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Abstract—An adaptive distributed noise reduction algorithm for speech
enhancement is considered, which operates in a wireless acoustic sensor
network where each node collects multiple microphone signals. In
previous work, it was shown theoretically that for a stationary scenario,
the algorithm provides the same signal estimators as the centralized
multi-channel Wiener filter, while significantly compressing the data
that is transmitted between the nodes. Here, we present simulation
results of a fully adaptive implementation of the algorithm, in a non-
stationary acoustic scenario with a moving speaker and two babble noise
sources. The algorithm is implemented using a weighted overlap-add
technique to reduce the overall input-output delay. It is demonstrated that
good results can be obtained by estimating the required signal statistics
with a long-term forgetting factor without downdating, even though the
signal statistics change along with the iterative filter updates. It is also
demonstrated that simultaneous node updating provides a significantly
smoother and faster tracking performance compared to sequential node
updating.

I. INTRODUCTION

Noise reduction is important in many speech recording applica-
tions, e.g. mobile phones, video conferencing, hearing aids, speech
recognition systems, etc. By using an array of microphones, rather
than a single microphone, it is possible to exploit spatial charac-
teristics of the acoustic scenario. The noise reduction then typically
improves when many microphones are available that physically cover
a wide area. However, in many such acoustic beamformers, the
acoustic field is sampled only locally since the size of the array is
limited due to constraints imposed by the application (e.g. mobile
phones, hearing aids).

Recently, there has been a growing interest in so-called wireless
acoustic sensor networks (WASN’s). A WASN contains a set of
nodes, each having an individual signal processing unit and collecting
multiple microphone signals, where the nodes can exchange signals
through a wireless link. The advantage of WASN’s in the context of
noise reduction is threefold; i.e. more microphones can be used, the
microphones can physically cover a wider area, and (hence) there is
a higher probability of having a microphone that is close to a desired
source. If possible, microphone nodes can be placed strategically
either close to desired sources to obtain high SNR signals, or close to
noise sources to collect noise references. In many practical situations
where there are multiple nearby microphone-equipped devices present
(e.g. mobile phones, notebooks, hearing aids, voice recorders, etc.),
these devices can be interconnected to form an ad-hoc WASN.

Since the positions of the microphone nodes in ad-hoc WASN’s
are generally unknown, the noise reduction must rely on blind
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beamforming techniques, such as the multi-channel Wiener filter
(MWF1) [1]. An important aspect in WASN’s is the efficient usage
of the available bandwidth in the wireless links between the nodes.
Furthermore, since the nodes of the WASN are generally battery
powered, it is important to use a scalable distributed algorithm, where
each node contributes to the processing, rather than a centralized
algorithm gathering all signals in one central place.

Decentralized noise reduction in a binaural hearing aid, i.e. a 2-
node WASN, has been investigated in an information-theoretic and
rate-distortion framework in [2] and in [3]. In [4], a distributed noise
reduction algorithm for speech enhancement in a binaural hearing aid
was introduced, which converges to the centralized solution in the
case of a single target speaker. In [5], the DANSE algorithm2 [6],
[7] was presented to extend this to a more general WASN framework
with any number of nodes and multiple simultaneous target speak-
ers. Batch-mode simulations showed that relaxation techniques are
needed to guarantee convergence when the nodes update their filters
simultaneously [5], [7].

The simulations in [4], [5] illustrated the benefit of using WASN’s
with multi-microphone nodes for noise reduction in speech record-
ings, and how optimality can be retained while significantly reducing
the communication bandwidth and computational effort at each node.
However, since only batch-mode simulations were performed for
stationary signals, the true potential of DANSE as an adaptive
distributed noise reduction algorithm has not yet been demonstrated.
In this paper, we address some practical implementational aspects,
and present simulation results of a fully adaptive implementation of
DANSE, in an acoustic scenario with a moving speaker. Since the
microphone signals are effectively filtered by cascaded filters, it is
important to have a small input-output (I/O) delay in each filtering
stage. To reduce the required DFT size, a weighted overlap-add tech-
nique is used [8], rather than an overlap-save technique. The required
second-order statistics are estimated with a long-term averaging by
means of a forgetting factor, which provides good results, even though
the statistics of the communicated signals change along with the
filter updates. It is demonstrated that simultaneous node updating
with relaxation provides a significantly faster and smoother tracking
performance compared to sequential node updating.

II. PROBLEM STATEMENT AND DANSE

A. Data model and notation

A WASN with nodes {1, . . . , J} = J is considered, in which each
node k has direct access to a set of Mk microphones, with M =∑J

k=1
Mk. Each microphone signal m of node k can be described

1Unlike classical beamformers, MWF relies on a voice-activity-detection
(VAD) algorithm, rather than on prior knowledge about the geometry of the
array and the position(s) of the target source(s).

2DANSE = Distributed Adaptive Node-specific Signal Estimation.



in the frequency domain as

ykm(ω) = xkm(ω) + vkm(ω), m = 1, ...,Mk (1)

where xkm(ω) is a desired speech component and vkm(ω) an
undesired noise component. For conciseness, the frequency-domain
variable ω will be omitted. All signals ykm of node k are stacked in
an Mk-dimensional vector yk, and all vectors yk are stacked in an
M -dimensional vector y. The vectors xk, vk and x, v are similarly
constructed. The network-wide data model can then be written as
y = x + v. In the simulations in this paper, we assume a single
target speech source, although the DANSE algorithm can be modified
to scenario’s where x consists of K desired speakers (referred to
as DANSEK ) [5]. We thus assume that x = as, where a is an
M -dimensional steering vector and s the desired speech signal. The
steering vector a contains the acoustic transfer functions (evaluated
at frequency ω) from the desired speech position to all microphones,
incorporating room acoustics and microphone characteristics.

B. Centralized multi-channel Wiener filtering

The goal of each node k is to estimate the desired speech
component xkm in its m-th microphone, selected to be the reference
microphone. Without loss of generality, it is assumed that the refer-
ence microphone always corresponds to m = 1. For the time being,
it is assumed that each node has access to all microphone signals in
the network. Node k then performs a filter-and-sum operation on the
microphone signals, with filter wk that minimize the following MSE
cost function

Jk(wk) = E
{
|xk1 −wH

k y|2
}

(2)

where E{.} denotes the expected value operator, and where the
superscript H denotes the conjugate transpose operator. Notice that
at each node k, one such MSE problem is to be solved for each
frequency bin. The filter wk that minimizes (2) is given by

ŵk = R−1
yy Ryxe1 (3)

with Ryy = E{yyH}, Ryx = E{yxH} and e1 = [1 0 . . . 0]T .
The noise-reduced signal is then equal to x̂k1 = ŵH

k y. This
procedure is referred to as multi-channel Wiener filtering (MWF)
[1]. If the desired speech sources are uncorrelated to the noise, then
Ryx = Rxx = E{xxH}. In practice, Rxx is unknown, but can
be estimated from Rxx = Ryy − Rvv , where Rvv = E{vvH}.
The noise correlation matrix Rvv can be estimated during noise-only
periods and Ryy can be estimated during speech-and-noise periods,
requiring a voice activity detection (VAD) mechanism. Even when the
noise sources and the speech source are not stationary, these practical
estimators are found to yield good noise reduction performance [4].

The MWF can be extended to include a trade-off between speech
distortion and noise reduction, referred to as the speech-distortion-
weighted MWF (SDW-MWF) [9]. The SDW-MWF filters are com-
puted as

ŵk = (Rxx + µRvv)−1 Rxxe1 (4)

where a large value of µ puts more weight on the noise reduction,
but generally results in more speech distortion.

C. DANSE algorithm [6]

In this paper, we assume that the WASN is fully connected,
although the DANSE algorithm can also be applied in multi-hop
WASN’s [10]. In a fully connected network, the data broadcast by
one node can be observed by all the other nodes in the network.
The goal is to obtain the same filter coefficients as (4), but without
the need for each node k to broadcast the full Mk-channel signal

yk. Instead, yk is compressed to a single channel signal zk (the
compression rule will be defined later), which is then broadcast to
the other nodes. This results in a data compression with a factor Mk.

Let z = [z1 . . . zJ ]T , and let z−k denote the vector z with zk

omitted. Node k collects observations of the microphone signals in
yk, and the signal z−k obtained from the other nodes in the network.
Let

ỹk =

[
yk

z−k

]
. (5)

Similar to (4), the SDW-MWF solution with respect to the input
signals of node k, i.e. ỹk, is given by

w̃k =
(
R̃xx,k + µR̃vv,k

)−1

R̃xx,ke1 (6)

where R̃xx,k and R̃vv,k are computed based on the speech and noise
components in ỹk, rather than y. Let w̃yk denote the first Mk entries
of w̃k, i.e. the part of w̃k that is applied to yk. Then the signal zk

that is used in DANSE, is generated by the filter-and-sum operation

zk = w̃H
yk

yk . (7)

In the DANSE algorithm, the nodes sequentially update their
w̃k’s according to (6), in a round-robin fashion. In [6], it is proven
that the w̃k filters converge3 and that the resulting estimated signal
x̃k1 = w̃H

k ỹk is equal to the optimal centrally estimated x̂k1 =
ŵH

k y, where ŵk is given by (4). It is noted that the iterations of
the algorithm are spread out over different observations, i.e. each
compressed observation is only broadcast once by a node and is
never recomputed and retransmitted. It is assumed that the optimal
estimator (6), which is computed based on past observations, is also
optimal for future observations. Even though a speech signal is non-
stationary, this assumption can be motivated by the fact that the filters
mainly exploit spatial properties of the signal, which generally change
slowly in time.

Since an update at node k changes the statistics of the signal zk,
as shown in (7), the next node to perform an update should first
collect a sufficiently large number of observations of zk to build
a good estimate of the new correlation matrices. Therefore, there
should be sufficient time between subsequent node updates, which
can result in long convergence times and slow tracking, especially so
when the number of nodes is large. This can be improved by letting
nodes update their filters simultaneously, referred to as simultaneous
DANSE (S-DANSE). However, in [7], it is stated that convergence
is then no longer guaranteed. To guarantee convergence, a relaxed
update must then be performed at each node instead of the hard
update (6), i.e.

w̃new
k = (1− α)w̃old

k + α
(
R̃xx,k + µR̃vv,k

)−1

R̃xx,ke1 (8)

with α ∈ (0, 1]. This is referred to as relaxed simultaneous DANSE
(rS-DANSE).

III. ADAPTIVE IMPLEMENTATION

A. Reducing I/O delay with WOLA

In a practical application, all frequency-domain formulas in this
paper must be implemented with finite-length time-to-frequency
domain transformations. We use an L-point DFT to approximate the
filters w̃k in the frequency domain, which corresponds to L-taps
filters in the time domain.

3The trade-off parameter µ was not used in [6], but the convergence and
optimality proofs remain valid, if all nodes use the same value for µ.



In many real-time applications, it is important to have a small I/O
delay. Since the DANSE algorithm effectively has cascaded filters

(yk

w̃yk→ zk

w̃q→ x̃q1), the overall delay is twice the I/O delay of one
filtering stage (and even more in the case of multi-hop networks).
Furthermore, since the distance between the microphones of different
nodes is generally large, long filters must be used to align the
microphone signals properly. It is therefore important to use a filtering
procedure with a small I/O delay.

One possibility to minimize the I/O delay, is to estimate the filters
in the frequency domain (to reduce computational effort), and perform
the filtering in the time-domain. If these operations are implemented
as two parallel processes, where previously estimated filters are used
to filter the new incoming samples, there is no DFT-block delay.
However, to apply acausal filtering, a delayed version of the target
signal must be estimated [1] (where generally a delay of L/2 samples
is applied to obtain good performance). Since z−k is then delayed4

by L/2 samples, the microphone signals at node k must first be
delayed by the same amount to properly align with z−k, after which
an additional delay of L/2 is added to the desired signal to again
allow causal filtering. This results in an overall I/O-delay of L
samples. Time-domain filtering hence allows for the lowest possible
I/O delay since it has no additional DFT-block delays. However,
a main drawback is the large computational effort, which may be
undesirable in low-power WASN’s.

Frequency domain filtering, on the other hand, reduces the com-
putational complexity, but comes with cyclic convolution effects.
Usually, overlap-save techniques are used to obtain the same output
as with time-domain filtering. However, since overlap-save techniques
usually apply 2L-point DFT’s, this yields an I/O delay of 2L + L

2

samples (2L-point DFT + L/2 causality delay) per filtering stage, i.e.
at least 5L samples in the case of DANSE. Instead, we use a weighted
overlap-add (WOLA) framework [8] to reduce the I/O delay to L
samples per filtering stage (there is no causality delay of L/2 since
there are no time-domain filters involved). WOLA uses analysis and
synthesis windows to reduce the end effects due to cyclic convolution.
Furthermore, WOLA allows to estimate the filters (6) and directly
apply them to ỹk, since the filtering and estimation procedure use the
same number of DFT points. In our implementation, we use WOLA
with a root-Hann analysis and synthesis window, and we apply a 50%
overlap between the DFT blocks.

B. Estimation of correlation matrices

The correlation matrices are estimated by means of a long-term
forgetting factor λ with 0� λ < 1, e.g. for R̃yy,k = E{ỹkỹ

H
k }:

R̃yy,k(t) = λR̃yy,k(t− 1) + (1− λ)ỹk(t)ỹk(t)H (9)

where t corresponds to the DFT-block index. Notice that the statistics
of ỹk can change due to filter updates in other nodes, making
old observations of z−k invalid. A natural approach would then
consist in using a finite sliding window, which includes a downdating
procedure. Surprisingly, it is observed that using a sliding window
yields poorer results than using (9), as demonstrated in section IV.
The former performs worse due to the non-stationarity of the speech
and noise sources, which results in rapidly changing signal statistics,
yielding abrupt changes in the filters in each node update. On the
other hand, the forgetting factor introduces some kind of smoothing,
similar to (8), yielding less variation in the signal statistics of the
transmitted zk signals.

4It is assumed here that there are no delays in the wireless link, and that
samples of the zk’s can be transmitted at the sampling rate of the microphones.

Fig. 1. The acoustic scenario

Fig. 2. Comparison of S-DANSE, rS-DANSE, and robust rS-DANSE (R-
rS-DANSE) in a static scenario.

IV. SIMULATION RESULTS

To assess the performance of DANSE, the acoustic scenario
depicted in Fig. 1 is simulated. The room is cubical and measures 5m
x 5m x 5m, with a reflection coefficient of 0.4 at the floor, ceiling and
every wall. Speaker A produces the desired speech signal, consisting
of short English sentences with 1 second of silence between two
subsequent sentences. The interfering noise sources are located at B
and C and both produce multi-talker noise. There are 4 nodes, each
having 3 microphones that are placed 1 cm apart. The microphone
signals are sampled at a sampling frequency of fs = 32kHz. The
broadband input SNR in the first microphone of node 3 is 2 dB.

For all algorithms, we use WOLA with a DFT size5 of L = 512, a
forgetting factor λ = 0.997 (except for sliding window versions), and
the parameter µ = 5 in (4) and (6) to improve noise reduction. For the
rS-DANSE algorithms, we use a relaxation parameter α = 0.5, which
is observed to yield convergence (in batch-mode). In all experiments,
an ideal VAD is used to isolate the influence of VAD errors.

A. Static scenario

We first perform simulations in a static scenario where the speech
source does not move. We only apply simultaneous node updat-
ing, since DANSE with sequential node updating results in slow
convergence and tracking, which will be demonstrated in the next

5To be able to align the signals at the different microphones in time (both
causal and acausal), the filter length should be twice the maximum time-
difference-of-arrival (TDOA) between any pair of microphone signals.



Fig. 3. Comparison of rS-DANSE and DANSE in a scenario with moving
speaker.

subsection. The noise reduction results of the centralized MWF
algorithm and 5 different distributed algorithms are shown in Fig.
2. The vertical axis shows the difference (∆SNR) between input and
output SNR (averaged over 3s, including noise-only frames) at the
first microphone of node 3. As a reference, the input SNR is plotted
on an absolute dB scale. The centralized MWF updates its filters at
each new DFT-block, whereas the distributed algorithms only perform
filter updates in periodic intervals of 3 seconds, to collect enough
observations of the signals resulting from the previous update. This
explains why the convergence properties of the distributed algorithms
are worse than those of the centralized MWF.

The results in Fig. 2 illustrate that the use of a forgetting factor
(dashed line), as given in (9), yields significantly better results
than the use of a sliding window (dotted line). Furthermore, the
results clearly show the necessity of relaxation when nodes update
simultaneously. Especially in a sliding window implementation, S-
DANSE without relaxation does not converge and performs much
worse than rS-DANSE. In the implementation with forgetting factor,
the difference between S-DANSE and rS-DANSE is less distinct.
This is because the forgetting factor already applies some relaxation
or smoothing, as pointed out in section III-B. However, adding extra
relaxation yields smoother filter updates and less drops in the output
SNR, at the cost of a slower convergence. Without going into detail, it
is noted that Fig. 2 also shows that the robust rS-DANSE algorithm
(R-rS-DANSE), as described in [5], can further improve the noise
reduction (again at the cost of a slower convergence).

B. Scenario with moving speaker

In this section, we compare the tracking performance of DANSE
and rS-DANSE with the centralized MWF when the speaker is
moving. At the start of the simulation the speaker stands still to
let DANSE and rS-DANSE converge. After 60 seconds, the speaker
starts moving along the path indicated in Fig. 1 at a speed of 0.5 m/s.
The speaker stands still for 2 seconds at each of the indicated points.
The update period of both DANSE and rS-DANSE is one second.
This is observed to yield a better tracking than using a period of 3
seconds, even though this period may be too short to capture both a
noise-only frame and a speech-and-noise frame.

Fig. 3 shows the resulting ∆SNR (averaged over 1 second, where
noise frames are skipped). The full vertical lines indicate the moments
in time when the speaker starts moving. The dashed lines indicate
the moments when the speaker stops moving. Not surprisingly, the
centralized MWF algorithm has the best tracking performance, since
it performs a filter update in every DFT block. The DANSE and rS-
DANSE algorithms have difficulties in tracking the target, especially
when the target source moves close to a noise source. However, both
algorithms recover once the source stops moving. Furthermore, it
is observed that rS-DANSE outperforms DANSE, and it recovers
much faster. This is not surprising, since rS-DANSE updates its
nodes simultaneously, allowing it to adapt faster to changes in the
signal statistics. Furthermore the output SNR of rS-DANSE fluctuates

less due to the extra relaxation, whereas DANSE usually generates
audible block-update artefacts each time a node performs an update6.
It is noted that the differences between DANSE and rS-DANSE
become more significant when more nodes are available, since the
convergence speed of DANSE is highly dependent on the number of
nodes due to the round-robin updating procedure.

To demonstrate the benefit of using multi-microphone nodes, we
also added the scenario where each node has a single microphone (i.e.
4-channel MWF). This results in a significantly lower output SNR
compared to the algorithms with multi-microphone nodes. Only when
the target source moves, rS-DANSE is outperformed by the 4-channel
MWF, since the latter is a centralized procedure, which usually results
in a faster tracking. It is noted that, in the distributed algorithms,
there is no increase in the communication bandwidth compared to
the scenario with single-microphone nodes.

V. CONCLUSION

In this paper, we have considered an adaptive distributed noise
reduction algorithm for speech enhancement, based on DANSE [6].
We have implemented a fully adaptive version of the algorithm in
a WOLA framework to reduce the input-output delay. Simulation
results in a non-stationary acoustic scenario with a moving speaker
have been presented. It has been demonstrated that good results
can be obtained by estimating the required signal statistics with
a forgetting factor, instead of a downdating procedure to delete
samples that were generated by old filter settings from previous
iterations. It has also been demonstrated that simultaneous node
updating with relaxation provides a significantly faster and smoother
tracking performance compared to sequential node updating.
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