
September 15, 2010 1 / 34

isl: An Integer Set Library
for the Polyhedral Model

Sven Verdoolaege

Department of Computer Science, Katholieke Universiteit Leuven, Belgium
Team ALCHEMY, INRIA Saclay, France

Sven.Verdoolaege@{cs.kuleuven.be,inria.fr}

September 15, 2010

Sven.Verdoolaege@{cs.kuleuven.be, inria.fr}

September 15, 2010 2 / 34

Outline

1 Introduction

2 Internals

3 Operations
Set Difference
Set Coalescing
Parametric Vertex Enumeration
Bounds on Quasi-Polynomials

4 Conclusion

Introduction September 15, 2010 3 / 34

Outline

1 Introduction

2 Internals

3 Operations
Set Difference
Set Coalescing
Parametric Vertex Enumeration
Bounds on Quasi-Polynomials

4 Conclusion

Introduction September 15, 2010 4 / 34

An Integer Set Library

isl is an LGPL thread-safe C library for manipulating
sets and relations of integer tuples bounded by affine constraints

 finite unions of projections of parametric lattice polytopes

very similar to Omega and Omega+ libraries
similar to polymake, but different focus/philosophy
I integer values instead of rational values
I designed for the polyhedral model for program analysis and

transformation (but also useful for other applications)
I library (“calculator” interface is available too)
⇒ embeddable in a compiler

I works best on sets of small dimensions (up to about 10; some
operations also work for higher dimensions)

I self-contained (apart from GMP)
I closed representation
I objects may be sets or relations (or piecewise quasipolynomials)

Introduction September 15, 2010 4 / 34

An Integer Set Library

isl is an LGPL thread-safe C library for manipulating
sets and relations of integer tuples bounded by affine constraints

 finite unions of projections of parametric lattice polytopes

very similar to Omega and Omega+ libraries
similar to polymake, but different focus/philosophy
I integer values instead of rational values
I designed for the polyhedral model for program analysis and

transformation (but also useful for other applications)
I library (“calculator” interface is available too)
⇒ embeddable in a compiler

I works best on sets of small dimensions (up to about 10; some
operations also work for higher dimensions)

I self-contained (apart from GMP)
I closed representation
I objects may be sets or relations (or piecewise quasipolynomials)

Introduction September 15, 2010 5 / 34

Examples of Sets and Relations

S = { (x, y) | 1 ≤ y ≤ x ≤ 5 }

R1(S)

R1

R2(S)

R2

R1 = { (x, y)→ (y, x) } = { (x, y)→ (x′, y′) | x′ = y ∧ y′ = x }
R2 = { (x, y)→ (x, y′) | x ≥ 2 ∧ 1 ≤ y′ ≤ 3 }

Introduction September 15, 2010 5 / 34

Examples of Sets and Relations

S = { (x, y) | 1 ≤ y ≤ x ≤ 5 }
R1(S)

R1

R2(S)

R2

R1 = { (x, y)→ (y, x) } = { (x, y)→ (x′, y′) | x′ = y ∧ y′ = x }

R2 = { (x, y)→ (x, y′) | x ≥ 2 ∧ 1 ≤ y′ ≤ 3 }

Introduction September 15, 2010 5 / 34

Examples of Sets and Relations

S = { (x, y) | 1 ≤ y ≤ x ≤ 5 }
R1(S)

R1

R2(S)

R2

R1 = { (x, y)→ (y, x) } = { (x, y)→ (x′, y′) | x′ = y ∧ y′ = x }
R2 = { (x, y)→ (x, y′) | x ≥ 2 ∧ 1 ≤ y′ ≤ 3 }

Introduction September 15, 2010 6 / 34

Sets and Relations in the Polyhedral Model

for (i = 0; i < n; ++i)

for (j = 0; j < i; ++j)

f(a[j][i+j][2*i]);

Typical sets and relations

Iteration domain
⇒ set of all possible values of the iterators

n → { (i, j) | 0 ≤ i < n ∧ 0 ≤ j < i }

Access relation
⇒ maps iteration vector to array index

{ (i, j)→ (j, i + j, 2i) }

Introduction September 15, 2010 7 / 34

Comparison to Related Libraries

Compared to double description based libraries (PolyLib, PPL)
I All operations are performed on constraints

Reason: objects in target application domain usually have few
constraints, but may have many vertices

I Full support for parameters
I Built-in support for existentially quantified variables
I Built-in support for relations
I Focus on integer values

Compared to Omega and Omega+
I All operations are performed in arbitrary integer arithmetic using GMP
I Different way of handling existentially quantified variables
I Named and nested spaces
I Parametric vertex enumeration
⇒ useful for the barvinok counting library and for computing bounds

I Support for piecewise quasipolynomials
⇒ results of counting problems

Introduction September 15, 2010 7 / 34

Comparison to Related Libraries

Compared to double description based libraries (PolyLib, PPL)
I All operations are performed on constraints

Reason: objects in target application domain usually have few
constraints, but may have many vertices

I Full support for parameters
I Built-in support for existentially quantified variables
I Built-in support for relations
I Focus on integer values

Compared to Omega and Omega+
I All operations are performed in arbitrary integer arithmetic using GMP
I Different way of handling existentially quantified variables
I Named and nested spaces
I Parametric vertex enumeration
⇒ useful for the barvinok counting library and for computing bounds

I Support for piecewise quasipolynomials
⇒ results of counting problems

Introduction September 15, 2010 8 / 34

Interaction with Other Libraries and Tools
barvinok: counts elements in parametric affine sets and relations
CLooG: generates code to scan elements in parametric affine sets
iscc: interactive isl calculator (included in barvinok distribution)

GMP

isl NTL PolyLib

CLooG barvinok

iscc

Future work:

remove dependence on PolyLib and NTL

merge barvinok into isl

Introduction September 15, 2010 8 / 34

Interaction with Other Libraries and Tools
barvinok: counts elements in parametric affine sets and relations
CLooG: generates code to scan elements in parametric affine sets
iscc: interactive isl calculator (included in barvinok distribution)

GMP

isl NTL PolyLib

CLooG barvinok

iscc

Future work:

remove dependence on PolyLib and NTL

merge barvinok into isl

Introduction September 15, 2010 8 / 34

Interaction with Other Libraries and Tools
barvinok: counts elements in parametric affine sets and relations
CLooG: generates code to scan elements in parametric affine sets
iscc: interactive isl calculator (included in barvinok distribution)

GMP

isl

NTL PolyLib

CLooG barvinok

iscc

Future work:

remove dependence on PolyLib and NTL

merge barvinok into isl

Introduction September 15, 2010 8 / 34

Interaction with Other Libraries and Tools
barvinok: counts elements in parametric affine sets and relations
CLooG: generates code to scan elements in parametric affine sets
iscc: interactive isl calculator (included in barvinok distribution)

GMP

isl

NTL PolyLib

CLooG barvinok

iscc

Future work:

remove dependence on PolyLib and NTL

merge barvinok into isl

Internals September 15, 2010 9 / 34

Outline

1 Introduction

2 Internals

3 Operations
Set Difference
Set Coalescing
Parametric Vertex Enumeration
Bounds on Quasi-Polynomials

4 Conclusion

Internals September 15, 2010 10 / 34

Internal Structure

incremental LP solver

ILP solver (GBR)

PILP solver

core

operations on sets and relations

operations on piecewise quasipolynomials

operations on reductions of piecewise quasipolynomials

vertex enumeration

Internals September 15, 2010 10 / 34

Internal Structure

incremental LP solver

ILP solver (GBR)

PILP solver

core

operations on sets and relations

operations on piecewise quasipolynomials

operations on reductions of piecewise quasipolynomials

vertex enumeration

Internals September 15, 2010 11 / 34

Internal Representation

S(s) = { x ∈ Zd | ∃z ∈ Ze : Ax + Bs + Dz ≥ c }

R(s) = { x1 → x2 ∈ Z
d1 × Zd2 | ∃z ∈ Ze : A1x1 + A2x2 + Bs + Dz ≥ c }

“basic” types: “convex” sets and maps (relations)
I equality + inequality constraints
I parameters s
I (optional) explicit representation of existentially quantified variables as

integer divisions
⇒ useful for aligning dimensions when performing set operations

(e.g., set difference)
⇒ can be computed using PILP

sets and maps
⇒ (disjoint) unions of basic sets/maps

union sets and union maps
⇒ unions of sets/maps in different spaces

Internals September 15, 2010 11 / 34

Internal Representation

S(s) = { x ∈ Zd | ∃z ∈ Ze : Ax + Bs + Dz ≥ c }

R(s) = { x1 → x2 ∈ Z
d1 × Zd2 | ∃z ∈ Ze : A1x1 + A2x2 + Bs + Dz ≥ c }

“basic” types: “convex” sets and maps (relations)
I equality + inequality constraints
I parameters s
I (optional) explicit representation of existentially quantified variables as

integer divisions
⇒ useful for aligning dimensions when performing set operations

(e.g., set difference)
⇒ can be computed using PILP

sets and maps
⇒ (disjoint) unions of basic sets/maps

union sets and union maps
⇒ unions of sets/maps in different spaces

Internals September 15, 2010 11 / 34

Internal Representation

S(s) = { x ∈ Zd | ∃z ∈ Ze : Ax + Bs + Dz ≥ c }

R(s) = { x1 → x2 ∈ Z
d1 × Zd2 | ∃z ∈ Ze : A1x1 + A2x2 + Bs + Dz ≥ c }

“basic” types: “convex” sets and maps (relations)
I equality + inequality constraints
I parameters s
I (optional) explicit representation of existentially quantified variables as

integer divisions
⇒ useful for aligning dimensions when performing set operations

(e.g., set difference)
⇒ can be computed using PILP

sets and maps
⇒ (disjoint) unions of basic sets/maps

union sets and union maps
⇒ unions of sets/maps in different spaces

Internals September 15, 2010 12 / 34

Parametric Integer Linear Programming

R(s) = { x1 → x2 ∈ Z
d1 × Zd2 | ∃z ∈ Ze : A1x1 + A2x2 + Bs + Dz ≥ c }

Lexicographic minimum of R:

lexmin R = { x1 → x2 ∈ R | ∀x′2 ∈ R(s, x1) : x2 4 x′2 }

Parametric integer linear programming computes lexmin R in the form

lexmin R =
⋃

i

{ x1 → x2 ∈ Z
d1 × Zd2 | ∃z′ ∈ Ze′ : Aix1 + Bis ≥ ci ∧

z′ =
⌊
Pix1 + Qis + ri

m

⌋
∧

x2 = Tix1 + Uis + Viz′ + wi }

explicit representation of existentially quantified variables
explicit representation of range variables

Technique: dual simplex + Gomory cuts

Internals September 15, 2010 13 / 34

Parametric Integer Linear Programming Example

x

y

R = { x → y | 3y ≥ 31 − x ∧ 2y ≤ 29 − x ∧ 3y ≤ 38 − x ∧ 2y ≥ 26 − x }

lexmin R = { x → y | (x ≤ 25 ∧ x ≥ 16 ∧ 3y ≥ 31 − x ∧ 3y ≤ 33 − x ∧ 2y ≤
29 − x) ∨ (3y ≤ 38 − x ∧ x ≤ 15 ∧ x ≥ 2 ∧ 2y ≥ 26 − x ∧ 2y ≤ 27 − x) }

Internals September 15, 2010 13 / 34

Parametric Integer Linear Programming Example

x

y

R = { x → y | 3y ≥ 31 − x ∧ 2y ≤ 29 − x ∧ 3y ≤ 38 − x ∧ 2y ≥ 26 − x }
lexmin R = { x → y | (x ≤ 25 ∧ x ≥ 16 ∧ 3y ≥ 31 − x ∧ 3y ≤ 33 − x ∧ 2y ≤
29 − x) ∨ (3y ≤ 38 − x ∧ x ≤ 15 ∧ x ≥ 2 ∧ 2y ≥ 26 − x ∧ 2y ≤ 27 − x) }

Internals September 15, 2010 14 / 34

Parametric Integer Linear Programming

R(s) = { x1 → x2 ∈ Z
d1 × Zd2 | ∃z ∈ Ze : A1x1 + A2x2 + Bs + Dz ≥ c }

Lexicographic minimum of R:

lexmin R = { x1 → x2 ∈ R | ∀x′2 ∈ R(s, x1) : x2 4 x′2 }

Parametric integer linear programming computes lexmin R in the form

lexmin R =
⋃

i

{ x1 → x2 ∈ Z
d1 × Zd2 | ∃z′ ∈ Ze′ : Aix1 + Bis ≥ ci ∧

z′ =
⌊
Pix1 + Qis + ri

m

⌋
∧

x2 = Tix1 + Uis + Viz′ + wi }

explicit representation of existentially quantified variables
explicit representation of range variables

Technique: dual simplex + Gomory cuts

Internals September 15, 2010 14 / 34

Parametric Integer Linear Programming

R(s) = { x1 → x2 ∈ Z
d1 × Zd2 | ∃z ∈ Ze : A1x1 + A2x2 + Bs + Dz ≥ c }

Lexicographic minimum of R:

lexmin R = { x1 → x2 ∈ R | ∀x′2 ∈ R(s, x1) : x2 4 x′2 }

Parametric integer linear programming computes lexmin R in the form

lexmin R =
⋃

i

{ x1 → x2 ∈ Z
d1 × Zd2 | ∃z′ ∈ Ze′ : Aix1 + Bis ≥ ci ∧

z′ =
⌊
Pix1 + Qis + ri

m

⌋
∧

x2 = Tix1 + Uis + Viz′ + wi }

explicit representation of existentially quantified variables
explicit representation of range variables

Technique: dual simplex + Gomory cuts

Internals September 15, 2010 14 / 34

Parametric Integer Linear Programming

R(s) = { x1 → x2 ∈ Z
d1 × Zd2 | ∃z ∈ Ze : A1x1 + A2x2 + Bs + Dz ≥ c }

Lexicographic minimum of R:

lexmin R = { x1 → x2 ∈ R | ∀x′2 ∈ R(s, x1) : x2 4 x′2 }

Parametric integer linear programming computes lexmin R in the form

lexmin R =
⋃

i

{ x1 → x2 ∈ Z
d1 × Zd2 | ∃z′ ∈ Ze′ : Aix1 + Bis ≥ ci ∧

z′ =
⌊
Pix1 + Qis + ri

m

⌋
∧

x2 = Tix1 + Uis + Viz′ + wi }

explicit representation of existentially quantified variables
explicit representation of range variables

Technique: dual simplex + Gomory cuts

Internals September 15, 2010 14 / 34

Parametric Integer Linear Programming

R(s) = { x1 → x2 ∈ Z
d1 × Zd2 | ∃z ∈ Ze : A1x1 + A2x2 + Bs + Dz ≥ c }

Lexicographic minimum of R:

lexmin R = { x1 → x2 ∈ R | ∀x′2 ∈ R(s, x1) : x2 4 x′2 }

Parametric integer linear programming computes lexmin R in the form

lexmin R =
⋃

i

{ x1 → x2 ∈ Z
d1 × Zd2 | ∃z′ ∈ Ze′ : Aix1 + Bis ≥ ci ∧

z′ =
⌊
Pix1 + Qis + ri

m

⌋
∧

x2 = Tix1 + Uis + Viz′ + wi }

explicit representation of existentially quantified variables
explicit representation of range variables

Technique: dual simplex + Gomory cuts

Internals September 15, 2010 15 / 34

PILP Example: Dataflow Analysis
Given a read from an array element, what was the last write to
the same array element before the read?

Simple case: array written through a single access

for (i = 0; i < N; ++i)

for (j = 0; j < N - i; ++j)

a[i+j] = f(a[i+j]);

for (i = 0; i < N; ++i)

Write(a[i]);

Access relations:
A1 = {(i, j)→ (i + j) | 0 ≤ i < N ∧ 0 ≤ j < N − i}
A2 = {(i)→ (i) | 0 ≤ i < N}

Map to all writes: R ′ = A1
−1 ◦ A2 = {(i)→ (i′, i − i′) | 0 ≤ i′ ≤ i < N}

Last write: R = lexmax R ′ = {(i)→ (i, 0) | 0 ≤ i < N}

In general: impose lexicographical order on shared iterators

Internals September 15, 2010 15 / 34

PILP Example: Dataflow Analysis
Given a read from an array element, what was the last write to
the same array element before the read?

Simple case: array written through a single access

for (i = 0; i < N; ++i)

for (j = 0; j < N - i; ++j)

a[i+j] = f(a[i+j]);

for (i = 0; i < N; ++i)

Write(a[i]);

Access relations:
A1 = {(i, j)→ (i + j) | 0 ≤ i < N ∧ 0 ≤ j < N − i}
A2 = {(i)→ (i) | 0 ≤ i < N}

Map to all writes: R ′ = A1
−1 ◦ A2 = {(i)→ (i′, i − i′) | 0 ≤ i′ ≤ i < N}

Last write: R = lexmax R ′ = {(i)→ (i, 0) | 0 ≤ i < N}

In general: impose lexicographical order on shared iterators

Internals September 15, 2010 15 / 34

PILP Example: Dataflow Analysis
Given a read from an array element, what was the last write to
the same array element before the read?

Simple case: array written through a single access

for (i = 0; i < N; ++i)

for (j = 0; j < N - i; ++j)

a[i+j] = f(a[i+j]);

for (i = 0; i < N; ++i)

Write(a[i]);

Access relations:
A1 = {(i, j)→ (i + j) | 0 ≤ i < N ∧ 0 ≤ j < N − i}
A2 = {(i)→ (i) | 0 ≤ i < N}

Map to all writes: R ′ = A1
−1 ◦ A2 = {(i)→ (i′, i − i′) | 0 ≤ i′ ≤ i < N}

Last write: R = lexmax R ′ = {(i)→ (i, 0) | 0 ≤ i < N}

In general: impose lexicographical order on shared iterators

Internals September 15, 2010 15 / 34

PILP Example: Dataflow Analysis
Given a read from an array element, what was the last write to
the same array element before the read?

Simple case: array written through a single access

for (i = 0; i < N; ++i)

for (j = 0; j < N - i; ++j)

a[i+j] = f(a[i+j]);

for (i = 0; i < N; ++i)

Write(a[i]);

Access relations:
A1 = {(i, j)→ (i + j) | 0 ≤ i < N ∧ 0 ≤ j < N − i}
A2 = {(i)→ (i) | 0 ≤ i < N}

Map to all writes: R ′ = A1
−1 ◦ A2 = {(i)→ (i′, i − i′) | 0 ≤ i′ ≤ i < N}

Last write: R = lexmax R ′ = {(i)→ (i, 0) | 0 ≤ i < N}

In general: impose lexicographical order on shared iterators

Internals September 15, 2010 15 / 34

PILP Example: Dataflow Analysis
Given a read from an array element, what was the last write to
the same array element before the read?

Simple case: array written through a single access

for (i = 0; i < N; ++i)

for (j = 0; j < N - i; ++j)

a[i+j] = f(a[i+j]);

for (i = 0; i < N; ++i)

Write(a[i]);

Access relations:
A1 = {(i, j)→ (i + j) | 0 ≤ i < N ∧ 0 ≤ j < N − i}
A2 = {(i)→ (i) | 0 ≤ i < N}

Map to all writes: R ′ = A1
−1 ◦ A2 = {(i)→ (i′, i − i′) | 0 ≤ i′ ≤ i < N}

Last write: R = lexmax R ′ = {(i)→ (i, 0) | 0 ≤ i < N}

In general: impose lexicographical order on shared iterators

Internals September 15, 2010 15 / 34

PILP Example: Dataflow Analysis
Given a read from an array element, what was the last write to
the same array element before the read?

Simple case: array written through a single access

for (i = 0; i < N; ++i)

for (j = 0; j < N - i; ++j)

a[i+j] = f(a[i+j]);

for (i = 0; i < N; ++i)

Write(a[i]);

Access relations:
A1 = {(i, j)→ (i + j) | 0 ≤ i < N ∧ 0 ≤ j < N − i}
A2 = {(i)→ (i) | 0 ≤ i < N}

Map to all writes: R ′ = A1
−1 ◦ A2 = {(i)→ (i′, i − i′) | 0 ≤ i′ ≤ i < N}

Last write: R = lexmax R ′ = {(i)→ (i, 0) | 0 ≤ i < N}

In general: impose lexicographical order on shared iterators

Operations September 15, 2010 16 / 34

Outline

1 Introduction

2 Internals

3 Operations
Set Difference
Set Coalescing
Parametric Vertex Enumeration
Bounds on Quasi-Polynomials

4 Conclusion

Operations September 15, 2010 17 / 34

Supported Operations

Intersection

Union

Set difference

Closed convex hull (“wrapping”, FLL2000)

Coalescing

Lexicographic minimization

Integer projection

Sampling (GBR)

Scanning (GBR)

Integer affine hull (GBR)

Transitive closure (approx.)

Parametric vertex enumeration

Bounds on quasipolynomials (approx.)

Operations September 15, 2010 17 / 34

Supported Operations

Intersection

Union

Set difference

Closed convex hull (“wrapping”, FLL2000)

Coalescing

Lexicographic minimization

Integer projection

Sampling (GBR)

Scanning (GBR)

Integer affine hull (GBR)

Transitive closure (approx.)

Parametric vertex enumeration

Bounds on quasipolynomials (approx.)

Operations September 15, 2010 17 / 34

Supported Operations

Intersection

Union

Set difference

Closed convex hull (“wrapping”, FLL2000)

Coalescing

Lexicographic minimization

Integer projection

Sampling (GBR)

Scanning (GBR)

Integer affine hull (GBR)

Transitive closure (approx.)

Parametric vertex enumeration

Bounds on quasipolynomials (approx.)

Operations Set Difference September 15, 2010 18 / 34

isl Operation: Set Difference

S(s) = { x ∈ Zd | ∃z ∈ Ze : Ax + Bs + Dz ≥ c }

Set difference S1 \ S2

no existentially quantified variables

S2(s) = { x ∈ Zd |
∧

i

〈ai , x〉+ 〈bi , s〉 ≥ ci }

S1 \ S2 =
⋃

i

(S1 ∩ { x | ¬(〈ai , x〉+ 〈bi , s〉 ≥ ci) })

=
⋃

i

(S1 ∩ { x | 〈ai , x〉+ 〈bi , s〉 ≤ ci − 1 })

=
⋃

i

(S1 ∩
⋂
j<i

{ x |
〈
aj , x

〉
+

〈
bj , s

〉
≥ cj }

∩ { x | 〈ai , x〉+ 〈bi , s〉 ≤ ci − 1 })

S1 \ S2 =
⋃

i

(S1 ∩
⋂
j<i

{ x |
〈
aj , x

〉
+

〈
bj , s

〉
≥ cj }

∩ { x | 〈ai , x〉+ 〈bi , s〉 ≤ ci − 1 })

with existentially quantified variables
⇒ compute explicit representation

S2(s) = { x ∈ Zd |
∧

i

〈ai , x〉+ 〈bi , s〉+
〈
di ,

⌊
〈p, x〉+ 〈qi , s〉+ r

m

⌋〉
≥ ci }

Operations Set Difference September 15, 2010 18 / 34

isl Operation: Set Difference

S(s) = { x ∈ Zd | ∃z ∈ Ze : Ax + Bs + Dz ≥ c }

Set difference S1 \ S2

no existentially quantified variables

S2(s) = { x ∈ Zd |
∧

i

〈ai , x〉+ 〈bi , s〉 ≥ ci }

S1 \ S2 =
⋃

i

(S1 ∩ { x | ¬(〈ai , x〉+ 〈bi , s〉 ≥ ci) })

=
⋃

i

(S1 ∩ { x | 〈ai , x〉+ 〈bi , s〉 ≤ ci − 1 })

=
⋃

i

(S1 ∩
⋂
j<i

{ x |
〈
aj , x

〉
+

〈
bj , s

〉
≥ cj }

∩ { x | 〈ai , x〉+ 〈bi , s〉 ≤ ci − 1 })

S1 \ S2 =
⋃

i

(S1 ∩
⋂
j<i

{ x |
〈
aj , x

〉
+

〈
bj , s

〉
≥ cj }

∩ { x | 〈ai , x〉+ 〈bi , s〉 ≤ ci − 1 })

with existentially quantified variables
⇒ compute explicit representation

S2(s) = { x ∈ Zd |
∧

i

〈ai , x〉+ 〈bi , s〉+
〈
di ,

⌊
〈p, x〉+ 〈qi , s〉+ r

m

⌋〉
≥ ci }

Operations Set Difference September 15, 2010 18 / 34

isl Operation: Set Difference

S(s) = { x ∈ Zd | ∃z ∈ Ze : Ax + Bs + Dz ≥ c }

Set difference S1 \ S2

no existentially quantified variables

S2(s) = { x ∈ Zd |
∧

i

〈ai , x〉+ 〈bi , s〉 ≥ ci }

S1 \ S2 =
⋃

i

(S1 ∩ { x | ¬(〈ai , x〉+ 〈bi , s〉 ≥ ci) })

=
⋃

i

(S1 ∩ { x | 〈ai , x〉+ 〈bi , s〉 ≤ ci − 1 })

=
⋃

i

(S1 ∩
⋂
j<i

{ x |
〈
aj , x

〉
+

〈
bj , s

〉
≥ cj }

∩ { x | 〈ai , x〉+ 〈bi , s〉 ≤ ci − 1 })

S1 \ S2 =
⋃

i

(S1 ∩
⋂
j<i

{ x |
〈
aj , x

〉
+

〈
bj , s

〉
≥ cj }

∩ { x | 〈ai , x〉+ 〈bi , s〉 ≤ ci − 1 })

with existentially quantified variables
⇒ compute explicit representation

S2(s) = { x ∈ Zd |
∧

i

〈ai , x〉+ 〈bi , s〉+
〈
di ,

⌊
〈p, x〉+ 〈qi , s〉+ r

m

⌋〉
≥ ci }

Operations Set Difference September 15, 2010 18 / 34

isl Operation: Set Difference

S(s) = { x ∈ Zd | ∃z ∈ Ze : Ax + Bs + Dz ≥ c }

Set difference S1 \ S2

no existentially quantified variables

S2(s) = { x ∈ Zd |
∧

i

〈ai , x〉+ 〈bi , s〉 ≥ ci }

S1 \ S2 =
⋃

i

(S1 ∩
⋂
j<i

{ x |
〈
aj , x

〉
+

〈
bj , s

〉
≥ cj }

∩ { x | 〈ai , x〉+ 〈bi , s〉 ≤ ci − 1 })

with existentially quantified variables
⇒ compute explicit representation

S2(s) = { x ∈ Zd |
∧

i

〈ai , x〉+ 〈bi , s〉+
〈
di ,

⌊
〈p, x〉+ 〈qi , s〉+ r

m

⌋〉
≥ ci }

Operations Set Difference September 15, 2010 18 / 34

isl Operation: Set Difference

S(s) = { x ∈ Zd | ∃z ∈ Ze : Ax + Bs + Dz ≥ c }

Set difference S1 \ S2

no existentially quantified variables

S2(s) = { x ∈ Zd |
∧

i

〈ai , x〉+ 〈bi , s〉 ≥ ci }

S1 \ S2 =
⋃

i

(S1 ∩
⋂
j<i

{ x |
〈
aj , x

〉
+

〈
bj , s

〉
≥ cj }

∩ { x | 〈ai , x〉+ 〈bi , s〉 ≤ ci − 1 })

with existentially quantified variables
⇒ compute explicit representation

S2(s) = { x ∈ Zd |
∧

i

〈ai , x〉+ 〈bi , s〉+
〈
di ,

⌊
〈p, x〉+ 〈qi , s〉+ r

m

⌋〉
≥ ci }

Operations Set Difference September 15, 2010 19 / 34

Supported Operations

Intersection

Union

Set difference

Closed convex hull (“wrapping”, FLL2000)

Coalescing

Lexicographic minimization

Integer projection

Sampling (GBR)

Scanning (GBR)

Integer affine hull (GBR)

Transitive closure (approx.)

Parametric vertex enumeration

Bounds on quasipolynomials (approx.)

Operations Set Difference September 15, 2010 19 / 34

Supported Operations

Intersection

Union

Set difference

Closed convex hull (“wrapping”, FLL2000)

Coalescing

Lexicographic minimization

Integer projection

Sampling (GBR)

Scanning (GBR)

Integer affine hull (GBR)

Transitive closure (approx.)

Parametric vertex enumeration

Bounds on quasipolynomials (approx.)

Operations Set Difference September 15, 2010 19 / 34

Supported Operations

Intersection

Union

Set difference

Closed convex hull (“wrapping”, FLL2000)

Coalescing

Lexicographic minimization

Integer projection

Sampling (GBR)

Scanning (GBR)

Integer affine hull (GBR)

Transitive closure (approx.)

Parametric vertex enumeration

Bounds on quasipolynomials (approx.)

Operations Set Coalescing September 15, 2010 20 / 34

isl Operation: Set Coalescing
After many applications of projection, set difference, union,
a set may be represented as a union of many basic sets
⇒ try to combine several basic sets into a single basic set

S1 = { x | Ax ≥ c } S2 = { x | Bx ≥ d }

PolyLib way:
1 Compute H = conv.hull(S1 ∪ S2)
2 Replace S1 ∪ S2 by H \ (H \ (S1 ∪ S2))

isl way:
1 Classify constraints

I redundant: min 〈ai , x〉 > ci − 1 over remaining constraints
I valid: min 〈ai , x〉 > ci − 1 over S2
I separating: max 〈ai , x〉 < ci over S2

special cases:
F adjacent to equality: 〈ai , x〉 = ci − 1 over S2
F adjacent to inequality:

〈
(ai + bj), x

〉
= (ci + dj) − 1 over S2

I cut: otherwise

2 Case distinction
1 non-redundant constraints of S1 are valid for S2, i.e., S2 ⊆ S1

2 no separating constraints and cut constraints of S2 are valid for cut
facets of S1 (similar to BFT2001)

3 single pair of adjacent inequalities (other constraints valid)
4 single adjacent pair of an inequality (S1) and an equality (S2)

+ constraints of S2 valid for facet of relaxed inequality
5 single adjacent pair of an inequality (S1) and an equality (S2)

+ inequality and equality can be wrapped to include union
6 S2 extends beyond S1 by at most one and all cut constraints of S1 and

parallel slices of S2 can be wrapped to include union
⇒ replace S1 and S2 by valid and wrapping constraints

Operations Set Coalescing September 15, 2010 20 / 34

isl Operation: Set Coalescing
After many applications of projection, set difference, union,
a set may be represented as a union of many basic sets
⇒ try to combine several basic sets into a single basic set

S1 = { x | Ax ≥ c } S2 = { x | Bx ≥ d }

PolyLib way:
1 Compute H = conv.hull(S1 ∪ S2)
2 Replace S1 ∪ S2 by H \ (H \ (S1 ∪ S2))

isl way:
1 Classify constraints

I redundant: min 〈ai , x〉 > ci − 1 over remaining constraints
I valid: min 〈ai , x〉 > ci − 1 over S2
I separating: max 〈ai , x〉 < ci over S2

special cases:
F adjacent to equality: 〈ai , x〉 = ci − 1 over S2
F adjacent to inequality:

〈
(ai + bj), x

〉
= (ci + dj) − 1 over S2

I cut: otherwise

2 Case distinction
1 non-redundant constraints of S1 are valid for S2, i.e., S2 ⊆ S1

2 no separating constraints and cut constraints of S2 are valid for cut
facets of S1 (similar to BFT2001)

3 single pair of adjacent inequalities (other constraints valid)
4 single adjacent pair of an inequality (S1) and an equality (S2)

+ constraints of S2 valid for facet of relaxed inequality
5 single adjacent pair of an inequality (S1) and an equality (S2)

+ inequality and equality can be wrapped to include union
6 S2 extends beyond S1 by at most one and all cut constraints of S1 and

parallel slices of S2 can be wrapped to include union
⇒ replace S1 and S2 by valid and wrapping constraints

Operations Set Coalescing September 15, 2010 20 / 34

isl Operation: Set Coalescing
After many applications of projection, set difference, union,
a set may be represented as a union of many basic sets
⇒ try to combine several basic sets into a single basic set

S1 = { x | Ax ≥ c } S2 = { x | Bx ≥ d }

PolyLib way:
1 Compute H = conv.hull(S1 ∪ S2)
2 Replace S1 ∪ S2 by H \ (H \ (S1 ∪ S2))

isl way:
1 Classify constraints

I redundant: min 〈ai , x〉 > ci − 1 over remaining constraints
I valid: min 〈ai , x〉 > ci − 1 over S2
I separating: max 〈ai , x〉 < ci over S2

special cases:
F adjacent to equality: 〈ai , x〉 = ci − 1 over S2
F adjacent to inequality:

〈
(ai + bj), x

〉
= (ci + dj) − 1 over S2

I cut: otherwise

2 Case distinction
1 non-redundant constraints of S1 are valid for S2, i.e., S2 ⊆ S1

2 no separating constraints and cut constraints of S2 are valid for cut
facets of S1 (similar to BFT2001)

3 single pair of adjacent inequalities (other constraints valid)
4 single adjacent pair of an inequality (S1) and an equality (S2)

+ constraints of S2 valid for facet of relaxed inequality
5 single adjacent pair of an inequality (S1) and an equality (S2)

+ inequality and equality can be wrapped to include union
6 S2 extends beyond S1 by at most one and all cut constraints of S1 and

parallel slices of S2 can be wrapped to include union
⇒ replace S1 and S2 by valid and wrapping constraints

Operations Set Coalescing September 15, 2010 20 / 34

isl Operation: Set Coalescing
1 Classify constraints

I redundant: min 〈ai , x〉 > ci − 1 over remaining constraints
I valid: min 〈ai , x〉 > ci − 1 over S2
I separating: max 〈ai , x〉 < ci over S2

special cases:
F adjacent to equality: 〈ai , x〉 = ci − 1 over S2
F adjacent to inequality:

〈
(ai + bj), x

〉
= (ci + dj) − 1 over S2

I cut: otherwise

2 Case distinction
1 non-redundant constraints of S1 are valid for S2, i.e., S2 ⊆ S1

2 no separating constraints and cut constraints of S2 are valid for cut
facets of S1 (similar to BFT2001)

3 single pair of adjacent inequalities (other constraints valid)
4 single adjacent pair of an inequality (S1) and an equality (S2)

+ constraints of S2 valid for facet of relaxed inequality
5 single adjacent pair of an inequality (S1) and an equality (S2)

+ inequality and equality can be wrapped to include union
6 S2 extends beyond S1 by at most one and all cut constraints of S1 and

parallel slices of S2 can be wrapped to include union
⇒ replace S1 and S2 by valid and wrapping constraints

Operations Set Coalescing September 15, 2010 20 / 34

isl Operation: Set Coalescing
1 Classify constraints

I redundant: min 〈ai , x〉 > ci − 1 over remaining constraints
I valid: min 〈ai , x〉 > ci − 1 over S2
I separating: max 〈ai , x〉 < ci over S2

special cases:
F adjacent to equality: 〈ai , x〉 = ci − 1 over S2
F adjacent to inequality:

〈
(ai + bj), x

〉
= (ci + dj) − 1 over S2

I cut: otherwise
2 Case distinction

1 non-redundant constraints of S1 are valid for S2, i.e., S2 ⊆ S1

⇒ S2 can be dropped

2 no separating constraints and cut constraints of S2 are valid for cut
facets of S1 (similar to BFT2001)

3 single pair of adjacent inequalities (other constraints valid)
4 single adjacent pair of an inequality (S1) and an equality (S2)

+ constraints of S2 valid for facet of relaxed inequality
5 single adjacent pair of an inequality (S1) and an equality (S2)

+ inequality and equality can be wrapped to include union
6 S2 extends beyond S1 by at most one and all cut constraints of S1 and

parallel slices of S2 can be wrapped to include union
⇒ replace S1 and S2 by valid and wrapping constraints

Operations Set Coalescing September 15, 2010 20 / 34

isl Operation: Set Coalescing

1 Classify constraints
I redundant: min 〈ai , x〉 > ci − 1 over remaining constraints
I valid: min 〈ai , x〉 > ci − 1 over S2
I separating: max 〈ai , x〉 < ci over S2

special cases:
F adjacent to equality: 〈ai , x〉 = ci − 1 over S2
F adjacent to inequality:

〈
(ai + bj), x

〉
= (ci + dj) − 1 over S2

I cut: otherwise

2 Case distinction
1 non-redundant constraints of S1 are valid for S2, i.e., S2 ⊆ S1

⇒ S2 can be dropped

2 no separating constraints and cut constraints of S2 are valid for cut
facets of S1 (similar to BFT2001)

3 single pair of adjacent inequalities (other constraints valid)
4 single adjacent pair of an inequality (S1) and an equality (S2)

+ constraints of S2 valid for facet of relaxed inequality
5 single adjacent pair of an inequality (S1) and an equality (S2)

+ inequality and equality can be wrapped to include union
6 S2 extends beyond S1 by at most one and all cut constraints of S1 and

parallel slices of S2 can be wrapped to include union
⇒ replace S1 and S2 by valid and wrapping constraints

Operations Set Coalescing September 15, 2010 20 / 34

isl Operation: Set Coalescing

1 Classify constraints
I redundant: min 〈ai , x〉 > ci − 1 over remaining constraints
I valid: min 〈ai , x〉 > ci − 1 over S2
I separating: max 〈ai , x〉 < ci over S2

special cases:
F adjacent to equality: 〈ai , x〉 = ci − 1 over S2
F adjacent to inequality:

〈
(ai + bj), x

〉
= (ci + dj) − 1 over S2

I cut: otherwise

2 Case distinction
1 non-redundant constraints of S1 are valid for S2, i.e., S2 ⊆ S1

⇒ S2 can be dropped

2 no separating constraints and cut constraints of S2 are valid for cut
facets of S1 (similar to BFT2001)

3 single pair of adjacent inequalities (other constraints valid)
4 single adjacent pair of an inequality (S1) and an equality (S2)

+ constraints of S2 valid for facet of relaxed inequality
5 single adjacent pair of an inequality (S1) and an equality (S2)

+ inequality and equality can be wrapped to include union
6 S2 extends beyond S1 by at most one and all cut constraints of S1 and

parallel slices of S2 can be wrapped to include union
⇒ replace S1 and S2 by valid and wrapping constraints

Operations Set Coalescing September 15, 2010 20 / 34

isl Operation: Set Coalescing
1 Classify constraints

I redundant: min 〈ai , x〉 > ci − 1 over remaining constraints
I valid: min 〈ai , x〉 > ci − 1 over S2
I separating: max 〈ai , x〉 < ci over S2

special cases:
F adjacent to equality: 〈ai , x〉 = ci − 1 over S2
F adjacent to inequality:

〈
(ai + bj), x

〉
= (ci + dj) − 1 over S2

I cut: otherwise
2 Case distinction

1 non-redundant constraints of S1 are valid for S2, i.e., S2 ⊆ S1
2 no separating constraints and cut constraints of S2 are valid for cut

facets of S1 (similar to BFT2001)
⇒ replace S1 and S2 by basic set with all valid constraints

3 single pair of adjacent inequalities (other constraints valid)
4 single adjacent pair of an inequality (S1) and an equality (S2)

+ constraints of S2 valid for facet of relaxed inequality
5 single adjacent pair of an inequality (S1) and an equality (S2)

+ inequality and equality can be wrapped to include union
6 S2 extends beyond S1 by at most one and all cut constraints of S1 and

parallel slices of S2 can be wrapped to include union
⇒ replace S1 and S2 by valid and wrapping constraints

Operations Set Coalescing September 15, 2010 20 / 34

isl Operation: Set Coalescing

1 Classify constraints
I redundant: min 〈ai , x〉 > ci − 1 over remaining constraints
I valid: min 〈ai , x〉 > ci − 1 over S2
I separating: max 〈ai , x〉 < ci over S2

special cases:
F adjacent to equality: 〈ai , x〉 = ci − 1 over S2
F adjacent to inequality:

〈
(ai + bj), x

〉
= (ci + dj) − 1 over S2

I cut: otherwise

2 Case distinction
1 non-redundant constraints of S1 are valid for S2, i.e., S2 ⊆ S1
2 no separating constraints and cut constraints of S2 are valid for cut

facets of S1 (similar to BFT2001)
⇒ replace S1 and S2 by basic set with all valid constraints

3 single pair of adjacent inequalities (other constraints valid)
4 single adjacent pair of an inequality (S1) and an equality (S2)

+ constraints of S2 valid for facet of relaxed inequality
5 single adjacent pair of an inequality (S1) and an equality (S2)

+ inequality and equality can be wrapped to include union
6 S2 extends beyond S1 by at most one and all cut constraints of S1 and

parallel slices of S2 can be wrapped to include union
⇒ replace S1 and S2 by valid and wrapping constraints

Operations Set Coalescing September 15, 2010 20 / 34

isl Operation: Set Coalescing

1 Classify constraints
I redundant: min 〈ai , x〉 > ci − 1 over remaining constraints
I valid: min 〈ai , x〉 > ci − 1 over S2
I separating: max 〈ai , x〉 < ci over S2

special cases:
F adjacent to equality: 〈ai , x〉 = ci − 1 over S2
F adjacent to inequality:

〈
(ai + bj), x

〉
= (ci + dj) − 1 over S2

I cut: otherwise

2 Case distinction
1 non-redundant constraints of S1 are valid for S2, i.e., S2 ⊆ S1
2 no separating constraints and cut constraints of S2 are valid for cut

facets of S1 (similar to BFT2001)
⇒ replace S1 and S2 by basic set with all valid constraints

3 single pair of adjacent inequalities (other constraints valid)
4 single adjacent pair of an inequality (S1) and an equality (S2)

+ constraints of S2 valid for facet of relaxed inequality
5 single adjacent pair of an inequality (S1) and an equality (S2)

+ inequality and equality can be wrapped to include union
6 S2 extends beyond S1 by at most one and all cut constraints of S1 and

parallel slices of S2 can be wrapped to include union
⇒ replace S1 and S2 by valid and wrapping constraints

Operations Set Coalescing September 15, 2010 20 / 34

isl Operation: Set Coalescing

1 Classify constraints
I redundant: min 〈ai , x〉 > ci − 1 over remaining constraints
I valid: min 〈ai , x〉 > ci − 1 over S2
I separating: max 〈ai , x〉 < ci over S2

special cases:
F adjacent to equality: 〈ai , x〉 = ci − 1 over S2
F adjacent to inequality:

〈
(ai + bj), x

〉
= (ci + dj) − 1 over S2

I cut: otherwise

2 Case distinction
1 non-redundant constraints of S1 are valid for S2, i.e., S2 ⊆ S1
2 no separating constraints and cut constraints of S2 are valid for cut

facets of S1 (similar to BFT2001)
⇒ replace S1 and S2 by basic set with all valid constraints

3 single pair of adjacent inequalities (other constraints valid)
4 single adjacent pair of an inequality (S1) and an equality (S2)

+ constraints of S2 valid for facet of relaxed inequality
5 single adjacent pair of an inequality (S1) and an equality (S2)

+ inequality and equality can be wrapped to include union
6 S2 extends beyond S1 by at most one and all cut constraints of S1 and

parallel slices of S2 can be wrapped to include union
⇒ replace S1 and S2 by valid and wrapping constraints

Operations Set Coalescing September 15, 2010 20 / 34

isl Operation: Set Coalescing

1 Classify constraints
I redundant: min 〈ai , x〉 > ci − 1 over remaining constraints
I valid: min 〈ai , x〉 > ci − 1 over S2
I separating: max 〈ai , x〉 < ci over S2

special cases:
F adjacent to equality: 〈ai , x〉 = ci − 1 over S2
F adjacent to inequality:

〈
(ai + bj), x

〉
= (ci + dj) − 1 over S2

I cut: otherwise

2 Case distinction
1 non-redundant constraints of S1 are valid for S2, i.e., S2 ⊆ S1
2 no separating constraints and cut constraints of S2 are valid for cut

facets of S1 (similar to BFT2001)
⇒ replace S1 and S2 by basic set with all valid constraints

3 single pair of adjacent inequalities (other constraints valid)
4 single adjacent pair of an inequality (S1) and an equality (S2)

+ constraints of S2 valid for facet of relaxed inequality
5 single adjacent pair of an inequality (S1) and an equality (S2)

+ inequality and equality can be wrapped to include union
6 S2 extends beyond S1 by at most one and all cut constraints of S1 and

parallel slices of S2 can be wrapped to include union
⇒ replace S1 and S2 by valid and wrapping constraints

Operations Set Coalescing September 15, 2010 20 / 34

isl Operation: Set Coalescing

1 Classify constraints
I redundant: min 〈ai , x〉 > ci − 1 over remaining constraints
I valid: min 〈ai , x〉 > ci − 1 over S2
I separating: max 〈ai , x〉 < ci over S2

special cases:
F adjacent to equality: 〈ai , x〉 = ci − 1 over S2
F adjacent to inequality:

〈
(ai + bj), x

〉
= (ci + dj) − 1 over S2

I cut: otherwise

2 Case distinction
1 non-redundant constraints of S1 are valid for S2, i.e., S2 ⊆ S1
2 no separating constraints and cut constraints of S2 are valid for cut

facets of S1 (similar to BFT2001)
⇒ replace S1 and S2 by basic set with all valid constraints

3 single pair of adjacent inequalities (other constraints valid)
4 single adjacent pair of an inequality (S1) and an equality (S2)

+ constraints of S2 valid for facet of relaxed inequality
5 single adjacent pair of an inequality (S1) and an equality (S2)

+ inequality and equality can be wrapped to include union
6 S2 extends beyond S1 by at most one and all cut constraints of S1 and

parallel slices of S2 can be wrapped to include union
⇒ replace S1 and S2 by valid and wrapping constraints

Operations Set Coalescing September 15, 2010 20 / 34

isl Operation: Set Coalescing

1 Classify constraints
I redundant: min 〈ai , x〉 > ci − 1 over remaining constraints
I valid: min 〈ai , x〉 > ci − 1 over S2
I separating: max 〈ai , x〉 < ci over S2

special cases:
F adjacent to equality: 〈ai , x〉 = ci − 1 over S2
F adjacent to inequality:

〈
(ai + bj), x

〉
= (ci + dj) − 1 over S2

I cut: otherwise

2 Case distinction
1 non-redundant constraints of S1 are valid for S2, i.e., S2 ⊆ S1
2 no separating constraints and cut constraints of S2 are valid for cut

facets of S1 (similar to BFT2001)
⇒ replace S1 and S2 by basic set with all valid constraints

3 single pair of adjacent inequalities (other constraints valid)
4 single adjacent pair of an inequality (S1) and an equality (S2)

+ constraints of S2 valid for facet of relaxed inequality
5 single adjacent pair of an inequality (S1) and an equality (S2)

+ inequality and equality can be wrapped to include union
6 S2 extends beyond S1 by at most one and all cut constraints of S1 and

parallel slices of S2 can be wrapped to include union
⇒ replace S1 and S2 by valid and wrapping constraints

Operations Set Coalescing September 15, 2010 20 / 34

isl Operation: Set Coalescing
1 Classify constraints

I redundant: min 〈ai , x〉 > ci − 1 over remaining constraints
I valid: min 〈ai , x〉 > ci − 1 over S2
I separating: max 〈ai , x〉 < ci over S2

special cases:
F adjacent to equality: 〈ai , x〉 = ci − 1 over S2
F adjacent to inequality:

〈
(ai + bj), x

〉
= (ci + dj) − 1 over S2

I cut: otherwise
2 Case distinction

1 non-redundant constraints of S1 are valid for S2, i.e., S2 ⊆ S1
2 no separating constraints and cut constraints of S2 are valid for cut

facets of S1 (similar to BFT2001)
3 single pair of adjacent inequalities (other constraints valid)
⇒ replace S1 and S2 by basic set with all valid constraints

4 single adjacent pair of an inequality (S1) and an equality (S2)
+ constraints of S2 valid for facet of relaxed inequality

5 single adjacent pair of an inequality (S1) and an equality (S2)
+ inequality and equality can be wrapped to include union

6 S2 extends beyond S1 by at most one and all cut constraints of S1 and
parallel slices of S2 can be wrapped to include union
⇒ replace S1 and S2 by valid and wrapping constraints

Operations Set Coalescing September 15, 2010 20 / 34

isl Operation: Set Coalescing

1 Classify constraints
I redundant: min 〈ai , x〉 > ci − 1 over remaining constraints
I valid: min 〈ai , x〉 > ci − 1 over S2
I separating: max 〈ai , x〉 < ci over S2

special cases:
F adjacent to equality: 〈ai , x〉 = ci − 1 over S2
F adjacent to inequality:

〈
(ai + bj), x

〉
= (ci + dj) − 1 over S2

I cut: otherwise

2 Case distinction
1 non-redundant constraints of S1 are valid for S2, i.e., S2 ⊆ S1
2 no separating constraints and cut constraints of S2 are valid for cut

facets of S1 (similar to BFT2001)
3 single pair of adjacent inequalities (other constraints valid)
⇒ replace S1 and S2 by basic set with all valid constraints

4 single adjacent pair of an inequality (S1) and an equality (S2)
+ constraints of S2 valid for facet of relaxed inequality

5 single adjacent pair of an inequality (S1) and an equality (S2)
+ inequality and equality can be wrapped to include union

6 S2 extends beyond S1 by at most one and all cut constraints of S1 and
parallel slices of S2 can be wrapped to include union
⇒ replace S1 and S2 by valid and wrapping constraints

Operations Set Coalescing September 15, 2010 20 / 34

isl Operation: Set Coalescing

1 Classify constraints
I redundant: min 〈ai , x〉 > ci − 1 over remaining constraints
I valid: min 〈ai , x〉 > ci − 1 over S2
I separating: max 〈ai , x〉 < ci over S2

special cases:
F adjacent to equality: 〈ai , x〉 = ci − 1 over S2
F adjacent to inequality:

〈
(ai + bj), x

〉
= (ci + dj) − 1 over S2

I cut: otherwise

2 Case distinction
1 non-redundant constraints of S1 are valid for S2, i.e., S2 ⊆ S1
2 no separating constraints and cut constraints of S2 are valid for cut

facets of S1 (similar to BFT2001)
3 single pair of adjacent inequalities (other constraints valid)
⇒ replace S1 and S2 by basic set with all valid constraints

4 single adjacent pair of an inequality (S1) and an equality (S2)
+ constraints of S2 valid for facet of relaxed inequality

5 single adjacent pair of an inequality (S1) and an equality (S2)
+ inequality and equality can be wrapped to include union

6 S2 extends beyond S1 by at most one and all cut constraints of S1 and
parallel slices of S2 can be wrapped to include union
⇒ replace S1 and S2 by valid and wrapping constraints

Operations Set Coalescing September 15, 2010 20 / 34

isl Operation: Set Coalescing
1 Classify constraints

I redundant: min 〈ai , x〉 > ci − 1 over remaining constraints
I valid: min 〈ai , x〉 > ci − 1 over S2
I separating: max 〈ai , x〉 < ci over S2

special cases:
F adjacent to equality: 〈ai , x〉 = ci − 1 over S2
F adjacent to inequality:

〈
(ai + bj), x

〉
= (ci + dj) − 1 over S2

I cut: otherwise
2 Case distinction

1 non-redundant constraints of S1 are valid for S2, i.e., S2 ⊆ S1
2 no separating constraints and cut constraints of S2 are valid for cut

facets of S1 (similar to BFT2001)
3 single pair of adjacent inequalities (other constraints valid)
4 single adjacent pair of an inequality (S1) and an equality (S2)

+ other constraints of S1 are valid
+ constraints of S2 valid for facet of relaxed inequality
⇒ drop S2 and relax adjacent inequality of S1

5 single adjacent pair of an inequality (S1) and an equality (S2)
+ inequality and equality can be wrapped to include union

6 S2 extends beyond S1 by at most one and all cut constraints of S1 and
parallel slices of S2 can be wrapped to include union
⇒ replace S1 and S2 by valid and wrapping constraints

Operations Set Coalescing September 15, 2010 20 / 34

isl Operation: Set Coalescing

1 Classify constraints
I redundant: min 〈ai , x〉 > ci − 1 over remaining constraints
I valid: min 〈ai , x〉 > ci − 1 over S2
I separating: max 〈ai , x〉 < ci over S2

special cases:
F adjacent to equality: 〈ai , x〉 = ci − 1 over S2
F adjacent to inequality:

〈
(ai + bj), x

〉
= (ci + dj) − 1 over S2

I cut: otherwise

2 Case distinction
1 non-redundant constraints of S1 are valid for S2, i.e., S2 ⊆ S1
2 no separating constraints and cut constraints of S2 are valid for cut

facets of S1 (similar to BFT2001)
3 single pair of adjacent inequalities (other constraints valid)
4 single adjacent pair of an inequality (S1) and an equality (S2)

+ other constraints of S1 are valid
+ constraints of S2 valid for facet of relaxed inequality
⇒ drop S2 and relax adjacent inequality of S1

5 single adjacent pair of an inequality (S1) and an equality (S2)
+ inequality and equality can be wrapped to include union

6 S2 extends beyond S1 by at most one and all cut constraints of S1 and
parallel slices of S2 can be wrapped to include union
⇒ replace S1 and S2 by valid and wrapping constraints

Operations Set Coalescing September 15, 2010 20 / 34

isl Operation: Set Coalescing

1 Classify constraints
I redundant: min 〈ai , x〉 > ci − 1 over remaining constraints
I valid: min 〈ai , x〉 > ci − 1 over S2
I separating: max 〈ai , x〉 < ci over S2

special cases:
F adjacent to equality: 〈ai , x〉 = ci − 1 over S2
F adjacent to inequality:

〈
(ai + bj), x

〉
= (ci + dj) − 1 over S2

I cut: otherwise

2 Case distinction
1 non-redundant constraints of S1 are valid for S2, i.e., S2 ⊆ S1
2 no separating constraints and cut constraints of S2 are valid for cut

facets of S1 (similar to BFT2001)
3 single pair of adjacent inequalities (other constraints valid)
4 single adjacent pair of an inequality (S1) and an equality (S2)

+ other constraints of S1 are valid
+ constraints of S2 valid for facet of relaxed inequality
⇒ drop S2 and relax adjacent inequality of S1

5 single adjacent pair of an inequality (S1) and an equality (S2)
+ inequality and equality can be wrapped to include union

6 S2 extends beyond S1 by at most one and all cut constraints of S1 and
parallel slices of S2 can be wrapped to include union
⇒ replace S1 and S2 by valid and wrapping constraints

Operations Set Coalescing September 15, 2010 20 / 34

isl Operation: Set Coalescing

1 Classify constraints
I redundant: min 〈ai , x〉 > ci − 1 over remaining constraints
I valid: min 〈ai , x〉 > ci − 1 over S2
I separating: max 〈ai , x〉 < ci over S2

special cases:
F adjacent to equality: 〈ai , x〉 = ci − 1 over S2
F adjacent to inequality:

〈
(ai + bj), x

〉
= (ci + dj) − 1 over S2

I cut: otherwise

2 Case distinction
1 non-redundant constraints of S1 are valid for S2, i.e., S2 ⊆ S1
2 no separating constraints and cut constraints of S2 are valid for cut

facets of S1 (similar to BFT2001)
3 single pair of adjacent inequalities (other constraints valid)
4 single adjacent pair of an inequality (S1) and an equality (S2)

+ other constraints of S1 are valid
+ constraints of S2 valid for facet of relaxed inequality
⇒ drop S2 and relax adjacent inequality of S1

5 single adjacent pair of an inequality (S1) and an equality (S2)
+ inequality and equality can be wrapped to include union

6 S2 extends beyond S1 by at most one and all cut constraints of S1 and
parallel slices of S2 can be wrapped to include union
⇒ replace S1 and S2 by valid and wrapping constraints

Operations Set Coalescing September 15, 2010 20 / 34

isl Operation: Set Coalescing

1 Classify constraints
I redundant: min 〈ai , x〉 > ci − 1 over remaining constraints
I valid: min 〈ai , x〉 > ci − 1 over S2
I separating: max 〈ai , x〉 < ci over S2

special cases:
F adjacent to equality: 〈ai , x〉 = ci − 1 over S2
F adjacent to inequality:

〈
(ai + bj), x

〉
= (ci + dj) − 1 over S2

I cut: otherwise

2 Case distinction
1 non-redundant constraints of S1 are valid for S2, i.e., S2 ⊆ S1
2 no separating constraints and cut constraints of S2 are valid for cut

facets of S1 (similar to BFT2001)
3 single pair of adjacent inequalities (other constraints valid)
4 single adjacent pair of an inequality (S1) and an equality (S2)

+ other constraints of S1 are valid
+ constraints of S2 valid for facet of relaxed inequality
⇒ drop S2 and relax adjacent inequality of S1

5 single adjacent pair of an inequality (S1) and an equality (S2)
+ inequality and equality can be wrapped to include union

6 S2 extends beyond S1 by at most one and all cut constraints of S1 and
parallel slices of S2 can be wrapped to include union
⇒ replace S1 and S2 by valid and wrapping constraints

Operations Set Coalescing September 15, 2010 20 / 34

isl Operation: Set Coalescing
1 Classify constraints

I redundant: min 〈ai , x〉 > ci − 1 over remaining constraints
I valid: min 〈ai , x〉 > ci − 1 over S2
I separating: max 〈ai , x〉 < ci over S2

special cases:
F adjacent to equality: 〈ai , x〉 = ci − 1 over S2
F adjacent to inequality:

〈
(ai + bj), x

〉
= (ci + dj) − 1 over S2

I cut: otherwise
2 Case distinction

1 non-redundant constraints of S1 are valid for S2, i.e., S2 ⊆ S1
2 no separating constraints and cut constraints of S2 are valid for cut

facets of S1 (similar to BFT2001)
3 single pair of adjacent inequalities (other constraints valid)
4 single adjacent pair of an inequality (S1) and an equality (S2)

+ constraints of S2 valid for facet of relaxed inequality
5 single adjacent pair of an inequality (S1) and an equality (S2)

+ other constraints of S1 are valid
+ inequality and equality can be wrapped to include union
⇒ replace S1 and S2 by valid and wrapping constraints

6 S2 extends beyond S1 by at most one and all cut constraints of S1 and
parallel slices of S2 can be wrapped to include union
⇒ replace S1 and S2 by valid and wrapping constraints

Operations Set Coalescing September 15, 2010 20 / 34

isl Operation: Set Coalescing

1 Classify constraints
I redundant: min 〈ai , x〉 > ci − 1 over remaining constraints
I valid: min 〈ai , x〉 > ci − 1 over S2
I separating: max 〈ai , x〉 < ci over S2

special cases:
F adjacent to equality: 〈ai , x〉 = ci − 1 over S2
F adjacent to inequality:

〈
(ai + bj), x

〉
= (ci + dj) − 1 over S2

I cut: otherwise

2 Case distinction
1 non-redundant constraints of S1 are valid for S2, i.e., S2 ⊆ S1
2 no separating constraints and cut constraints of S2 are valid for cut

facets of S1 (similar to BFT2001)
3 single pair of adjacent inequalities (other constraints valid)
4 single adjacent pair of an inequality (S1) and an equality (S2)

+ constraints of S2 valid for facet of relaxed inequality
5 single adjacent pair of an inequality (S1) and an equality (S2)

+ other constraints of S1 are valid
+ inequality and equality can be wrapped to include union
⇒ replace S1 and S2 by valid and wrapping constraints

6 S2 extends beyond S1 by at most one and all cut constraints of S1 and
parallel slices of S2 can be wrapped to include union
⇒ replace S1 and S2 by valid and wrapping constraints

Operations Set Coalescing September 15, 2010 20 / 34

isl Operation: Set Coalescing

1 Classify constraints
I redundant: min 〈ai , x〉 > ci − 1 over remaining constraints
I valid: min 〈ai , x〉 > ci − 1 over S2
I separating: max 〈ai , x〉 < ci over S2

special cases:
F adjacent to equality: 〈ai , x〉 = ci − 1 over S2
F adjacent to inequality:

〈
(ai + bj), x

〉
= (ci + dj) − 1 over S2

I cut: otherwise

2 Case distinction
1 non-redundant constraints of S1 are valid for S2, i.e., S2 ⊆ S1
2 no separating constraints and cut constraints of S2 are valid for cut

facets of S1 (similar to BFT2001)
3 single pair of adjacent inequalities (other constraints valid)
4 single adjacent pair of an inequality (S1) and an equality (S2)

+ constraints of S2 valid for facet of relaxed inequality
5 single adjacent pair of an inequality (S1) and an equality (S2)

+ other constraints of S1 are valid
+ inequality and equality can be wrapped to include union
⇒ replace S1 and S2 by valid and wrapping constraints

6 S2 extends beyond S1 by at most one and all cut constraints of S1 and
parallel slices of S2 can be wrapped to include union
⇒ replace S1 and S2 by valid and wrapping constraints

Operations Set Coalescing September 15, 2010 20 / 34

isl Operation: Set Coalescing

1 Classify constraints
I redundant: min 〈ai , x〉 > ci − 1 over remaining constraints
I valid: min 〈ai , x〉 > ci − 1 over S2
I separating: max 〈ai , x〉 < ci over S2

special cases:
F adjacent to equality: 〈ai , x〉 = ci − 1 over S2
F adjacent to inequality:

〈
(ai + bj), x

〉
= (ci + dj) − 1 over S2

I cut: otherwise

2 Case distinction
1 non-redundant constraints of S1 are valid for S2, i.e., S2 ⊆ S1
2 no separating constraints and cut constraints of S2 are valid for cut

facets of S1 (similar to BFT2001)
3 single pair of adjacent inequalities (other constraints valid)
4 single adjacent pair of an inequality (S1) and an equality (S2)

+ constraints of S2 valid for facet of relaxed inequality
5 single adjacent pair of an inequality (S1) and an equality (S2)

+ other constraints of S1 are valid
+ inequality and equality can be wrapped to include union
⇒ replace S1 and S2 by valid and wrapping constraints

6 S2 extends beyond S1 by at most one and all cut constraints of S1 and
parallel slices of S2 can be wrapped to include union
⇒ replace S1 and S2 by valid and wrapping constraints

Operations Set Coalescing September 15, 2010 20 / 34

isl Operation: Set Coalescing

1 Classify constraints
I redundant: min 〈ai , x〉 > ci − 1 over remaining constraints
I valid: min 〈ai , x〉 > ci − 1 over S2
I separating: max 〈ai , x〉 < ci over S2

special cases:
F adjacent to equality: 〈ai , x〉 = ci − 1 over S2
F adjacent to inequality:

〈
(ai + bj), x

〉
= (ci + dj) − 1 over S2

I cut: otherwise

2 Case distinction
1 non-redundant constraints of S1 are valid for S2, i.e., S2 ⊆ S1
2 no separating constraints and cut constraints of S2 are valid for cut

facets of S1 (similar to BFT2001)
3 single pair of adjacent inequalities (other constraints valid)
4 single adjacent pair of an inequality (S1) and an equality (S2)

+ constraints of S2 valid for facet of relaxed inequality
5 single adjacent pair of an inequality (S1) and an equality (S2)

+ other constraints of S1 are valid
+ inequality and equality can be wrapped to include union
⇒ replace S1 and S2 by valid and wrapping constraints

6 S2 extends beyond S1 by at most one and all cut constraints of S1 and
parallel slices of S2 can be wrapped to include union
⇒ replace S1 and S2 by valid and wrapping constraints

Operations Set Coalescing September 15, 2010 20 / 34

isl Operation: Set Coalescing

1 Classify constraints
I redundant: min 〈ai , x〉 > ci − 1 over remaining constraints
I valid: min 〈ai , x〉 > ci − 1 over S2
I separating: max 〈ai , x〉 < ci over S2

special cases:
F adjacent to equality: 〈ai , x〉 = ci − 1 over S2
F adjacent to inequality:

〈
(ai + bj), x

〉
= (ci + dj) − 1 over S2

I cut: otherwise

2 Case distinction
1 non-redundant constraints of S1 are valid for S2, i.e., S2 ⊆ S1
2 no separating constraints and cut constraints of S2 are valid for cut

facets of S1 (similar to BFT2001)
3 single pair of adjacent inequalities (other constraints valid)
4 single adjacent pair of an inequality (S1) and an equality (S2)

+ constraints of S2 valid for facet of relaxed inequality
5 single adjacent pair of an inequality (S1) and an equality (S2)

+ other constraints of S1 are valid
+ inequality and equality can be wrapped to include union
⇒ replace S1 and S2 by valid and wrapping constraints

6 S2 extends beyond S1 by at most one and all cut constraints of S1 and
parallel slices of S2 can be wrapped to include union
⇒ replace S1 and S2 by valid and wrapping constraints

Operations Set Coalescing September 15, 2010 20 / 34

isl Operation: Set Coalescing

1 Classify constraints
I redundant: min 〈ai , x〉 > ci − 1 over remaining constraints
I valid: min 〈ai , x〉 > ci − 1 over S2
I separating: max 〈ai , x〉 < ci over S2

special cases:
F adjacent to equality: 〈ai , x〉 = ci − 1 over S2
F adjacent to inequality:

〈
(ai + bj), x

〉
= (ci + dj) − 1 over S2

I cut: otherwise

2 Case distinction
1 non-redundant constraints of S1 are valid for S2, i.e., S2 ⊆ S1
2 no separating constraints and cut constraints of S2 are valid for cut

facets of S1 (similar to BFT2001)
3 single pair of adjacent inequalities (other constraints valid)
4 single adjacent pair of an inequality (S1) and an equality (S2)

+ constraints of S2 valid for facet of relaxed inequality
5 single adjacent pair of an inequality (S1) and an equality (S2)

+ other constraints of S1 are valid
+ inequality and equality can be wrapped to include union
⇒ replace S1 and S2 by valid and wrapping constraints

6 S2 extends beyond S1 by at most one and all cut constraints of S1 and
parallel slices of S2 can be wrapped to include union
⇒ replace S1 and S2 by valid and wrapping constraints

Operations Set Coalescing September 15, 2010 20 / 34

isl Operation: Set Coalescing

1 Classify constraints
I redundant: min 〈ai , x〉 > ci − 1 over remaining constraints
I valid: min 〈ai , x〉 > ci − 1 over S2
I separating: max 〈ai , x〉 < ci over S2

special cases:
F adjacent to equality: 〈ai , x〉 = ci − 1 over S2
F adjacent to inequality:

〈
(ai + bj), x

〉
= (ci + dj) − 1 over S2

I cut: otherwise

2 Case distinction
1 non-redundant constraints of S1 are valid for S2, i.e., S2 ⊆ S1
2 no separating constraints and cut constraints of S2 are valid for cut

facets of S1 (similar to BFT2001)
3 single pair of adjacent inequalities (other constraints valid)
4 single adjacent pair of an inequality (S1) and an equality (S2)

+ constraints of S2 valid for facet of relaxed inequality
5 single adjacent pair of an inequality (S1) and an equality (S2)

+ other constraints of S1 are valid
+ inequality and equality can be wrapped to include union
⇒ replace S1 and S2 by valid and wrapping constraints

6 S2 extends beyond S1 by at most one and all cut constraints of S1 and
parallel slices of S2 can be wrapped to include union
⇒ replace S1 and S2 by valid and wrapping constraints

Operations Set Coalescing September 15, 2010 20 / 34

isl Operation: Set Coalescing

1 Classify constraints
I redundant: min 〈ai , x〉 > ci − 1 over remaining constraints
I valid: min 〈ai , x〉 > ci − 1 over S2
I separating: max 〈ai , x〉 < ci over S2

special cases:
F adjacent to equality: 〈ai , x〉 = ci − 1 over S2
F adjacent to inequality:

〈
(ai + bj), x

〉
= (ci + dj) − 1 over S2

I cut: otherwise

2 Case distinction
1 non-redundant constraints of S1 are valid for S2, i.e., S2 ⊆ S1
2 no separating constraints and cut constraints of S2 are valid for cut

facets of S1 (similar to BFT2001)
3 single pair of adjacent inequalities (other constraints valid)
4 single adjacent pair of an inequality (S1) and an equality (S2)

+ constraints of S2 valid for facet of relaxed inequality
5 single adjacent pair of an inequality (S1) and an equality (S2)

+ other constraints of S1 are valid
+ inequality and equality can be wrapped to include union
⇒ replace S1 and S2 by valid and wrapping constraints

6 S2 extends beyond S1 by at most one and all cut constraints of S1 and
parallel slices of S2 can be wrapped to include union
⇒ replace S1 and S2 by valid and wrapping constraints

Operations Set Coalescing September 15, 2010 20 / 34

isl Operation: Set Coalescing

1 Classify constraints
I redundant: min 〈ai , x〉 > ci − 1 over remaining constraints
I valid: min 〈ai , x〉 > ci − 1 over S2
I separating: max 〈ai , x〉 < ci over S2

special cases:
F adjacent to equality: 〈ai , x〉 = ci − 1 over S2
F adjacent to inequality:

〈
(ai + bj), x

〉
= (ci + dj) − 1 over S2

I cut: otherwise

2 Case distinction
1 non-redundant constraints of S1 are valid for S2, i.e., S2 ⊆ S1
2 no separating constraints and cut constraints of S2 are valid for cut

facets of S1 (similar to BFT2001)
3 single pair of adjacent inequalities (other constraints valid)
4 single adjacent pair of an inequality (S1) and an equality (S2)

+ constraints of S2 valid for facet of relaxed inequality
5 single adjacent pair of an inequality (S1) and an equality (S2)

+ other constraints of S1 are valid
+ inequality and equality can be wrapped to include union
⇒ replace S1 and S2 by valid and wrapping constraints

6 S2 extends beyond S1 by at most one and all cut constraints of S1 and
parallel slices of S2 can be wrapped to include union
⇒ replace S1 and S2 by valid and wrapping constraints

Operations Set Coalescing September 15, 2010 20 / 34

isl Operation: Set Coalescing

1 Classify constraints
I redundant: min 〈ai , x〉 > ci − 1 over remaining constraints
I valid: min 〈ai , x〉 > ci − 1 over S2
I separating: max 〈ai , x〉 < ci over S2

special cases:
F adjacent to equality: 〈ai , x〉 = ci − 1 over S2
F adjacent to inequality:

〈
(ai + bj), x

〉
= (ci + dj) − 1 over S2

I cut: otherwise

2 Case distinction
1 non-redundant constraints of S1 are valid for S2, i.e., S2 ⊆ S1
2 no separating constraints and cut constraints of S2 are valid for cut

facets of S1 (similar to BFT2001)
3 single pair of adjacent inequalities (other constraints valid)
4 single adjacent pair of an inequality (S1) and an equality (S2)

+ constraints of S2 valid for facet of relaxed inequality
5 single adjacent pair of an inequality (S1) and an equality (S2)

+ other constraints of S1 are valid
+ inequality and equality can be wrapped to include union
⇒ replace S1 and S2 by valid and wrapping constraints

6 S2 extends beyond S1 by at most one and all cut constraints of S1 and
parallel slices of S2 can be wrapped to include union
⇒ replace S1 and S2 by valid and wrapping constraints

Operations Set Coalescing September 15, 2010 20 / 34

isl Operation: Set Coalescing

1 Classify constraints
I redundant: min 〈ai , x〉 > ci − 1 over remaining constraints
I valid: min 〈ai , x〉 > ci − 1 over S2
I separating: max 〈ai , x〉 < ci over S2

special cases:
F adjacent to equality: 〈ai , x〉 = ci − 1 over S2
F adjacent to inequality:

〈
(ai + bj), x

〉
= (ci + dj) − 1 over S2

I cut: otherwise

2 Case distinction
1 non-redundant constraints of S1 are valid for S2, i.e., S2 ⊆ S1
2 no separating constraints and cut constraints of S2 are valid for cut

facets of S1 (similar to BFT2001)
3 single pair of adjacent inequalities (other constraints valid)
4 single adjacent pair of an inequality (S1) and an equality (S2)

+ constraints of S2 valid for facet of relaxed inequality
5 single adjacent pair of an inequality (S1) and an equality (S2)

+ other constraints of S1 are valid
+ inequality and equality can be wrapped to include union
⇒ replace S1 and S2 by valid and wrapping constraints

6 S2 extends beyond S1 by at most one and all cut constraints of S1 and
parallel slices of S2 can be wrapped to include union
⇒ replace S1 and S2 by valid and wrapping constraints

Operations Set Coalescing September 15, 2010 20 / 34

isl Operation: Set Coalescing

1 Classify constraints
I redundant: min 〈ai , x〉 > ci − 1 over remaining constraints
I valid: min 〈ai , x〉 > ci − 1 over S2
I separating: max 〈ai , x〉 < ci over S2

special cases:
F adjacent to equality: 〈ai , x〉 = ci − 1 over S2
F adjacent to inequality:

〈
(ai + bj), x

〉
= (ci + dj) − 1 over S2

I cut: otherwise

2 Case distinction
1 non-redundant constraints of S1 are valid for S2, i.e., S2 ⊆ S1
2 no separating constraints and cut constraints of S2 are valid for cut

facets of S1 (similar to BFT2001)
3 single pair of adjacent inequalities (other constraints valid)
4 single adjacent pair of an inequality (S1) and an equality (S2)

+ constraints of S2 valid for facet of relaxed inequality
5 single adjacent pair of an inequality (S1) and an equality (S2)

+ other constraints of S1 are valid
+ inequality and equality can be wrapped to include union
⇒ replace S1 and S2 by valid and wrapping constraints

6 S2 extends beyond S1 by at most one and all cut constraints of S1 and
parallel slices of S2 can be wrapped to include union
⇒ replace S1 and S2 by valid and wrapping constraints

Operations Set Coalescing September 15, 2010 20 / 34

isl Operation: Set Coalescing
1 Classify constraints

I redundant: min 〈ai , x〉 > ci − 1 over remaining constraints
I valid: min 〈ai , x〉 > ci − 1 over S2
I separating: max 〈ai , x〉 < ci over S2

special cases:
F adjacent to equality: 〈ai , x〉 = ci − 1 over S2
F adjacent to inequality:

〈
(ai + bj), x

〉
= (ci + dj) − 1 over S2

I cut: otherwise
2 Case distinction

1 non-redundant constraints of S1 are valid for S2, i.e., S2 ⊆ S1
2 no separating constraints and cut constraints of S2 are valid for cut

facets of S1 (similar to BFT2001)
3 single pair of adjacent inequalities (other constraints valid)
4 single adjacent pair of an inequality (S1) and an equality (S2)

+ constraints of S2 valid for facet of relaxed inequality
5 single adjacent pair of an inequality (S1) and an equality (S2)

+ inequality and equality can be wrapped to include union
6 S2 extends beyond S1 by at most one and all cut constraints of S1 and

parallel slices of S2 can be wrapped to include union
⇒ replace S1 and S2 by valid and wrapping constraints

Operations Set Coalescing September 15, 2010 20 / 34

isl Operation: Set Coalescing

1 Classify constraints
I redundant: min 〈ai , x〉 > ci − 1 over remaining constraints
I valid: min 〈ai , x〉 > ci − 1 over S2
I separating: max 〈ai , x〉 < ci over S2

special cases:
F adjacent to equality: 〈ai , x〉 = ci − 1 over S2
F adjacent to inequality:

〈
(ai + bj), x

〉
= (ci + dj) − 1 over S2

I cut: otherwise

2 Case distinction
1 non-redundant constraints of S1 are valid for S2, i.e., S2 ⊆ S1
2 no separating constraints and cut constraints of S2 are valid for cut

facets of S1 (similar to BFT2001)
3 single pair of adjacent inequalities (other constraints valid)
4 single adjacent pair of an inequality (S1) and an equality (S2)

+ constraints of S2 valid for facet of relaxed inequality
5 single adjacent pair of an inequality (S1) and an equality (S2)

+ inequality and equality can be wrapped to include union
6 S2 extends beyond S1 by at most one and all cut constraints of S1 and

parallel slices of S2 can be wrapped to include union
⇒ replace S1 and S2 by valid and wrapping constraints

Operations Set Coalescing September 15, 2010 20 / 34

isl Operation: Set Coalescing

1 Classify constraints
I redundant: min 〈ai , x〉 > ci − 1 over remaining constraints
I valid: min 〈ai , x〉 > ci − 1 over S2
I separating: max 〈ai , x〉 < ci over S2

special cases:
F adjacent to equality: 〈ai , x〉 = ci − 1 over S2
F adjacent to inequality:

〈
(ai + bj), x

〉
= (ci + dj) − 1 over S2

I cut: otherwise

2 Case distinction
1 non-redundant constraints of S1 are valid for S2, i.e., S2 ⊆ S1
2 no separating constraints and cut constraints of S2 are valid for cut

facets of S1 (similar to BFT2001)
3 single pair of adjacent inequalities (other constraints valid)
4 single adjacent pair of an inequality (S1) and an equality (S2)

+ constraints of S2 valid for facet of relaxed inequality
5 single adjacent pair of an inequality (S1) and an equality (S2)

+ inequality and equality can be wrapped to include union
6 S2 extends beyond S1 by at most one and all cut constraints of S1 and

parallel slices of S2 can be wrapped to include union
⇒ replace S1 and S2 by valid and wrapping constraints

Operations Set Coalescing September 15, 2010 20 / 34

isl Operation: Set Coalescing

1 Classify constraints
I redundant: min 〈ai , x〉 > ci − 1 over remaining constraints
I valid: min 〈ai , x〉 > ci − 1 over S2
I separating: max 〈ai , x〉 < ci over S2

special cases:
F adjacent to equality: 〈ai , x〉 = ci − 1 over S2
F adjacent to inequality:

〈
(ai + bj), x

〉
= (ci + dj) − 1 over S2

I cut: otherwise

2 Case distinction
1 non-redundant constraints of S1 are valid for S2, i.e., S2 ⊆ S1
2 no separating constraints and cut constraints of S2 are valid for cut

facets of S1 (similar to BFT2001)
3 single pair of adjacent inequalities (other constraints valid)
4 single adjacent pair of an inequality (S1) and an equality (S2)

+ constraints of S2 valid for facet of relaxed inequality
5 single adjacent pair of an inequality (S1) and an equality (S2)

+ inequality and equality can be wrapped to include union
6 S2 extends beyond S1 by at most one and all cut constraints of S1 and

parallel slices of S2 can be wrapped to include union
⇒ replace S1 and S2 by valid and wrapping constraints

Operations Set Coalescing September 15, 2010 20 / 34

isl Operation: Set Coalescing

1 Classify constraints
I redundant: min 〈ai , x〉 > ci − 1 over remaining constraints
I valid: min 〈ai , x〉 > ci − 1 over S2
I separating: max 〈ai , x〉 < ci over S2

special cases:
F adjacent to equality: 〈ai , x〉 = ci − 1 over S2
F adjacent to inequality:

〈
(ai + bj), x

〉
= (ci + dj) − 1 over S2

I cut: otherwise

2 Case distinction
1 non-redundant constraints of S1 are valid for S2, i.e., S2 ⊆ S1
2 no separating constraints and cut constraints of S2 are valid for cut

facets of S1 (similar to BFT2001)
3 single pair of adjacent inequalities (other constraints valid)
4 single adjacent pair of an inequality (S1) and an equality (S2)

+ constraints of S2 valid for facet of relaxed inequality
5 single adjacent pair of an inequality (S1) and an equality (S2)

+ inequality and equality can be wrapped to include union
6 S2 extends beyond S1 by at most one and all cut constraints of S1 and

parallel slices of S2 can be wrapped to include union
⇒ replace S1 and S2 by valid and wrapping constraints

Operations Set Coalescing September 15, 2010 20 / 34

isl Operation: Set Coalescing

1 Classify constraints
I redundant: min 〈ai , x〉 > ci − 1 over remaining constraints
I valid: min 〈ai , x〉 > ci − 1 over S2
I separating: max 〈ai , x〉 < ci over S2

special cases:
F adjacent to equality: 〈ai , x〉 = ci − 1 over S2
F adjacent to inequality:

〈
(ai + bj), x

〉
= (ci + dj) − 1 over S2

I cut: otherwise

2 Case distinction
1 non-redundant constraints of S1 are valid for S2, i.e., S2 ⊆ S1
2 no separating constraints and cut constraints of S2 are valid for cut

facets of S1 (similar to BFT2001)
3 single pair of adjacent inequalities (other constraints valid)
4 single adjacent pair of an inequality (S1) and an equality (S2)

+ constraints of S2 valid for facet of relaxed inequality
5 single adjacent pair of an inequality (S1) and an equality (S2)

+ inequality and equality can be wrapped to include union
6 S2 extends beyond S1 by at most one and all cut constraints of S1 and

parallel slices of S2 can be wrapped to include union
⇒ replace S1 and S2 by valid and wrapping constraints

Operations Set Coalescing September 15, 2010 20 / 34

isl Operation: Set Coalescing

1 Classify constraints
I redundant: min 〈ai , x〉 > ci − 1 over remaining constraints
I valid: min 〈ai , x〉 > ci − 1 over S2
I separating: max 〈ai , x〉 < ci over S2

special cases:
F adjacent to equality: 〈ai , x〉 = ci − 1 over S2
F adjacent to inequality:

〈
(ai + bj), x

〉
= (ci + dj) − 1 over S2

I cut: otherwise

2 Case distinction
1 non-redundant constraints of S1 are valid for S2, i.e., S2 ⊆ S1
2 no separating constraints and cut constraints of S2 are valid for cut

facets of S1 (similar to BFT2001)
3 single pair of adjacent inequalities (other constraints valid)
4 single adjacent pair of an inequality (S1) and an equality (S2)

+ constraints of S2 valid for facet of relaxed inequality
5 single adjacent pair of an inequality (S1) and an equality (S2)

+ inequality and equality can be wrapped to include union
6 S2 extends beyond S1 by at most one and all cut constraints of S1 and

parallel slices of S2 can be wrapped to include union
⇒ replace S1 and S2 by valid and wrapping constraints

Operations Set Coalescing September 15, 2010 20 / 34

isl Operation: Set Coalescing

1 Classify constraints
I redundant: min 〈ai , x〉 > ci − 1 over remaining constraints
I valid: min 〈ai , x〉 > ci − 1 over S2
I separating: max 〈ai , x〉 < ci over S2

special cases:
F adjacent to equality: 〈ai , x〉 = ci − 1 over S2
F adjacent to inequality:

〈
(ai + bj), x

〉
= (ci + dj) − 1 over S2

I cut: otherwise

2 Case distinction
1 non-redundant constraints of S1 are valid for S2, i.e., S2 ⊆ S1
2 no separating constraints and cut constraints of S2 are valid for cut

facets of S1 (similar to BFT2001)
3 single pair of adjacent inequalities (other constraints valid)
4 single adjacent pair of an inequality (S1) and an equality (S2)

+ constraints of S2 valid for facet of relaxed inequality
5 single adjacent pair of an inequality (S1) and an equality (S2)

+ inequality and equality can be wrapped to include union
6 S2 extends beyond S1 by at most one and all cut constraints of S1 and

parallel slices of S2 can be wrapped to include union
⇒ replace S1 and S2 by valid and wrapping constraints

Operations Set Coalescing September 15, 2010 20 / 34

isl Operation: Set Coalescing

1 Classify constraints
I redundant: min 〈ai , x〉 > ci − 1 over remaining constraints
I valid: min 〈ai , x〉 > ci − 1 over S2
I separating: max 〈ai , x〉 < ci over S2

special cases:
F adjacent to equality: 〈ai , x〉 = ci − 1 over S2
F adjacent to inequality:

〈
(ai + bj), x

〉
= (ci + dj) − 1 over S2

I cut: otherwise

2 Case distinction
1 non-redundant constraints of S1 are valid for S2, i.e., S2 ⊆ S1
2 no separating constraints and cut constraints of S2 are valid for cut

facets of S1 (similar to BFT2001)
3 single pair of adjacent inequalities (other constraints valid)
4 single adjacent pair of an inequality (S1) and an equality (S2)

+ constraints of S2 valid for facet of relaxed inequality
5 single adjacent pair of an inequality (S1) and an equality (S2)

+ inequality and equality can be wrapped to include union
6 S2 extends beyond S1 by at most one and all cut constraints of S1 and

parallel slices of S2 can be wrapped to include union
⇒ replace S1 and S2 by valid and wrapping constraints

Operations Set Coalescing September 15, 2010 20 / 34

isl Operation: Set Coalescing

1 Classify constraints
I redundant: min 〈ai , x〉 > ci − 1 over remaining constraints
I valid: min 〈ai , x〉 > ci − 1 over S2
I separating: max 〈ai , x〉 < ci over S2

special cases:
F adjacent to equality: 〈ai , x〉 = ci − 1 over S2
F adjacent to inequality:

〈
(ai + bj), x

〉
= (ci + dj) − 1 over S2

I cut: otherwise

2 Case distinction
1 non-redundant constraints of S1 are valid for S2, i.e., S2 ⊆ S1
2 no separating constraints and cut constraints of S2 are valid for cut

facets of S1 (similar to BFT2001)
3 single pair of adjacent inequalities (other constraints valid)
4 single adjacent pair of an inequality (S1) and an equality (S2)

+ constraints of S2 valid for facet of relaxed inequality
5 single adjacent pair of an inequality (S1) and an equality (S2)

+ inequality and equality can be wrapped to include union
6 S2 extends beyond S1 by at most one and all cut constraints of S1 and

parallel slices of S2 can be wrapped to include union
⇒ replace S1 and S2 by valid and wrapping constraints

Operations Set Coalescing September 15, 2010 20 / 34

isl Operation: Set Coalescing

1 Classify constraints
I redundant: min 〈ai , x〉 > ci − 1 over remaining constraints
I valid: min 〈ai , x〉 > ci − 1 over S2
I separating: max 〈ai , x〉 < ci over S2

special cases:
F adjacent to equality: 〈ai , x〉 = ci − 1 over S2
F adjacent to inequality:

〈
(ai + bj), x

〉
= (ci + dj) − 1 over S2

I cut: otherwise

2 Case distinction
1 non-redundant constraints of S1 are valid for S2, i.e., S2 ⊆ S1
2 no separating constraints and cut constraints of S2 are valid for cut

facets of S1 (similar to BFT2001)
3 single pair of adjacent inequalities (other constraints valid)
4 single adjacent pair of an inequality (S1) and an equality (S2)

+ constraints of S2 valid for facet of relaxed inequality
5 single adjacent pair of an inequality (S1) and an equality (S2)

+ inequality and equality can be wrapped to include union
6 S2 extends beyond S1 by at most one and all cut constraints of S1 and

parallel slices of S2 can be wrapped to include union
⇒ replace S1 and S2 by valid and wrapping constraints

Operations Set Coalescing September 15, 2010 20 / 34

isl Operation: Set Coalescing

1 Classify constraints
I redundant: min 〈ai , x〉 > ci − 1 over remaining constraints
I valid: min 〈ai , x〉 > ci − 1 over S2
I separating: max 〈ai , x〉 < ci over S2

special cases:
F adjacent to equality: 〈ai , x〉 = ci − 1 over S2
F adjacent to inequality:

〈
(ai + bj), x

〉
= (ci + dj) − 1 over S2

I cut: otherwise

2 Case distinction
1 non-redundant constraints of S1 are valid for S2, i.e., S2 ⊆ S1
2 no separating constraints and cut constraints of S2 are valid for cut

facets of S1 (similar to BFT2001)
3 single pair of adjacent inequalities (other constraints valid)
4 single adjacent pair of an inequality (S1) and an equality (S2)

+ constraints of S2 valid for facet of relaxed inequality
5 single adjacent pair of an inequality (S1) and an equality (S2)

+ inequality and equality can be wrapped to include union
6 S2 extends beyond S1 by at most one and all cut constraints of S1 and

parallel slices of S2 can be wrapped to include union
⇒ replace S1 and S2 by valid and wrapping constraints

Operations Set Coalescing September 15, 2010 20 / 34

isl Operation: Set Coalescing

1 Classify constraints
I redundant: min 〈ai , x〉 > ci − 1 over remaining constraints
I valid: min 〈ai , x〉 > ci − 1 over S2
I separating: max 〈ai , x〉 < ci over S2

special cases:
F adjacent to equality: 〈ai , x〉 = ci − 1 over S2
F adjacent to inequality:

〈
(ai + bj), x

〉
= (ci + dj) − 1 over S2

I cut: otherwise

2 Case distinction
1 non-redundant constraints of S1 are valid for S2, i.e., S2 ⊆ S1
2 no separating constraints and cut constraints of S2 are valid for cut

facets of S1 (similar to BFT2001)
3 single pair of adjacent inequalities (other constraints valid)
4 single adjacent pair of an inequality (S1) and an equality (S2)

+ constraints of S2 valid for facet of relaxed inequality
5 single adjacent pair of an inequality (S1) and an equality (S2)

+ inequality and equality can be wrapped to include union
6 S2 extends beyond S1 by at most one and all cut constraints of S1 and

parallel slices of S2 can be wrapped to include union
⇒ replace S1 and S2 by valid and wrapping constraints

Operations Set Coalescing September 15, 2010 20 / 34

isl Operation: Set Coalescing

1 Classify constraints
I redundant: min 〈ai , x〉 > ci − 1 over remaining constraints
I valid: min 〈ai , x〉 > ci − 1 over S2
I separating: max 〈ai , x〉 < ci over S2

special cases:
F adjacent to equality: 〈ai , x〉 = ci − 1 over S2
F adjacent to inequality:

〈
(ai + bj), x

〉
= (ci + dj) − 1 over S2

I cut: otherwise

2 Case distinction
1 non-redundant constraints of S1 are valid for S2, i.e., S2 ⊆ S1
2 no separating constraints and cut constraints of S2 are valid for cut

facets of S1 (similar to BFT2001)
3 single pair of adjacent inequalities (other constraints valid)
4 single adjacent pair of an inequality (S1) and an equality (S2)

+ constraints of S2 valid for facet of relaxed inequality
5 single adjacent pair of an inequality (S1) and an equality (S2)

+ inequality and equality can be wrapped to include union
6 S2 extends beyond S1 by at most one and all cut constraints of S1 and

parallel slices of S2 can be wrapped to include union
⇒ replace S1 and S2 by valid and wrapping constraints

Operations Set Coalescing September 15, 2010 20 / 34

isl Operation: Set Coalescing

1 Classify constraints
I redundant: min 〈ai , x〉 > ci − 1 over remaining constraints
I valid: min 〈ai , x〉 > ci − 1 over S2
I separating: max 〈ai , x〉 < ci over S2

special cases:
F adjacent to equality: 〈ai , x〉 = ci − 1 over S2
F adjacent to inequality:

〈
(ai + bj), x

〉
= (ci + dj) − 1 over S2

I cut: otherwise

2 Case distinction
1 non-redundant constraints of S1 are valid for S2, i.e., S2 ⊆ S1
2 no separating constraints and cut constraints of S2 are valid for cut

facets of S1 (similar to BFT2001)
3 single pair of adjacent inequalities (other constraints valid)
4 single adjacent pair of an inequality (S1) and an equality (S2)

+ constraints of S2 valid for facet of relaxed inequality
5 single adjacent pair of an inequality (S1) and an equality (S2)

+ inequality and equality can be wrapped to include union
6 S2 extends beyond S1 by at most one and all cut constraints of S1 and

parallel slices of S2 can be wrapped to include union
⇒ replace S1 and S2 by valid and wrapping constraints

Operations Set Coalescing September 15, 2010 20 / 34

isl Operation: Set Coalescing

1 Classify constraints
I redundant: min 〈ai , x〉 > ci − 1 over remaining constraints
I valid: min 〈ai , x〉 > ci − 1 over S2
I separating: max 〈ai , x〉 < ci over S2

special cases:
F adjacent to equality: 〈ai , x〉 = ci − 1 over S2
F adjacent to inequality:

〈
(ai + bj), x

〉
= (ci + dj) − 1 over S2

I cut: otherwise

2 Case distinction
1 non-redundant constraints of S1 are valid for S2, i.e., S2 ⊆ S1
2 no separating constraints and cut constraints of S2 are valid for cut

facets of S1 (similar to BFT2001)
3 single pair of adjacent inequalities (other constraints valid)
4 single adjacent pair of an inequality (S1) and an equality (S2)

+ constraints of S2 valid for facet of relaxed inequality
5 single adjacent pair of an inequality (S1) and an equality (S2)

+ inequality and equality can be wrapped to include union
6 S2 extends beyond S1 by at most one and all cut constraints of S1 and

parallel slices of S2 can be wrapped to include union
⇒ replace S1 and S2 by valid and wrapping constraints

Operations Set Coalescing September 15, 2010 20 / 34

isl Operation: Set Coalescing

1 Classify constraints
I redundant: min 〈ai , x〉 > ci − 1 over remaining constraints
I valid: min 〈ai , x〉 > ci − 1 over S2
I separating: max 〈ai , x〉 < ci over S2

special cases:
F adjacent to equality: 〈ai , x〉 = ci − 1 over S2
F adjacent to inequality:

〈
(ai + bj), x

〉
= (ci + dj) − 1 over S2

I cut: otherwise

2 Case distinction
1 non-redundant constraints of S1 are valid for S2, i.e., S2 ⊆ S1
2 no separating constraints and cut constraints of S2 are valid for cut

facets of S1 (similar to BFT2001)
3 single pair of adjacent inequalities (other constraints valid)
4 single adjacent pair of an inequality (S1) and an equality (S2)

+ constraints of S2 valid for facet of relaxed inequality
5 single adjacent pair of an inequality (S1) and an equality (S2)

+ inequality and equality can be wrapped to include union
6 S2 extends beyond S1 by at most one and all cut constraints of S1 and

parallel slices of S2 can be wrapped to include union
⇒ replace S1 and S2 by valid and wrapping constraints

Operations Set Coalescing September 15, 2010 20 / 34

isl Operation: Set Coalescing

1 Classify constraints
I redundant: min 〈ai , x〉 > ci − 1 over remaining constraints
I valid: min 〈ai , x〉 > ci − 1 over S2
I separating: max 〈ai , x〉 < ci over S2

special cases:
F adjacent to equality: 〈ai , x〉 = ci − 1 over S2
F adjacent to inequality:

〈
(ai + bj), x

〉
= (ci + dj) − 1 over S2

I cut: otherwise

2 Case distinction
1 non-redundant constraints of S1 are valid for S2, i.e., S2 ⊆ S1
2 no separating constraints and cut constraints of S2 are valid for cut

facets of S1 (similar to BFT2001)
3 single pair of adjacent inequalities (other constraints valid)
4 single adjacent pair of an inequality (S1) and an equality (S2)

+ constraints of S2 valid for facet of relaxed inequality
5 single adjacent pair of an inequality (S1) and an equality (S2)

+ inequality and equality can be wrapped to include union
6 S2 extends beyond S1 by at most one and all cut constraints of S1 and

parallel slices of S2 can be wrapped to include union
⇒ replace S1 and S2 by valid and wrapping constraints

Operations Set Coalescing September 15, 2010 20 / 34

isl Operation: Set Coalescing

1 Classify constraints
I redundant: min 〈ai , x〉 > ci − 1 over remaining constraints
I valid: min 〈ai , x〉 > ci − 1 over S2
I separating: max 〈ai , x〉 < ci over S2

special cases:
F adjacent to equality: 〈ai , x〉 = ci − 1 over S2
F adjacent to inequality:

〈
(ai + bj), x

〉
= (ci + dj) − 1 over S2

I cut: otherwise

2 Case distinction
1 non-redundant constraints of S1 are valid for S2, i.e., S2 ⊆ S1
2 no separating constraints and cut constraints of S2 are valid for cut

facets of S1 (similar to BFT2001)
3 single pair of adjacent inequalities (other constraints valid)
4 single adjacent pair of an inequality (S1) and an equality (S2)

+ constraints of S2 valid for facet of relaxed inequality
5 single adjacent pair of an inequality (S1) and an equality (S2)

+ inequality and equality can be wrapped to include union
6 S2 extends beyond S1 by at most one and all cut constraints of S1 and

parallel slices of S2 can be wrapped to include union
⇒ replace S1 and S2 by valid and wrapping constraints

Operations Set Coalescing September 15, 2010 21 / 34

Supported Operations

Intersection

Union

Set difference

Closed convex hull (“wrapping”, FLL2000)

Coalescing

Lexicographic minimization

Integer projection

Sampling (GBR)

Scanning (GBR)

Integer affine hull (GBR)

Transitive closure (approx.)

Parametric vertex enumeration

Bounds on quasipolynomials (approx.)

Operations Set Coalescing September 15, 2010 21 / 34

Supported Operations

Intersection

Union

Set difference

Closed convex hull (“wrapping”, FLL2000)

Coalescing

Lexicographic minimization

x

y

Integer projection

Sampling (GBR)

Scanning (GBR)

Integer affine hull (GBR)

Transitive closure (approx.)

Parametric vertex enumeration

Bounds on quasipolynomials (approx.)

Operations Set Coalescing September 15, 2010 21 / 34

Supported Operations

Intersection

Union

Set difference

Closed convex hull (“wrapping”, FLL2000)

Coalescing

Lexicographic minimization
x

y

Integer projection

x

y

Sampling (GBR)

Scanning (GBR)

Integer affine hull (GBR)

Transitive closure (approx.)

Parametric vertex enumeration

Bounds on quasipolynomials (approx.)

Operations Set Coalescing September 15, 2010 21 / 34

Supported Operations

Intersection

Union

Set difference

Closed convex hull (“wrapping”, FLL2000)

Coalescing

Lexicographic minimization
x

y

Integer projection

x

y

Sampling (GBR)

Scanning (GBR)

Integer affine hull (GBR)

Transitive closure (approx.)

Parametric vertex enumeration

Bounds on quasipolynomials (approx.)

Operations Set Coalescing September 15, 2010 21 / 34

Supported Operations

Intersection

Union

Set difference

Closed convex hull (“wrapping”, FLL2000)

Coalescing

Lexicographic minimization
x

y

Integer projection
x

y

Sampling (GBR)

Scanning (GBR)

Integer affine hull (GBR)

Transitive closure (approx.)

Parametric vertex enumeration

Bounds on quasipolynomials (approx.)

Operations Set Coalescing September 15, 2010 21 / 34

Supported Operations

Intersection

Union

Set difference

Closed convex hull (“wrapping”, FLL2000)

Coalescing

Lexicographic minimization
x

y

Integer projection
x

y

Sampling (GBR)

Scanning (GBR)

Integer affine hull (GBR)

Transitive closure (approx.)

Parametric vertex enumeration

Bounds on quasipolynomials (approx.)

Operations Set Coalescing September 15, 2010 21 / 34

Supported Operations

Intersection

Union

Set difference

Closed convex hull (“wrapping”, FLL2000)

Coalescing

Lexicographic minimization
x

y

Integer projection
x

y

Sampling (GBR)

Scanning (GBR)

Integer affine hull (GBR)

Transitive closure (approx.)

Parametric vertex enumeration

Bounds on quasipolynomials (approx.)

Operations Set Coalescing September 15, 2010 21 / 34

Supported Operations

Intersection

Union

Set difference

Closed convex hull (“wrapping”, FLL2000)

Coalescing

Lexicographic minimization
x

y

Integer projection
x

y

Sampling (GBR)

Scanning (GBR)

Integer affine hull (GBR)

Transitive closure (approx.)

{ x → y | 0 ≤ x < y ≤ 4 }

{ x → x + 1 | 0 ≤ x ≤ 3 }

Parametric vertex enumeration

Bounds on quasipolynomials (approx.)

Operations Set Coalescing September 15, 2010 21 / 34

Supported Operations

Intersection

Union

Set difference

Closed convex hull (“wrapping”, FLL2000)

Coalescing

Lexicographic minimization
x

y

Integer projection
x

y

Sampling (GBR)

Scanning (GBR)

Integer affine hull (GBR)

Transitive closure (approx.)
{ x → y | 0 ≤ x < y ≤ 4 }

{ x → x + 1 | 0 ≤ x ≤ 3 }

Parametric vertex enumeration

Bounds on quasipolynomials (approx.)

Operations Parametric Vertex Enumeration September 15, 2010 22 / 34

H-Parametric Polytopes and their Vertices

Polytopes described by hyperplanes that depend linearly on parameters

P(s) = { x ∈ Qd | Ax + Bs ≥ c }

Example:
P(N) = { (i, j) | i ≥ 1 ∧ i ≤ N ∧ j ≥ 1 ∧ j ≤ i }

Parametric vertices:

P = conv.hull
{[

1
1

]
,

[
N
1

]
,

[
N
N

]}

In general: different (active) vertices on different parts of the parameter
space (chamber decomposition)

Operations Parametric Vertex Enumeration September 15, 2010 23 / 34

Chamber Decomposition{
t ∈ Q2 | − s1 + 2s2 + t1 − 2t2 ≥ 0 ∧ s1 − s2 − t1 + t2 ≥ 0 ∧ t1 ≥ 0 ∧ t2 ≥ 0

}

t2

t1

v1

v1

v2v3
v4

v4

v5

v6

v6

t2

t1

v1

v1

v2=v3=v5v4

v4

v6

v6

t2

t1
v1

v1

v2 v3

v4

v4

v5

v6

v6

t2

t1
v3

v1=v2=v4

v1=v2=v4

v5

v6

v6

t2

t1

v1

v1

v2
v3

v4

v4

v5

v6

v6

C3 C1

C2

s2

s1

Operations Parametric Vertex Enumeration September 15, 2010 23 / 34

Chamber Decomposition{
t ∈ Q2 | − s1 + 2s2 + t1 − 2t2 ≥ 0 ∧ s1 − s2 − t1 + t2 ≥ 0 ∧ t1 ≥ 0 ∧ t2 ≥ 0

}

t2

t1

v1

v1

v2v3
v4

v4

v5

v6

v6

t2

t1

v1

v1

v2=v3=v5v4

v4

v6

v6

t2

t1
v1

v1

v2 v3

v4

v4

v5

v6

v6

t2

t1
v3

v1=v2=v4

v1=v2=v4

v5

v6

v6

t2

t1

v1

v1

v2
v3

v4

v4

v5

v6

v6

C3 C1

C2

s2

s1

Operations Parametric Vertex Enumeration September 15, 2010 23 / 34

Chamber Decomposition{
t ∈ Q2 | − s1 + 2s2 + t1 − 2t2 ≥ 0 ∧ s1 − s2 − t1 + t2 ≥ 0 ∧ t1 ≥ 0 ∧ t2 ≥ 0

}
t2

t1

v1

v1

v2v3
v4

v4

v5

v6

v6

t2

t1

v1

v1

v2=v3=v5v4

v4

v6

v6

t2

t1
v1

v1

v2 v3

v4

v4

v5

v6

v6

t2

t1
v3

v1=v2=v4

v1=v2=v4

v5

v6

v6

t2

t1

v1

v1

v2
v3

v4

v4

v5

v6

v6

C3 C1

C2

s2

s1

Operations Parametric Vertex Enumeration September 15, 2010 23 / 34

Chamber Decomposition{
t ∈ Q2 | − s1 + 2s2 + t1 − 2t2 ≥ 0 ∧ s1 − s2 − t1 + t2 ≥ 0 ∧ t1 ≥ 0 ∧ t2 ≥ 0

}
t2

t1

v1

v1

v2v3
v4

v4

v5

v6

v6

t2

t1

v1

v1

v2=v3=v5v4

v4

v6

v6

t2

t1
v1

v1

v2 v3

v4

v4

v5

v6

v6

t2

t1
v3

v1=v2=v4

v1=v2=v4

v5

v6

v6

t2

t1

v1

v1

v2
v3

v4

v4

v5

v6

v6

C3 C1

C2

s2

s1

Operations Parametric Vertex Enumeration September 15, 2010 23 / 34

Chamber Decomposition{
t ∈ Q2 | − s1 + 2s2 + t1 − 2t2 ≥ 0 ∧ s1 − s2 − t1 + t2 ≥ 0 ∧ t1 ≥ 0 ∧ t2 ≥ 0

}
t2

t1

v1

v1

v2v3
v4

v4

v5

v6

v6

t2

t1

v1

v1

v2=v3=v5v4

v4

v6

v6

t2

t1
v1

v1

v2 v3

v4

v4

v5

v6

v6 t2

t1
v3

v1=v2=v4

v1=v2=v4

v5

v6

v6

t2

t1

v1

v1

v2
v3

v4

v4

v5

v6

v6

C3 C1

C2

s2

s1

Operations Parametric Vertex Enumeration September 15, 2010 23 / 34

Chamber Decomposition{
t ∈ Q2 | − s1 + 2s2 + t1 − 2t2 ≥ 0 ∧ s1 − s2 − t1 + t2 ≥ 0 ∧ t1 ≥ 0 ∧ t2 ≥ 0

}
t2

t1

v1

v1

v2v3
v4

v4

v5

v6

v6

t2

t1

v1

v1

v2=v3=v5v4

v4

v6

v6

t2

t1
v1

v1

v2 v3

v4

v4

v5

v6

v6

t2

t1
v3

v1=v2=v4

v1=v2=v4

v5

v6

v6 t2

t1

v1

v1

v2
v3

v4

v4

v5

v6

v6

C3 C1

C2

s2

s1

Operations Parametric Vertex Enumeration September 15, 2010 23 / 34

Chamber Decomposition{
t ∈ Q2 | − s1 + 2s2 + t1 − 2t2 ≥ 0 ∧ s1 − s2 − t1 + t2 ≥ 0 ∧ t1 ≥ 0 ∧ t2 ≥ 0

}
t2

t1

v1

v1

v2v3
v4

v4

v5

v6

v6

t2

t1

v1

v1

v2=v3=v5v4

v4

v6

v6

t2

t1
v1

v1

v2 v3

v4

v4

v5

v6

v6

t2

t1
v3

v1=v2=v4

v1=v2=v4

v5

v6

v6

t2

t1

v1

v1

v2
v3

v4

v4

v5

v6

v6

C3 C1

C2

s2

s1

Operations Parametric Vertex Enumeration September 15, 2010 24 / 34

Parametric Vertex Enumeration
Vertex computation
I Consider all combinations of d inequalities

⇒ using backtracking and incremental LP solver

I Turn them into equalities
I Record vertex and activity domain if non-empty

⇒ only record for lexmin inequalities

Chamber decomposition (note: only full-dimensional chambers)
PolyLib:
I iterate over all activity domains
I compute differences and intersections with previous activity domains

isl:
I compute initial chamber (intersection of activity domains)
I pick unhandled internal facet
I intersect activity domains that contain facet and other side
⇒ new chamber

I repeat while there are unhandled internal facets

⇒ much faster than PolyLib; similar to TOPCOM 0.16.2

Operations Parametric Vertex Enumeration September 15, 2010 24 / 34

Parametric Vertex Enumeration
Vertex computation
I Consider all combinations of d inequalities
⇒ using backtracking and incremental LP solver

I Turn them into equalities
I Record vertex and activity domain if non-empty

⇒ only record for lexmin inequalities

Chamber decomposition (note: only full-dimensional chambers)
PolyLib:
I iterate over all activity domains
I compute differences and intersections with previous activity domains

isl:
I compute initial chamber (intersection of activity domains)
I pick unhandled internal facet
I intersect activity domains that contain facet and other side
⇒ new chamber

I repeat while there are unhandled internal facets

⇒ much faster than PolyLib; similar to TOPCOM 0.16.2

Operations Parametric Vertex Enumeration September 15, 2010 24 / 34

Parametric Vertex Enumeration
Vertex computation
I Consider all combinations of d inequalities
⇒ using backtracking and incremental LP solver

I Turn them into equalities
I Record vertex and activity domain if non-empty
⇒ only record for lexmin inequalities

Chamber decomposition (note: only full-dimensional chambers)
PolyLib:
I iterate over all activity domains
I compute differences and intersections with previous activity domains

isl:
I compute initial chamber (intersection of activity domains)
I pick unhandled internal facet
I intersect activity domains that contain facet and other side
⇒ new chamber

I repeat while there are unhandled internal facets

⇒ much faster than PolyLib; similar to TOPCOM 0.16.2

Operations Parametric Vertex Enumeration September 15, 2010 25 / 34

Chamber Decomposition{
t ∈ Q2 | − s1 + 2s2 + t1 − 2t2 ≥ 0 ∧ s1 − s2 − t1 + t2 ≥ 0 ∧ t1 ≥ 0 ∧ t2 ≥ 0

}
t2

t1

v1

v1

v2v3
v4

v4

v5

v6

v6

t2

t1

v1

v1

v2=v3=v5v4

v4

v6

v6

t2

t1
v1

v1

v2 v3

v4

v4

v5

v6

v6 t2

t1
v3

v1=v2=v4

v1=v2=v4

v5

v6

v6 t2

t1

v1

v1

v2
v3

v4

v4

v5

v6

v6

C3 C1

C2

s2

s1

Operations Parametric Vertex Enumeration September 15, 2010 25 / 34

Chamber Decomposition{
t ∈ Q2 | − s1 + 2s2 + t1 − 2t2 ≥ 0 ∧ s1 − s2 − t1 + t2 ≥ 0 ∧ t1 ≥ 0 ∧ t2 ≥ 0

}
t2

t1

v1

v1

v2v3
v4

v4

v5

v6

v6

t2

t1

v1

v1

v2=v3=v5v4

v4

v6

v6

t2

t1

v1

v1

v2 v3

v4

v4

v5

v6

v6

t2

t1
v3

v1=v2=v4

v1=v2=v4

v5

v6

v6

t2

t1

v1

v1

v2
v3

v4

v4

v5

v6

v6

C3 C1

C2

s2

s1

Operations Parametric Vertex Enumeration September 15, 2010 25 / 34

Chamber Decomposition{
t ∈ Q2 | − s1 + 2s2 + t1 − 2t2 ≥ 0 ∧ s1 − s2 − t1 + t2 ≥ 0 ∧ t1 ≥ 0 ∧ t2 ≥ 0

}
t2

t1

v1

v1

v2v3

v4

v4

v5

v6

v6

t2

t1

v1

v1

v2=v3=v5

v4

v4

v6

v6

t2

t1
v1

v1

v2 v3

v4

v4

v5

v6

v6

t2

t1
v3

v1=v2=v4

v1=v2=v4

v5

v6

v6

t2

t1

v1

v1

v2
v3

v4

v4

v5

v6

v6

C3 C1

C2

s2

s1

Operations Parametric Vertex Enumeration September 15, 2010 26 / 34

Parametric Vertex Enumeration
Vertex computation
I Consider all combinations of d inequalities
⇒ using backtracking and incremental LP solver

I Turn them into equalities
I Record vertex and activity domain if non-empty
⇒ only record for lexmin inequalities

Chamber decomposition (note: only full-dimensional chambers)
PolyLib:
I iterate over all activity domains
I compute differences and intersections with previous activity domains

isl:
I compute initial chamber (intersection of activity domains)
I pick unhandled internal facet
I intersect activity domains that contain facet and other side
⇒ new chamber

I repeat while there are unhandled internal facets

⇒ much faster than PolyLib; similar to TOPCOM 0.16.2

Operations Parametric Vertex Enumeration September 15, 2010 26 / 34

Parametric Vertex Enumeration
Vertex computation
I Consider all combinations of d inequalities
⇒ using backtracking and incremental LP solver

I Turn them into equalities
I Record vertex and activity domain if non-empty
⇒ only record for lexmin inequalities

Chamber decomposition (note: only full-dimensional chambers)
PolyLib:
I iterate over all activity domains
I compute differences and intersections with previous activity domains

isl:
I compute initial chamber (intersection of activity domains)
I pick unhandled internal facet
I intersect activity domains that contain facet and other side
⇒ new chamber

I repeat while there are unhandled internal facets

⇒ much faster than PolyLib; similar to TOPCOM 0.16.2

Operations Parametric Vertex Enumeration September 15, 2010 26 / 34

Parametric Vertex Enumeration
Vertex computation
I Consider all combinations of d inequalities
⇒ using backtracking and incremental LP solver

I Turn them into equalities
I Record vertex and activity domain if non-empty
⇒ only record for lexmin inequalities

Chamber decomposition (note: only full-dimensional chambers)
PolyLib:
I iterate over all activity domains
I compute differences and intersections with previous activity domains

isl:
I compute initial chamber (intersection of activity domains)
I pick unhandled internal facet
I intersect activity domains that contain facet and other side
⇒ new chamber

I repeat while there are unhandled internal facets

⇒ much faster than PolyLib; similar to TOPCOM 0.16.2

Operations Parametric Vertex Enumeration September 15, 2010 27 / 34

Chamber Decomposition{
t ∈ Q2 | − s1 + 2s2 + t1 − 2t2 ≥ 0 ∧ s1 − s2 − t1 + t2 ≥ 0 ∧ t1 ≥ 0 ∧ t2 ≥ 0

}

t2

t1

v1v1

v2v3

v4v4

v5

v6v6

t2

t1

v1v1

v2=v3=v5

v4v4

v6v6

t2

t1

v1v1

v2 v3

v4v4

v5

v6v6

t2

t1
v3

v1=v2=v4v1=v2=v4

v5

v6v6

t2

t1

v1v1

v2
v3

v4v4

v5

v6v6

C3

C1

C2

s2

s1

Operations Parametric Vertex Enumeration September 15, 2010 27 / 34

Chamber Decomposition{
t ∈ Q2 | − s1 + 2s2 + t1 − 2t2 ≥ 0 ∧ s1 − s2 − t1 + t2 ≥ 0 ∧ t1 ≥ 0 ∧ t2 ≥ 0

}

t2

t1

v1v1

v2v3

v4v4

v5

v6v6

t2

t1

v1v1

v2=v3=v5

v4v4

v6v6

t2

t1

v1v1

v2 v3

v4v4

v5

v6v6

t2

t1
v3

v1=v2=v4v1=v2=v4

v5

v6v6

t2

t1

v1v1

v2
v3

v4v4

v5

v6v6

C3

C1

C2

s2

s1

Operations Parametric Vertex Enumeration September 15, 2010 27 / 34

Chamber Decomposition{
t ∈ Q2 | − s1 + 2s2 + t1 − 2t2 ≥ 0 ∧ s1 − s2 − t1 + t2 ≥ 0 ∧ t1 ≥ 0 ∧ t2 ≥ 0

}

t2

t1

v1v1

v2v3

v4v4

v5

v6v6

t2

t1

v1v1

v2=v3=v5

v4v4

v6v6

t2

t1

v1v1

v2 v3

v4v4

v5

v6v6

t2

t1
v3

v1=v2=v4v1=v2=v4

v5

v6v6

t2

t1

v1v1

v2
v3

v4v4

v5

v6v6

C3

C1

C2

s2

s1

Operations Parametric Vertex Enumeration September 15, 2010 27 / 34

Chamber Decomposition{
t ∈ Q2 | − s1 + 2s2 + t1 − 2t2 ≥ 0 ∧ s1 − s2 − t1 + t2 ≥ 0 ∧ t1 ≥ 0 ∧ t2 ≥ 0

}

t2

t1

v1v1

v2v3

v4v4

v5

v6v6

t2

t1

v1v1

v2=v3=v5

v4v4

v6v6

t2

t1

v1v1

v2 v3

v4v4

v5

v6v6

t2

t1
v3

v1=v2=v4v1=v2=v4

v5

v6v6

t2

t1

v1v1

v2
v3

v4v4

v5

v6v6

C3

C1

C2

s2

s1

Operations Parametric Vertex Enumeration September 15, 2010 27 / 34

Chamber Decomposition{
t ∈ Q2 | − s1 + 2s2 + t1 − 2t2 ≥ 0 ∧ s1 − s2 − t1 + t2 ≥ 0 ∧ t1 ≥ 0 ∧ t2 ≥ 0

}

t2

t1

v1v1

v2v3

v4v4

v5

v6v6

t2

t1

v1v1

v2=v3=v5

v4v4

v6v6

t2

t1

v1v1

v2 v3

v4v4

v5

v6v6

t2

t1
v3

v1=v2=v4v1=v2=v4

v5

v6v6

t2

t1

v1v1

v2
v3

v4v4

v5

v6v6

C3 C1

C2

s2

s1

Operations Parametric Vertex Enumeration September 15, 2010 28 / 34

Parametric Vertex Enumeration
Vertex computation
I Consider all combinations of d inequalities
⇒ using backtracking and incremental LP solver

I Turn them into equalities
I Record vertex and activity domain if non-empty
⇒ only record for lexmin inequalities

Chamber decomposition (note: only full-dimensional chambers)
PolyLib:
I iterate over all activity domains
I compute differences and intersections with previous activity domains

isl:
I compute initial chamber (intersection of activity domains)
I pick unhandled internal facet
I intersect activity domains that contain facet and other side
⇒ new chamber

I repeat while there are unhandled internal facets

⇒ much faster than PolyLib; similar to TOPCOM 0.16.2

Operations Parametric Vertex Enumeration September 15, 2010 28 / 34

Parametric Vertex Enumeration
Vertex computation
I Consider all combinations of d inequalities
⇒ using backtracking and incremental LP solver

I Turn them into equalities
I Record vertex and activity domain if non-empty
⇒ only record for lexmin inequalities

Chamber decomposition (note: only full-dimensional chambers)
PolyLib:
I iterate over all activity domains
I compute differences and intersections with previous activity domains

isl:
I compute initial chamber (intersection of activity domains)
I pick unhandled internal facet
I intersect activity domains that contain facet and other side
⇒ new chamber

I repeat while there are unhandled internal facets

⇒ much faster than PolyLib; similar to TOPCOM 0.16.2

Operations Parametric Vertex Enumeration September 15, 2010 28 / 34

Parametric Vertex Enumeration
Vertex computation
I Consider all combinations of d inequalities
⇒ using backtracking and incremental LP solver

I Turn them into equalities
I Record vertex and activity domain if non-empty
⇒ only record for lexmin inequalities

Chamber decomposition (note: only full-dimensional chambers)
PolyLib:
I iterate over all activity domains
I compute differences and intersections with previous activity domains

isl:
I compute initial chamber (intersection of activity domains)
I pick unhandled internal facet
I intersect activity domains that contain facet and other side
⇒ new chamber

I repeat while there are unhandled internal facets

⇒ much faster than PolyLib; similar to TOPCOM 0.16.2

Operations Parametric Vertex Enumeration September 15, 2010 29 / 34

Supported Operations

Intersection

Union

Set difference

Closed convex hull (“wrapping”, FLL2000)

Coalescing

Lexicographic minimization
x

y

Integer projection
x

y

Sampling (GBR)

Scanning (GBR)

Integer affine hull (GBR)

Transitive closure (approx.)
{ x → y | 0 ≤ x < y ≤ 4 }

{ x → x + 1 | 0 ≤ x ≤ 3 }

Parametric vertex enumeration

Bounds on quasipolynomials (approx.)

Operations Parametric Vertex Enumeration September 15, 2010 29 / 34

Supported Operations

Intersection

Union

Set difference

Closed convex hull (“wrapping”, FLL2000)

Coalescing

Lexicographic minimization
x

y

Integer projection
x

y

Sampling (GBR)

Scanning (GBR)

Integer affine hull (GBR)

Transitive closure (approx.)
{ x → y | 0 ≤ x < y ≤ 4 }

{ x → x + 1 | 0 ≤ x ≤ 3 }

Parametric vertex enumeration

Bounds on quasipolynomials (approx.)

Operations Bounds on Quasi-Polynomials September 15, 2010 30 / 34

V-Parametric Polytopes and Bounds on Polynomials

V-parametric polytopes

P : D → Qn :

q 7→ P(q) =
{
x | ∃αi ∈ Q : x =

∑
i αivi(q), αi ≥ 0,

∑
i αi = 1

}
D ⊂ Qr : parameter domain
vi(q) ∈ Q[q] arbitrary polynomials in parameters
vi(q) are generators of the polytope

Bounds on quasipolynomials (CFGV2009)

Input: Parametric polytope P and quasipolynomial p(q, x)
Output: Bound B(q) on quasipolynomial over polytope

B(q) ≥ max
x∈P(q)

p(q, x)

Note: V-parametric polytope can be computed from H-parametric polytope
through parameter vertex enumeration + chamber decomposition

Operations Bounds on Quasi-Polynomials September 15, 2010 30 / 34

V-Parametric Polytopes and Bounds on Polynomials

V-parametric polytopes

P : D → Qn :

q 7→ P(q) =
{
x | ∃αi ∈ Q : x =

∑
i αivi(q), αi ≥ 0,

∑
i αi = 1

}
D ⊂ Qr : parameter domain
vi(q) ∈ Q[q] arbitrary polynomials in parameters
vi(q) are generators of the polytope

Bounds on quasipolynomials (CFGV2009)

Input: Parametric polytope P and quasipolynomial p(q, x)
Output: Bound B(q) on quasipolynomial over polytope

B(q) ≥ max
x∈P(q)

p(q, x)

Note: V-parametric polytope can be computed from H-parametric polytope
through parameter vertex enumeration + chamber decomposition

Operations Bounds on Quasi-Polynomials September 15, 2010 31 / 34

Bounds on Quasipolynomials: Example

p(x1, x2) =
1
2

x2
1 +

1
2

x1 + x2 P = conv.hull{(0, 0), (N, 0), (N,N)}

To compute:

B(N) ≥

M(N) = max
(x1,x2)∈P

p(x1, x2)

How? ⇒ Bernstein expansion

Express x ∈ P as convex combination of vertices

(x1, x2) = α1(0, 0) + α2(N, 0) + α3(N,N), αi ≥ 0,
∑

i

αi = 1

p(α1, α2, α3) =
1
2

N2α2
2 + N2α2α3 +

1
2

N2α2
3 +

1
2

Nα2 +
3
2

Nα3

Express p(x) as convex combination of polynomials in parameters

Operations Bounds on Quasi-Polynomials September 15, 2010 31 / 34

Bounds on Quasipolynomials: Example

p(x1, x2) =
1
2

x2
1 +

1
2

x1 + x2 P = conv.hull{(0, 0), (N, 0), (N,N)}

To compute:
B(N) ≥ M(N) = max

(x1,x2)∈P
p(x1, x2)

How? ⇒ Bernstein expansion

Express x ∈ P as convex combination of vertices

(x1, x2) = α1(0, 0) + α2(N, 0) + α3(N,N), αi ≥ 0,
∑

i

αi = 1

p(α1, α2, α3) =
1
2

N2α2
2 + N2α2α3 +

1
2

N2α2
3 +

1
2

Nα2 +
3
2

Nα3

Express p(x) as convex combination of polynomials in parameters

Operations Bounds on Quasi-Polynomials September 15, 2010 31 / 34

Bounds on Quasipolynomials: Example

p(x1, x2) =
1
2

x2
1 +

1
2

x1 + x2 P = conv.hull{(0, 0), (N, 0), (N,N)}

To compute:
B(N) ≥ M(N) = max

(x1,x2)∈P
p(x1, x2)

How? ⇒ Bernstein expansion

Express x ∈ P as convex combination of vertices

(x1, x2) = α1(0, 0) + α2(N, 0) + α3(N,N), αi ≥ 0,
∑

i

αi = 1

p(α1, α2, α3) =
1
2

N2α2
2 + N2α2α3 +

1
2

N2α2
3 +

1
2

Nα2 +
3
2

Nα3

Express p(x) as convex combination of polynomials in parameters

Operations Bounds on Quasi-Polynomials September 15, 2010 32 / 34

Bounds on Quasipolynomials: Example

p(α) =
N2

2
α2

2 + N2α2α3 +
N2

2
α2

3 +
N
2
α2 +

3N
2
α3 αi ≥ 0,

∑
i

αi = 1

Express p(x) as convex combination of polynomials in parameters

min
j

bj(N) ≤

p(x) =
∑

Bj(α)bj(N)

≤ max
j

bj(N)

1 = (α1 + α2 + α3)
2 = α2

1 + α2
2 + α2

3 + 2α1α2 + 2α3α3 + 2α3α1

p(α1, α2, α3) = α2
10 + α2

2

(
N2 + N

2

)
+ α2

3

(
N2 + 3N

2

)
+ (2α1α2)

N
4
+ (2α1α3)

3N
2

+ (2α2α3)
N2 + 2N

2

Operations Bounds on Quasi-Polynomials September 15, 2010 32 / 34

Bounds on Quasipolynomials: Example

p(α) =
N2

2
α2

2 + N2α2α3 +
N2

2
α2

3 +
N
2
α2 +

3N
2
α3 αi ≥ 0,

∑
i

αi = 1

Express p(x) as convex combination of polynomials in parameters

min
j

bj(N) ≤ p(x) =
∑

Bj(α)bj(N) ≤ max
j

bj(N)

1 = (α1 + α2 + α3)
2 = α2

1 + α2
2 + α2

3 + 2α1α2 + 2α3α3 + 2α3α1

p(α1, α2, α3) = α2
10 + α2

2

(
N2 + N

2

)
+ α2

3

(
N2 + 3N

2

)
+ (2α1α2)

N
4
+ (2α1α3)

3N
2

+ (2α2α3)
N2 + 2N

2

Operations Bounds on Quasi-Polynomials September 15, 2010 32 / 34

Bounds on Quasipolynomials: Example

p(α) =
N2

2
α2

2 + N2α2α3 +
N2

2
α2

3 +
N
2
α2 +

3N
2
α3 αi ≥ 0,

∑
i

αi = 1

Express p(x) as convex combination of polynomials in parameters

min
j

bj(N) ≤ p(x) =
∑

Bj(α)bj(N) ≤ max
j

bj(N)

1 = (α1 + α2 + α3)
2 = α2

1 + α2
2 + α2

3 + 2α1α2 + 2α3α3 + 2α3α1

p(α1, α2, α3) = α2
10 + α2

2

(
N2 + N

2

)
+ α2

3

(
N2 + 3N

2

)
+ (2α1α2)

N
4
+ (2α1α3)

3N
2

+ (2α2α3)
N2 + 2N

2

Operations Bounds on Quasi-Polynomials September 15, 2010 32 / 34

Bounds on Quasipolynomials: Example

p(α) =
N2

2
α2

2 + N2α2α3 +
N2

2
α2

3 +
N
2
α2 +

3N
2
α3 αi ≥ 0,

∑
i

αi = 1

Express p(x) as convex combination of polynomials in parameters

min
j

bj(N) ≤ p(x) =
∑

Bj(α)bj(N) ≤ max
j

bj(N)

1 = (α1 + α2 + α3)
2 = α2

1 + α2
2 + α2

3 + 2α1α2 + 2α3α3 + 2α3α1

p(α1, α2, α3) = α2
10 + α2

2

(
N2 + N

2

)
+ α2

3

(
N2 + 3N

2

)
+ (2α1α2)

N
4
+ (2α1α3)

3N
2

+ (2α2α3)
N2 + 2N

2

Operations Bounds on Quasi-Polynomials September 15, 2010 32 / 34

Bounds on Quasipolynomials: Example

p(α) =
N2

2
α2

2 + N2α2α3 +
N2

2
α2

3 +
N
2
α2 +

3N
2
α3 αi ≥ 0,

∑
i

αi = 1

Express p(x) as convex combination of polynomials in parameters

min
j

bj(N) ≤ p(x) =
∑

Bj(α)bj(N) ≤ max
j

bj(N)

1 = (α1 + α2 + α3)
2 = α2

1 + α2
2 + α2

3 + 2α1α2 + 2α3α3 + 2α3α1

p(α1, α2, α3) = α2
10 + α2

2

(
N2 + N

2

)
+ α2

3

(
N2 + 3N

2

)
+ (2α1α2)

N
4
+ (2α1α3)

3N
2

+ (2α2α3)
N2 + 2N

2

Conclusion September 15, 2010 33 / 34

Outline

1 Introduction

2 Internals

3 Operations
Set Difference
Set Coalescing
Parametric Vertex Enumeration
Bounds on Quasi-Polynomials

4 Conclusion

Conclusion September 15, 2010 34 / 34

Conclusion
isl: a relatively new integer set library
currently used in
I equivalence checking tool
I barvinok
I CLooG

explicit support for parameters and existentially quantified variables
all computations in exact integer arithmetic using GMP
built-in incremental LP solver
built-in (P)ILP solver
released under LGPL license
available from http://freshmeat.net/projects/isl/

Future work: port barvinok to isl; now uses
PolyLib: GPL, . . .
⇒ isl already supports operations provided by PolyLib, but a lot of code

still needs to be ported

NTL: not thread-safe, C++
⇒ isl needs LLL

http://freshmeat.net/projects/isl/

Conclusion September 15, 2010 34 / 34

Conclusion
isl: a relatively new integer set library
currently used in
I equivalence checking tool
I barvinok
I CLooG

explicit support for parameters and existentially quantified variables
all computations in exact integer arithmetic using GMP
built-in incremental LP solver
built-in (P)ILP solver
released under LGPL license
available from http://freshmeat.net/projects/isl/

Future work: port barvinok to isl; now uses
PolyLib: GPL, . . .
⇒ isl already supports operations provided by PolyLib, but a lot of code

still needs to be ported

NTL: not thread-safe, C++
⇒ isl needs LLL

http://freshmeat.net/projects/isl/

	Introduction
	Internals
	Operations
	Set Difference
	Set Coalescing
	Parametric Vertex Enumeration
	Bounds on Quasi-Polynomials

	Conclusion

