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Abstract Morphological investigations of motile cells
and cysts of a small dinoflagellate (strain CCMP 2088)
isolated from Canadian Arctic waters were carried out
under both light and scanning electron microscopy. This
species strongly resembled Polarella glacialis (strain
CCMP 1383), which up to now was known only from
Antarctic sea ice. The photosynthetic pigment compo-
sition of strain CCMP 2088 is typical of dinoflagellates,
with peridinin as a major accessory pigment. Phyloge-
netic relationships between the two strains and other
dinoflagellate species were inferred from SSU nrDNA
using Neighbour Joining and weighted parsimony ana-
lyses. Our results showed that strain CCMP 2088 and
P. glacialis (strain CCMP 1383) grouped in the same
clade (Suessiales clade), showing high similarity values
(0.99%). Morphological and molecular data support
the assignment of the Arctic strain to P. glacialis. The
free-living Gymnodinium simplex and the two P. glacialis
strains have a basal position in the Suessiales clade, as
compared to Symbiodinium spp.
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Introduction

Polarella glacialis is a small photosynthetic dinoflagellate
originally described from the Ross Sea (Antarctica)
(Montresor et al. 1999). Under light microscopy, P. gla-
cialis appears as a small, featureless, unarmoured dino-
flagellate. However, ultrastructural studies reveal the
presence of thin thecal plates with a distinct plate pattern
which supports its placement in the order Suessiales
(Montresor et al. 1999). This order groups species with a
peculiar plate pattern, composed of seven to ten latitu-
dinal series of plates (Fensome et al. 1993). Both endo-
symbiotic dinoflagellates belonging to the genus
Symbiodinium (also known as “Zooxanthellae’’) and free-
living species, as P. glacialis, are included in the order
Suessiales. Molecular phylogenetic data based on se-
quences of the small subunit of the nuclear rDNA (SSU
rDNA) support the monophyletic origin of the order
Suessiales within the dinoflagellate lineage (Saunders
et al. 1997; Montresor et al. 1999; Saldarriaga et al. 2001).

P. glacialis blooms in sea-ice brine channels, where it
contributes a substantial fraction of the phytoflagellate
biomass and primary production (Stoecker et al. 1998,
2000). It forms spiny cysts and high concentrations of
these resting stages are often recorded in the sea ice and
underlying water column (Garrison and Buck 1989;
Buck et al. 1992; Stoecker et al. 1992). This extremely
halotolerant species blooms in the sea ice during the
spring, when grazing pressure is relatively low, and
subsequently encysts at the beginning of the austral
summer (Stoecker et al. 1997, 1998).

Spiny cysts closely resembling those produced by
P. glacialis have been reported also from the Arctic. To
our knowledge, the first report dates back to the
beginning of the last century, when Meunier (1910)
described several species of the genus Echinus from the
Kara and Barents Seas. Two of these species, Echinus
majus and E. minus, morphologically resemble the rest-
ing cyst of P. glacialis (Table IV in Meunier 1910).
Similar resting stages have also been reported from the
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Greenland (Ikdvalko and Gradinger 1997) and Russian
Arctic Seas (Okolodkov 1998).

Motile gymnodinioid cells were isolated from sea-
water samples collected at the ice edge in the northern
region of the North Water Polynya [between Ellesmere
Island (Canada) and Greenland] in early April 1998. The
formation of spiny resting cysts resembling those pro-
duced by P. glacialis was observed in cultured material
and prompted us to investigate the relationship between
this Arctic “gymnodinioid” isolate and P. glacialis. We
studied the morphology of motile cells and cysts under
light and scanning electron microscopy (SEM) and se-
quenced the SSU of the nuclear rDNA in order to infer
phylogenetic relationships among the Arctic isolate and
a large number of dinoflagellate species.

Materials and methods

Cultures and SEM preparation

As part of the North Water Polynya Project aboard the Canadian
Coast Guard Icebreaker Pierre Radisson, phytoplankton samples
were collected with a Niskin bottle mounted on a CTD Rosette
system in northern Baffin Bay on 10 April 1998. A seawater sample
was collected at a depth of 6 m, adjacent to a 63-cm-thick ice edge
(78°35 32°W and 74°29° 32°N). Phytoplankton biomass was
dominated by the ribbon-forming pennate diatom Navicula sep-
tentrionalis (Grunow) Gran (3:10% cells 1™") and by small (2-10 pm)
flagellates (1-10° cells 17'). Concentrations of gymnodinioid cells,
resembling P. glacialis, were ca. 2:10° cells I and no spiny cysts
were seen in the sample or in an ice core collected in the adjacent ice
(M. Gosselin, personal communication). The water sample was
filtered through a sterile 2-pum polycarbonate filter, which was
placed in 0.2 pm filtered local seawater (35 psu) at 0°C, and incu-
bated under low light (ca. 20 pmol photons m™ s™") for 4 weeks. A
unialgal culture was subsequently obtained in the laboratory using
the serial dilution method (Throndsen 1995). The culture was de-
posited at the Provasoli-Guillard National Center for Culture of
Marine Phytoplankton (CCMP 2088). At the Stazione Zoologica,
the culture was maintained in K medium (Keller et al. 1987) pre-
pared with Mediterranean oligotrophic seawater adjusted to a sa-
linity of 32 psu by the addition of sterile bi-distilled water. The
culture was grown at a temperature of 2°C in continuous light (ca.
30 pmol photons m™2 s™!) provided by cool-white fluorescent tubes.
Thirty cells and 20 cysts were measured under the light micro-
scope at x1,000. Motile cells and cysts were prepared for SEM
examinations by fixation with 2% (final concentration) osmium
tetroxide for 10 min. Cells were then rinsed twice with filtered
seawater, placed on a Nuclepore filter, dehydrated with an ethanol
series, critical-point dried and coated with gold. The material was
examined with a Philips 505 scanning electron microscope.

Pigment analysis

Duplicate culture samples (3 ml) were filtered on GF/F 25-mm
filters, which were extracted in 3 ml 95% methanol (v:v) and so-
nicated on ice. The extracts were cleared using a 0.22-um Acrodisc
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filter (Gelman). A 50-ml volume of the extracts was injected in a
Thermo Separation P4000 pump and separation was done on a
reversed phase C8 Symmetry column (Waters, 150x4.6 mm,
3.5 um) thermostated at 25°C using a refrigerated circulator water
bath connected to an HPLC-column water jacket (Alltech). The
peaks were detected simultaneously by a fluorescence detector
(Spectroflow 980) and a fast-scanning absorbance detector (Spectra
Focus, scans from 400 to 700 nm). The method of Zapata et al.
(2000) was followed for elution using their mobile phase A
(methanol:acetonitrile:aqueous pyridine; 50:25:25 v:v:iv) and Bl
(methanol:acetonitrile:acetone; 20:60:20 v:v:v), with A varying
from 100% to 60% in 22 min, then decreasing to 5% at 28 min,
maintained stable from 28 to 38 min and brought back to 100% at
40 min at a flow rate of 1 ml min~'. Peaks were identified based on
retention time and spectral match with external pigment standards.
Pigments were quantified using calibration curves constructed with
commercially available standards (chlorophyll ¢,, f,f-carotene,
peridinin, diadinoxanthin and diatoxanthin from DHI Water &
Environment, Denmark; chlorophyll ¢ from Fluka).

Phylogenetic analysis

DNA was extracted from 200 ml of exponentially growing cultures,
following Klimyuk et al. (1993). The rDNA SSU was amplified
using the universal primers ss5 and ss3 (Rowan and Powers 1992)
in a PCR express thermal cycler (Hybaid). Genomic DNA (20 ng)
was amplified in 20 pl reaction mix containing 0.5 U of Taq
Polymerase (Boeringer, Mannheim), 0.04 mmol of each nucleotide
and 20 pmol of each primer. Forty cycles (1 min at 94°C, 1.5 min
at 55°C, 1 min at 72°C), with an initial denaturation step of 5 min
at 95°C, were performed. Amplified DNA fragments were purified
with the QUIAEX II purification kit (Qiagen). Purified PCR
fragments were cloned in TA vector with the TA cloning kit, ac-
cording to the manufacturer’s instructions (Invotrigen). Vector
primers (M13rv and T7) and four internal primers (Table 1) were
used as sequencing primers. Sequences were obtained with a
Beckman Ceq 2000 Automatic sequencer, using a Dye-Terminator
cycle sequencing kit (Beckman).

We increased the number of sequences included in the phylo-
genetic analysis presented by Montresor et al. (1999), adding
sequences of several Symbiodinium species in order to better test
relationships among species of the order Suessiales. The 18S
sequence obtained from the Arctic strain CCMP 2088 was aligned
with other dinoflagellate sequences available in GenBank (Saun-
ders et al. 1997; Montresor et al. 1999 and Table 2) using Clustal W
(Thompson et al. 1994) in the Bioedit 4.5.8 computer package (Hall
1999). Perkinsus marinus, Perkinsus sp. (Perkinsida) and Sarco-
cystis muris (Sporozoa) were used as outgroups in the phylogenetic
analysis, which was inferred using both distance and parsimony
analyses. To assess the phylogenetic informativeness of our data
set, g 1 and the skewness of the distribution of tree-lengths among
the parsimony trees (Sokal and Rohlf 1981; Hillis and Huelsenbeck
1992) were evaluated using PAUP* (Swofford 2002). Significance
of g 1 was compared with critical values (P =0.01) for 4-state
characters given 554 parsimony informative sites and 50 distinct
taxa (Hillis and Huelsenbeck 1992). Neighbour Joining (NJ) trees
were obtained according to the Kimura-3-parameter model, using
Neighbour option. Weighted parsimony (MP) trees were inferred
using PAUP* (Swofford 2002). The MP tree is based on 27 MP
trees and it was generated using the heuristic search TBR (tree
bisection reconnection) branch swapping option and Goloboff fit
criterion (K =2). In both analyses, bootstrap support was calcu-

Table 1 Specific internal

primers used in sequencingre Primer code Direction Sequence (5°-3") Position in the sequence
actions (F = forward,
R = reverse) PgA-F2 F CTAGAGCTAATACATGCACCAAAA 149-173

PgA-F3 F TCCAGCTCCAATAGCGTATATTAA 572-596

PgA-F5 R AGAGTTTGATTTCTCATAAGGTGC 1089-1065

PgA-R1 R CAATGATCTATCCCCATCACGATG 1548-1524
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Table 2 Strains included in the
phylogenetic analysis and
GenBank accession numbers of

Species

GenBank
accession number

Literature reference

their SSU rDNA sequences.
For taxa not listed in this table,
see Saunders et al. (1997) and
Montresor et al. (1999)

Amyloodinium ocellatum
Gymnodinium beii

G. breve

G. galatheanum

G. simplex

G. varians, strain CCMP 421

Gyrodinium aureolum, strain KT-77D

Pfiesteria piscicida
Pfiesteria sp.

Polarella glacialis, strain CCMP 2088
Symbiodinium sp., type A (Symbiodinium sp. 1)*
Symbiodinium sp., type E (Symbiodinium sp. 2)*
Symbiodinium sp. (Symbiodinium sp. 3)*
Symbiodinium sp., strain Fsl (Symbiodinium sp. 4)*

# The numbers listed in
brackets identify the different
symbiodinium strains on the
phylogenetic tree in Fig. 3

Litaker etal. (1999) AF080096
Gast and Caron (1996) U41087

Tengs et al. (2000) AF172714
Tengs et al. (2000) AF172712
Gast and Caron (1996) U41086

Saldarriaga et al. (2001) AF274279
Tengs et al. (2000) AF172713
Oldach et al. (2000) AFO077055
Oldach et al. (2000) AF218805
This study AY179607
Tolleret al. (2001) AF238256
Tolleret al. (2001) AF238261

Langer and Lipps (1995) AF182822

Darius et al.(2000) AJ271765
Symbiodinium sp., strain Gf4 (Symbiodinium sp. 5)* Darius et al.(2000) AJ271755
Symbiodinium sp., strain PLCC-1 (Symbiodinium sp. 6)* Carloset al. (1999) AB016538
Symbiodinium sp., strain CS-156 (Symbiodinium sp. 7)* Carloset al. (1999) AB016594

lated using 1,000 bootstrap replicates. Genetic distance and
sequence polymorphism between Polarella glacialis (strain CCMP
1383) and the Arctic strain CCMP 2088 were evaluated using
Bioedit 4.5.8 (Hall 1999) and DNAsp 3.0 version (Rozas and Rozas
1999), respectively.

Results
Morphology

The morphology of motile cells and cysts of strain CCMP
2088 fit within those described for Polarella glacialis,
strain CCMP 1383 (Montresor et al. 1999). Strain CCMP
2088 motile cells are 9.0-14.3 um long and 6-10.8 um
wide. The epitheca is rounded and the hypotheca is
slightly elongated and dorso-ventrally flattened
(Fig. 1A-F). Three longitudinal series of thin thecal
plates are visible on the epitheca, two in the cingulum
(Fig. 1D, E) and four in the hypotheca. No apical groove
or acrobase is present on the epitheca (Fig. 1B). The
thecal plate arrangement in the sulcal area is only par-
tially visible (Fig. 1A). Cysts are 11.6-14.3 um long and
7.3-10.8 um wide, spines excluded. Cysts are ornamented
by seven longitudinal series of spines (Fig. 1G-I), whose
arrangement matches that of thecal plates on the epitheca
and hypotheca. No spines are present in the cingular
and sulcal regions (Fig. 1G, H). Larger cells (16.9-18 um
long and 14.7-15.6 um wide), which were possibly pla-
nozygotes, were occasionally seen in the culture.

Pigments

HPLC analysis confirmed the presence of chlorophyll ¢,,
peridinin, cis-peridinin, dinoxanthin, f, fi-carotene and
the xanthophyll cycle pigments, diadinoxanthin and di-
atoxanthin (Fig. 2). The percent composition (% of total
weight) shows that peridinin is the major accessory pig-
ment (34.7%, Table 3), followed by chl ¢ , (10.5%) and
diadinoxanthin (5.6%), all the other pigments account-

ing for less than 2% (Table 3). Minor amounts of chl «
derivatives, allomer and epimer, were present, account-
ing for 4% of the sum of chl a and these derivatives.

Phylogenetic relationships

The SSU of rDNA of strain CCMP 2088 is 1,794 bp
long; the whole sequence was included in the analysis.

Fig. 1A-1 Polarella glacialis (strain CCMP 2088), SEM (A-H) and
light (I) micrographs of vegetative cells and cysts. Vegetative cell,
ventral view (A); the same cell, detail of the epitheca (B); the same
cell, lateral view (C); vegetative cell, dorsal view (D); the same cell
tilted to show the antapical part of the hypotheca (E); dorsal view
of a vegetative cell partially covered by the external membrane
covering the thecal plates (F); resting cyst, ventral view (G); resting
cyst, apical-ventral view (H); resting cysts, light micrograph (I).
Scale bars: A-F 2 ym; G, H 5 um; 110 um
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Calculation of g; confirms the informativeness of our
data set, showing a value of —0.60, which is significantly
lower than the theoretical threshold value (-0.09, at
P=0.01) calculated for the 50 taxa we analysed and the
554 parsimony informative characters. Distance and
parsimony trees showed the same topology and only the
distance tree is shown here (Fig. 3). The SSU rDNA
phylogenetic trees show a clear polytomy at the base.
However, the clade grouping all Symbiodinium spp.,
Gymnodinium béii, G. simplex , Polarella glacialis and the
Arctic isolate CCMP 2088 has an extremely strong
bootstrap support (100%). Within this major clade, two
subclades were evident. All of the Symbiodinium species
(100% bootstrap support) were in the first group,
and Polarella glacialis from the Antarctic (CCMP 1383),
the Arctic isolate CCMP 2088, along with G. béii and
G. simplex (98% bootstrap support), were in the second
group. Sequence polymorphism, calculated for Polarella
glacialis (strain CCMP 1383) and strain CCMP 2088,
showed a similarity value of 99.7%. Six variable sites
were detected between the two sequences, none of which
were parsimony informative.

Discussion

Our investigation demonstrated that the gross mor-
phology of motile cells and cysts and the plate pattern of
motile cells of the Arctic dinoflagellate strain CCMP
2088 fit those described for Polarella glacialis, a species
recently described from the Antarctic (Montresor et al.
1999). HPLC analysis showed a general similarity in
percent composition of pigments among the Arctic
strain CCMP 2088 and two Antarctic strains of Pola-
rella glacialis (CCMP 1383 and FL1B, Thomson et al.
2003). All these isolates showed a pigment composition

10 20 30 40

Retention Time (min)

typical of most dinoflagellates (Jeffrey et al. 1997),
dominated by the accessory carotenoid peridinin, the
only difference being a slightly higher content of chl ¢,
and peridinin in strain CCMP 2088.

Molecular analyses showed that the two strains group
in the same strongly supported clade and their SSU
rDNA sequences are characterised by high similarity
values, differing only by six base pairs. The level of di-
vergence recorded between the two strains in a relatively
conserved region such as the SSU rDNA, raises ques-
tions concerning the assignment of the two strains to the
same species. There are no absolute rules for determin-
ing taxonomic rank among protists (Patterson 1999),
and defining species boundaries among closely related
taxa is somewhat arbitrary. Although molecular data
are valid for testing genetic relationships among closely
related taxa, in order to assign genotypes to different

Table 3 Photosynthetic pigment content and composition (% of
total pigments) of strain CCMP 2088, compared with cultures of
Antarctic Polarella glacialis (strain CCMP 1383 and Davis sea-ice
strain FL1B, from Thomson et al. 2003)

Pigment CCMP 2088 CCMP 1383 FLIB
Total Chla (ug ml™) 0.5 0.2 0.3
Chla:Chl ¢, wt ratio 3.9 8.5 7.7
Peridinin:Chla wt ratio 0.9 0.5 0.7
Percent composition
(% of total pigment wt)
Chla (incl. allomer + epimer) 44.3 51.2 44.3
Chl ¢, 10.5 6.1 5.7
Peridinin 34.7 24.4 31.1
Cis-Peridinin 1.7 1.3 1.1
Dinoxanthin 1.8 2.1 2.4
Diadinoxanthin 5.6 11.0 10.9
Diatoxanthin 0.1 0 0
B, p-carotene 1.3 1.3 1.6
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Fig. 3 Phylogenetic tree derived
from Kimura-3-parameter
distance model using
Neighbour Joining
reconstruction. The bootstrap
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taxonomic entities, genetic information must be cor-
roborated by information on morphological features,
life-cycle or ecological traits (e.g. Medlin et al. 1991;
Page and Charleston 1997; Larsen 1999; Templeton
et al. 2000; Nichols 2001). The same DNA regions
evolve at different rates even among similar organisms
(Pawlowski et al. 1997). Moreover, cryptic species,
morphologically identical but genetically distinct popu-
lations (van Oppen et al. 1996; Montresor et al. 2003),
confound the interpretation of genetic versus classical
morphology-based taxonomy.

Geographical separation is an important mechanism
for speciation, even among planktonic groups (Palumbi
1994), but there are few studies of bipolar protist dis-
tributions using molecular techniques. Darling et al.
(2000) described patterns of genetic divergence among
Foraminifera species with bipolar distributions. In some
recognised morphospecies, identical SSU haplotypes

Sarcocystis muris

ons/site

were present in both Arctic and Antarctic isolates while,
in others, isolates from the same geographic region had
up to 10% sequence variability. Among photosynthetic
taxa, Phaeocystis pouchetii and Phaeocystis antarctica
are abundant colony-forming haptophytes that have
been described as two distinct species, although their
SSU rDNA sequences differ by only six to seven nucle-
otides (Medlin et al. 1994), a genetic distance compa-
rable to that recorded among the Arctic and Antarctic
strains of Polarella. Phaeocystis pouchetii is common in
cold temperate regions in the northern hemisphere, while
Phaeocystis antarctica is restricted to the Southern
Ocean. In addition to differences in the SSU rDNA se-
quences, the two species are morphologically distinct
both in their colonial and motile stages. Moreover the
northern hemisphere and Antarctic Phaeocystis have
different growth—temperature ranges (Medlin et al.
1994). In this case, with discernible morphological and



ecological differences, the two forms of Phaeocystis are
considered different species.

Compared to planktonic forms, there are fewer in-
vestigations using molecular techniques aimed at testing
the genetic structure of sea-ice-biota organisms with
bipolar distribution (Vincent 2000). Circumpolar distri-
butions may be a common feature for planktonic
organisms, due to the mixing effect of the Antarctic
Circumpolar Current which encircles the Antarctic
continent every 1-2 years and the large-scale transport
processes over the Arctic Basin (Aagaard and Carmack
1994). Thomson et al. (2003) indeed found that popu-
lations of Polarella glacialis from opposite sides of
Antarctica (CCMP 1383 from McMurdo Sound and an
East Antarctica isolate) differed little, with 0.2%
sequence divergence in 1,366 base pairs in the LSU
rDNA, and suggested that the species has a circumpolar
distribution. Comparable data on Arctic Polarella dis-
tribution and genetic variability are required. For the
time being, we have attributed the Arctic strain CCMP
2088 to the species Polarella glacialis, although further
studies on the genetic variability within the two bipolar
populations, and thus on the extent of genetic flow be-
tween them, on their life-cycle, ecology and physiology
could confirm or reject their co-specificity.

Our information on the biogeographic range of
Polarella glacialis is scanty, with reports mainly from the
Antarctic region (Garrison and Buck 1989; Buck et al.
1992; Stoecker et al. 1992, 1998; McMinn and Hodgson
1993; Marino et al. 1994; McMinn 1996; Moro et al.
2000; Thomson et al. 2003) with reports of cysts from
the Arctic (Meunier 1910; Ikédvalko and Gradinger 1997;
Okolodkov 1998). To our knowledge, this species has
only been reported from polar regions, but we cannot
rule out completely the possibility that it could have
a wider biogeographic range. The identification of
the motile stage of this unarmoured dinoflagellate in
phytoplankton samples is difficult due to the poor pre-
servability of their shape after the routine fixation pro-
cedures. Moreover, the extremely thin thecal plates can
be visualised only after SEM preparation, which further
limits identification at the species level. The very dis-
tinctive spiny cyst of Polarella glacialis represents the
most reliable morphological character for the detection
of this species. These cysts are, however, destroyed by
harsh acid treatments often used for the preparation
of sediment samples and even by milder acetolysis
(McMinn 1995; Montresor et al. 1999). Polarella gla-
cialis cysts have been found in the upper centimetres of
core samples collected in Antarctic waters but they were
never present at greater burial depths (McMinn 1995).
This confirms the reduced preservability of these cysts
and hampers the possibility of reconstructing the dis-
tribution of this species even over relatively limited time
scales.

The finding of Polarella glacialis both in Antarctic
and Arctic sites raises interesting questions concerning
the evolutionary history of this species and/or its dis-
persal routes. Bipolar distribution patterns have been
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reported for several marine plants and animals, includ-
ing planktonic taxa, and several hypotheses have been
put forward to explain this peculiar biogeographical
pattern (e.g. Fryxell et al. 1981; Crame 1993; Pierce and
Turner 1993; van Oppen et al. 1993, 1994; Darling et al.
2000). Unfortunately, there are no data allowing the
calibration of a “molecular clock” for dinoflagellates
and we cannot infer the time of separation of the two
Polarella glacialis populations based on their genetic
divergence. The two latitudinally disjunct populations
could represent examples of a paleoclimatic vicariant
event that could have occurred either during the
Miocene (27-7 mya ago) or during the Pleistocene gla-
cial maximum (18,000 years BP). In these periods, ice
margins of the two hemispheres were much closer than
at the present time, and this could have allowed one
population to colonise the opposite hemisphere. The
tropical seawater belt constitutes a strong barrier for the
survival of cold-water phytoplanktonic organisms,
which rely on photosynthesis and live in surface waters.
Gene flow between Arctic and Antarctic populations of
planktonic foraminifers has been reported (Darling et al.
2000) and Polarella glacialis has a potential advantage
over planktonic Foraminifera, since it produces resting
cysts, which could provide resistance to adverse tem-
perature and environmental conditions. It is thus pos-
sible that encysted stages of Polarella glacialis could
have been transported across the tropical waters in
recent times through long-range transport, either via
ocean currents, atmospheric circulation, ballast waters
or biological vectors, e.g. trans-polar bird migration. An
alternative and highly debated hypothesis is that marine
microorganisms have a cosmopolitan distribution pat-
tern (Finlay 2002) and only in specific and favourable
conditions can reach higher biomass. However, more
information on the genetic structure and relatedness of
marine protists are needed in order to support or reject
this hypothesis.

Phylogenetic analyses place the two strains of Pola-
rella glacialis within the major clade that groups species
of the genus Symbiodinium. Physiological and molecular
data provide evidence that Symbiodinium is most prob-
ably a highly diversified genus, including several cryptic
species (e.g. Rowan and Powers 1992; Carlos et al. 1999)
that form symbiotic associations with a wide range of
marine invertebrates. Most Symbiodinium species lack
readily discernible morphological features (LaJeunesse
2001), and for only a few of them has the motile, free-
living stage been described (e.g. Loeblich 11T and Sherley
1979; Trench and Blank 1987). The arrangement of
thecal plates represents one of the most important fea-
tures on which the taxonomic framework of extant and
fossil dinoflagellates is based (Fensome et al. 1993). The
order Suessiales was established within the subclass
Gymnodiniphycidae for grouping taxa whose amphies-
mal vesicles (thecal plates) are not randomly distributed
around the cell, but arranged into seven to ten latitudi-
nal series (Fensome et al. 1993). Molecular phylogenetic
studies based on the sequences of the SSU nuclear
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rDNA support the monophyletic origin of the order
Suessiales (Saunders et al. 1997; Montresor et al. 1999;
Saldarriaga et al. 2001) and our analyses, carried out
using a larger set of sequences of Symbiodinium species,
further confirm this conclusion. The close phylogenetic
relationship among Polarella glacialis and symbiotic
dinoflagellates raises puzzling questions concerning their
evolutionary history. The free-living G. simplex and the
two Polarella glacialis strains have a basal position in
the Suessiales clade, as compared to Symbiodinium spp.
This could suggest an older lineage of free-living dino-
flagellates from which endosymbiotic species could have
subsequently evolved. A thin link to this hypothesis is
represented by the morphological resemblance of Pola-
rella glacialis cysts with very old fossil dinoflagellate
cysts, dating back to the Triassic and Jurassic (Bucefalo
Palliani and Riding 1997).

The two strains of Polarella glacialis group into a
subclade of the order Suessiales, together with G. béii
Spero and G. simplex (Lohmann) Kofoid and Swezy.
The large genus Gymnodinium includes unarmoured
species, which share the character of having epicone and
hypocone of similar size. Recent ultrastructural and
molecular studies provided evidence that this genus
represents, in fact, an artificial lumping and that it in-
cludes markedly diversified organisms that should better
be split into different genera (e.g. Daugbjerg et al. 2000).
This is evident also from the results of our phyloge-
netic analysis, where several “Gymnodinium” species are
scattered among distant clades. G. béii was described as
a symbiont of the planktonic foraminifer Orbulina uni-
versa (Spero 1987). This species has a small, free-living
motile stage, whose general shape is reminiscent of Po-
larella glacialis, in having a slightly conical hypotheca
bearing a distinct flange projecting over the sulcus from
its left side. G. béii motile cells have thin thecal plates,
which are visible in TEM thin sections. However, the
thecal plate pattern was not described. G. simplex is a
small-sized, featureless gymnodinioid species. The pres-
ence of thin thecal plates has been illustrated (Dodge
1974) but the plate pattern is also unknown for this
species. The emended diagnosis for the genus Gymn-
odinium states for unarmoured dinoflagellates, with a
cingulum displacement of one or more cingulum width
and a horseshoe-shaped apical groove running in an
anticlockwise direction. Ultrastructural features include
a nuclear envelope with vesicular chambers and the
presence of a nuclear or dorsal fibrous connective
(Daugbjerg et al. 2000). All these ultrastructural details
are lacking both for G. béii and G. simplex. Further
studies are thus necessary to achieve a correct phyloge-
netic assignment for these two species and to trace
phylogenetic relationships among them and Polarella
glacialis.

When Meunier (1910) described the genus Echinus, he
was not able to place it within any known planktonic
phylum. However, it is interesting to mention that he
speculated about a possible rough resemblance between
the spiny cells and dinoflagellates, although he pointed

out the absence of cingulum and thecal plates. He also
put forward the hypothesis that they could have been
spores of some species living in the snow and, indeed, E.
majus and E. minus turned out to be the cysts of Pola-
rella glacialis. Meunier (1910) also hypothesised that
these tiny cells could be symbionts of unknown organ-
isms. We now know that Polarella glacialis has a free-
living habitus. Perhaps the confined physical space
within brine channels promotes specific microbial con-
sortia and Polarella glacialis, as part of this community,
is the photosynthetic symbiont, with the sea ice pro-
viding structure! Speculations aside, the phylogenetic
relationship of Polarella glacialis with endosymbiotic
dinoflagellates and the basal position in the phylogenetic
clade of the order Suessiales provide a stimulating per-
spective on the evolutionary history of this important
and intriguing group of species.
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