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ABSTRACT

In a non–life insurance business an insurer often needs to build up a reserve to able to meet his
or her future obligations arising from incurred but not reported completely claims. To forecast
these claims reserves, a simple but generally accepted algorithm is the classical chain-ladder
method. Recent research essentially focused on the underlying model for the claims reserves to
come to appropriate bounds for the estimates of future claims reserves. Our research concentrates
on scenarios with outlying data. On closer examination it is demonstrated that the forecasts for
future claims reserves are very dependent on outlying observations. The paper focuses on two
approaches to robustify the chain-ladder method: the first method detects and adjusts the out-
lying values, whereas the second method is based on a robust generalized linear model technique.
In this way insurers will be able to find a reserve that is similar to the reserve they would have
found if the data contained no outliers. Because the robust method flags the outliers, it is possible
to examine these observations for further examination. For obtaining the corresponding standard
errors the bootstrapping technique is applied. The robust chain-ladder method is applied to sev-
eral run-off triangles with and without outliers, showing its excellent performance.

1. INTRODUCTION

Determining the expected profit or loss in a non–life insurance business is of growing importance
because of the Solvency II regulations. This implies that an insurer has to be able to estimate the future
claims reserves as accurately as possible. For an insurer operating in the non–life insurance business,
the ultimate claims amount of an accident year is often not known at the end of that year. It will
depend on the business line in the non–life insurance industry, and, for instance, in liability insurance
it may be expected that the claims settlement will last several years because of bodily injuries and/or
long-lasting trials. Also the possible time lag between the occurrence of the accident and the manifes-
tation of the consequences of the event may cause the delay.

This leads to the consideration of a run-off triangle to organize the claims reserves. The goal of
claims reserving is to estimate the outstanding claims reserve. One of the most popular methods to
solve this problem is the classical chain-ladder method.

In this article we will focus on the appearance of outlying data in the run-off triangle of claims
reserves. Looking for the cause of the high dependency of the chain-ladder estimate on outlying data
brings us to robust statistics. Robust statistics gives the opportunity to develop a robust chain-ladder
method that can recognize the outliers in the run-off triangle and that can smooth the outlying data
in the run-off triangle in such a way that the outstanding claims reserve will be very close to the
outstanding claims reserve without outliers. We will focus on two objectives: the first item is to develop
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a statistical technique to detect the outliers with a high probability, the second objective is to eliminate
the influence of the outliers on the expected claims reserves by adjusting the classical chain-ladder
method. A justification for the second goal is that insurers in this way will be able to measure the
distance between the results for the expected claims reserves with and without outliers. If they produce
different outcomes, a closer look at the data is recommended.

Since the estimates of the chain-ladder method can also be reproduced by using a generalized linear
model and since there already exists an algorithm for obtaining robust estimates when using general-
ized linear models, this straightforward approach to obtain robust estimates for the outstanding claims
reserve will also be studied.

Besides the reserve estimates, other aspects of the model are of importance. From a statistical
viewpoint, given a point estimate, the natural next step is to estimate the likely variability in the
outcomes. After estimating the variability, we can construct a confidence interval that is of great
interest as the estimated claims reserve will never be an exact forecast of the future claims reserve.
Another important measure in prediction problems is the root mean square error or the prediction
error. For estimating the standard and prediction error of the different estimates we will apply the
bootstrapping technique. We will explain for what reason we choose the bootstrapping technique for
the standard error estimation, and we will therefore refer to the current debate on the standard error
estimation of the classical chain-ladder method, which up to now is inconclusive. For the robust esti-
mators we have modified the classical bootstrapping technique as suggested in Stromberg (1997).

Numerical results will show very satisfactory results for our robust chain-ladder method. We have also
considered some run-off triangles from practice, from which it can be concluded that the robust method
can cope with several outliers and that outliers do occur in practice.

In Section 2 we will give a short introduction to claims reserving, and in Section 3 the chain-ladder
method will be explained. It will be demonstrated in Section 4 that the outstanding claims reserve is
sensitive to outlying data. The robust version of the chain-ladder method and the robustification of the
method based on generalized linear models will be described in Sections 5 and 6, respectively. The
estimation of the standard and prediction errors with the bootstrapping technique will be explained in
Section 7. The comparison of the different techniques will be made in Section 8, and real examples
from practice will be studied in Section 9. The conclusions are given in Section 10.

2. CLAIMS RESERVING

The claims studied are the ones that are known to exist, but for which the eventual size is unknown
at the time the reserves have to be set, also referred to as incurred but not reported completely (IBNRC)
claims. The claims we concentrate on are the ones that take months or years to emerge, depending
on the complexity of the damage. The delay in payment is, for example, due to long legal procedures
or difficulties in determining the size of the claims. Therefore, insurers have to build up reserves
enabling them to pay the outstanding claims and to meet claims arising in the future on the written
contracts. We assume to have the following set of incremental claims:

{X �i � 1, . . . , n; j � 1, . . . , n � i � 1}.ij

The past data are used to estimate the future claims amounts. The suffix i refers to the row and
could indicate accident year or underwriting year, whereas the suffix j refers to the column and indicates
the delay or development year. The claims on the diagonal with i � j � 1 � c denote the payments
that were made in calender year c. For example, X42 is the payment that emerged in the second (after
the fourth, i.e., the fifth) year for the claim originated in the fourth year. The techniques can easily be
extended to semiannual, quarterly, or monthly data, but most insurance companies utilize annual data.
In most cases it is irrelevant whether incremental or cumulative data are used. Often the two forms
are needed, and it is very easy to convert from one to another. The cumulative claims are defined as

j

C � X�ij ik
k�1
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Table 1
Run-Off Triangle

Development Year

Accident Year 1 2 ... n � i � 1 ... n � 1 n

1 X11 X12 ... X1,n�i�1 ... X1,n�1 X1n
2 X21 X22 ... X2,n�i�1 ... X2,n�1
� ... ... ... ... ...
i Xi1 Xi2 ... Xi,n�i�1
� ... ... ...
n Xn1

with the values of Cij for i � j � n � 1 known. We are interested in the values of Cij for i � j � n �
1, in particular the ultimate claims amounts Cin of each accident year i � 2, . . . , n. The outstanding
claims reserve of accident year i is defined as

R � C � C , 1 � i � n, (2.1)i in i,n�i�1

taking into account that Ci,n�i�1 has already been paid. The insurance company is, of course, interested
in the overall reserve R, being the sum of the reserves Ri for i � 1, . . . , n. For representation of the
data it is common to use a run-off triangle as in Table 1.

The aim of claims reserving is to make predictions about claims that will be paid in future calender
years on the basis of the claims figures in the run-off triangle. Therefore the ultimate goal of a claims
reserving method is to complete the triangle into a square, because the total of the values found in
the lower right triangle equals the overall reserve R that will have to be paid in the future. Various
claims reserving methods exist that are based on different assumptions and/or meeting specific re-
quirements. In the next section we will describe one of the oldest and most popular techniques for
estimating outstanding claims reserves, namely, the chain-ladder method.

3. CHAIN-LADDER METHOD

The chain-ladder method is based on the assumption that the expectations underlying the columns
and the rows in the run-off triangle are proportional. This straightforward method has been heavily
critized. However, several authors have countered the criticism by constructing stochastic models that
support the chain-ladder method. In practice it seems rational to use the chain-ladder method
to estimate the outstanding claims reserve if the data are consistent with the model. The chain-
ladder method uses cumulative data and assumes the existence of a set of development factors { fj� j �
2, . . . , n}, with

E[C �C , . . . , C ] � C f , 1 � i � n, 1 � k � n � 1.i,k�1 i1 in ik k�1

These factors are estimated by the chain-ladder method as
n�j�1� Ci�1 ijf̂ � , 2 � j � n. (3.1)j n�j�1� Ci�1 i, j�1

To forecast future values of cumulative claims, these factors are applied to the latest cumulative claim
in each row:

ˆ ˆC � C f , 2 � i � ni,n�i�2 i,n�i�1 n�i�2

ˆ ˆ ˆC � C f , 2 � i � n, n � i � 3 � k � n.i,k i,k�1 k

As already stated in the introduction, it is also important to estimate the reserve variability. Mack
(1993, 1994) has derived a distribution-free formula for the standard error of chain-ladder reserve
estimates. In this article we will not study the theoretical variability or standard error of the estimates,
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Table 2
Run-Off Triangle with Same Ratio between

Columns for Each Row

1 2 3 4 5 6

1 12,000 6,000 600 300 150.0 15.00
2 13,000 6,500 650 325 162.5 .
3 10,000 5,000 500 250 . .
4 12,000 6,000 600 . . .
5 11,000 5,500 . . . .
6 10,000 . . . . .

Table 3
Future Claims Estimates, Obtained with

Chain-Ladder Method

1 2 3 4 5 6

1 12,000 6,000 600 300 150.0 15.00
2 13,000 6,500 650 325 162.5 16.25
3 10,000 5,000 500 250 125.0 12.50
4 12,000 6,000 600 300 150.0 15.00
5 11,000 5,500 550 275 137.5 13.75
6 10,000 5,000 500 250 125.0 12.50

but we will estimate it in a consistent way by using the bootstrapping technique. The main reason for
this choice is that the actuarial literature remains undecided about which assumptions finally support
the chain-ladder method (Mack et al. 2006; Venter 2006; Wüthrich et al. 2008). We will focus on this
item in more detail when the evaluation of the standard error is discussed in Section 7.

4. SENSITIVITY OF THE CHAIN-LADDER METHOD TOWARD OUTLYING VALUES

When analyzing real data, it may occur that one or more observations differ from the majority. Such
observations are called outliers. Sometimes they are due to recording or copying mistakes (for example,
a misplaced decimal point). Often the outlying observations are not incorrect, but they were made
under exceptional circumstances and consequently do not fit the model well. In these situations, robust
statistics tries to find a fit that is similar to the fit we would have found without the outlier(s). In
practice it is also very important to be able to detect these outliers for further examination. In this
regard it is important to note that outlying values are defined by the distribution of the majority of
the data. When data are resulting from a long-tailed distribution, large values are not necessarily
outlying because they may fit the underlying distribution.

We are interested to know how the chain-ladder method reacts toward outliers. By looking at a very
simple example, it will be clear that the presence of outlying claims may lead to incorrect reserve
estimates.

The run-off triangle in Table 2 satisfies completely the assumptions of the chain-ladder method
because the ratios between the columns are the same for each row. We will study the effect of multi-
plying a single observation by a constant by calculating the outstanding reserve estimate with the chain-
ladder method before and after the addition of the outlier.

The expected future claims estimates obtained with the classical chain-ladder method on the uncon-
taminated run-off triangle (in Table 2) are given in Table 3. By summing up all expected future claims
we get an overall reserve R � 7,482.5.
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Table 4
Future Claims Estimates, Obtained with

Chain-Ladder Method

1 2 3 4 5 6

1 12,000 60,000 600 300 150.0 15.00
2 13,000 6,500 650 325 162.5 4.24
3 10,000 5,000 500 250 52.71 3.24
4 12,000 6,000 600 150.35 62.75 3.86
5 11,000 5,500 311.45 135.89 56.72 3.49
6 10,000 14,310 458.87 200.21 83.57 5.14

Note: Claim X12 is made outlying by multiplication by 10.

An outlying value was introduced to this run-off triangle by multiplying the claims amount X12 by
10. Applying the chain-ladder method on this adjusted run-off triangle results in the estimated claims
amounts of Table 4.

This leads to an overall reserve of R � 15,842.49, which is more than twice the reserve (7,482.5)
obtained for the original run-off triangle (Table 2). The observation in the lower left corner is predicted
to be much larger, whereas all the other claims are estimated as too low. Hence one outlier can cause
a totally different reserving scheme for an insurance company using the classical chain-ladder method.

This suggests that the chain-ladder method is not robust, and therefore we will introduce in Section
5 a possible approach to make the chain-ladder method less sensitive to outliers. A robust version of
the chain-ladder method will have a robust calculation of both the development factors and the claims
amounts.

5. THE ROBUST CHAIN-LADDER METHOD

This section presents a robust chain-ladder method. Our objective is not to replace the classical chain-
ladder method by the proposed robust version, but it will certainly be very useful to apply both methods
(the classical and the robust version) to the data and compare the overall reserve estimates. If both
estimates are approximately the same, there is no problem, but when both versions give a different
result, we recommend having a closer look at the data. The robust method indicates the presence of
outlying claim(s) so that one can search for the reason(s) behind the atypical value(s).

In Section 5.1 we propose a robust way to calculate development factors, and in Section 5.2 we
explain how outlying claims can be detected and adjusted.

5.1 Robustification of the Development Factors
The first step is to detect what causes the classical chain-ladder method to be so dependent on outlying
data. The definition of the development factors is based on the cumulative data Cij, and hence an
outlier in the first column will affect all development factors. On the other hand, when working with
the incremental data Xij, an outlier can at most affect two development factors.

Instead of dividing the sum of one column by the sum of the previous column, we could also look at
the ratios of the columns for each row:

Xij �i � 1, . . . , n � j � 1; j � 2, . . . , n .� �Xi, j�1

By taking the mean of the ratios of the same columns, we could assume to get approximately the same
development factors as defined in (3.1).

Hampel et al. (1986) have illustrated that the mean (by using the influence function) as a statistical
tool is very sensitive toward outlying data. In examining the expression for the development factors,
these factors can be viewed as a mean, which explains the dependency of the traditional chain-ladder
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Table 5
Future Claims Estimates, Obtained with Robust

Chain-Ladder Method

1 2 3 4 5 6

1 12,000 60,000 600 300 150.0 15.00
2 13,000 6,500 650 325 162.5 16.25
3 10,000 5,000 500 250 125.0 12.50
4 12,000 6,000 600 300 150.0 15.00
5 11,000 5,500 550 275 137.5 13.75
6 10,000 5,000 500 250 125.0 12.50

Note: Claim X12 is made outlying by multiplication by 10.

Table 6
Future Claims Estimates, Obtained with

Chain-Ladder Method

1 2 3 4 5 6

1 12,000 6,000 600 300 150.0 15.00
2 13,000 6,500 650 325 162.5 16.25
3 10,000 5,000 500 250 125.0 12.50
4 12,000 6,000 600 300 150.0 15.00
5 11,000 55,000 2,200 1,100 550.0 55.00
6 10,000 13,534.48 784.48 392.24 196.12 19.61

Note: Claim X52 is made outlying by multiplication by 10.

method on outlying data. To solve this problem we have to replace the mean by a more robust estimate.
The robust statistical literature (see Huber 1981; Hampel et al. 1986; Rousseeuw and Leroy 1987;
Maronna et al. 2006) solved this problem by replacing the mean by the median, which is a more robust
estimate. The median of an univariate data set is defined as the middle value (or the mean of the two
values in the middle if there is no single point in the middle) of the ordered observations. Unlike the
mean, the median is not influenced by outliers.

We therefore propose to use the median (in combination with incremental data), which leads to the
following alternative definition of development factors:

Xijf̃ � median �i � 1, . . . , n � j � 1 , 2 � j � n. (5.1)� �j Xi, j�1

Applying the proposed robust method to the run-off triangle of the previous section (see Table 2,
contaminated with the same outlier X12) results in the claims estimates of Table 5. The adjusted
development factors seem to work perfectly, because they lead to the same future claims estimates as
the one obtained with the classical chain-ladder method applied to the data without outliers.

Unfortunately some problems remain. For instance, an outlying value in the second last column will,
even with these adjusted development factors, influence the estimated reserves. In this situation we
only have two ratios, and taking the median is the same as taking the mean. Moreover, in that column
we only have two claims amounts, which makes it very hard to decide which claim is outlying. In this
example the outlying value is not used to calculate other claims estimates, and hence robustifying only
the development factors is sufficient. However, if we would take the outlying value on the second last
row, adjusting only the development factors will not work, as can be concluded from the results in
Table 6.

The reason for the failure in this situation is that the outlier is still used to calculate the other claims
estimates. Because solely robustifying the development factors is not sufficient, we have implemented
a mechanism to detect and adjust the outlying values, which will be discussed in Section 5.2.
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5.2 Detecting and Adjusting Outliers in the Chain-Ladder Method
Our technique for detecting outlying observations in a run-off triangle of claims amounts consists of
several steps. We will describe each step in this section. A concise summary can be found in Table 7.

For the given formulas, we restrict ourselves to the model described by Renshaw and Verrall (1998),
who proposed modeling the incremental claims using an ‘‘overdispersed’’ Poisson distribution (hence
the variance is proportional to the mean).

Step 1: Under the given restrictions it holds that (see England and Verrall 1999), for 1 � i � n,
1 � j � n � i � 1:

E[X ] � m ,ij ij

Var[X ] � �m ,ij ij

leading to the Pearson residuals, defined as

X � mij ijr � , (5.2)ij ��mij

where X are the incremental data, � is a scale parameter, and m are the incremental fitted values.
The development factors are calculated as in (5.1), but based on the observed cumulative data. As

already mentioned in Section 5.1, the development factors in incremental form are more robust, but
the approach we follow in this step (see England and Verrall 1999) works only with cumulative data.
Because the fitted cumulative paid to date equals the actual cumulative paid to date, the final diagonal
of the actual cumulative triangle can be transferred to the fitted cumulative triangle. The remaining
cumulative fitted values are obtained backwards by recursively dividing the cumulative fitted value at
time t by the development factor at time t � 1. The incremental fitted data m are obtained by differ-
encing the cumulative fitted values as described by England and Verrall (1999). By doing so, the
cornerpoints at location (1,n) and (n,1) of the triangle always equal the cornerpoints of the observed
incremental data, and, therefore, the corresponding residuals will be zero.

Step 2: To detect outliers the classical boxplot is used, which was introduced by Tukey (1977). We
considered some real and simulated triangles and note that residuals of outlying claims are more likely
to lie outside the classical boxplot interval

[Q � 3IQR, Q � 3IQR],1 3

where Q1 and Q3 are, respectively, the first and the third quartile. The classical boxplot rejection rule
inherently assumes normality of the data, which seems to hold under the restrictions of our simulation
study. Moreover, only a small number of residuals are available, which tend tests to accept normality
due to low power values in small samples. If the assumption of normality is not satisfied (which can be
tested with, for example, the Shapiro-Wilk test), one can use the adjusted boxplot (Hubert and Van-
dervieren 2008) when the residuals are skewed. When the contaminated observations are realizations
of a heavy-tailed payment distribution, the elimination might produce a downward bias. In this case, it
is advisable to measure the tail weight in a robust manner (Brys et al. 2006) and apply a bias correction.

Step 3: When detecting an outlying residual in the first column, the corresponding claims amount
is supposed to be outlying and will be altered. If the claims amount in the next column in the same
row is also detected as an outlying value, the claim in the first column is replaced by the median of
the claims of the first column. (Depending on the data it might be better to replace the claim by the
mean of the claim above it and under it—if these are not outlying—which will probably take inflation
better into account.)

In the other case, we divide the claims amount in the next column of the same row by a robust
development factor, and we replace the outlying claim by this value. We do not use these residuals to
investigate the claims in the other columns, because the used development factors are based on cu-
mulative data (which is necessary to obtain the fitted data as in England and Verrall 1999), and,
therefore, one outlying claim can affect more than just its corresponding residual.
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Table 7
Different Steps of Proposed Technique

Step 1

• Compute development factors

Cij
f̃ � median �i � 1, . . . , n � j � 1 2 � j � n.� �j Ci, j�1

• Obtain Pearson residuals, rij, as in England and Verrall (1999).

Step 2

• Test for normality.
• Apply classical boxplot rejection rule on residuals.

Step 3

• If outlier in first column; suppose rk1
– If rk2 is not outlying,

Xk2C � 2 � k � n.k1 Xi2median �i � 1, . . . , n � 1� �Xi1

– If rk2 is outlying,

C � median {C �i � 1, . . . , n}.k1 i1

Step 4

• Compute development factors

Xij1f̂ � median �i � 1, . . . , n � j � 1 2 � j � n.� �j Xi,1

• Calculate fitted incremental claims

1 1ˆ ˆX � X f 1 � j � n, 2 � i � n.j,n�i�2 j,1 n�i�2

• Obtain residuals, as in (5.2).1r ,ij

• Apply classical boxplot rejection rule (after testing for normality).
• If outlier; suppose 1rkl

– � median { �i � 1, . . . , n � 1; j � 2, . . . , n � i � 1}.1 1r rkl ij
– Backtransform residuals to data matrix .1 rr Xij ij

Step 5

• Apply classical chain-ladder method on the robustified data .rXij

Step 4: To detect possible outliers in the other columns, we will switch again to residuals, but the
fitted data are obtained in a different manner. From the previous steps we know that the first column
has already become outlier free. Therefore, the development factors are now calculated based on the
incremental claims of the first column:

Xij1f̂ � median �i � 1, . . . , n � j � 1 , 2 � j � n.� �j Xi1

Consequently the future claims are estimated as

1 1ˆ ˆX � X f , 2 � i � n, n � i � 2 � j � n.ij i1 j

We fit the upper triangle by multiplying the claims of the first column with these development
factors, so that a new set of incremental claims is created. The corresponding residuals are calculated
as in (5.2), using the estimates as the incremental fitted values (denoted as mij). By doing so, an1X̂ij

outlying claim (almost) affects only its corresponding residual. All residuals of the first column equal
zero, and therefore possible outliers in the first column cannot be detected using these residuals.
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The remaining residuals can be examined by using the boxplot. The outlying residuals are re-
placed by the median of the residuals. The final observations (denoted by ) are obtained byrXij

backtransforming.
Step 5: Finally, the classical chain-ladder method is applied on the robustified data . Table 7rXij

summarizes the different steps of our proposed technique. Note that with this proposed robust chain-
ladder method the outlyingness of the claims in the cornerpoints, X1n and Xn1, cannot be investigated.

Xn1 is the first payment of the claim originated in the last accident year, and hence it is hard to say
whether this value is atypical. As a possible solution we suggest taking the median of values of the first
column and verifying whether this value differs much from Xn1 (for this the boxplot interval can also
be used). X1n, on the other hand, is the only claim where development year n is considered, and so we
have no idea whether the corresponding value is atypical or not. Here we suggest extrapolating the last
development factor by using a curve estimation model based on the former factors and verifying whether
this value differs significantly from the last development factor estimated using claim X1n. We explored
some possible statistical curve estimation models on several real run-off triangles. From these results,
it appears that the inverse model with equation � b0 � b1 1/j (2 � j � n) preliminarily often givesf̃ j

good results, but, of course, the choice for the best model is data dependent. For more information
we refer to Van Wouwe et al. (2009).

Also, for the two claims of the last but one column, this approach can certainly be implemented,
because it is possible to extrapolate the last but one development factor based on the former factors.
Hence we can see whether the two ratios in that column differ much from the predicted last but one
development factor. If only one of the ratios is detected as atypical, the other ratio will be taken as
the corresponding development factor. If both ratios are outlying, the fitted development factor (ob-
tained by extrapolation) will be chosen. Recall that the median over both ratios forms the last but one
development factor. If one of these two ratios is outlying, the corresponding development factor will
be influenced. Therefore the approach based on the curve estimation models might give better results.

In Section 8 we will show how the proposed robust method performs on the data set provided in
Taylor and Ashe (1983) when an outlier is introduced. In that example the model � b0 � b1e�jf̃ j

(2 � j � n) yielded a very nice fit and was chosen as optimal curve estimation model. In Section 9
some real run-off triangles will be analyzed with the classical and robust chain-ladder method. In these
examples the inverse model was always used as the curve estimation model.

6. THE ROBUST GLM METHOD

In recent years considerable attention has been given to discuss possible relationships between the
chain-ladder and various stochastic models (see, e.g., Mack 1993, 1994; Verrall 1991, 2000; Renshaw
and Verrall 1998; England and Verrall 1999; Mack and Venter 2000). Several stochastic models used
for claims reserving can be embedded within the framework of generalized linear models (GLMs),
introduced by Nelder and Wedderburn (1972). England and Verrall (2002) provide a review of stochastic
reserving models for claims reserving based on GLMs. The textbook Modern Actuarial Risk Theory (Kaas
et al. 2001) also presents claims reserving models in the framework of GLMs.

Let us consider the multiplicative model

X � � � � , (6.1)ij i j k

which has a parameter for each row i, each column j, and each diagonal k � i � j � 1. When the
random variables Xij are independent and we restrict their distribution to be in the exponential dis-
persion family, (6.1) is a GLM. The expected value of Xij is the exponent of the linear form log�i �
log�j � log�i�j�1, so that there is a logarithmic link. The chain-ladder method can be derived from
(6.1) if the following assumption about the distributions is satisfied:

X 	 Poisson(� � ) independent; � � 1.ij i j k

When calculating the parameters �i � 0 and �j � 0 by maximum likelihood estimation, we obtain a
multiplicative GLM with Poisson errors and a log-link. The optimal estimates of the parameters �i and
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�j produced by this GLM are identical to the parameter estimates found by the chain-ladder method
(this still holds for the overdispersed Poisson model). Note that the proposed method is not the only
one that is consistent with the chain-ladder method. Other stochastic models that can be expressed
within the framework of GLM and give exactly the same forecasts as the chain-ladder method are, for
example, the overdispersed negative binomial model and Mack’s model.

6.1 Robust Estimators for GLM
The nonrobustness of the maximum likelihood estimator (and the usual quasi-likelihood estimator) for
the model parameters � has already been studied by several authors, including Pregibon (1982), Ste-
fanski et al. (1986), Künsch et al. (1989), Morgenthaler (1992), and Carroll and Pederson (1993).

Preisser and Qaqish (1999) proposed a class of robust estimators in the generalized estimating
equations framework of Liang and Zeger (1986). Starting from this class of robust estimators, Cantoni
and Ronchetti (2001) proposed a set of robust inferential tools that apply to the whole class of GLMs
and are based on a natural generalization of the quasi-likelihood approach. They considered a general
class of M estimators of Mallows’s type, where the influence functions of deviations on the response
and on the predictors are bounded separately.

For the estimation of binomial and Poisson models the code for this method can be downloaded as
part of a robust library (namely, the library ‘‘robustbase’’) in the statistical software program R (http:
//www.r-project.org). Since the reserve estimates of the chain-ladder method can be obtained by using
a maximum likelihood estimation in a model with independent Poisson(�i�j) variables Xij, and since a
robust method for fitting GLM is already available, we will also study this straightforward way to obtain
robust estimates.

7. ESTIMATION OF THE STANDARD AND PREDICTION ERRORS

In addition to the reserve estimates, it is important in practice to obtain the standard errors; hence
the precision of the estimates can be calculated (for example, by constructing confidence intervals).
How to estimate the standard error for the classical chain-ladder method is already a point of discussion.
We refer to the current debate (Mack et al. 2006; Venter 2006; Wütrich et al. 2008) that there is no
unique answer to which assumptions support the chain-ladder method. Several articles have introduced
stochastic models with different assumptions leading to the same mean estimate but with different
distributions for the standard error estimate. The ongoing discussion is focused on the set of assump-
tions, but till now the actuarial world has been inconclusive.

Estimates of the standard error can also be used to obtain an estimate for the root mean square
error of prediction (also known as the prediction error), which is often used in prediction problems.
Renshaw (1994) used first-degree Taylor expansions to deduce an approximation for the mean square
error of prediction for the individual predictions (E[(Xij � )2]), for the row totals (E[(Ri � )2]),ˆ ˆX Rij j

and for the total reserve (E[(R � )2]) for the log-normal, overdispersed Poisson, and Gamma reservingR̂
models (see England and Verrall 1999 for more information). However, those estimates are very difficult
to calculate and still remain approximations.

Where a standard (or prediction) error is difficult to estimate analytically, it is common to adopt
the bootstrapping technique, which will be explained in Section 7.1.

7.1 Bootstrap Technique
A popular method that produces a simulated predictive distribution for obtaining the standard errors
of well-specified models is bootstrapping (see Efron and Tibshirani 1993 for an introduction). The
bootstrapping technique has already been considered in the field of claims reserving (Ashe 1986; Lowe
1994; Pinheiro et al. 2003; England and Verrall 2006; Barnett and Zehnwirth 2008) and has proven to
be a very convenient tool. In the context of claims reserving it is common to bootstrap the residuals
rather than the data themselves because of the dependency between some observations and the param-
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eter estimates. Recall that the resampling is based on the hypothesis that the residuals are independent
and identically distributed. Within the framework of GLMs different types of residuals can be chosen,
but it is common to use Pearson residuals as defined in (5.2) for Poisson GLMs. As already mentioned,
the residuals in the cornerpoints at location (1,n) and (n,1) are equal to zero (which is also noticed
in England 2002 and Pinheiro et al. 2003). We therefore decided not to use the residuals corresponding
to the last column of the first row and to the first row of the last column in the resampling procedure
of the bootstrapping technique.

The statistical literature indicates that the determination of the distribution of the standard error
for a robust estimator is an even more complex problem. In a few cases an attempt has been undertaken
to come to an answer (see, for example, Croux et al. 2003). A more global solution for robust estimators
is still a big issue in robust statistics. These observations made us decide to also apply the bootstrapping
technique for evaluating the standard error for our robust chain-ladder estimation of the outstanding
claims reserve.

As shown in Stromberg (1997), the bootstrapped sample covariance matrix can have a breakdown
point of 1/n regardless of the robustness of the original estimate. Hence the breakdown value is ap-
proximately zero for large n. The breakdown value is defined as the smallest proportion of observations
in the data set that need to be replaced to carry the estimate arbitrarily far away. Therefore boot-
strapped covariance estimates may be heavily influenced by outliers even if the original estimate is not.
In Stromberg (1997) it is concluded that by estimating the variance of robust estimators in a reliable
way the bootstrapping technique can be applied, but instead of using the sample variance in the last
step of the computation of the bootstrap variance estimate, a more robust measure should be used.
The robust measure of scale we considered is the median absolute deviation (MAD), given by the median
of all absolute distances from the sample median:

MAD � 1.483 median �x � median (x )�,j�1,...,n j i�1,...,n i

where the constant 1.483 is a correction factor that makes the MAD unbiased for the normal distri-
bution. The breakdown value of the MAD is 50%, whereas the sample variance has breakdown point
zero.

After acquiring the bootstrap standard error of the reserve estimate (denoted as SEbs(R)), the pre-
diction error of the total reserve (denoted as PEbs(R)) can be obtained. England and Verrall (1999)
suggest a bias correction because the variance of the residuals is smaller than the variance of the
underlying random variable. Moreover, the variance of each residual depends not only on the random
variable, but also on the data structure of the model. The bootstrap standard error of prediction with
bias correction can be computed as

n 2PE (R) � � R � (SE (R)) ,bs p bs
 n � p

where an estimate of the Pearson scale parameter (�p) is given by
2�r

� � ,p n � p

with n the number of observations in the data triangle and p the number of parameters estimated. The
summation is over the number (n) of residuals.

8. COMPARISON OF THE DIFFERENT CLAIMS RESERVING METHODS

In this section we will consider the data from Taylor and Ashe (1983) and compare the different
methods, namely,

• clasCL: the classical chain-ladder method, described in Section 3
• robCL: the robust chain-ladder method, described in Section 5
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Table 8
Claims Data from Taylor and Ashe (1983)

1 2 3 4 5 6 7 8 9 10

1 357,848 766,940 610,542 482,940 527,326 574,398 146,342 139,950 227,229 67,948
2 352,118 884,021 933,894 1,183,289 445,745 320,996 527,804 266,172 425,046
3 290,507 1,001,799 926,219 1,016,654 750,816 146,923 495,992 280,405
4 310,608 1,108,250 776,189 1,562,400 272,482 352,053 206,286
5 443,160 693,190 991,983 769,488 504,851 470,639
6 396,132 937,085 847,498 805,037 705,960
7 440,832 847,631 1,131,398 1,063,269
8 359,480 1,061,648 1,443,370
9 376,686 986,608

10 344,014

• clasGLM: the very basic GLM method with independent Poisson variables
• robGLM: the same as clasGLM, but with the parameters estimated by the robust algorithm of Cantoni

and Ronchetti (2001), described in Section 6.1.

This data set, which is presented in incremental form in Table 8, has already been used by many
authors (see, for example, Mack 1993; Renshaw 1994; England and Verrall 1999; Pinheiro et al. 2000).

An outlying value is added by multiplying a claims amount by 10. We have chosen to multiply by 10
because this comes down to misplacing the decimal point one step to the right (which might be human
error). Since the influence of an outlier is strongly dependent on its location, it is appropriate to look
at each observation separately.

In Table 9 the estimated reserves for the different methods are presented. The first line represents
the results obtained for the original dataset (without outliers), for which the forecasts for the future
claims reserves for all methods should coincide. We immediately see that the chain-ladder method, its
robust version, and the method based on GLM indeed give exactly the same result for the outstanding
claims reserve. The robust method based on GLM also performs well. We can conclude that it is safe
to use the robust versions on data without outliers.

For the following lines, the first column shows which claim was multiplied by 10 (and hence can be
considered as an outlier). As expected, the classical chain-ladder method and the classical method
based on GLM give exactly the same results. It can be concluded that both classical methods cannot
handle a single outlier and that the influence of the outlier on the estimated claims reserve depends
much on the location of that outlier. We also see that, although most of the time the claims reserve
gets overestimated, sometimes an underestimation also occurs, even though all outliers were created
by multiplication by 10.

Surprisingly the robust version of the GLM method is also significantly influenced by the atypical
observation included in the data. We would like to note that this method always warned that the
algorithm did not converge, but nowhere was it explained how this could be solved. On the other hand,
the results of the robust chain-ladder method are very satisfactory. The average number of detected
observations equals 1.27, and the method always succeeded in detecting the added outlier. Because
we always adjusted exactly one observation of the data, we can conclude that the robust chain-ladder
method performs very well.

The good properties of the robust chain-ladder method can also be demonstrated graphically: in
Figure 1 we have plotted the reserve estimates for the different methods and the different data sets
(each with a different outlier, in the same order as in Table 9). From this it is very clear that one
outlier can have an enormous effect on the estimated outstanding reserves obtained by the classical
methods (and by the robust GLM method). The robust chain-ladder method, on the other hand, always
finds a result very near the true outstanding reserve (18,680,856), defined as the estimate for the data
set without the outlier (marked on the plot with the dashed line).
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Table 9
Estimated Reserves for the Different Methods

outl clasCL robCL clasGLM robGLM

—
X11
X12
X13
X14
X15
X16
X17
X18
X19
X1,10
X21
X22
X23
X24
X25
X26
X27
X28
X29
X31
X32
X33
X34
X35
X36
X37
X38
X41
X42
X43
X44
X45
X46
X47
X51
X52
X53
X54
X55
X56
X61
X62
X63
X64
X65
X71
X72
X73
X74
X81
X82
X83
X91
X92
X10,1

18,680,856
12,603,783
12,851,784
15,813,130
18,169,959
2,013,275

22,709,179
20,329,847
21,616,873
28,068,004
26,382,875
13,064,239
13,080,595
16,044,692
20,313,528
20,318,298
21,142,008
25,833,401
24,770,914
36,975,225
14,594,660
14,881,519
18,190,072
22,260,738
23,910,232
20,281,482
26,993,251
26,124,080
14,890,583
16,119,238
19,166,515
26,779,838
20,950,173
23,178,356
22,505,925
14,864,015
17,682,939
21,424,577
23,930,482
24,047,427
25,775,382
15,906,579
19,712,830
22,724,309
26,011,071
27,889,017
17,251,335
22,268,233
28,111,881
32,254,649
20,451,046
32,812,737
44,155,256
27,531,995
50,350,360
60,313,152

18,680,856
18,487,959
18,411,731
18,370,569
18,419,406
18,681,093
18,584,734
18,879,228
19,149,029
18,700,368
20,266,192
18,619,218
18,628,484
18,713,353
18,757,158
18,713,874
18,740,127
18,526,323
18,865,708
17,788,537
16,911,913
18,942,881
17,856,414
18,608,427
18,437,900
18,899,668
18,345,131
18,501,515
18,344,006
18,927,113
18,677,034
18,260,491
18,892,896
18,649,556
18,950,015
19,021,397
18,483,164
18,706,467
19,199,746
18,934,684
18,733,871
18,362,703
18,663,571
18,761,396
19,204,133
18,444,105
18,791,335
18,761,392
18,605,367
19,273,972
18,679,791
18,491,335
17,673,888
18,643,601
18,336,128
19,004,501

18,680,856
12,603,783
12,851,784
15,813,130
18,169,959
20,132,751
22,709,179
20,329,847
21,616,873
28,068,004
26,382,875
13,064,239
13,080,595
16,044,692
20,313,528
20,318,298
21,142,008
25,833,401
24,770,914
36,975,225
14,594,660
14,881,519
18,190,072
22,260,738
23,910,232
20,281,482
26,993,251
26,124,080
14,890,583
16,119,238
19,166,515
26,779,838
20,950,173
23,178,356
22,505,925
14,864,015
17,682,939
21,424,577
23,930,482
24,047,427
25,775,382
15,906,579
19,712,830
22,724,309
26,011,071
27,889,017
17,251,335
22,268,233
28,111,881
32,254,649
20,451,046
32,812,737
44,155,256
27,531,995
50,350,360
60,313,152

18,839,333
13,328,668
13,041,001
15,908,930
18,270,311
19,847,842
22,139,912
20,185,642
21,204,448
27,677,539
26,621,669
13,536,364
13,087,107
15,934,573
19,691,394
20,091,626
20,980,352
25,321,955
24,618,051
37,819,011
15,119,785
14,840,586
17,907,853
21,398,414
23,031,220
20,445,844
26,217,904
25,530,928
15,635,844
16,109,039
18,992,655
26,004,658
20,737,414
22,780,256
22,044,677
15,396,659
17,790,906
21,077,167
23,297,747
23,316,993
24,961,291
16,422,207
19,538,605
22,362,176
25,272,745
26,949,513
17,487,130
21,978,585
27,487,874
31,182,740
20,305,126
31,926,498
43,304,970
27,787,925
50,669,456
61,101,893

Note: Each claim is made outlying by multiplication by 10.

The corresponding standard errors SEbs(R) for the different methods can be found in Table 10. From
the first line (which represents the situation without outlier), we see that the robust chain-ladder
method has a higher standard error than the other methods. This phenomenon does not arrive unex-
pectedly, but is simply the result of the well-known trade-off between robustness and efficiency. The
higher standard deviations (in the uncontaminated case) are the price we need to pay for making



A ROBUSTIFICATION OF THE CHAIN-LADDER METHOD 293

Figure 1
Plot of Reserve Estimates for the Different Methods

the method robust. As soon as there are outliers in the data we see that the robustification is worth
its price, because then the robust chain-ladder method has (nearly) always the lowest standard error.
The results are visualized in Figure 2. We will not look at the prediction errors, because these will lead
to analogous conclusions.

Note that we do not define how many outliers the proposed robust method resists or give other
theoretical results, but it is obvious that the robust method breaks down when there are more outlying
than regular claims in a certain column. For the rows the number of outliers is not crucial.

9. REAL RUN-OFF TRIANGLES FROM PRACTICE

In this section we will discuss the results of applying classical and robust chain-ladder methods on real
run-off triangles. We have studied several data sets from a non–life business line of the Belgian insur-
ance industry, but in this article we will focus on two examples. Because of the results of Section 8 we
will compare only the classical and the robust chain-ladder method. In the first run-off triangle (see
Table 11) there is only a small difference between both methods.

For the classical chain-ladder method the estimated future claims (with estimated reserves for the
rows) are shown in Table 12. The classical method suggests putting aside an overall reserve R �

Ri � 1,463,388,937. On the other hand, the robust chain-ladder method indicates one outlier in10�i�1

the data, which is situated at the upper right corner, namely, claim X2,9(� 24,602,209). The robust
chain-ladder method adjusted this claims amount into the value 18,408,361. We now get f9 � 1.037351.
The estimated future claims can be found in Table 13.

The outstanding reserve estimated with the robust chain-ladder method equals 1,437,093,149, which
is close to the classical outstanding reserve estimate. In this example it does not make much difference
whether claim X2,9 is altered or not. Taking a closer look at the data, we see that the flagged observation
is a bit abnormal, but to classify it as a clear outlier is questionable. This explains partly the small
difference between the classical and the robust outstanding reserve estimate. It is advisable for the
insurance company to have a good look at the claims amount X3,9, which will be known in the following
year.

In the second example (the run-off triangle is shown in Table 14) we see a totally different situation.
Applying the classical chain-ladder method on the data of Table 14 results in the estimated future
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Table 10
Standard Errors for the Different Methods

outl clasCL robCL clasGLM robGLM

—
X11
X12
X13
X14
X15
X16
X17
X18
X19
X1,10
X21
X22
X23
X24
X25
X26
X27
X28
X29
X31
X32
X33
X34
X35
X36
X37
X38
X41
X42
X43
X44
X45
X46
X47
X51
X52
X53
X54
X55
X56
X61
X62
X63
X64
X65
X71
X72
X73
X74
X81
X82
X83
X91
X92
X10,1

1,599,681
2,707,399
2,508,137
3,121,649
2,841,367
3,904,724
4,688,239
2,237,214
2,465,573
3,171,971
2,075,936
2,378,233
2,529,390
3,520,701
4,510,697
3,342,324
2,815,376
4,317,741
3,166,066
4,482,630
2,350,920
3,321,491
3,955,689
4,797,606
4,958,183
1,901,238
4,628,842
3,421,691
2,725,833
3,668,152
3,905,010
6,847,643
2,468,426
3,378,777
2,580,219
3,533,580
3,298,418
4,741,418
4,365,858
4,247,732
4,725,018
2,933,998
4,040,140
4,594,332
4,424,659
5,359,747
3,399,221
3,766,183
5,356,830
5,754,261
2,971,165
4,988,374
7,330,020
3,894,843
6,170,230
5,667,162

2,190,625
2,138,764
2,203,704
2,350,954
2,261,444
2,320,335
2,048,458
2,208,538
2,338,262
2,037,788
2,159,432
2,366,410
2,258,192
2,215,397
2,365,810
2,216,542
2,340,805
2,157,039
2,407,339
1,948,994
1,855,530
2,609,415
1,994,907
2,423,098
2,172,776
2,203,838
2,214,219
2,281,821
2,500,379
2,624,998
2,347,477
2,085,716
2,080,671
2,381,872
2,171,184
2,436,801
2,063,795
2,420,305
2,402,410
2,545,286
2,397,985
2,129,124
2,300,819
2,357,594
2,373,618
2,139,368
2,329,294
2,171,800
2,149,406
2,417,282
2,278,977
2,409,523
2,032,515
2,321,417
2,334,134
2,308,422

1,599,681
2,707,399
2,508,137
3,121,649
2,841,367
3,904,724
4,688,239
2,237,214
2,465,573
3,171,971
2,075,936
2,378,233
2,529,390
3,520,701
4,510,697
3,342,324
2,815,376
4,317,741
3,166,066
4,482,630
2,350,920
3,321,491
3,955,689
4,797,606
4,958,183
1,901,238
4,628,842
3,421,691
2,725,833
3,668,152
3,905,010
6,847,643
2,468,426
3,378,777
2,580,219
3,533,580
3,298,418
4,741,418
4,365,858
4,247,732
4,725,018
2,933,998
4,040,140
4,594,332
4,424,659
5,359,747
3,399,221
3,766,183
5,356,830
5,754,261
2,971,165
4,988,374
7,330,020
3,894,843
6,170,230
5,667,162

1,604,451
2,340,320
2,340,814
2,844,233
2,493,747
3,733,201
4,281,581
2,129,203
2,448,975
3,060,583
2,047,558
2,022,685
2,449,173
3,217,143
4,199,791
3,128,617
2,763,902
4,357,442
2,973,168
4,228,221
2,178,909
3,113,798
3,550,845
4,349,172
4,544,714
1,840,326
4,473,625
3,273,970
2,327,929
3,438,979
3,609,447
6,243,778
2,381,012
3,209,046
2,301,840
3,125,872
3,263,016
4,658,461
4,196,580
3,978,034
4,351,699
2,741,726
3,707,742
4,176,063
4,345,120
4,999,749
2,943,646
3,377,502
5,164,167
5,671,909
2,924,589
4,973,210
7,117,901
3,754,685
5,978,958
5,516,394

Note: The claim is made outlying by multiplication by 10.

claims and outstanding reserves for the rows of Table 15. From the classical chain-ladder method it
follows that the insurance company has to set aside a reserve R � 18,673,307.

The robust chain-ladder method indicates seven outliers in the run-off triangle of Table 16. The
outlying observations coincide completely with the third row of the run-off triangle (except the first
observation X31). The claims originated in the third accident year are indeed exceptionally high, which
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Figure 2
Plot of Estimates of Standard Errors for the Different Methods

Table 11
Real Run-Off Triangle from Practice (Example 1)

1 2 3 4 5 6 7 8 9 10

1 135,338,126 90,806,681 68,666,715 55,736,215 46,967,279 35,463,367 30,477,244 24,838,121 18,238,489 14,695,083
2 125,222,434 89,639,978 70,697,962 58,649,114 46,314,227 41,369,299 34,394,512 26,554,172 24,602,209
3 136,001,521 91,672,958 78,246,269 62,305,193 49,115,673 36,631,598 30,210,729 29,882,359
4 135,277,744 103,604,885 78,303,084 61,812,683 48,720,135 39,271,861 32,029,697
5 143,540,778 109,316,613 79,092,473 65,603,900 51,226,270 44,408,236
6 132,095,863 88,862,933 69,269,383 57,109,637 48,818,781
7 127,299,710 92,979,311 61,379,607 50,317,305
8 120,660,241 89,469,673 71,570,718
9 134,132,283 87,016,365

10 131,918,566

Table 12
Example 1, Completed with the Classical Chain-Ladder Method

1 2 3 4 5 6 7 8 9 10 Ri

1 135,338,126 90,806,681 68,666,715 55,736,215 46,967,279 35,463,367 30,477,244 24,838,121 18,238,489 14,695,083 0
2 125,222,434 89,639,978 70,697,962 58,649,114 46,314,227 41,369,299 34,394,512 26,554,172 24,602,209 15,011,643 15,011,643
3 136,001,521 91,672,958 78,246,269 62,305,193 49,115,673 36,631,598 30,210,729 29,882,359 22,446,400 15,564,850 38,011,250
4 135,277,744 103,604,885 78,303,084 61,812,683 48,720,135 39,271,861 32,029,697 28,684,424 23,041,905 15,977,787 67,704,115
5 143,540,778 109,316,613 79,092,473 65,603,900 51,226,270 44,408,236 35,104,160 30,367,042 24,393,535 16,915,038 106,779,775
6 132,095,863 88,862,933 69,269,383 57,109,637 48,818,781 37,514,208 30,867,825 26,702,378 21,449,747 14,873,748 131,407,907
7 127,299,710 92,979,311 61,379,607 50,317,305 44,199,591 35,622,093 29,310,935 25,355,582 20,367,880 14,123,557 168,979,637
8 120,660,241 89,469,673 71,570,718 55,012,848 44,830,352 36,130,447 29,729,224 25,717,425 20,658,545 14,325,110 226,403,951
9 134,132,283 87,016,365 70,456,750 56,947,133 46,406,615 37,400,815 30,774,522 26,621,665 21,384,912 14,828,790 304,821,202

10 131,918,566 93,526,403 71,825,534 58,053,462 47,308,170 38,127,412 31,372,388 27,138,852 21,800,363 15,116,873 404,269,457

1,463,388,937
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Table 13
Example 1, Completed with the Robust Chain-Ladder Method

1 2 3 4 5 6 7 8 9 10 Ri

1 135,338,126 90,806,681 68,666,715 55,736,215 46,967,279 35,463,367 30,477,244 24,838,121 18,238,489 14,695,083 0
2 125,222,434 89,639,978 70,697,962 58,649,114 46,314,227 41,369,299 34,394,512 26,554,172 18,408,361 14,831,952 14,831,952
3 136,001,521 91,672,958 78,246,269 62,305,193 49,115,673 36,631,598 30,210,729 29,882,359 19,201,131 15,470,701 34,671,833
4 135,277,744 103,604,885 78,303,084 61,812,683 48,720,135 39,271,861 32,029,697 28,684,424 19,710,539 15,881,140 64,276,103
5 143,540,778 109,316,613 79,092,473 65,603,900 51,226,270 44,408,236 35,104,160 30,367,042 20,866,752 16,812,722 103,150,676
6 132,095,863 88,862,933 69,269,383 57,109,637 48,818,781 37,514,208 30,867,825 26,702,378 18,348,573 14,783,780 128,216,764
7 127,299,710 92,979,311 61,379,607 50,317,305 44,199,591 35,622,093 29,310,935 25,355,582 17,423,121 14,038,126 165,949,447
8 120,660,241 89,469,673 71,570,718 55,012,848 44,830,352 36,130,447 29,729,224 25,717,425 17,671,762 14,238,460 223,330,518
9 134,132,283 87,016,365 70,456,750 56,947,133 46,406,615 37,400,815 30,774,522 26,621,665 18,293,111 14,739,093 301,639,705

10 131,918,566 93,526,403 71,825,534 58,053,462 47,308,170 38,127,412 31,372,388 27,138,852 18,648,497 15,025,434 401,026,153

1,437,093,149

Table 14
Real Run-Off Triangle from Practice (Example 2)

1 2 3 4 5 6 7 8 9 10

1 701,848 232,585 194,470 148,488 98,600 61,875 47,145 32,260 25,628 18,173
2 1,864,592 856,348 441,065 256,385 139,112 108,032 62,855 47,355 33,132
3 11,52,332 2,381,638 2,545,868 2,613,448 2,310,415 2,712,015 3,662,850 3,704,750
4 966,722 168,570 149,128 140,050 38,410 9,548 12,308
5 789,602 485,170 192,082 149,400 140,052 43,518
6 1,154,888 475,018 619,605 330,220 91,025
7 1,053,622 459,830 419,665 273,385
8 1,956,875 368,372 244,525
9 1,568,152 966,498

10 1,322,485

Table 15
Example 2, Completed with Classical Chain-Ladder Method

1 2 3 4 5 6 7 8 9 10 Ri

1 701,848 232,585 194,470 148,488 98,600 61,875 47,145 32,260 25,628 18,173 0
2 1,864,592 856,348 441,065 256,385 139,112 103,032 62,855 47,355 33,132 44,804 44,804
3 1,152,332 2,381,638 2,545,868 2,613,448 2,310,415 2,712,015 3,662,850 3,704,750 234,276 251,089 485,365
4 966,722 168,570 149,128 140,050 38,410 9,548 12,308 248,762 19,262 20,645 288,670
5 789,602 485,170 192,082 149,400 140,052 43,518 335,820 357,819 27,707 29,696 751,042
6 1,154,888 475,018 619,605 330,220 91,025 408,495 574,541 612,180 47,403 50,805 1,693,424
7 1,053,622 459,830 419,665 273,385 327,050 387,509 545,025 580,730 44,968 48,195 1,933,478
8 1,956,875 368,372 244,525 580,847 466,988 553,317 778,230 829,213 64,209 68,817 3,341,620
9 1,568,152 966,498 808,505 755,655 607,530 719,840 1,012,442 1,078,768 83,533 89,527 5,155,799

10 1,322,485 754,419 662,493 619,187 497,813 589,840 829,600 883,947 68,447 73,359 4,979,105

18,673,307

Table 16
Example 2, Completed with Robust Chain-Ladder Method

1 2 3 4 5 6 7 8 9 10 Ri

1 701,848 232,585 194,470 148,488 98,600 61,875 47,145 32,260 25,628 18,173 0
2 1,864,592 856,348 441,065 256,385 139,112 103,032 62,855 47,355 33,132 44,804 44,804
3 1,152,332 502,910 299,806 243,796 126,355 63,675 58,125 52,966 27,779 29,773 57,552
4 966,722 168,570 149,128 140,050 38,410 9,548 12,308 25,714 16,784 17,988 60,486
5 789,602 485,170 192,082 149,400 140,052 43,518 36,245 31,798 20,756 22,245 111,044
6 1,154,888 475,018 619,605 330,220 91,025 71,790 55,230 48,454 31,627 33,897 240,998
7 1,053,622 459,830 419,665 273,385 111,700 62,314 47,940 42,058 27,452 29,422 320,886
8 1,956,875 368,372 244,525 300,601 145,308 81,062 62,363 54,711 35,712 38,275 718,031
9 1,568,152 966,498 492,034 354,049 171,144 95,475 73,451 64,439 42,061 45,080 1,337,734

10 1,322,485 532,752 360,145 259,146 125,269 69,883 53,763 47,166 30,787 32,996 1,511,906

4,403,442
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makes it likely that something exceptional has happened. (It is very advisable to have a closer look at
these observations.) The robust chain-ladder method will adjust the outliers and calculate the outstand-
ing reserves. The estimated future claims are shown in Table 16, leading to an overall reserve of R �
4,403,442, which differs significantly from the classical estimate (18,673,307). At this moment it is
highly recommended to examine the data and to decide which reserve will be closer to the truth. If
the observations of accident year 3 are indeed atypical observations and if there is only a small prob-
ability that such exceptionally high claims will occur in the following years, the insurance company will
set aside far too much. In that situation it is better to set aside the robust reserve estimate, possibly
with a safety margin for the outstanding claims of the third accident year.

Recall that the high observations of the third row will also influence the estimated future claims. In
this situation it is useful to know that the data contain some atypical observations. Furthermore there
is no reason to believe that the classical chain-ladder method then still produces reliable estimates.

From this section we can conclude that outliers do appear in practice and that the robust chain-
ladder method can handle more than one outlier. It is clear that the robust chain-ladder method is
able to detect and adjust these outliers and might be a very convenient aid to construct a more realistic
reserve.

10. CONCLUSIONS

In this article it is illustrated that the outstanding claims reserves by the chain-ladder method are
strongly affected by outliers. Often outliers lead to an overestimation of the total reserve estimate,
which forces the insurance company to put more aside than actually needed. Depending on the location
of the outlier(s), it can also happen that the insurance company underestimates the total reserve
estimate (which can lead to bankruptcy in a worst-case scenario).

To solve this problem we propose a robust method that has the ability to calculate the total reserve
in such a way that the outlying values are detected and adjusted in the run-off triangle of claims
reserves. The detection of outliers is important in practice, because further inspection of these atypical
observations can reveal important information. Another approach for obtaining reserve estimates that
are less influenced by outliers is by implementing a robust generalized linear model technique.

In addition to the reserve estimates, it is interesting to obtain the standard deviation, which is a
measure of dispersion. When it is difficult to estimate a standard error analytically, it is common to
adopt the bootstrapping technique. The estimation of the standard error of the robust chain-ladder
estimate is calculated with a slightly modified bootstrapping technique (Stromberg 1997). Numerical
examples (where we added outliers to the data) show an excellent performance of the robust chain-
ladder method.

From the application of real run-off triangles from a non–life insurance branch in Belgium, it is clear
that the proposed robust technique is helpful in gaining insight into the studied claims reserves and
the (hidden) outliers and in building up a more realistic reserve. The diagnostic performance of the
robust method grows when it is used in addition to the classical approach.

The robust chain-ladder method can easily be implemented and does not need any knowledge of
stochastic methods and generalized linear models. All programs are written in the statistical pro-
gram R.
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