
An Experimental Design for Evaluating the Maintainability
of Aspect-Oriented Models Enhanced with

Domain-Specific Constructs∗

Aram Hovsepyan, Stefan Van Baelen, Riccardo Scandariato, Wouter Joosen
DistriNet, Katholieke Universiteit Leuven

Celestijnenlaan 200A
BE-3001 Leuven, Belgium

{first.last}@cs.kuleuven.be

Serge Demeyer
Universiteit Antwerpen (UA)

Department of Mathematics and Computer Science
Middelheimlaan 1,

BE-2020 ANTWERPEN
{first.last}@ua.ac.be

ABSTRACT
Abstraction, modularity and composability are considered
to be the fundamental properties behind aspect-oriented soft-
ware development and aspect-oriented modeling (AOM) in
particular. The same properties are expected to be sup-
ported through the use of domain-specific modeling lan-
guages (DSMLs). However, little research is done to in-
vestigate the symbiosis between the two paradigms. In this
position paper we firstly present the key challenges for the
successful integration of DSMLs with an AOM approach.
Furthermore, we elaborate in detail on the question whether
leveraging on aspect-oriented programming languages offers
benefits over the use of traditional model composition. We
propose an experimental approach to evaluate these alter-
natives.

1. INTRODUCTION
Modularization and levels of abstraction are key software

engineering concepts that can help one to master the in-
creased complexity of software applications [22]. In this
context, aspect-oriented software development and aspect-
oriented modeling (AOM) in particular is an important and

∗The described work is part of the EUREKA-ITEA
EVOLVE project, and is partially funded by the Flem-
ish government institution IWT (Institute for the Promo-
tion of Innovation by Science and Technology in Flanders),
by the Interuniversity Attraction Poles Programme Belgian
State, Belgian Science Policy, and by the Research Fund
K.U.Leuven.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 200X ACM X-XXXXX-XX-X/XX/XX ...$10.00.

promising step towards a new dimension in the modulariza-
tion and separation of concerns [28]. Also, domain-specific
modeling languages (DSML) research community is trying
to stress the importance of DSMLs in reducing and bridging
the abstraction gap between the problem and solution do-
mains [16]. However, to our best knowledge, little research
is done to investigate the synergy between these two disci-
plines [14, 29].

AOM is a model-driven engineering (MDE) approach that
supports the definition and use of concept-specific view-
points (also referred to as concerns/aspects/modules/etc.)
and focuses on providing support for separation of concerns
at higher levels of abstraction [10, 26]. Each viewpoint de-
scribes how a concern is addressed in a design, hence, each
concern can be developed individually without overwhelm-
ing the developers with irrelevant details of other modules.
Moreover, in theory, each concern could be developed by the
most suitable team of experts. AOM approaches typically
provide support for composing the individual viewpoints to
obtain an integrated design view.

In order to specify each concern in the most optimal man-
ner, we promote to combine AOM and DSMLs [14]. This
could be done by offering the developer the choice of using
a DSML or a general-purpose modeling language (GPML)
in case no suitable DSML exists. Most of the existing AOM
approaches (e.g., [2, 12, 13, 24]) use UML and its extension
mechanisms for expressing all concerns. However, given the
expressiveness and the raised abstraction that the DSMLs
provide [16, 19], one could potentially improve the speci-
fication of concern models in current AOM methods when
the developers can use an optimal DSML for each of the
concerns involved.

In this position paper we further discuss the synergy be-
tween DSMLs and AOM, and outline the key challenges
that come with this combination. We elaborate further on
one of the challenges, namely given a modularized design
along with the composition specification that outline the
correspondences between the different concerns, where the
actual composition should take place. The first option is

using a model-to-model transformation and performing a
model composition. The second alternative is transform-
ing the design models to an aspect-oriented platform, where
the low-level aspect weaver performs the composition at the
byte-code level, i.e., code weaving.

The paper is structured as follows. In section 2, we present
our position on the synergy between DSMLs and AOM and
illustrate that the fundamental properties of both paradigms
are similar and complementary. Furthermore, we present
two alternative development process flows, namely, model
composition of the modularized concerns versus model-to-
code transformation where code weaving is performed by an
aspect weaver. In section 3, we propose an empirical evalua-
tion method to investigate and compare the two alternative
process flows. Section 4, describes the potential challenges
of the proposed method. Finally, we conclude and sketch on
our future work.

2. THE SYNERGY BETWEEN DSMLS AND
ASPECTS

Concerns are an important motivation for organizing and
decomposing software into manageable and comprehensible
parts [21]. We use the term concern to uniformly refer to
what aspect-oriented software development practitioners of-
ten call an aspect concern and a base concern [17]. The
base concern typically represents the functional backbone of
a given application, whereas different aspect concerns rep-
resent functional and non-functional modules that augment
the core. We treat abstraction, modularity and compos-
ability as the fundamental properties that define aspect-
orientation rather than quantification and obliviousness [9,
23].

2.1 Domain-Specific Models are Aspects
DSMLs are often small languages providing a notation

that is very close to the problem domain and quite intuitive
for the domain experts. This is why DSMLs are said to raise
the abstraction level of the language [16]. A DSML pro-
vides a language to describe a view of the system, focusing
on the elements that are relevant to that particular view.
A single DSML is rarely sufficient to describe all the sys-
tem views. This is why we believe that modularity is a
fundamental property of the DSML paradigm as one would
typically need a number of DSMLs to describe each view of
a complex system. Finally, given the modular and abstract
system viewpoints, one would eventually need to specify the
correspondences between the different viewpoints, i.e., spec-
ify their composition [5, 14, 29]. Thus, a systematic ap-
proach that allows the specification of a complex system
using a number of viewpoints expressed in DSMLs is by def-
inition an AOM approach. On the other hand, an AOM ap-
proach may benefit from the abstraction raise that DSMLs
provide by specifying certain concerns in a dedicated DSML.

We believe there are three key issues for the successful
integration of DSMLs and AOM.

2.1.1 DSML Availability
Although DSMLs for various domains have started to emerge

(e.g., XACML for the specification of access control policies
[20], WSLA for service-level agreements [15]), the number
of standardized DSMLs (or at least recognized by a commu-
nity) is limited. The development of a DSML requires highly

specialized skills and may prove to be very costly [19]. In
addition, GPMLs (e.g., UML) remain very suitable for the
specification of certain system concerns, such as most func-
tionality related issues. Hence, ideally, an integrated AOM-
DSML approach should allow the developer to select either
a suitable DSML for a given concern or to fall back on the
default setting of using a GPML.

2.1.2 Composition Specification
Even if suitable DSMLs are available, the matter of speci-

fying the composition of concerns expressed in different mod-
eling languages is extremely challenging [29]. There is a
growing number of approaches that address the problem of
DSML composition (e.g., [4, 7, 31]), however, they require
that the input DSMLs belong to the same technical space,
i.e., share a common metamodel [18]. In [18] Kurtev et al.
stress the importance and the need for concern specification
and composition across technical spaces. So far, a limited
number of approaches have addressed the problem of bridg-
ing technical spaces [14, 18].

2.1.3 Composition Output
Finally, even if all the building blocks for the specification

and composition of the heterogeneous domain-specific con-
cerns are present, it is still unclear what would be the next
step in the development process. The traditional AOM ap-
proaches (e.g., [2, 24]) typically implicitly suggest perform-
ing the composition at the modeling level and obtaining an
integrated system view. However, the output formalism of
the model composition step involving different modeling lan-
guages (i.e., a mix of a GPML and DSMLs) is not obvious.
Firstly, if the input DSMLs do not share a common meta-
model, having an integrated output modeling language may
be impossible (e.g., consider combining an XSD-based and
an EMF-based modeling language). Moreover, even if the
input modeling languages share a common metamotel and
it would be possible to combine them, it could become too
complex to be usable by developers [29].

A possible solutions is the homogeneous transformation of
all DSML specifics matters to a GPML or a general-purpose
programming language. This option would require a trans-
formation bridge to the selected GPML for each DSML. An
alternative approach is keeping the domain specific concerns
as they are and introducing DSML interpreters written in
a general purpose programming language (e.g., Java). Con-
cerns that are specified in a GPML are transformed into the
same general purpose programming language in which the
interpreters are implemented.

However, in both cases it still remains unclear where the
actual composition should take place. One of the possi-
ble choices is to perform the composition at the modeling
level (or just before code generation inside the model-to-code
transformation tool) and produce code that fully composes
all concerns. On the other hand, one could also preserve the
modularization by leveraging on aspect-oriented implemen-
tation platforms, thereby leaving the actual composition to
be performed by the aspect weaver. Clearly, this choice is
not neutral. Rather, it has a direct impact on several dimen-
sions, such as productivity of developers, quality of the final
product, ease of maintenance of the artifacts, and several
other matters. In the remainder of this paper we focus on
this issue in the context of system maintainability and we
propose a detailed empirical evaluation strategy to compare

Figure 1: Model composition

Figure 2: Code weaving

the two alternatives.

2.2 AOM-DSML approach
In order to illustrate the two alternatives we will build up

on an approach that allows the combination of core system
structure and functionality (expressed in UML) with mod-
ularized access control policies and service-level agreements
expressed in a domain-specific language [14]. We have se-
lected to use XACML, which is a de facto standard domain-
specific language for expressing access control policies [20].
Furthermore, we have chosen WSLA for the specification
of service-level agreements [15]. WSLA is used by many
projects, in particular in academia. Moreover, WSLA is
the predecessor of WS-Agreement that is currently the new
standard initiative in the domain of service-level agreements.

The top part of figure 1 illustrates schematically how the
concerns can be modularized and modeled. The base struc-
ture and functionality (1) is specified using UML class di-
agrams. The access control policies (2) are specified in
XACML. Analogously, WSLA language is used to specify
service-level agreements (3) involving certain services that
are to be offered by the application. In order to specify
the composition between the three concerns, we follow the
approach presented in [14]. This AOM-DSML approach re-
quires the creation of the so-called concern interfaces for
both the access control concern and the SLA concern. Each
concern interface specifies the information that is required
by the concern from the base application. Finally, two com-
position models specify the correspondences between the
viewpoints (functionality, access control and SLA viewpoint).

2.3 Model Composition
The first alternative is to merge the concerns at the mod-

eling level by performing model composition and producing
object-oriented source code. Even though model composi-

tion does not necessarily imply the use of object-oriented
programming languages, it is the closest match in terms of
abstractions used. A number of existing AOM approaches
imply that this option is followed (e.g., see [3, 13, 24]). The
main advantage of this approach is that the composition
complexities are not propagated to the code so that the de-
veloper has to face it only at the modeling level.

2.4 Code Weaving
The second process alternative (depicted in figure 2) starts

from the same aspectual model. This time, however, the
concerns are kept modularized all the way down to the source
code. A model-to-code transformation tool is used to trans-
form each modularized concern to the code level. The com-
position models are reflected at the code level by a set of
aspect-oriented pointcuts . The composition itself is per-
formed by the aspect code weaver that produces a composed
byte-level code (not shown on the figure). Several AOM ap-
proaches follow this alternative (e.g., see [2, 12]).

Note that both alternatives start from the same specifica-
tion at the modeling level. In addition, the presented AOM-
DSML approach only allows for a semi-automatic code gen-
eration.

So far we have described the need for AOM approaches
to support the selective use of a GPML or a more suitable
DSML for specifying concerns. Given that such DSMLs do
not always share a common metamodel we are interested
what is the best way to implement the composition logic.
The first alternative is performing the composition at the
modeling level (or during the code generation) whereas the
second option is leveraging on an AOP weaver by generat-
ing suitable pointcuts and advice. In the next section we
present a roadmap of investigating this problem using em-
pirical evaluation techniques.

3. EMPIRICAL EVALUATION
In order to evaluate the two process flow alternatives pre-

sented in the previous section, namely model composition
and code weaving, we propose to conduct an empirical in-
vestigation that focuses on the problem statement in a cer-
tain perspective, i.e. maintainability. In a typical software
life-cycle, it is the maintenance that brings the highest cost
in terms of overall effort and time spent.

Ideally, any empirical evaluation should be performed us-
ing a variety of different techniques that build up the“weight
of evidence” in support of a certain hypothesis. We propose
two quantitative methods and a qualitative method as a
blueprint for our experiment.

3.1 Quantitative 1: Internal Metrics
The first track of the quantitative investigation involves

a static analysis of the final systems obtained by the alter-
native approaches. The analysis focuses on determining the
internal quality attributes of the systems (e.g., size, com-
plexity, modularity) by collecting a number of metrics well-
known in the literature (e.g., lines of code, coupling, cohe-
sion, scattering, tangling) [6, 25].

3.1.1 Motivation
The main motivation for using this technique lies in its

simplicity. Given the availability of tools that can automat-
ically perform a static analysis of a system, it costs virtually
no effort to collect and compare these metrics. In addi-
tion, this evaluation technique is widely used in the litera-
ture (e.g., [8, 11]).

3.1.2 Drawbacks
Unfortunately, up till now there are no universally ac-

cepted and crisp models for predicting externally observable
system qualities (e.g., maintainability) based on the inter-
nal quality attributes. Even though certain papers succeed
in providing such predictability models (e.g., [11]), they are
typically limited in their scope and can rarely be reused
in other studies. In general, the link between the external
quality attributes and the internal metrics has only been hy-
pothesized so far, but never proven. In addition, given the
presence of models and partially automatic generation of the
code, the internal source code quality has even smaller im-
pact on the external quality attributes. Hence, the results of
the static system analysis will generate an initial intuition,
but are unlikely to provide a solid evidence.

3.2 Quantitative 2: User Study
The second quantitative investigation requires a carefully

designed process that provides measurements for the exter-
nally observable attributes of the system (e.g., maintainabil-
ity, understandability). Such process is important as it can
be used as checklist and guideline of what to do and how
to do it. Figure 3 illustrates the process that we will use in
designing the user experiment [30].

Definition. The first step is definition of the experiment
where a hypothesis has to be clearly defined. The
study of the internal quality attributes from section
3.1 typically provides an initial idea which of the two
alternatives under investigation is likely to be better.
Hence, it is possible to state the null hypothesis along
with the hypothesis. The main intention of the exper-

1. Definition

2. Planning

3. Operation

4. Analysis &
Interpretation

5. Conclusion

Figure 3: Process [30]

iment is to try to refute the null hypothesis in favor of
the hypothesis.

Planning. During this step we will determine the context
of the experiment and the overall experiment design in-
cluding the measurement scales. It is essential to pro-
vide background information on experiment subjects.
Furthermore, instrumentation should be discussed as
part of the design. Finally, at this stage it is important
to consider the validity of the results.

Operation. This activity consists of preparation, execution
and data validation. At the preparation step, one must
prepare the subjects as well as the materials and in-
struments needed. The actual execution typically does
not raise any crucial issues. Finally, one must ensure
that the collected data is correct and provide a valid
picture of the experiment.

Analysis & Interpretation. The data collected during the
experiment operation is the input to this activity. Typ-
ically the data is first analyzed using descriptive statis-
tics, which allows one to understand and interpret the
data informally. Then using associative statistics one
could reflect on the null hypothesis and reject or accept
it.

Conclusion Finally, given the results of the previous step,
one can reflect on the experiment goals and build a
conclusion.

3.3 Qualitative: User Interviews
Virtually any software engineering issue is best investi-

gated using both quantitative and qualitative methods. Qual-
itative methods can actually help the researcher explain the
quantitative results. The two most common means for qual-
itative data collection are interviews and questionnaires [1].

We plan on using the structured interviewing technique to
gain some insights into the results. A structured interview
follows a fixed list of carefully selected questions. Questions
can be either closed or open. Closed questions are similar
to the questionnaires where the participant has to chose be-
tween a list of possible answers. Open questions allow for
greater interaction and can help one to obtain less expected
responses from the participants.

4. CHALLENGES
Similar to any empirical experiment there are a number

of threats to the validity of the user study as described in
section 3.2. In this section we outline three of the most im-
portant challenges concerning the validity of the experiment.

4.1 Selection of the Maintenance Tasks
The maintenance tasks selected for the experiment should

be as realistic and representative as possible. However, the
potential number of such tasks for any given system is virtu-
ally endless. We believe that it is essential to select a mix of
tasks based on the idea of a cause and effect relationship. As
an experiment designer one has certain beliefs about the re-
lationship between a cause construct and an effect construct.
For instance:

• we expect that the code weaving treatment would re-
quire less effort for a broad class of tasks that affect
the crosscutting concerns;

• we expect that there would be no differences in the
treatments that affect non-crosscutting concerns;

• we expect that the model composition treatment pro-
vides a more explicit overview of the program execu-
tion flow and would result in less errors in certain
situations involving crosscutting concerns where the
code weaving treatment suffers from the fragile point-
cut problem [27].

Based on these expectations we will formulate a number of
hypotheses and select tasks that would tests them.

Note that many real-life maintenance tasks require days
or even weeks before their completion. Unfortunately, it is
not feasible to have such tasks in our experiment, hence, we
will have to design tasks of relatively short duration. Given
this constraint it is also likely that the selected tasks will
also have a rather local impact on the system. Tasks that
require some global refactoring will typically last substan-
tially longer.

4.2 Selection of the Participants
Provided the mix of the technologies and expertise re-

quired for the use of AOM-DSML approach outlined in sec-
tion 2, it is obvious that the selection of the participants
is crucial. Ideally, participants should be experts in UML,
Java, AspectJ, XACML and WSLA. However, it is highly
unlikely that we will be able to find such participants. Hence,
it is essential to minimize the risk of obtaining results that
will not be valid in case the experiment is repeated with ex-
perts. There are a number of different techniques that could
help minimize this threat.

Blocking is a technique that is used to systematically elim-
inate the undesired effect (e.g., learning factor for a certain
technology) in comparison among the treatments. Within
one block, the undesired effect is the same and one could
study the effect of the treatments on that block. More specif-
ically, we will block the subjects into pairs where within each
pair we will try to match the two participants as closely as
possible with respect to their skills. This will lower the effect
of the difference in expertise amongst the subjects. More-
over, we will require the subjects within each pair to perform
half of the maintenance tasks using one treatment and the
rest using the other treatment. Both subjects will do all

the maintenance tasks in the same order but using opposite
treatments. We will use statistical analysis methods that
perform a pair-wise comparison (e.g., Wilcoxon signed-rank
test) in order to further increase the precision of the exper-
iment.

Each maintenance task requires both modeling and coding
effort. Given that the modeling effort in both alternative
treatments is the same, in theory, we could split the two
efforts and discard the modeling effort. We could go even
further by actually providing the modifications required at
the modeling level. This will lower the impact of having
participants that are novices in modeling technologies.

4.3 Investigating the Cause and Effect Rela-
tionship

Although as experiment designers have an idea of the
cause and effect relationships, sometimes unforeseen, but in-
teresting factors could arise and play a crucial role. In order
to investigate the cause and effect relationship in greater de-
tail we will opt for individually supervised experiment. With
this setup the supervisor gets the opportunity to observe
the course of the experiment and note any interesting ac-
tions or events. The individual observations could rise new
hypotheses. While in the long-term the experiment could
be repeated with the new hypotheses, the qualitative study
(see section 3.3) could be used as a short-term technique to
confirm or refute the new hypotheses.

Experiment calibration is another technique that we could
use in order to explore the cause and effect relationship be-
fore performing the user study. During a calibration step, a
pair of participants is asked to perform the selected mainte-
nance tasks with the sole intention of monitoring the course
of the experiment.

5. CONCLUSION
In this position paper we have presented the importance

and the advantages of investigating a symbiosis between
aspect-oriented modeling (AOM) and domain-specific mod-
eling languages (DSML). Given the limited scope of the typ-
ical DSMLs, each domain-specific model can be considered
being an aspect as it is modular and focused around a certain
concern in the system. Moreover, a single DSML is rarely
sufficient on its own to allow one to describe the whole sys-
tem. Hence, there is a need for the composition operation
whenever DSMLs are used. Precisely the three properties
of modularity, abstraction and composition are defined as
fundamental for aspect-oriented software development. Fur-
thermore, given an integrated AOM approach that allows
the use of various DSMLs from different technical spaces
for concern specification, we have proposed an empirical re-
search roadmap in order to evaluate whether keeping the
concerns modularized in the implementation offers benefits
compared to the concern composition at the modeling level.
In the near future we will perform a thorough empirical in-
vestigation using the presented strategy. We are extremely
eager to discuss this approach at the AOM @ MoDELS’10
workshop.

6. REFERENCES
[1] E. Babbie. Survey research methods. 1990.

[2] E. Baniassad and S. Clarke. Aspect-Oriented Analysis
and Design: The Theme Approach. Addison-Wesley,
2005.

[3] O. Barais, J. Klein, B. Baudry, A. Jackson, and
S. Clarke. Composing multi-view aspect models. In
Proceedings of the 7th International Conference on
Composition-Based Software Systems, pages 43–52.
IEEE Computer Society, 2008.

[4] J. Bézivin, S. Bouzitouna, M. D. D. Fabro, M.-P.
Gervais, F. Jouault, D. S. Kolovos, I. Kurtev, and
R. F. Paige. A canonical scheme for model
composition. In ECMDA-FA, pages 346–360, 2006.

[5] J. Bézivin and I. Kurtev. Model-based technology
integration with the technical space concept. In
Metainformatics Symposium 2005, Esbjerg, Denmark,
2005.

[6] S. Chidamber and C. Kemerer. A metrics suite for
object oriented design. IEEE Transactions on
Software Engineering, 20(6):476–493, 1994.

[7] M. Emerson and J. Sztipanovits. Techniques for
metamodel composition. In OOPSLA – 6th Workshop
on Domain Specific Modeling, pages 123–139, 2006.

[8] E. Figueiredo, N. Cacho, C. Sant’Anna, M. Monteiro,
U. Kulesza, A. Garcia, S. Soares, F. Ferrari, S. Khan,
F. C. Filho, and F. Dantas. Evolving software product
lines with aspects: an empirical study on design
stability. In Proceedings of the 30th International
Conference on Software Engineering, pages 261–270.
ACM, 2008.

[9] R. Filman and D. Friedman. Aspect-oriented
programming is quantification and obliviousness. In
Workshop on Advanced Separation of Concerns,
OOPSLA 2000, Minneapolis., 2000.

[10] R. France and B. Rumpe. Model-driven development
of complex software: A research roadmap. In
Proceedings of the 29th International Conference on
Software Engineering, pages 37–54. IEEE Computer
Society, 2007.

[11] P. Greenwood, T. Bartolomei, E. Figueiredo,
A. Garcia, N. Cacho, C. Sant’Anna, P. Borba,
U. Kulesza, and A. Rashid. On the impact of
aspectual decompositions on design stability: An
empirical study. In Proceedings of the 21st European
Conference on Object-Oriented Programming, pages
176–200. Springer-Verlag, 2007.

[12] S. Hanenberg, D. Stein, and R. Unland. From
aspect-oriented design to aspect-oriented programs:
tool-supported translation of JPDDs into code. In
Proceedings of the 6th International Conference on
AOSD, pages 49–62. ACM, 2007.

[13] A. Hovsepyan, S. Van Baelen, Y. Berbers, and
W. Joosen. Generic reusable concern compositions. In
Proceedings of the 4th European Conference on Model
Driven Architecture Foundations and Applications,
pages 231–245. Springer, 2008.

[14] A. Hovsepyan, S. Van Baelen, Y. Berbers, and
W. Joosen. Specifying and composing concerns
expressed in domain-specific modeling languages. In
47th International Conference Objects, Models,
Components, Patterns, pages 116–135. Springer, June
2009.

[15] A. Keller, E. Keller, and H. Ludwig. Defining and
monitoring service level agreements for dynamic
e-business. In in Proceedings of the 16th USENIX
System Administration Conference (LISA). The

USENIX Association, 2002.

[16] S. Kelly and J.-P. Tolvanen. Domain-Specific
Modeling: Enabling Full Code Generation.
Wiley-IEEE Computer Society Press, 2008.

[17] G. Kiczales, J. Irwin, J. Lamping, J.-M. Loingtier,
C. V. Lopes, C. Maeda, and A. Mendhekar.
Aspect-oriented programming, 1997.

[18] I. Kurtev, J. Bézivin, and M. Aksit. Technological
spaces: An initial appraisal. In CoopIS, DOA’2002
Federated Conferences, Industrial track, 2002.

[19] M. Mernik, J. Heering, and A. M. Sloane. When and
how to develop domain-specific languages. ACM
Comput. Surv., 37(4):316–344, 2005.

[20] OASIS. Core specification: Extensible access control
markup language (XACML) v2.0.
www.oasis-open.org/commitees/xacml.

[21] H. Ossher and P. Tarr. Multi-Dimensional Separation
of Concerns and The Hyperspace Approach. In
Proceedings of the Symposium on Software
Architectures and Component Technology: The State
of the Art in Software Development, 2000.

[22] D. L. Parnas. On the criteria to be used in
decomposing systems into modules. Commun. ACM,
15(12):1053–1058, 1972.

[23] A. Rashid and A. Moreira. Domain models are not
aspect free. In Proceedings of the 9th International
Conference On Model Driven Engineering Languages
And Systems, pages 155–169. Springer, 2006.

[24] Y. R. Reddy, S. Ghosh, R. B. France, G. Straw, J. M.
Bieman, N. McEachen, E. Song, and G. Georg.
Directives for composing aspect-oriented design class
models. Transactions on Aspect-Oriented Software
Development, pages 75–105, 2006.

[25] C. Sant’anna, A. Garcia, C. Chavez, C. Lucena, and
A. von Staa. On the reuse and maintenance of
aspect-oriented software: An assessment framework.
In Proceedings of the 17th Brazilian Symposium on
Software Engineering, 2003.

[26] A. Schauerhuber, W. Schwinger, E. Kapsammer,
W. Retschitzegger, M. Wimmer, and G. Kappel. A
survey on aspect-oriented modeling approaches.
Technical report, 2006.

[27] K. Sullivan, W. G. Griswold, Y. Song, Y. Cai,
M. Shonle, N. Tewari, and H. Rajan. Information
hiding interfaces for aspect-oriented design. In
Proceedings of the 10th European Software
Engineering Conference, pages 166–175. ACM, 2005.

[28] P. L. Tarr, H. Ossher, W. H. Harrison, and S. M. S.
Jr. N degrees of separation: Multi-dimensional
separation of concerns. In Proceedings of the 21st
International Conference on Software Engineering,
pages 107–119, 1999.

[29] A. Vallecillo. On the combination of domain specific
modeling languages. In ECMFA, pages 305–320, 2010.

[30] C. Wohlin, P. Runeson, M. Höst, M. C. Ohlsson,
B. Regnell, and A. Wesslen. Experimentation in
Software Engineering An Introduction. Kluwer
Academic Publishers, 2000.

[31] A. Zito, Z. Diskin, and J. Dingel. Package merge in
uml 2: Practice vs. theory? In MoDELS, pages
185–199, 2006.

