L) = expit(−4+1.5
√
|L|+0.75L+

0.5|L|1.5) in the second experiment, π∗(L) = expit(−2 + 2 sin(2L)) in the third experiment, and

π∗(L) = expit(−0.5 + sin(2L)− 0.5 cos(3L)− 0.25L2) in the fourth and fifth experiment. In all

experiments, linear outcome working models were used. Second and third order logistic propen-

sity score working models were used in the first three and last two experiments, respectively.

Table 2 shows the bias and empirical standard deviation of the ordinary least squares estimates

with (OLS-A) and without (OLS-U) adjustment for L, the G-estimator (G), the IPW-estimator
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with (IPW-S) and without (IPW) stabilized estimation of the propensity score, the regression

doubly robust IPW estimator with (RDR-S) and without (RDR) stabilized estimation of the

propensity score and the doubly robust IPW estimator with maximum likelihood estimation of

the outcome working model and with (DR-S) and without (DR) stabilized estimation of the

propensity score. The results demonstrate that in the absence of model misspecification (i.e.

simulation experiment 1), stabilized estimation of the propensity score improves the finite-sample

bias of the IPW estimator and yields a minor efficieny gain, although an efficiency loss for the

doubly robust estimators. In the presence of model misspecification, major improvements in

both the bias and precision of (doubly robust) IPW estimators are observed. In particular, for

the considered data-generating mechanisms, no bias was observed despite all working models

being misspecified. The fourth and fifth experiment used the same data generating models, but

ϕ(L) = (1, L, |L|1.5, L2) in (7) and (8) in the fourth experiment and ϕ(L) = (1, L, |L|2, L3) in

the fifth experiment.

Table 2 about here.

4 Discussion

Modern procedures for marginal causal effects (see e.g. Section 3.2) require working models

for the outcome and/or exposure, but their complexity does not affect the interpretability of the

final effect estimand. The desire to use parsimonious models is therefore not so much stimulated

by the need for obtaining interpretable results, but rather by concerns of bias and inefficiency

which may result from overfitting. Two caveats are in place, however. First, while the possibility

of bias resulting from overfitting is well understood for conditional effects (cfr. the Neyman-

Scott paradox), to the best of our knowledge, the extent to which it affects the estimation of

marginal effects remains to be evaluated. Second, it has been documented that efficiency gains
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may be realized when a priori knowledge is available that given covariates are only associated

with the exposure, but have no residual association with outcome25. However, in practice, such

a priori information is rarely, if ever, available. Without such information, data-driven decisions

must be made to exclude covariates from the analysis and it is unclear under what conditions the

additional uncertainty induced by these selection approaches still enables a meaningful efficiency

gain.

Most strategies used by practitioners to select confounders are based on excluding potential

confounders from the analysis when they are non-significantly associated with the outcome con-

ditional on the exposure; some focus on associations with the exposure instead. Such strategies

are sub-optimal for various reasons. First, since confounders are by definition jointly associated

with exposure and outcome, the importance of a variable as a confounder must ideally be judged

against criteria that involve both associations. Second, even when for a given variable both as-

sociations are assessed, their significance is not directly informative about the extent to which

adjusting for this variable will reduce confounding bias and, ultimately, improve the quality of

the exposure effect estimator. Third, even when a more rigorous confounder-selection process is

adopted, it remains difficult to acknowledge the uncertainty resulting from the selection process

into the final inference. By ignoring this, one risks to obtain under-covering confidence intervals.

We have attempted to shed light on these issues and proposed a focused confounder-selection

strategy which aims at minimum mean squared error of the exposure effect estimator. This

strategy is closely linked to one recommended in Brookhart and van der Laan37, but computa-

tionally more attractive by avoiding the use of cross-validation. Its application overcomes the

aforementioned first two concerns. In particular, when applied to estimators that are consistent

under correct specification of a propensity score model, we expect it will overcome the usual

difficulties26 in selecting confounders in the propensity score model as the selection is made
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in terms of an ‘optimal’ trade-off between bias and efficiency of the exposure effect estimate

and thus will have a tendency to ‘automatically’ exclude covariates that are solely associated

with the exposure and include covariates that are solely associated with the outcome. For such

estimators, as shown in Section 2.6, it also roughly overcomes the third concern in the sense of

retaining confidence validity even when the confounder-selection process is ignored. In spite of

these attractions of focused confounder-selection based on propensity-score adjusted estimators,

several limitations remain and warrant further study. First, the calculation of the mean squared

error relies on estimates obtained from a full model which involves all potential confounders.

Simulation studies are needed to evaluate finite-sample performance when these estimates are

inefficient or biased as a result of overfitting. Second, in small samples, the procedure may

choose to exclude potentially important confounders in order to reduce mean squared error at

the expense of a bias, whose magnitude is difficult to assess. Stability plots like Figure 2 may

help detect whether this occurs; one may use them, for instance, to restrict the procedure to all

submodels that do not generate a bias exceeding a scientifically meaningful magnitude.

Given the aforementioned caveats and limitations of variable-selection, we see much value in

the idea of avoiding confounder-selection by using regularization techniques such as ridge regres-

sion instead. This idea has been much advocated by Sander Greenland13,15. Further research

is needed to evaluate these contrasting viewpoints in realistic settings involving unmeasured

confounding, missing confounder data and large separation in the confounder distributions of

exposed and unexposed subjects. Perhaps the ideal future lies in an approach whereby the nui-

sance parameters indexing the working models for the association between covariates on the one

hand, and exposure and outcome on the other hand, are estimated as those values that mini-

mize the mean squared error of the exposure effect estimator. Such approach would combine the

benefits of focused confounder-selection and regularization approaches that do not involve selec-

tion, and might improve upon them in various ways. In comparison with confounder-selection
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approaches, it would further lower the mean squared error by not being restricted to specific

submodels and, by avoiding repeated model fitting, might enable a more easy assessment of the

overall uncertainty. In comparison with approaches that involve no selection, it would have the

advantage of directly targeting minimal mean squared error of the exposure effect estimator. It

is unclear at present whether such approach is attainable.
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Appendix

Assessment of M-bias and bias amplification

Consider the path diagram in Figure 1. Let Y ∗, A∗ and L∗ denote standardized30 vari-

ables corresponding to Y,A and L, respectively. Assume that E(Y ∗|A∗, L∗, U2, U3) = cA∗ +

bL∗ + c2yU2 + c3yU3, then E(Y ∗|A∗, L∗) = cA∗ + bL∗ + c2yE(U2|A∗, L∗) + c3yE(U3|A∗, L∗).

Let E(U2|A∗, L∗) = α2L
∗+β2A

∗, E(L∗|U1, U2) = c1lU1 + c2lU2 and E(A∗|L∗, U1, U3) = c1aU1 +

c3aU3+aL∗ Then, proceeding as in Pearl23, we have E(U2L
∗) ≡ c2l = α2+β2ρal and E(U2A

∗) ≡

c2la = α2ρal + β2, where ρal = a + c1ac1l, from which

α2 = c2l
(1− ρ2

al + c1ac1lρal)
1− ρ2

al

, β2 = −c2l
c1ac1l

1− ρ2
al

.

Likewise, E(U3|A∗, L∗) = −c3aρal/(1− ρ2
al)L

∗ + c3a/(1− ρ2
al)A

∗. It follows that

E(Y ∗|A∗, L∗) =
(

b + c2yc2l
(1− ρ2

al + c1ac1lρal)
1− ρ2

al

− c3ac3yρal

1− ρ2
al

)
L∗

+
(

c− c2yc2l
c1ac1l

1− ρ2
al

+
c3yc3a

1− ρ2
al

)
A∗,

and E(Y ∗|A∗) = {(b + c2yc2l)ρal + c− c2yc2lc1ac1l + c3yc3a}A∗. The bias reported in the main

text is the difference between the coefficient joining A∗ in the above expressions, and the popu-

lation causal effect c. It is easy to demonstrate that inverse weighting by 1/f(A∗|L∗) yields an

exposure-outcome covariance equal to

∫
Y Af(Y |A,L)f(L)dY dAdL =

(
c− c2yc2l

c1ac1l

1− ρ2
al

+
c3yc3a

1− ρ2
al

)
.

In Figure 4, we develop a better understanding of the magnitude of these biases under the

assumption that ρ2, as defined in the main text, is at most ρal. We make this assumption to

respect that, arguably, U3 will have weaker correlations with exposure and outcome than L when

the focus of the study is on assessing the effect of A on Y , as efforts have then been targeted
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at collecting data on common causes of exposure and outcome. We make a similar assumption

for ρ1 to respect the fact that ρ1 indirectly contributes to the magnitude of ρal. The solid line

in Figure 4 displays the upper bound (1) in a setting where ρ1 = ρal/2 and ρ2 = ρal/3. It

shows that the adjusted analysis will only be more biased than the unadjusted analysis when

the correlation between A and L is extremely large and the correlation between Y and L is

extremely small. We believe this is unlikely to occur in practice. The figure further suggests

that, under the considered scenario, the impact of M-bias (see bottom line in Figure 2) is not

much less sizeable than that of unmeasured confounding (see top line in Figure 4), although

only of importance for exposure-confounder correlations exceeding 0.5.

Figure 4 about here.

FIC-based confounder selection

We consider the marginal log odds ratio as a focus parameter, which we define as

τ∗ = log
µ1(1− µ0)
µ0(1− µ1)

where µa = E [expit {ω(L; γ∗) + β∗0 + β∗aa}] for a = 0, 1. Denote furthermore

µ̂a = n−1
n∑

i=1

[
expit

{
ω(Li; γ̂) + β̂0 + β̂aa

}]

for a = 0, 1. Assume, as in Claeskens and Hjort2, that the true data density f(Y, A|L) is indexed

by a parameter β∗ = (β∗0 , β∗a)′, which is shared between all models, and γ∗ + δ/
√

n, where the

term δ/
√

n encodes local model misspecification (see Section 2.6) and γ∗ is the vector of values to

which the nuisance parameter γ is set in the narrow model (that is, typically γ∗ = 0). Let further

θS ≡ (β, γS)′ and θ̂S ≡ (β̂S , γ̂S)′. Then we have that for any submodel S, the corresponding

estimator µ̂Sa of µ∗a (which is defined like µ̂a, but with γ̂S and β̂S replacing γ̂ and β̂, respectively)
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satisfies

0 =
1√
n

n∑

i=1

expit
{

ω(Li; γ̂S , γ∗−S) + β̂S0 + β̂Saa
}
−√nµ̂Sa

=
1√
n

n∑

i=1

expit
{
ω(Li; γ∗ + δ/

√
n) + β∗0 + β∗aa

}−√nµ∗a

+E

[
∂

∂θS
expit

{
ω(Li; γ∗ + δ/

√
n) + β∗0 + β∗aa

}]√
n

(
θ̂S − θ∗S

)

−E

[
∂

∂γ
expit

{
ω(Li; γ∗ + δ/

√
n) + β∗0 + β∗aa

}]
δ −√n(µ̂Sa − µ∗a) + op(1)

from which

√
n(µ̂Sa − µ∗a) =

1√
n

n∑

i=1

expit
{
ω(Li; γ∗ + δ/

√
n) + β∗0 + β∗aa

}− µ∗a

+E

[
∂

∂θS
expit

{
ω(Li; γ∗ + δ/

√
n) + β∗0 + β∗aa

}]√
n

(
θ̂S − θ∗S

)

−E

[
∂

∂γ
expit

{
ω(Li; γ∗ + δ/

√
n) + β∗0 + β∗aa

}]
δ + op(1).

It follows from the Delta method that the influence function62 for τ̂S is Dµ + dβ
√

n(β̂S − β∗) +

dγS

√
n(γ̂S − γ∗S)− dγδ, where

dγ =
1

µ∗1(1− µ∗1)
E

[
∂

∂γ
expit

{
ω(Li; γ∗ + δ/

√
n) + β∗0 + β∗a

}]

− 1
µ∗0(1− µ∗0)

E

[
∂

∂γ
expit

{
ω(Li; γ∗ + δ/

√
n) + β∗0

}]

Dµ =
1

µ∗1(1− µ∗1)
[
expit

{
ω(Li;ω(Li; γ∗ + δ/

√
n) + β∗0 + β∗a

}− µ∗1
]

− 1
µ∗0(1− µ∗0)

[
expit

{
ω(Li; γ∗ + δ/

√
n) + β∗0

}− µ∗0
]
,

and where dβ and dγS are defined like dγ , but with derivatives taken w.r.t. β and γS , respectively,

rather than γ. Using Lemmas 3.2 and 3.3 in Hjort and Claeskens41, it can be shown that
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√
n(τ̂S − τ∗) converges in distribution to Λ0 + ω′(δ −GSD), where

Λ0 = dβJ−1
00 M ′ + Dµ

D = δ + Q(N ′ − J10J
−1
00 M ′)

Q =
(
J11 − J10J

−1
00 J01

)−1

ω = J10J
−1
00 dβ − dγ

GS = πS

{
π′SQ−1πS

}−1
πSQ−1

with πS the projection matrix for submodel S (i.e., a matrix of zeros with as many rows and

columns as the dimensions of γS and γ, respectively, and with a 1 on each row in the col-

umn representing the corresponding component of γS), (M ′, N ′) following a mean zero normal

distribution with covariance matrix

J =
(

J00 J01

J10 J11

)
,

which is 1 over n times the inverse of the asymptotic covariance matrix of θ̂ = (β̂, γ̂)′. These

expressions rely on θ̂ being a maximum likelihood estimator. Further, Λ0 can be shown to

be uncorrelated with D because M is independent of D by Lemma 3.341, and because Dµ is

uncorrelated with D by the fact that (a) Q(N ′ − J10J
−1
00 M ′) is the asymptotic distribution of

√
n(γ̂ − γ∗ − δ/

√
n); and that (b) the influence functions of γ̂ are uncorrelated with Dµ by the

fact that the former have mean zero conditional on L, whilst the latter are functions of L. It now

follows that
√

n(τ̂S−τ∗) has limiting mean squared error given by Var(Λ0)+ω′GSQG′
Sω+ω′(I−

GS)δδ′(I −GS)′ω. Upon substituting27 δδ′ with max(0, DnD′
n − Q̂), where Dn =

√
n(γ̂ − γ∗),

we obtain

Var(Λ0)− ω′Qω + 2ω′GSQG′
Sω + ω′(I −GS)DnD′

n(I −GS)′ω.
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Because the first two terms are common to all models, we employ the remaining terms as

a Focused Information Criterion2,27, upon substituting all population values with consistent

estimates.

Model uncertainty

Let U(τ, α) be the estimating function for τ and SS(α) = ∂ log f(A|L; α)/∂αS , where αS is

the subvector of α which is free under model S and α−S is the remaining part. Let τ̂S denote

the estimator of τ∗ as obtained under model S, and
∑

S∈A c(S|Dn)τ̂S denote the estimator of τ∗

obtained under model selection, where the weight c(S|Dn) assigns 1 to the selected model and

0 to all other models and where A denotes the model space. Under the local misspecification

assumption, we have that2

√
n

{∑

S∈A
c(S|Dn)τ̂S − τ∗

}
d→

∑

S∈A
c(S|D)ΛS ,

where ΛS is the limit distribution of
√

n (τ̂S − τ∗). Under this assumption, a Taylor series

expansion shows that

0 =
1√
n

n∑

i=1

Ui(τ̂S , α̂S , α∗−S)

=

{
1√
n

n∑

i=1

Ui(τ∗, α∗Sn, α∗−Sn)

}
+ E

(
∂

∂τ
Ui(τ∗, α∗Sn, α∗−Sn)

)√
n (τ̂S − τ∗)

+E

(
∂

∂αS
Ui(τ∗, α∗Sn, α∗−Sn)

)√
n (α̂S − α∗Sn)−E

(
∂

∂α−S
Ui(τ∗, α∗Sn, α∗−Sn)

)
δ−S + op(1),
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where δ−S is the subvector of δ corresponding to α−S and αSn = αS + δS/
√

n and α−Sn =

α−S + δ−S/
√

n. Likewise, we have that

0 =
1√
n

n∑

i=1

SSi(α̂S , α∗−S)

=
1√
n

n∑

i=1

SSi(α∗Sn, α∗−Sn) + E

(
∂

∂αS
SSi(α∗Sn, α∗−Sn)

)√
n (α̂S − α∗Sn)

−E

(
∂

∂α−S
SSi(τ∗, α∗Sn, α∗−Sn)

)
δ−S + op(1),

from which

√
n (τ̂S − τ∗) = E

(
∂

∂τ
Ui(τ∗, α∗Sn, α∗−Sn)

)−1
[
− 1√

n

n∑

i=1

{
Ui(τ∗, α∗Sn, α∗−Sn)

−E

(
∂

∂αS
Ui(τ∗, α∗Sn, α∗−Sn)

)
E

(
∂

∂αS
SSi(α∗Sn, α∗−Sn)

)−1

SSi(α∗Sn, α∗−Sn)

}

+δ−S

{
E

(
∂

∂α−S
Ui(τ∗, α∗Sn, α∗−Sn)

)
−E

(
∂

∂αS
Ui(τ∗, α∗Sn, α∗−Sn)

)

×E

(
∂

∂αS
SSi(α∗Sn, α∗−Sn)

)−1

E

(
∂

∂α−S
SSi(α∗Sn, α∗−Sn)

)}]
+ op(1).

Further, E
{
Ui(τ∗, α∗Sn, α∗−Sn)

}
= 0 implies that E

{
∂Ui(τ∗, α∗Sn, α∗−Sn)/∂αS

}
equals

−E
{
Ui(τ∗, α∗Sn, α∗−Sn)SSi(α∗Sn, α∗−Sn)

}
and likewise for SSi(α∗Sn, α∗−Sn). We thus find that

√
n (τ̂S − τ∗) = E

(
∂

∂τ
Ui(τ∗, α∗Sn, α∗−Sn)

)−1
[
− 1√

n

n∑

i=1

{
Ui(τ∗, α∗Sn, α∗−Sn)

−E
{
Ui(τ∗, α∗Sn, α∗−Sn)SSi(α∗Sn, α∗−Sn)

}
E

{
S⊗2

Si (α∗Sn, α∗−Sn)
}−1

SSi(α∗Sn, α∗−Sn)
}

+δ−S

{
E

(
∂

∂α−S
Ui(τ∗, α∗Sn, α∗−Sn)

)
−E

(
∂

∂αS
Ui(τ∗, α∗Sn, α∗−Sn)

)

×E

(
∂

∂αS
SSi(α∗Sn, α∗−Sn)

)−1

E

(
∂

∂α−S
SSi(α∗Sn, α∗−Sn)

)}]
+ op(1),

41



where for an arbitrary matrix, A⊗2 ≡ AA′. It then follows that
√

n
{∑

S∈A c(S|Dn)τ̂S − τ∗
}

is

E

(
∂

∂τ
Ui(τ∗, α∗Sn, α∗−Sn)

)−1
[
−

∑

S∈A
c(S|D)

1√
n

n∑

i=1

{
Ui(τ∗, α∗Sn, α∗−Sn)

−E
{
Ui(τ∗, α∗Sn, α∗−Sn)SSi(α∗Sn, α∗−Sn)

}
E

{
S⊗2

Si (α∗Sn, α∗−Sn)
}−1

SSi(α∗Sn, α∗−Sn)
}

+
∑

S∈A
c(S|D)δ−S

{
E

(
∂

∂α−S
Ui(τ∗, α∗Sn, α∗−Sn)

)
− E

(
∂

∂αS
Ui(τ∗, α∗Sn, α∗−Sn)

)

×E

(
∂

∂αS
SSi(α∗Sn, α∗−Sn)

)−1

E

(
∂

∂α−S
SSi(α∗Sn, α∗−Sn)

)}]
+ op(1).

It now follows by the Cauchy-Schwarz inequality that an upper bound to the asymptotic variance

of
√

n
{∑

S∈A c(S|Dn)τ̂S − τ∗
}

is the variance of

E

(
∂

∂τ
Ui(τ∗, α∗Sn, α∗−Sn)

)−1 1√
n

n∑

i=1

Ui(τ∗, α∗Sn, α∗−Sn).

It does not immediately follow that standard confidence intervals based on this conservative

variance estimate will themselves be conservative. This is because
∑

S∈A c(S|Dn)τ̂S follows a

mixture distribution with bias components converging at root-n rate to zero. Because misspec-

ifications δ of the order 1 over root-n are not consistently estimable2, there is little room for

further correcting this, unless for instance a doubly robust estimator with correctly specified nui-

sance outcome working model happens to be used, in which case uncertainty in the propensity

score model does not affect inferences for τ∗.

A Y

U1 L U2

U3

Figure 1: Causal diagram with measured variables A,L and Y , and with U1, U2 and U3 unmeasured
variables.
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Figure 2: Left: Mean squared error (MSE) of the best model within each orbit which is obtained
by minimizing the mean squared error of the marginal log odds ratio (MLOR) Right: Estimates
of the marginal and conditional log odds ratio as obtained through FIC-based covariate adjust-
ment, and through AIC-based selection as in Crainiceanu et al.3.
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Figure 3: Causal diagram with measured variables A,L, M and Y , and with U an unmeasured confounder
of the L-Y relationship.
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Figure 4: Values of ρyl below which the adjusted analysis has larger bias than the unadjusted analysis.

Table 1: Estimates of the effect of RHC on mortality, as obtained using different confounder-
selection techniques and reported in terms of the conditional odds ratio (COR), the marginal
odds ratio (MOR) with 95% confidence interval, MSE (mean squared error) and the FIC (focused
information criterion).

Model selection technique # covariates COR MOR 95% CI MSE FIC
Unadjusted analysis 0 1.25 1.25 [1.14 to 1.37] 0.0037 5.99
Full model 61 1.42 1.32 [1.18 to 1.49] 0.0035 5.01
BE covariate adjustment 15 1.39 1.31 [1.17 to 1.46] 0.0033 3.87
AIC (Crainiceanu et al.) 47 1.42 1.33 [1.18 to 1.49] 0.0035 4.94
FIC covariate adjustment 2 1.36 1.33 [1.21 to 1.46] 0.0027 0.04
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Table 2: Simulation results: empirical bias and standard deviation in 5 simulation experiments.
Exp 1 Exp 2 Exp 3 Exp 4 Exp 5

Estimator Bias SD Bias SD Bias SD Bias SD Bias SD
OLS-U 1.856 0.39 0.503 0.37 0.821 0.34 0.974 0.23 0.974 0.23
OLS-A -0.002 0.18 -1.685 0.32 0.000 0.22 0.308 0.16 0.308 0.16
G -0.009 0.2 0.002 0.16 -0.154 0.23 -0.063 0.11 -0.063 0.11
IPW 0.151 0.45 -0.285 0.32 -1.716 1.86 -0.123 0.82 -0.123 0.82
RDR -0.005 0.28 -0.126 0.24 -0.363 0.20 0.014 0.30 0.014 0.30
DR -0.006 0.29 -0.115 0.86 -4.863 122.51 -1.879 43.72 -1.879 43.72
IPW-S 0.028 0.42 0.003 0.19 0.361 0.50 0.027 0.13 0.043 0.15
RDR-S -0.001 0.37 -0.027 0.21 -0.019 0.19 0.023 0.12 -0.004 0.12
DR-S -0.001 0.37 -0.027 0.21 -0.044 0.18 0.022 0.12 0.000 0.12
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