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Abstract

The generation of collision free NC-programs for multi-axis milling operations is a critical task, which leads to multi-axis milling

machines being exploited below their full capacities. Today, CAM systems, generating the tool path, do not take the multi-axis machine

movements into account. They generate a multi-axis tool path, described by a sequence of tool postures (tool tip 1 tool orientation), which is

then converted by a NC-postprocessor to a machine speci®c NC-program. As the postprocessing is normally done in batch mode, the NC-

programmer does not know how the machine will move and the chance for having collisions between (moving) machine components is often

very high. The execution of a machine test run or the application of a machine simulation system (NC-simulation) is the only solution to

inform the NC-programmer about possible machine collisions during operation.

This paper describes a multi-axis tool path generation algorithm where the tool orientation is optimised to avoid machine collisions and at

the same time to maximise the material removal rate along the tool track. To perform ef®cient collision avoidance, the tool path generation

module (traditional CAM), the postprocessing (axes transformation) and machine simulation has been integrated into one system. Cutting

tests have been carried out to de®ne the allowable tool orientation changes for optimisation and collision avoidance without disturbing the

surface quality.

The developed multi-axis tool path generation algorithm is applicable for the machining of several part surfaces within one operation.

This, together with tool path generation functionality to adapt the tool orientation for both, maximal material removal and avoidance of

collisions between (moving) machine components, are the innovative aspects of the presented research work. q 2002 Elsevier Science Ltd.

All rights reserved.
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1. Introduction

The off-line generation of NC-programs for multi-axis

milling operations mostly proceeds in two sequential steps

(Fig. 1). In the ®rst step, a CAM module (tool path genera-

tion) calculates the trajectory of the milling cutter. Each tool

posture of the trajectory is described by its tool tip �x; y; z�
and tool orientation �i; j; k�; both expressed in a workpiece

co-ordinate system.

In the second step, the tool path, output as a machine

controller independent Cutter Location DATA ®le

(CLDATA), is converted by a NC-postprocessor to a machine

speci®c NC-program. An important task of a multi-axis post-

processor is the transformation from CLDATA to machine

co-ordinates. Often, the axes transformation is not unique

because multi-axis milling machines can have two possible

con®gurations for a given CLDATA tool posture. Therefore,

the postprocessor must select an appropriate con®guration.

After postprocessing, the NC-program is not guaranteed

to be free of collision. Collisions can occur between part and

machine, tool and part or between moving machine com-

ponents. Fig. 2 shows the high risk for collision between the

machine head and the clamping table, during the 5-axis

machining of a larger propeller blade.

Collisions between workpiece and machine components

(e.g. between machine head and part) can only be checked

by executing some test runs on the machine or by using a

NC-simulation program. The output of a NC-simulation

system is a report with a list of NC-statements where colli-

sion has occurred. The NC-programmer itself must solve the

collision problems by changing milling strategy and regen-

eration of the tool path. Often, a number of iterations (tool

path generation, NC-postprocessing, NC-simulation or test

runs) are necessary until the complete NC-program is 100%

free of collision.
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ROOF2. Related research and development: state-of-the-art

In spite of the technological bene®ts of multi-axis

machining [1±3], the use of it remains limited due to the

complexity and dif®culty in the generation of collision free

NC-programs. Commercial CAM systems mostly have

limited functionality for the generation of multi-axis tool

paths. The user is often forced to apply a constant tool

orientation, set mostly, based on the highest local curvature

of the part surface to be machined. For all other areas on the

surface, this orientation will result in sub-optimal surface

quality. More advanced CAM systems have functionality to

linearly interpolate the tool orientation between a number of

pre-de®ned points, each with a user de®ned tool orientation.

Some research and development is going on in the

domain of tool orientation optimisation for multi-axis

machining of complex shaped surfaces. So far, most of

the published works present methods to optimise the

tool orientation to maximise the machining strip width

(,maximal material removal, minimal scallop, etc.), and

to avoid collisions between tool and part (e.g. gouging,

collision between tool holder and part, etc.).

Different kinds of tool orientation optimisation algo-

rithms have been developed for maximal material removal.

Pure analytical methods described in Refs. [2,4,5] optimise

the tool orientation based on the curvature information

in the cutter/contact point. These methods do not take

the surface anomalies in the neighbourhood for the cutter

contact point into account. Especially, when milling

detailed surfaces with large cutters, details on the surface

can be cut away unintentionally. Other tool optimisation

methods [2,6,7] ®t the tool as close as possible to the part

surface. These optimisation techniques, often called `cutting

shape ®tting' algorithms, use the entire surface de®nition

in order to avoid gouging. In contradiction to the pure

analytical methods, most of these algorithms determine

the optimal tool posture iteratively.

Recent developments [8,9] show that by using several
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Fig. 1. Generation of NC-programs (standard method).

Fig. 2. High risk for collision between machine head and clamping table [John Crane-Lips].
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ROOFcontact points, a better geometric match between the tool

and the surface can be realised. Tool orientation optimisa-

tion is not the only parameter to optimise material removal.

The `principal-axis method', presented in Ref. [7], opti-

mises the tool orientation and aligns the machining direction

along the principal curvature directions of the surface to be

machined. It is known that a higher material removal can be

obtained in the direction of smallest absolute curvature.

Further, an integration of tool positioning and tool path

planning (the way the tool moves over the workpiece) is

presented in Ref. [10].

Collision avoidance by changing the tool orientation has

been studied by different researchers. Methods using a C-

space, adapted from robot motion planning, are described in

Refs. [11,12]. The underlying idea of C-space is to represent

the tool orientation in an appropriate space in which the

obstacles are mapped. A practical approach of the C-space

is described in Ref. [13]. In this case, it has been used for the

roughing of small impellers, where the possible colliding

elements are tool, tool holder and part. Another approach

to collision avoidance can be found in Ref. [14]. Before tool

path generation, the part surface is dichotomised in two

different sets of regions: regions accessible without collid-

ing the check surfaces and regions causing collisions with

the check surfaces. A point is accessible when the part can

be reached in the direction of the part surface normal. This

supposition is the main drawback of the method because it

cannot be combined with, for example, tool orientation opti-

misation. The latter always introduces small changes in the

tool orientation, making the dichotomy for collision avoid-

ance incorrect. Other authors also focussed on this accessi-

bility analysis and are generating Product Visibility Cones

(PVCs) in a number of points on the workpiece [15,16]. A

global tool interference checking for 5-axis machining is

presented in Ref. [17]. The tool position is checked for

possible interference with the convex hull of the check

surface. If interference with the convex hull is detected,

the tool interference is calculated and the tool orientation

is corrected if needed. The advantage of this method over

other similar methods lies in the computational ef®ciency.

The ®rst conservative checking phase (with the convex hull)

is extremely fast, while the second phase delivers a solution

to the collision problem.

All described approaches to collision avoidance have a

common drawback: possible collisions between machine

and part, machine and tool or between moving machine

components are not taken into account. It may be clear

from Fig. 2 that there is a real need to take the machine

information (machine kinematics) into account during tool

path generation. If only collisions are detected between part,

tool and tool holder, then the example in Fig. 2 would not

pose any problem.

Research and development carried out by the authors on

tool orientation optimisation for maximal material removal

[18] and on collision avoidance in 5-axis machining [19],

has lead to the development of a new multi-axis tool path

generation algorithm to adapt the tool orientation to

avoid machine collisions (e.g. collisions between machine

and part, machine and tool, or between moving machine

components) and to maximise the material removal. The

developed tool path generation algorithm uses the `drive/

part surface paradigm' which allows the generation of a

single tool path for different part surfaces (multi-patch)

easy and logic. The use of a drive surface is quite new

compared to many other research works on tool orientation

optimisation, where developed algorithms are only imple-

mented for one single parametric based part surface (e.g.

NURBS).

Within the `drive/part surface paradigm', a drive sur-

face is used to de®ne the global tool path pattern for the
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Fig. 3. Part/drive surface mechanism for tool path generation.
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ROOFmachining of all part surfaces (Fig. 3). To obtain the tool

path, the tool geometry is projected from each drive point

position parallel to the drive surface normal to the part

surface. A good drive surface (also NURBS) for multi-

axis tool path generation should have more or less the

same shape as all the part surfaces to be machined. However

in practice, the drive surface is often ¯at or cylindrical (as in

Fig. 3) because the CAM-user has to model it interactively.

Recent developments focus on the automatic construction of

optimal drive surfaces [20]. In this case, the drive surface is

modelled such that the iso-parametric curves (curves of

constant u or v), used to de®ne the tool path pattern (also

cutting direction), are de®ned based on the curvature beha-

viour of the surfaces. This is based on the fact that higher

material removal rates and increased surface quality can be

obtained when the cutting direction is in the direction of

absolute minimum curvature [2,7].

3. Developed concept: general overview

The developed modules, for the adaptation of the tool

orientation for maximal material removal and avoidance

of machine collisions, have been integrated on source

code level within an existing CAM system (Fig. 4). This

CAM system is capable to generate multi-axis tool paths

starting from a tool path pattern de®ned within a drive

surface. The multi-axis functionality of the existing CAM

system is however limited to a ®xed tool orientation and/or a

linear interpolation of the tool orientation between a number

of pre-de®ned points.

In order to perform avoidance of machine collisions,

two additional modules have been integrated within the

developed module for the adaptation of the tool orientation

(Fig. 4). The kinematics engine, which is part of a tradi-

tional postprocessor, transforms tool posture co-ordinates to

machine co-ordinates. The machine simulation system

checks a given machine con®guration for machine collision.

The machine simulation system is based on a commercial

system, but has been provided by the system developer as a

shared library. In addition, a small set of simulation system

dependent functions to control the simulation software has

been provided. Examples of these functions are the initiali-

sation of the simulation system, collision check of a given

machine con®guration, collision check while moving from

one machine con®guration to the next one, etc.

A simulation system interface has been developed in

order to integrate machine simulation software's from dif-

ferent manufactures. This interface de®nes the relation

between simulation system dependent functions and func-

tions used by the developed module for the adaptation of the

tool orientation.

Before tool path generation starts, the geometrical models

of the machine, tools, part and ®xtures, together with the

kinematics model of the machine need to be downloaded

into the simulation system. For the simulation system

used, all geometrical models are input as STL-®les, which

are triangulated surface descriptions, initially used in the

domain of rapid prototyping.

Once the tool path pattern is de®ned in the drive surface,

the tool positioning is done within a control loop, compris-

ing different modules: tool path generation, kinematics

engine and machine simulation (Fig. 5). This concept is

different from the classical concept shown in Fig. 1,

where the tool path generation, postprocessing and NC-

simulation are performed in a sequential way. After the

generation of a single tool posture �x; y; z; i; j; k� with opti-

mised tool orientation for maximal material removal, it is

directly converted by the kinematics engine to machine axis

co-ordinates and checked for collisions by the integrated

machine simulation system.

After each collision check, the simulation system feeds

back the type of collision (e.g. collision between tool and

part, head and part, part and machine, etc.), the centre of the

collision curve (this is the intersection curve calculated
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Fig. 4. General overview of the developed tool path generation system.

Fig. 5. Calculation of the tool path in a kind of control loop.
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between two colliding elements), the length of the collision

curve, and a vector (� collision vector) which is

constructed from the centre point of the collision curve

perpendicular to the tool axis (Fig. 6). The centre point

�xc; yc; zc� of the collision curve (with length L) is calculated

by the following equation:

xc � 1

L

ZL

0
x�s� ds; yc � 1

L

ZL

0
y�s� ds;

zc � 1

L

ZL

0
z�s� ds

�1�

If collision happens, the collision information (e.g. length of

collision curve, collision vector, etc.) is used to ®nd a new

tool orientation (see details later). The new tool posture is

then checked again for collision. Once a collision free tool

posture is found, which may require several iterations, the

tool path generation algorithm continues with the calcula-

tion of the tool posture in the next drive point. In case, no

collision free tool orientation is found (e.g. after ®ve itera-

tions), the algorithm performs a tool retract to a safe level.

The tool will engage again for one of the next tool postures

that is collision free.

As the tool orientation optimisation is independent of the

de®nition of the tool path pattern, the material removal is

only maximised along the tool tracks. Further optimisation

of the material removal for the whole workpiece can be

obtained by choosing a proper drive surface and tool path

pattern of which the feed direction is parallel to the direction

of minimum curvature [20].

4. Tool orientation: inclination and screw angle

In many CAM systems, the tool orientation is de®ned by

a lead angle and tilt angle. The lead angle is de®ned in a

plane parallel to the feed direction, while the tilt angle is

de®ned perpendicular to it. Within this research work, a

strategy has been developed that adapts the lead angle for

material removal optimisation and the lead as well as the tilt

angle for collision avoidance. More details why such a strat-

egy is chosen is described in Section 6.

Changing the tilt angle during collision avoidance has

however the drawback that the tool contact point is

moved, giving an irregular movement of the tool along

the tool track. This is not favourable for many users and

therefore, the inclination and screw angle has been intro-

duced within this research work to represent the tool orien-

tation (Fig. 7).

Changing the screw angle can now be seen as a rotation of

the cutter around the surface normal, keeping the tool

contact point at the same place. The lead angle and the

inclination angle have the same value for a screw angle

equal to zero. One can easily go from one de®nition to the

other using Eq. (2)

cos�w�sin�u� � sin�a�;
sin�w�sin�u� � 2cos�a�sin�b�; cos�u� � cos�a�cos�b�

�2�

5. Calculation of tool orientation ranges

As mentioned earlier, the module for the adaptation of the

tool orientation has been integrated within an existing CAM

system. The generation of a complete tool path starts with

the construction of a drive surface. Within the drive surface,

a tool path pattern is de®ned and sampled into a number

of drive points (DPs). The drive surface can cover more

than one part surface, which makes the developed system

industrially applicable and easy to be implemented within

commercial CAM systems. In general, the tool path itself is

then obtained by projecting the tool geometry from each

drive point position (DPi) onto the part surface.

During tool path generation, the change of tool orienta-

tion has to be kept under control. The in¯uence of the

change of the inclination angle per unit distance (du /ds)

has been investigated (Table 1). A ¯at surface was machined

and the inclination angle was changed from an initial value

down to zero over a distance of 50 mm. The workpiece
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Fig. 6. Example of a collision curve and collision vector.

Fig. 7. Inclination and screw angle.
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material was Avionol T4 and the following cutting condi-

tions were used: tool, B� 20 mm, corner radius� 3.5 mm,

cutting speed� 350 m/min, feed� 0.2 mm/tooth.

Table 1 shows the increase of error with increasing speed

of angle change. The machine itself can in¯uence these

results, but the same tendency will remain. On the basis of

these facts, two rules, related to maximum angle changes,

have been de®ned within this research work. First, the user

can set absolute and minimum values for the both angles

(umin/umax); (wmin/wmax). Examples of these values are

umin � 08; umax � 458; wmin � 2308; wmax � 308). A mini-

mum inclination angle of 08 is related to the fact that nega-

tive values most often give gouging problems. Next, the

change of angle per unit distance (du /ds) can be limited.

This means that drastic changes of the tool orientation are

not allowed. As a result of this, the maximum and minimum

values for the inclination and the screw angle, to be used for

the adaptation of the tool orientation, are position dependent

and are further indicated as �ui;min; ui;max� and �wi;min; wi;max�:
The index (i) refers to the ith drive point position.

Fig. 8 gives a schematic overview of the evolution of the

ranges for the inclination angle during tool path generation

(analogue ®gures can be made for the screw angle). The

absolute maximum and minimum values are displayed by

dotted lines (e.g. umin � 08; umax � 458;). The drive point

positions are indicated as DPi �i � 1; 2; 3; 4;¼�: The tool

positions with optimised tool orientation are indicated as

TPp
i ; while those corrected for collision are indicated as

TPi. As an example, the collision area is drafted as a grey

shaded region. This means that all TPs, having their inclina-

tion angle lying in the grey shaded region, result in a colli-

sion between, for example, part and machine.

Starting from the ®rst drive point (DP1), the correspond-

ing tool position with optimised inclination angle is calcu-

lated �TPp
1�: After a collision check, TPp

1 seems to be

collision free. So the ®nal tool posture will be TP1 equals

TPp
1: In order to ®nd the ranges for optimising and correcting

tool path position 2, two lines, with a slope de®ned by the

maximum angle change per unit distance, are constructed in

point (TP1). The valid range R2 can easily be drawn. Notice

that u 2,min is equal to umin. Tool path position optimised for

tool orientation �TPp
2�; is within the collision area and will be

corrected by the collision avoidance module to TP2. Similar

to the points 1 and 2, the tool path positions TP3 and TP4 are

de®ned. TPp
3 has to be corrected for collision, while TPp

4 is

collision free �TP4 � TP4p�: The ranges R3 and R4 are

constructed similar to R2. Note that R4 is bounded by the

maximum value for the inclination angle (u 4,max is equal to

umax).

Typical to the used CAM system is the automatic inser-

tion of intermediate drive positions (IDPi) if the tool path

movement between two positions is outside the tolerance

band (intol±outtol). Due to this fact, the generation of tool

path positions not always proceeds in a sequential order

(1,2,3,4,¼). This is shown in Fig. 8 by the intermediate

drive point position IDP3.1. The range for valid inclination

angles (R3.1) has to be de®ned by constructing lines in the

two neighbouring points TP3 and TP4. If a smaller inclina-

tion angle is possible (only looking to this particular point),

it has to be corrected to TPp
3:1 (and TP3.1) in order to ful®l the

requirements of smooth angle change.

Additional rules have been implemented and can be

optionally set by the user for speeding up the tool path

generation and to obtain an even smoother tool path (if it

is a major concern). These rules are especially related to

the intermediate drive point positions. For example, if the

original drive positions are close to each other, optimisation

for the intermediate drive points does not always lead to

further improvement of the tool path. Two implemented

rules, applied for intermediate drive points, are:

² For intermediate tool postures, the tool posture is not
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Table 1

: Error (deviation from ¯at) as a function of the angle change per unit distance (du /ds)

Initial inclination, u (8) du /ds (8/mm) Error (mm)

3 0.06 , 10

5 0.1 , 13

8 0.16 , 18

10 0.2 , 20

Fig. 8. Calculation of the allowable ranges for tool orientation optimisation

and collision avoidance (inclination angle).
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optimised for maximal material removal and the ®rst

checked tool posture for collision avoidance is the one

obtained by a linear interpolation between the previous

and the next tool posture. If the distance between tool

postures is relative small, this will usually result in satis-

factory tool paths. In Fig. 8, one can see that for the

IDP3.1, a linear interpolated tool posture would directly

give a good result.

² If two neighbouring tool postures have collision and the

distance between them is close, then there is little chance

to ®nd a collision free tool posture for the intermediate

drive position. In this case, the algorithm assumes that

this tool posture has collision and it will not be checked

by the simulation system.

6. Adaptation of the tool orientation: developed
algorithm

The developed module for the adaptation for the tool

orientation makes use of some functions available within

the existing CAM system. As an example, the function to

project a tool from a given point onto the part surface has

been used several times. According to the speci®cation of

the CAM system, this function guarantees a gouge free tool

positioning.

The developed algorithm for the calculation of an optimal

and collision free tool posture for a given drive point is done

in different steps. For simplicity, the schematic pictures in

Fig. 9, explaining the algorithm for tool orientation optimi-

sation, use a ¯at plane as a drive surface.

Step 1. A given drive point DPi is projected onto the part

surface (along the drive surface normal), which will be used

as the cutter contact point (CPi). This is different to the

standard CAM system (and also many other CAM systems),

where the projection of a drive point gives the tool tip posi-

tion. The index (i) refers to the ith drive point.

The result of this projection are the �u; v� co-ordinates of

the contact point (CPi) and a reference to the patch surface

(because there can be different patches, each having their

own u±v parameterisation). From this, it may be clear that

multiple (eventual trimmed) part surfaces can be taken into

account very easily, as far the drive surface covers all the

part surfaces to be machined.

Step 2. At the projected drive point position (CPi), a ®rst

estimation of the tool orientation for maximal material

removal is calculated based on the principal curvatures, k1

and k2. In this step, only the inclination angle is taken into

account for optimisation. The basic algorithm for the calcu-

lation of the optimal inclination angle is based on earlier

research work and is fully described in Refs. [2,18]. The

basic idea behind the algorithm is to incline the tool as

such that the generated contact curve ®ts as close as possible

to the local curvature of the surface. In a speci®c case, when

the curvature k1 is much larger then the curvature k2, the

inclination angle (u) is mainly de®ned by k1. If the cutting

direction is also in the direction of the smallest curvature,

an estimation of the inclination angle can be derived from

Eq. (3). f tool and cr are, respectively, the diameter and the

corner radius of the end mill or a toroidal mill.

sin�u� �
ftool

2
2 cr

1

k1

2 cr

�3�

As a reminder, the inclination angle (u ) is de®ned as the

angle between the tool axis and the normal on the part

surface in the point CPi. The screw angle is not optimised

in this step, but is set to:

0 if �wi;min # 0 # wi;max�
wi;min if �0 , wi;min , wi;max�
wi;max if �wi;min , wi;max , 0�

8>><>>: �4�

This means that during the optimisation of the material

removal, the system tries to set the screw angle to zero.

The screw angle can be different from zero and this is due

to a collision avoidance action in a previous point.

Step 3. The estimation of the tool orientation (Step 2) is

not guaranteed to be gouge-free because it is only using the

curvature properties of the actual point on the part surface.

Therefore, the tool orientation is further re®ned until a

gouge-free tool posture is realised. To do this, the entire

tool geometry (with estimated tool inclination) is projected

from the drive surface on the part surface, using the standard

CAM-systems' functionality for tool projection. The tool

projection function of the existing CAM system is assumed

to give a gouge free tool posture as it looks for the ®rst

contact point encountered during projection. The tool

projection function returns a contact point (CCPi) which

might actually being located everywhere on the bottom of

the cutter. Similar to the projection in Step 1, the contact

point CCPi is output by the existing CAMs tool projection

algorithm as �u; v� co-ordinates together with a reference to

the speci®c patch surface.

Step 4. The inclination angle is adjusted (a certain value is

added for u ), based on the relationship between the desired

contact point (CPi) and the contact point returned by the tool

projection method (CCPi). The goal is to minimise the

distance between CPi and CCPi. The tool geometry is

again projected from the drive point position onto the part

surface using the standard CAM-systems' functionality for

tool projection. This projection gives a new CCPi, which is

normally closer to CPi. If needed, this iteration process

(calculation of a new u ) and projection is continued until

CCPi is close enough to CPi.

If the obtained inclination angle is smaller than the mini-

mum inclination angle (u i,min), it is set to u i,min. In case, the

obtained inclination angle would be larger than u i,max, the

u i,max is set to the optimal value, because a reduction would
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give gouging. However, for realistic values of u i,max (e.g.

458), this situation would be exceptional.

Step 5. The tool posture �xcl; ycl; zcl; icl; jcl; kcl� is

converted to machine axes values �XM;YM;ZM;AM;BM� by

the kinematics engine and the movement from the previous

to the current position is checked for collision by the

machine simulation system. If the tool posture is collision

free, it is kept as the ®nal tool posture. If a collision occurs, a

new tool orientation is found. Although tests proved that an

increase of the inclination angle could solve most of the

collisions, the increase of this angle should be limited,

because it is in contradiction with the increase of material

removal. Therefore, a collision avoidance strategy is

proposed that acts on the inclination angle as well as on

the screw angle. A little change of the screw angle helps

to limit the increase of inclination angle. In this sense, it is
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Fig. 9. Adaptation of the tool orientation for maximal material removal and avoidance of machine collisions.
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better to choose for a collision free tool posture �u � 258;
w � 108� instead of having �u � 358; w � 08�:

Two algorithms have been developed that searches for a

collision free tool orientation within the allowable ranges

(minimum and maximum values) for the inclination angle

(u i,opt and u i,max) and the screw angle (w i,min and w i,max). Note

that the minimum value for u i,min is equal to u i,opt, which is

the inclination angle obtained during the optimisation

process for maximal material removal (Step 4).

The ®rst algorithm tries to ®nd a collision free tool posi-

tion as fast as possible. Collision free tool positions are not

always optimal in the sense that the change of inclination

and screw angles may be larger then really needed. The

second algorithm tries to ®nd more optimal collision free

tool positions. It searches for positions very close to colli-

sion (just not colliding). The latter algorithm gives a

smoother tool path and is therefore called the smooth algo-

rithm, while the ®rst algorithm is called aggressive.

6.1. Aggressive algorithm for collision avoidance

The algorithm, schematically shown in Fig. 10, uses a

kind of Bisection Search Method (new evaluated position

is in the middle of previous bound) to ®nd a collision free

tool orientation within the given ranges for inclination and

screw angle. The algorithm continuously switches between

the ranges of the inclination angle and the screw angle. This

means that after each check within the range for the inclina-

tion angle, a full search is done within the range for the

screw angle. After a full search for the screw angle, the

algorithm checks the next position for the inclination

angle and if collision still occurs, the search within the

range for the screw angle is repeated. The number of checks

within each range can be set by the user. In the example of

Fig. 10, the number of checks for the screw angle is set to 5.

The direction of search for the inclination angle is always

positive (increasing angle). The direction of search for the

screw angle is such that the tool moves in the direction of

the collision vector. This collision vector is calculated after

each collision check by the simulation system (see above).

Further, after each check, the system evaluates the length of

the collision curve (also a result of the collision check by the

simulation system). A decreasing length means that the

chosen direction is the right one. An increasing length

will start a search in the opposite direction. The algorithm

stops when a collision free tool position is found or when a

maximum number of checks are exceeded.

It is clear that this collision avoidance strategy sets some

requirements to the simulation system. The developed algo-

rithm uses the length of the collision curve and the collision

vector to control the iteration process to ®nd a collision free

tool posture. Some commercial machine simulation systems

only feed back `collision' or `no collision', which makes it,

of course, dif®cult to develop an ef®cient collision avoid-

ance strategy.

6.2. Smooth algorithm for collision avoidance

The smooth algorithm tries to ®nd a collision free tool

path position closer to the collision area. The algorithm is

similar to the previous one, but as soon a collision free tool

position is found, the Bisection Search Method is continued

in the opposite direction. An example is given in Fig. 11.

Check number 1 is collision free and thus the algorithm

proceeds testing in the other direction (position number

2). In this example, position 2 has collision and the algo-

rithm proceeds by evaluating the change of the screw angle.

If collision still occurs, the algorithm further checks position

8 (middle of positions 1 and 2).

The smooth algorithm requires more iterations steps. It is

up to the user to choose between a fast aggressive or a more

CPU requiring algorithm giving a smoother and more opti-

mal tool path.

7. Examples and machining tests

The developed multi-axis tool path generation method

has been experimentally veri®ed during several tests on

industrial workpieces. A ®rst example is the machining of

a complex shape (100 £ 100 mm2) with convex as well as

concave areas (Fig. 12). The aim of this test is to investigate

the effect of the adaptation of the tool orientation for higher

material removal. The shape has been machined in alu-

minium (AlMgSi1) on a 5-axis milling machine, MAHO
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Fig. 10. Graphical representation of the aggressive algorithm for ®nding a

collision free tool orientation. Fig. 11. Graphical representation of the smooth algorithm for ®nding a

collision free tool orientation.
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600C. For the experiment, a toroidal cutter of diameter

20 mm with two inserts of 8 mm has been used. To compare

results, the workpiece has also been cut with a normal strat-

egy provided by the standard CAM system. In this case, the

inclination angle was set to 98, which is the minimal inclin-

ation angle necessary to avoid gouging in the concave area

of the workpiece. For both tests, 20 tool path tracks have

been spread over the surface. The difference between the

two strategies (®xed tool orientation and optimised tool

orientation) has been evaluated by measuring the scallop

height. Surface roughness and machining time are compar-

able. To quantify the scallop height, the waviness pro®le has

been measured on the convex area of the machined part

(perpendicular on the feed direction). The waviness depth

(Wt) has been taken as a representative value for the scallop

height. The strong reduction of the scallop height in the

convex area is due to the fact that the inclination angle

could be reduced to almost zero. For the part, machined

with the standard CAM system, this was not possible,

because the inclination angle was ®xed to 98.
A next example is the generation of a tool path for the

machining of propeller blade on a large 5-axis milling

machine. A cylindrical drive surface has been constructed

in order to generate one tool path for the different part

surfaces representing the foot area. Fig. 13 shows the tool

path generation for the foot of the propeller blade.

During tool path generation, collisions occurred between

the machine head (5-axis machine with two rotary axes in the

head) and the part. The collision avoidance strategy modi®es

the tool orientation (moving the machine head away from

the part) by keeping the contact point on the same place.

Therefore, the movement of the tool tip shows an irregular

behaviour. Fig. 14 shows some pictures of the simulation

system running during tool path generation.

The tool path has also been generated without collision

avoidance. In this case, only 5% of the foot could be

machined, compared to the tool path generated with colli-

sion avoidance where more than 80% has been machined.

The un-machined regions are de®ned as rest material that is

used as input for the next operation (eventually with a

longer tool).

To compare the aggressive and smooth collision avoid-

ance algorithm, a test has been done on a HP 180C Unix

workstation. The results are given in Table 2.

If no advanced collision avoidance is applied (retract

only), only 13% of the checked drive points turned out to
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Fig. 12. Effect of the adaptation of the tool orientation for maximal material removal rate (smaller scallops).

Fig. 13. Tool path generation for the machining of the foot of a propeller blade (The curves represent the tool tip. The irregular movement of the tool path is

caused by a change of the tool orientation, keeping the cutter contact point on the same place.).
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be collision free. The avoidance ef®ciency is the ratio of the

number of collision free points to the total number of drive

points (e.g. 62/476� 0.13). The aggressive avoidance algo-

rithm results in 76% of the drive points having a collision

free tool posture. The smooth algorithm is even performing

better, with 91% of the drive points ending up collision-free.

However, the smooth method is very time consuming. The

increased time is due to the higher number of collision

checks by the machine simulation system.

The number of drive points increases for both aggressive

and smooth avoidance methods with respect to the retract

only option. This increase is due to the number of supple-

mentary intermediate drive points, which need to be gener-

ated to keep the tool path within the required intol±outol

range.

Although, the indicated times (min) are high compared to

other existing classical multi-axis tool path generation algo-

rithms, they have to be evaluated in a global sense. Quite

some time is needed to perform the collision checks by the

simulation system. However, the indicated times are still a

fraction of the time that would be needed to generate a

collision free program following the concept of Fig. 1. It

takes hours of interactive NC-programming work to gener-

ate the different tool paths for the foot area of the propeller

blade with the commercially available NC-programming

systems.

8. Conclusions

This paper described a multi-axis tool path generation

algorithm where tool orientation is adapted to avoid

machine collisions and to increase material removal. The

avoidance of machine collisions has been realised by the

thigh integration of postprocessing (axes transformation)

and machine simulation within an existing CAM system.

Multi-axis tool paths are generated starting from a tool

path pattern de®ned in a drive surface, which makes it

easy to machine different part surfaces in one operation.
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