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Abstract

The microstructure of many materials consists of multiple grains with different
crystallographic orientations. Under certain circumstances, such as increased
temperature, the smaller grains will shrink and disappear under the influence
of surface tension. One of the modelling techniques that are explored for the
simulation of this phenomenon, called grain growth, is phase field modelling. Two
phase field models in particular are the main interest of this thesis, namely the
continuum field model and the multi-phase field model. Both models represent
a polycrystalline microstructure with a large set of phase field variables, where
each variable corresponds to a single crystallographic orientation. However,
realistic three-dimensional grain growth simulations with these models can demand
significant amounts of computation power.

In this thesis, we present a sparse bounding box algorithm designed to perform
efficient phase field simulations of grain growth. The algorithm shows significant
improvements over existing techniques as its computational requirements scale
with the grid size instead of with the number of crystallographic orientations
involved. Furthermore, a nonlinear multigrid solver, based on the Full Approx-
imation Scheme, is constructed to solve the multi-phase field model for multiple
phase field variables. Experiments with this solver show that its convergence rates
are independent of the grid size.

The applicability of the bounding box algorithm is illustrated by three-dimensional
simulations of grain growth in the presence of spheroid second-phase particles and
of grain growth in a microstructure with anisotropic boundary energy. From the
former simulations, it is found that the pinning effect of a particle distribution
is stronger for increasing volume fraction, and for increasing aspect ratio of
the particles. Furthermore, a generalised Zener type relation is proposed. The
second type of simulations is performed in a microstructure whose boundary
energy is described by a Read-Shockley type dependence. Simulation results show
that the low-angle boundaries are clearly preferred during grain growth. The
anisotropic formulation of the boundary energy is furthermore observed to change
the individual growth rates of the grains as a function of the number of grain faces.
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Samenvatting

De microstructuur van vele materialen bestaat uit korrels met verschillende
kristallografische oriëntaties. Onder bepaalde omstandigheden, zoals verhoogde
temperatuur, zullen de kleinere korrels krimpen en verdwijnen onder de invloed
van de oppervlaktespanning. Een van de modelleringstechnieken die onderzocht
worden voor de simulatie van dit fenomeen, ook wel korrelgroei genoemd, is
faseveldmodellering. Twee faseveldmodellen in het bijzonder vormen het onder-
werp van deze thesis, namelijk het continuümveldmodel en het multifaseveldmodel.
Beide modellen stellen een polykristallijne microstructuur voor met behulp van een
grote verzameling faseveldvariabelen, waarbij elke variabele overeenkomt met één
kristallografische oriëntatie. Realistische driedimensionale korrelgroeisimulaties
met deze modellen zijn echter vaak heel rekenintensief.

In deze thesis stellen we een algoritme voor dat op basis van insluitende blokken
toelaat om efficiënte faseveldsimulaties van korrelgroei uit te voeren. Het algoritme
is een belangrijke verbetering ten opzichte van bestaande technieken, omdat
zijn computationele vereisten evenredig zijn met de roostergrootte in plaats
van met het aantal kristallografische oriëntaties. Verder wordt een niet-lineaire
multiroostermethode geconstrueerd om het multifaseveldmodel op te lossen voor
meerdere faseveldvariabelen. Experimenten met deze oplossingsmethode vertonen
convergentiesnelheden die onafhankelijk zijn van de roostergrootte.

De toepasbaarheid van het blokalgoritme wordt gëıllustreerd door driedimensio-
nale simulaties van korrelgroei in de aanwezigheid van sferöıde tweedefasepartikels
en van korrelgroei in een microstructuur met anisotrope korrelgrensenergie. De
resultaten van de eerstgenoemde simulaties geven aan dat het pinnend effect
van een partikelverdeling sterker wordt voor stijgende volumefractie, en voor
stijgende aspectverhouding van de partikels. Na analyse wordt een veralgemeende
Zenerrelatie voorgesteld. Het tweede type simulatie wordt uitgevoerd in een
microstructuur waarin de grensenergie beschreven wordt door de Read-Shockley-
afhankelijkheid. De resultaten tonen dat de lagehoekgrenzen duidelijk verkozen
worden tijdens korrelgroei. De anisotrope grensenergie bëınvloedt daarbij de
individuele groeisnelheden van de korrels als functie van hun aantal grensvlakken.
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Chapter 1

Introduction

1.1 Context

Materials research is often the source of technological progress. Research into the
production of new and more advanced materials for example enabled enhanced
performance of transport media. A modern bicycle is almost unrecognisable next
to the first bicycles at the start of the nineteenth century. Aeroplanes cross the
air and even space is gradually explored by aircraft. Without decent knowledge
of materials, a rocket would fall to pieces or burn. In medicine, porous and other
materials are used to make prostheses through an accurate production process.
Architecture likes to employ modern, light materials with special properties with
regard to isolation and interaction with light.

Powerful computers and enhanced computing techniques contribute considerably
to materials research. Many interesting technological innovations originate from
the marriage of materials science and computer science. A recent example are the
nanotechnology simulations of [115], which surprisingly provided an explanation
for mechanisms that could not be identified by laboratory observation.

The microstructure of many materials consists of multiple grains with different
crystallographic orientations. The study of the factors influencing the evolution of
a grain structure is of great technological importance, because many material
properties, such as corrosion resistance, conductivity, strength and toughness,
depend on the mean grain size and the grain size distribution. The ultimate
goal of this research is to provide predictive models that can be used to design
production processes of materials with a microstructure tailored to any desired
property.

1
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1.2 Grain growth

A specific example of why knowledge of microstructural evolution is of importance,
is the production process of spokes [82]. Spoke manufacturing involves the drawing
of steel rods through a series of dies of decreasing hole size until a wire with the
desired diameter is produced. The deformation caused by the tension in the rod
has a strengthening effect, but the wire can become so strain-hardened that there
is danger of rupture. Therefore, during the drawing process, the wire must be
periodically softened. This is accomplished by heating the wire above a threshold
temperature in a process known as annealing. Annealing consists of three stages,
namely recovery, recrystallisation and grain growth.

At temperatures below the recrystallisation range, the cold-worked metal under-
goes the process of recovery, in which excess lattice vacancies caused by the
deformation anneal out. The driving force for recovery is the stored energy of
the cold deformation work. Most of the softening of the material however occurs
in a narrow temperature range by the process of recrystallisation, in which new
grains nucleate and grow into the cold-worked microstructure.

At high annealing temperatures, after recrystallisation is completed, the polycrys-
talline structure is not yet stable. Further growth of the recrystallised grains may
occur, which is driven by the interfacial energy associated with grain boundaries.
Grain growth produces gradual softening of the material for two reasons. First,
the irregularities on grain boundaries are prime sources of dislocations during
deformation. Second, grain boundaries act as barriers to slip bands because of
the mismatch of slip systems from grain to grain. The rate of grain growth
can be decreased by for example the presence of second-phase particles at grain
boundaries. This effect tends to diminish as the annealing temperature is raised.

The study of processes such as grain growth will provide better insight into
the key factors of microstructural evolution and facilitate the design of specially
adapted production processes, such as the wire drawing process. A large number of
theoretical, experimental and computational studies have been performed on the
subject of grain growth [58, 84, 54, 48, 44]. Although it is well understood that
grain growth behaviour results from the interplay between curvature driven grain
boundary movement and the geometrical requirements at boundary junctions,
there are still many controversies, especially with respect to the shape and
evolution of the grain size distribution.
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1.3 Numerical modelling and simulation of grain
growth

Computer simulations are an essential ingredient in the study of grain growth.
They enable parameter studies and provide three-dimensional insight into
the evolution of a microstructure, which can be difficult to obtain from
experiments. One of the modelling techniques that has been explored for
simulating microstructural evolution is phase field modelling. This technique
has shown to be a useful tool for the simulation of various phenomena, such as
solidification, precipitation and grain growth.

Grain growth in single-phase polycrystalline materials has been investigated with
the phase field method by different authors [25, 86, 89, 71, 120, 42, 99]. The models
of both [120, 42, 99] and [25, 86, 89, 90] describe a polycrystalline microstructure
with a large set of phase field variables. In principle, the number of phase field
variables included in a grain growth simulation should equal or exceed the total
number of grains, as in reality the number of possible grain orientations is infinite.
As a consequence, realistic three-dimensional computer simulations of grain growth
with a phase field model can demand significant amounts of computation power.

Several algorithms have been designed to overcome the computational limitations
of the phase field method. In [74, 122], the grain orientations are dynamically
reassigned to reduce memory requirements and to avoid frequent grain coalescence.
This approach is limited to systems where the only use of the phase field
variables is to distinguish unique domains. Incorporating anisotropy or any
property depending on the relative or absolute position of a grain or the
orientation difference between neighbouring grains into this technique is very
difficult. Adaptive meshing [104, 105, 17], and moving mesh techniques [11, 38],
have been used in phase field simulations to increase computational efficiency.
However, so far these techniques were always applied for simulations with a small
number of phase field variables. For polycrystalline structures their benefits are
drastically reduced, because of the amount of interface involved.

1.4 Motivation and goals

At the Department of Metallurgy and Materials Engineering of the K.U.Leuven,
much research is performed to develop predictive phase field models of grain
growth [86, 87, 89, 90]. A similar type of phase field models is employed at
the Institute of Materials and Processes of the University of Applied Sciences in
Karlsruhe, Germany [42, 99, 97]. As mentioned above, realistic three-dimensional
grain growth simulations with these models demand significant amounts of
computation power. The purpose of this thesis is to design, analyse and implement
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efficient, numerical solvers for both types of phase field models. In particular,
different techniques are explored to reduce the computational requirements of the
phase field models, such as the use of sparse algorithms, multigrid methods, and
parallel computing. Those are techniques that have been studied and developed
for many years already in the Scientific Computing group at the Department of
Computer Science of the K.U.Leuven.

The goals of this thesis are not limited to the construction and analysis of
computational methods, but also cover aspects of materials research. With the
help of the newly developed software, we will address certain questions that deal
with the effect of second-phase particles and the presence of texture on grain
growth.

1.5 Outline of the text

The text starts in Chapter 2 with an introduction to the mechanisms of grain
growth. Two of the influencing factors of grain growth are discussed, namely the
effect of second-phase particles at grain boundaries, and the presence of texture.
Next, several types of grain growth models are described, and the main two phase
field models that are explored in the rest of the thesis are presented, namely the
multi-phase field model [120] and the continuum field model [25, 86, 87, 89, 90].

Chapter 3 gives an overview of the computational techniques that have been
applied to alleviate the computational requirements of the phase field models
described in Chapter 2. To obtain more insight in the benefits of the application
of IMEX time integration methods in particular, the stability properties of the
continuum field model are theoretically and numerically studied in the subsequent
Chapter 4.

In Chapter 5, a sparse bounding box algorithm is developed that exploits the
characteristics of the solutions of the phase field models for grain growth. The new
algorithm is tested for the continuum field model and compared to a conventional
method, and proves to reduce the computational requirements of simulations with
the latter model drastically.

Chapter 6 covers the construction of a nonlinear multigrid solver based on the
Full Approximation Scheme (FAS) for two-dimensional phase field simulations
with the multi-phase field model. The implemented solver shows the desired grid
size independent properties.

The sparse algorithm developed in Chapter 5 is applied to grain growth in
the presence of spheroid particles in Chapter 7, and to grain growth in a
microstructure with anisotropic boundary energy properties in Chapter 8. In
both chapters, the simulation results are analysed and discussed.
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We end in Chapter 9 with a summary of the contributions of this thesis, and
some suggestions and directions for future research.





Chapter 2

Phase field modelling of grain
growth

2.1 Introduction

The purpose of this chapter is to provide an introduction to the phenomenon of
grain growth. Furthermore, the construction of computer models for grain growth
simulation is discussed. In particular, the main two phase field models that are
explored in the rest of the thesis are presented.

The microstructure of many materials consists of multiple grains with different
crystallographic orientations. Under certain circumstances, such as increased
temperature, the smaller grains will shrink and disappear under the influence of
surface tension. This phenomenon, called grain growth, is thus characterised by
an increase of the mean grain size.

Grain growth may be divided into two types, normal grain growth and abnormal
grain growth [58]. During normal grain growth, a polycrystalline microstructure
changes in a rather uniform way. There is a relatively narrow range of grain sizes
and shapes, and the form of the grain size distribution is usually independent of
time and scale. During abnormal grain growth, a few grains in the microstructure
grow and consume the smaller grains. Consequently, a bimodal grain size
distribution develops, with one peak corresponding to the smaller grains and the
second peak corresponding to the larger grains. Eventually the latter grains will
impinge and normal grain growth may then resume. The phenomenon of abnormal
grain growth will not be considered here.

7
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Computer simulations based on mesoscale models such as Monte Carlo Potts, front-
tracking and phase field models, are essential for a better understanding of grain
growth. They allow to study the roles of different parameters separately, which
can be very complex in experimental studies on real materials. Moreover, images
of three-dimensional simulations provide more insight in the shape and size of
grains than two-dimensional microscopic images of cross-sections of a material.
Consequently, there have been many efforts to develop models with predictive
accuracy for grain growth under realistic conditions.

This chapter starts with an introduction on grain growth in Section 2.2. In this
section, some of the factors that influence grain growth are discussed, namely the
effect of second-phase particles, and the presence of texture. The text continues
with a short discussion on several types of grain growth models and introduces
phase field modelling in Section 2.3. Next, we describe two different phase field
models in detail, namely the multi-phase field model of [120] in Section 2.4 and
the continuum field model of [25] in Section 2.5. The latter section also covers
the extensions of the continuum field model proposed in [86, 87] to simulate grain
growth in the presence of second-phase particles, and the extensions proposed
in [89, 90] to simulate grain growth in a microstructure with anisotropic boundary
energy. Section 2.6 ends this chapter with conclusive remarks.

2.2 Grain growth

2.2.1 Normal grain growth

Grain growth mechanism

As mentioned in Chapter 1, grain growth is usually one step in the production
process of a polycrystalline material. The driving force for grain growth is the
reduction of the free energy, which is stored in the material in the form of grain
boundaries. The boundary between one grain and its neighbour is in fact a defect in
the crystal structure. Therefore, with every grain boundary, there is an associated
surface energy, or a surface tension σgb [82]. Due to the curvature of a grain
boundary, there is a resulting driving pressure Pg that drives the boundary to
move towards its centre of curvature. This is illustrated in Fig. 2.1.

During grain boundary movement, the surface tensions of intersecting grain
boundaries must balance each other [82]. Figure 2.2 illustrates this geometrical
requirement at a triple junction in two dimensions. The three involved surface
energies σij

gb and the corresponding angles αk have to satisfy

σ12
gb

sin α3
=

σ13
gb

sin α2
=

σ23
gb

sin α1
. (2.1)
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Figure 2.1: The driving pressure Pg resulting from the grain boundary curvature
forces the boundary to move towards its centre of curvature.

For isotropic materials, the equality σ12
gb = σ23

gb = σ13
gb holds, and the equilibrium

angle between each pair of intersecting grain boundaries is 120◦.

σ12
gb

σ23
gb

σ13
gb

α2

α3

α1

Figure 2.2: Surface tension balance at a triple junction.

Equilibrium condition (2.1) has important consequences for the topology of a
grain structure. In two dimensions, grains with less than six sides will be mostly
convex, while grains with more than six sides will be concave. In general, larger
grains have more sides than smaller grains. Therefore, during grain growth, on
average, the larger grains will grow and the smaller grains will shrink and disappear.
The interplay of curvature-driven grain boundary movement and geometrical
constraints thus results in a decrease of grain boundary area and an increase of
the mean grain size.

Grain growth kinetics

The kinetics of grain growth can be expressed by relating the mean grain size to
time. In [20], a growth law is deduced that describes the temporal evolution of
the mean grain radius 〈R〉(t) as

〈R〉(t) =
(
〈R〉20 + k′t

) 1
2 (2.2)
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where 〈R〉0 is the mean grain radius at t = 0 and k′ a constant value. In the limit
t→∞, where 〈R〉2(t)≫ 〈R〉20, a more general power law is obtained, namely:

〈R〉(t) = kt
1
n , (2.3)

with grain growth exponent n. Only few measurements of growth kinetics have
produced a grain growth exponent of n = 2. Instead, n is generally found to be
well above 2. This discrepancy has been attributed to processes such as solute
drag and precipitate pinning [58].

Concluding remarks

It is a complex matter to construct an analytical model of grain growth. A
comprehensive model should include the curvature-driven movement of the grain
boundaries, the geometrical requirements at the boundary junctions, as well as the
fact that the grains have to be space-filling. Computer simulations offer a way out
of this problem. They consider the growth and shrinkage of every grain separately,
and allow to study the different parameters of grain growth separately, which is
often difficult in experimental studies on real materials. Moreover, images of three-
dimensional simulations provide more insight in the shape and size of grains than
two-dimensional microscopic images of cross-sections of a material.

2.2.2 The pinning effect of second-phase particles

Zener pinning

Since the driving pressure for grain growth is relatively weak, even extremely small
amounts of impurities may have a drastic effect on the grain growth behaviour
of a material. Small second-phase particles, such as precipitates and insoluble
inclusions, exert a strong pinning effect, also called Zener pinning, on the grain
boundaries. They restrain the mobility of grain boundaries and eventually inhibit
grain growth, limiting the final mean grain size of the microstructure. As briefly
mentioned in Section 2.1, a characteristic of normal grain growth in ideal materials
is that the grain size distribution has a shape that is self-similar in time. Processes
such as Zener pinning will affect the shape of the grain size distribution such that
the evolution of the grain structure is no longer self-similar.

Insight into the pinning effect of particles is of great technological importance,
since for many applications a tailored grain size is required to obtain materials with
the desired properties. Examples are the addition of a small amount of alloying
elements to HSLA (High Strength Low Alloyed) steels and Ni-based super alloys
in order to obtain materials with a small grain size and high strength [23, 100, 117],
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the use of precipitates in thin films to induce abnormal grain growth in order to
obtain films with a large grain size for high electrical conductivity and reduced
electromigration damage [40, 76, 70], and, recently also the use of particles (such
as precipitates, carbon nanotubes and organic or amorphous particles) to stabilise
nanocrystalline materials [52, 77, 72, 26].

In most analytical studies [96, 32, 55, 81] on Zener pinning it is assumed that
normal grain growth is arrested when a critical mean grain radius 〈R〉lim is reached.
Most often a relation of the form

〈R〉lim
r

= K
1

f b
V

(2.4)

is obtained, where r is the radius of the second-phase particles and fV the volume
fraction. The values of the parameters K and b vary among the different studies,
depending on which assumptions are made on the shape and properties of the
particles and boundaries, and on the assumptions made on the position of the
particles with respect to the boundaries.

The pinning force exerted by one particle on a grain boundary can be analytically
calculated based on the position of the boundary, the shape of the particle and the
properties of the particle-matrix interface and the grain boundary [81, 96, 75, 110].
Figure 2.3 shows schematic representations of a grain boundary pinned by
respectively a circular and a spherical particle. In two dimensions, the particle-
matrix interface and the grain boundary intersect at two distinct points, which is
indicated on Fig. 2.3(a) by two dots. In three dimensions, the particle-matrix
interface and the grain boundary intersect along a circular line with length
2πr cos β, indicated by the dotted line on Fig. 2.3(b). In both cases, the grain
boundary obtains a dimple shape in order to balance the grain boundary tension
σgb and interfacial tensions σ1

p/m and σ2
p/m of the particle-matrix interface. The

contact angle θ depends on the proportions between σ1
p/m, σ2

p/m, and σgb, and
is constant during the passage of the grain boundary. The angle β increases
while the grain boundary moves from left to right. The grain boundary breaks
free from the particle for β = θ in two dimensions and for β = θ/2 in three
dimensions. Figure 2.4 illustrates grain boundaries pinned in a Fe-0.2%C-0.02%P
alloy by Ce2O3 and CeS inclusions. The dimple shape mentioned above can be
recognised on Fig. 2.4(a).

Computational studies of Zener pinning

The calculation of the total pinning force of a distribution of multiple particles
is more complex. The number of particles that lie at a grain boundary, as well
as the geometry of the grain boundary at and near each grain boundary-particle
intersection, has to be known. This appears to be extremely difficult to describe
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(a) 2D: F 2D
Z = 2σgb cos(θ − β) (b) 3D: F 3D

Z = 2πrσgb cos β cos(θ − β)

Figure 2.3: Schematic representations of a grain boundary pinned by (a) a circular
particle and (b) a spherical particle [88].

analytically. In this respect, computer simulations turn out to be helpful. They are
a practical tool, not only to determine the number and the geometry of boundary-
particle intersections, but also to study the role of different characteristics of the
second-phase particles separately. Together with existing analytical theories and
experimental findings, they provide valuable insights.

The pinning effect of second-phase particles has mostly been studied by two-
dimensional computer simulations using Monte Carlo Potts models [41, 118, 83],
front-tracking-type models [109, 138, 29] and phase field models [37, 86, 87, 122,
88, 129, 22, 5]. It is found that for two-dimensional systems, relation (2.4) is
obeyed, with b = 0.5, and most particles are in contact with a grain boundary in
the pinned microstructure. Only few studies consider three-dimensional systems.
Simulations for three-dimensional systems [83, 122, 88] show that the fraction
of particles in contact with a grain boundary is significantly lower than in two-
dimensional systems. Furthermore, fitting of relation (2.4) to the results obtained
from three-dimensional simulations gives values for b and K that are very different
from those obtained for two-dimensional simulations. In [83], b = 1.02 and
K = 0.728 are obtained; in [29], the value b = 1.0 is extracted. In contrast,
in the work of [122], the parameter values b = 0.870 and K = 1.42 are found.
The study in [88] shows that even for columnar grain structures, the pinning
effect is very different from that observed in two-dimensional simulations. In
two dimensions, the grain boundaries are basically lines interacting with particles,
which split into two different boundary segments when they meet a particle. In
contrast, in three dimensions, the grain boundaries are surfaces that remain a
single entity when meeting a particle. In order to balance the interfacial tensions at
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(a) (b)

(c)

Figure 2.4: Grain boundaries pinned in a Fe-0.2%C-0.02%P alloy by Ce2O3 and
CeS inclusions: (a) with Ce2O3 quenched at 1673K, [ppm insol. Ce] = 680, [ppm
T.O] = 140; (b) with Ce2O3 held at 1673 K for 60 min, [ppm insol. Ce] = 607,
[ppm T.O] = 104; and (c) with CeS quenched at 1673 K, [ppm insol. Ce] = 780,
[ppm T.S] = 260 [47].

a particle-boundary intersection, the grain boundary assumes a dimple shape. The
extra curvature thus created contributes to the driving force of grain growth [58].
Furthermore, in two dimensions, the pinning force of one particle is maximal when
the grain boundary meets the particle at an angle which is twice as large as is the
case in three dimensions. Therefore, the pinning effect in two-dimensional systems
is in general much stronger than in three-dimensional systems [88]. It is thus
important that predictive computer models reflect the three-dimensional nature
of Zener pinning for bulk material systems as well as for thin films.
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The effect of particle shape

Although the values obtained for the coefficients in the Zener relation in the
different simulation studies seem to vary considerably, it was shown in [122]
and [129] that the limiting mean grain sizes obtained with different simulation
techniques, in fact, agree quite well. Experimentally determined limiting mean
grain sizes are however in general much smaller than those predicted by simulations.
Based on experimental data, it was also concluded that the Zener relation
should have different parameter values for respectively low and high volume
fractions [55, 81]. Such a transition between two regimes has not been observed in
computer simulations. These discrepancies between experimental and theoretical
results indicate that one or several essential aspects were not considered in previous
computer simulations. A possible hypothesis is the effect of particle shape. Except
for [22], all the above mentioned studies only performed simulations of grain
growth in the presence of spherical particles. In reality, however, particles are
generally not spherical. Experimental microstructures show that, even in the
case where the particle-matrix interface is incoherent and has properties that are
independent of orientation, the particle shape deviates from spherical because of
inhomogeneities in the surrounding matrix during formation of the particle [121].
For example, particles formed on a former boundary are lance-shaped, the solute
flux for particles formed near another particle or a grain boundary is not spherically
symmetric, particles may change shape in an anisotropic way during deformation
processes. It has been shown that the pinning force of a single particle is strongly
dependent on the geometry at the grain boundary-particle section and the particle
shape [96, 75, 83, 49]. The effect of particle shape seems to be even far more
important than the effect of the anisotropy of the particle-matrix interfacial
energy [96, 75].

According to [114], the maximal pinning force FZ of a spheroid particle is, for the
case where the boundary intersects the particle perpendicular to its major axis,

FZ = F S
Z

2

(1 + ra)r
1/3
a

(2.5)

and, for the case where the boundary intersects the particle along a plane
containing the major axis,

FZ =
F S

Z

π

(1 + 2.14 ra)

r
1/3
a

, ra ≥ 1, (2.6)

where ra is the aspect ratio of the particle and F S
Z the drag of spherical particle

of equal volume. The last equation shows that if the boundary intersects the
particle along a plane containing the major axis, its pinning force is considerably
larger than that of a spherical particle with equal volume, even for small aspect
ratios. If the boundary intersects the particle perpendicular to the major axis,
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the pinning force of the particle is however much smaller than that of a spherical
particle. As a consequence, the effect of particle shape on the overall pinning effect
of a particle distribution depends on the possibility that the boundary-particle
intersection contains the major axis. In [75], it was analytically calculated that
within well-defined conditions, particle dispersions of mono-orientation can be very
effective in pinning migrating boundaries. This was confirmed by the results of
two-dimensional phase field simulations in [22], which show that a dispersion of
mono-oriented ellipse-shaped particles with a high aspect ratio is more effective in
pinning than a dispersion of circular particles of the same size.

Based on the work of [114, 75], it is generally assumed that dispersions of ellipsoid
particles have a stronger pinning effect than dispersion of spherical particles,
although to our knowledge, the effect of random dispersions of ellipsoid particles
on grain growth has not been verified by three-dimensional mesoscale simulations
yet, mainly because of computational limitations. To gain more insight in the
dependence of the pinning force of a particle distribution on the shape of the
particles, we performed three-dimensional phase field simulations of grain growth
in systems with spheroid particles for different aspect ratios and volume fractions
of the particles [131]. They are described and analysed in Chapter 7.

2.2.3 Anisotropic grain boundary properties

Anisotropic grain boundary energy formulation

During grain growth, grains with favourable properties grow at the expense of
other grains, which results in an increase of the mean grain size. In particular, the
evolution of the grain structure is influenced by the misorientation between the
crystallographic orientations of neighbouring grains and the inclination of the grain
boundaries with respect to the reference lattice. Grain boundary characteristics
such as boundary mobility and boundary energy strongly depend on these
properties. A predictive model for realistic evolution of polycrystalline materials
should therefore include orientation dependent microstructural properties and
interactions to be able to study this interplay of texture and grain growth [31,
57, 67, 7, 8, 15].

In this thesis, we distinguish one specific grain boundary type from all other
boundary types, namely subgrain boundaries. According to [13], a subgrain
boundary is formed by the network of discrete dislocations at the interface between
two joined crystals of the same kind, but slightly rotated with respect to one
another. A subgrain boundary is defined by:

• the orientation of a rotation vector θ,

• the value of a rotation angle θ and
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Figure 2.5: Cross-section of a microstructure with fibre texture, revealing the
schematic representation of a tilt boundary. The rotation angle θ, which indicates
the misorientation between the crystallographic orientations of two neighbouring
grains, is indicated.

• the position of the boundary within the crystal.

In a polycrystalline microstructure with fibre texture, the crystallographic
orientations of the constituting grains are nearly identical in one direction, a
chosen axis, and random in the plane perpendicular to this axis. Consequently,
the latter axis coincides with the rotation vector θ of the occurring subgrain
boundaries. Assuming that a subgrain boundary is planar, the orientation of its
boundary plane with respect to the rotation axis can be perpendicular, in arbitrary
orientation, or parallel. Accordingly, the subgrain boundary is respectively called
a pure twist boundary, a partial twist boundary, or a tilt boundary. Figure 2.5
shows the cross-section of a microstructure with fibre texture, revealing the
schematic representation of a tilt boundary. The rotation angle θ, which measures
the misorientation between the crystallographic orientations of two neighbouring
grains, is indicated.

In [13], the energy of a subgrain boundary is calculated for the case of a tilt
boundary, essentially following the work of Read and Shockley [108, 107]. The
dependence of the boundary energy on the tilt angle θ is derived as:

σgb(θ) = σ0θ(A− ln θ), (2.7)

with σ0 and A constant values. This equation is valid for all types of subgrain
boundaries if the constants σ0 and A are modified correspondingly. The maximal
value σm of this boundary energy formulation is attained for the angle

θm = exp(A− 1), (2.8)
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and is calculated as

σm = σ0 exp(A− 1). (2.9)

Dividing equation (2.7) by σm, equation (2.7) thus becomes

σgb(θ)

σm
=

θ

θm

(
1− ln

(
θ

θm

))
. (2.10)

This formulation of the boundary energy, also called the Read-Shockley depen-
dence, is no longer valid for large angles θ, when the boundary becomes a high-
angle boundary [13].

Computational studies on the effect of anisotropic boundary properties

Several models exist to simulate the evolution of anisotropic polycrystalline
systems: anisotropic grain growth has been studied with Monte Carlo Potts [101,
56, 127, 50, 67], front-tracking [44, 69] and phase field models [63, 127, 78,
124, 90]. In most of these works, two-dimensional simulations are performed
[101, 56, 63, 127, 78, 69], although some also include three-dimensional results [44,
67, 124], and in [101, 56, 50, 78], a three-dimensional characterisation of the
crystallographic orientation is applied. Most studies start from randomly oriented
microstructures [101, 127, 50, 44, 69], although some include a specific initial
texture [67]. For example in [56], it is found that grain growth kinetics are
significantly slower for a strongly textured structure than for a randomly textured
structure, where kinetics are recovered that are consistent with isotropic grain
growth. Based on simulation results of microstructures containing two texture
components, in [124], grain growth kinetics are divided into different stages of fast
and slow growth of one of the components. In [78], a fraction of cube texture (resp.
12.5% and 27%) is included in an otherwise randomly textured microstructure. In
the subsequent simulations, the fraction of textured grains increases or decreases
continuously in time, depending on the interplay between grain boundary energy
and mobility. The anisotropy of the grain boundary characteristics seems to slow
down grain growth kinetics [127, 67], while in other studies, normal grain growth
kinetics are recovered [50].

When studying the influence of anisotropic properties, the employed models
include anisotropic boundary energy [101, 56, 50, 69, 90] or anisotropic mobil-
ity [124], or both [127, 63, 78, 67, 44]. It is generally found that the effect of
energy anisotropy on grain growth is much larger than the effect of mobility
anisotropy [127, 63, 78, 44]. In some studies, the applied boundary energy function
and mobility function depend on the misorientation between neighbouring grains
solely [101, 56, 127, 50, 78, 67, 124, 90], while in other studies, they depend on
the inclination of the grain boundaries as well [63, 44, 69]. For the anisotropic
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boundary energy function, most [63, 127, 56, 50, 78, 67, 90] assume the Read-
Shockley dependence (2.10) for low-angle boundaries:

σgb(θ) = σm
θ

θm

(
1− ln

(
θ

θm

))
, θ < θm, (2.11)

with θ the smallest rotation angle between the orientations of two neighbouring
grains, θm a threshold angle to distinguish the low angles from the high angles
and σm the boundary energy associated with misorientation θm. In [56, 63, 78,
67], a constant boundary energy σm is assumed for the higher-angle boundaries.
In [127], the misorientation dependence of grain boundary energy and mobility for
higher-angle boundaries is derived from molecular dynamics simulations, including
extra low-energy boundaries at specific high-angle misorientations. The latter
are also included in [101] and [50], where a three-dimensional crystallography is
employed. In all mentioned studies, the fraction of low-angle boundaries is found
to increase with time. While [101] also reports an increase of the length fraction
for all low energy misorientations, in [50], this increase is only observed for low-
angle boundaries, possibly because high-angle boundaries with low energy are
more difficult to form in their model. In [127], a two-dimensional crystallography
is employed, and all lower-energy boundary fractions are seen to increase with
time.

2.3 Different models for grain growth

2.3.1 On grain growth modelling

A polycrystalline microstructure consists of several grains. A model of such
a microstructure thus has to be able to distinguish between different domains,
each corresponding to a grain. Ideally, the number of possible crystallographic
orientations in a grain growth model should equal or exceed the total number of
grains, as in reality the number of possible orientations is infinite. The interfaces
between the grain domains represent the grain boundaries.

With respect to the representation of the grain boundaries, there exist two types
of approaches to construct multi-domain models. The first approach is based on a
sharp interface description, in which properties are discontinuous at the interfaces,
as is illustrated in Fig. 2.6(a). The second approach employs a diffuse interface
description in which properties vary continuously within a narrow interface region,
as in Fig. 2.6(b). An example of the first approach are Monte Carlo Potts models,
which are surveyed in Section 2.3.2. In simulations with this type of models, the
grain domains evolve in time, while the grain boundaries are implicitly defined
as discontinuities and thus follow grain evolution. Another example of sharp
interface models are front-tracking models, described in Section 2.3.3. This type of
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(a) Sharp interface (b) Diffuse interface

Figure 2.6: There exist two types of models: (a) sharp interface models, with
properties that are discontinuous at the interfaces, and (b) diffuse interface models,
with properties that vary continuously within a narrow interface region.

models describes the grain boundaries with vertices, edges and faces, and explicitly
tracks their evolution. Grains are then defined as the domains delineated by the
moving boundaries. Phase field models follow the second approach of modelling:
they represent interfaces in a diffuse way. This approach allows to simulate
complex morphologies and morphological changes without the need for any prior
assumptions on shape. Moreover, the interfaces do not have to be explicitly
tracked. Simulations with the three models mentioned above are found to be
in good agreement [127, 49].

Another type of models that has been applied to grain growth is level set models [12,
34]. In the level set formulation, grain boundaries are defined as zero-level sets of
characteristic functions or signed distance functions that are evolved by solving
partial differential equations or by convolution. Phase field models are related to
level set models in the sense that they represent grain boundaries as level sets of
the phase field variables. As phase field models, level set models naturally handle
the difficulties associated with topological changes [34]. However, according to [34],
level set models require a lower resolution than phase field models to obtain the
same accuracy. So far, little research has been performed on the application of
level set models to grain growth simulation. The same is true for cellular automata
models. An introductory review of the latter type of models to grain boundary
movement in polycrystalline materials can be found in [61]. We will not go into
further detail on both types of models.

2.3.2 Monte Carlo Potts models

A Monte Carlo Potts model maps a continuum polycrystalline microstructure to
a discrete lattice, which can be rectangular [3, 57, 140] or triangular [56, 50, 67].
Each lattice site represents a Monte Carlo unit (MCU). To initialise the lattice,
which contains N MCUs, an integer value corresponding to a crystallographic
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Figure 2.7: Microstructure on a three-dimensional rectangular lattice. Each lattice
site is assigned an integer value corresponding to a grain orientation Oi.

orientation Oi is assigned to every lattice site. This is illustrated for a rectangular
grid in Fig. 2.7. All sites within a grain have the same orientation and grain
boundaries are represented by interfaces between neighbouring sites of different
orientation. A large number p of different grain orientations is used to avoid grain
growth by coalescence between neighbouring grains with the same orientation,
instead of by grain boundary movement. This effect would result in unphysical
grain shapes and incorrect growth kinetics, and is therefore undesired.

The energy of a microstructure is defined in terms of the lattice site energy, which
depends on the shell of nearest neighbours of a particular lattice site. The energy
Es,i at lattice site s with orientation Oi is computed as

Es,i = σgb

n∑

j=1

(1− δij), (2.12)

where σgb is the grain boundary energy, which is constant for isotropic grain
growth. The summation in (2.12) is taken over all n sites in the neighbour shell
of site s. The study of [67] shows that this neighbour shell has to include a
sufficient number of nearest lattice sites to obtain correct grain growth kinetics.
The parameter δij is the Kronecker delta function, i.e.

δij =

{
1 if Oi = Oj ,

0 if Oi 6= Oj ,
(2.13)

and Oj the orientation of the jth neighbouring lattice site. Each pair of nearest
neighbours thus only contributes an energy amount of magnitude σgb to the system
energy if they do not have the same orientation.



DIFFERENT MODELS FOR GRAIN GROWTH 21

Simulation with the Monte Carlo Potts model relies on repeated random sampling
of crystallographic orientations. The smallest time unit of a Monte Carlo Potts
simulation is one Monte Carlo step (MCS) and consists of N reorientation attempts.
Each reorientation attempt consists of several steps. First, one MCU is chosen
according to a specified probability distribution. Second, a new orientation Oj is
selected from the set of neighbour orientations. This means that the microstructure
can only change through grain boundary motion and that nucleation of new grains
is not allowed. The new state of the microstructure now differs from the old state
by the change of a single MCU. Third, the difference in energy ∆E = Es,j − Es,i

between the new state j and the old state i is calculated. If the new state has
a lower energy than the old state, the change of orientation is accepted with
probability P0. If not, the change of orientation is accepted with a probability of

P = P0 exp(− ∆E

kBT
), (2.14)

where P0 = 1 for isotropic grain growth. The denominator kBT , with kB

Boltzmann’s constant and T the temperature, is an energy term defining the
thermal fluctuation of the simulation. In practice, it determines the amount of
noise present in the system. Algorithm 2.1 summarises a simulation with the
Monte Carlo Potts model.

Algorithm 2.1: Monte Carlo Potts algorithm

Generate initial state by assigning an orientation Oi to each lattice site;
for t = t1, t2, . . . , tend do

for s = 1, 2, . . . , N do
Select MCU according to specified distribution;
Select new orientation Oj from the set of neighbour orientations;
Compute ∆E = Es,j − Es,i with Formula (2.12);
if ∆E ≤ 0 then

Accept change from state i to state j with probability P0;
else

Accept change from state i to state j with probability
P = P0 exp(− ∆E

kBT );

end

end

end

In [3], the Monte Carlo Potts model is extended to simulate grain growth in the
presence of immobile second-phase particles. During initialisation of the lattice,
NΦ particles are brought into the microstructure by selecting lattice sites according
to a uniform distribution. The particles sites are assigned an additional orientation
Op+1. The remaining (N − NΦ) lattice sites are filled by distributing the other
p orientations. The particle-matrix interfacial energy is set to the same value as
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the grain boundary energy. During a simulation, no attempt is made to reorient
the particle sites. Also, they are not allowed to move. One MCS now consists of
(N −NΦ) reorientation attempts. The model is further modified in [56, 57, 50, 15]
to include anisotropic properties. A common factor of these modifications is that
P0 is rewritten such that a reorientation is accepted with a probability proportional
to the anisotropic boundary properties.

Important parameters of the Monte Carlo Potts model are the neighbour shell
in calculation (2.12) of the lattice site energy and the lattice type, which can be
triangular or rectangular. Naturally, the latter parameter is related to the former,
since the lattice geometry determines the shape of the neighbour shell. In the
case of three-dimensional simulation, the type of stacking of the two-dimensional
lattice planes into a three-dimensional lattice is important as well. In [67] for
example, a study is made of the effect of the stacking mode and the number of
nearest neighbour lattice sites included in the calculation of the system energy on
the simulation of normal grain growth.

Simulations with the Monte Carlo Potts model are sensitive to lattice effects: the
grain boundaries mimic the underlying lattice geometry and grow faceted. In the
case of simulation on a rectangular lattice, grain boundaries tend to meet at 90◦

or 180◦, which results in rectangular grain shapes. On triangular lattices, grain
growth is inhibited by lattice pinning due to the formation of triple junctions where
three boundaries meet at 120◦ [56]. Since these lattice effects are non-physical,
it is necessary to eliminate them from grain growth simulations. Two possible
solutions are an increase of the neighbour sampling in the lattice site energy
calculation (2.12), and an action on the simulation temperature T , which alters
the transition probability function (2.14). The latter approach thus introduces
noise into the system [56]. Although these interventions generally have little effect
on the microstructural evolution, it is known that choosing an inappropriate value
of T can lead to undesirable effects such as lattice pinning in the case of a low
temperature T , or disordering in the case of a high T value [46].

2.3.3 Front-tracking models

Front-tracking models explicitly describe a three-dimensional microstructure by a
network of area segments constructed from a set of vertices and edges. The vertices
are points located in Cartesian space and the edges are lines connecting the vertices.
When edges are connected to one another, a surface is produced, which represents a
surface of a grain boundary. Figure 2.8 shows the same microstructure as depicted
on Fig. 2.7, but now from the viewpoint of a front-tracking model. The colouring
of the former illustration is similar to the latter to indicate the correspondences
between the figures. In two dimensions, the representation of the grain boundaries
in a front-tracking model is limited to vertices and edges.
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Figure 2.8: Front-tracking models describe a microstructure by a network of area
segments constructed from a set of vertices and edges.

All front-tracking models follow a similar approach: the grain boundary movement
is curvature-driven, and subject to spatial or geometrical constraints. The
velocities of the moving vertices are calculated by minimising a functional that
depends on the local geometry and the properties of the grain boundaries.
Examples of front-tracking models of grain growth are described in [44, 69] and [49].

We describe one front-tracking model in more detail, namely the two-dimensional
model presented in [69]. The data structure of the latter model consists of grain
boundaries, triple junctions, and grains, and is managed using standard linking
lists. A grain boundary Γk(t) is defined by a set of nodal points as

Γk(t) = {xk
j (t) : j = 1, . . . , Nk(t)}, k = 1, . . . , K, (2.15)

with K the number of grain boundaries. Grain boundaries are thus approximated
using linear elements and uniformly discretised with a distance between neighbour-
ing nodal points that satisfies

3

4
h < |xk

j − xk
j−1| <

3

2
h, j = 2, . . . , Nk(t). (2.16)

The global mesh size h is defined at the beginning of a simulation and remains
constant through a simulation. The number of nodal points Nk(t) for each grain
boundary changes during a simulation, as the nodal points are redistributed in
order to keep the distance between neighbouring nodal points in the range defined
above. The minimal number of nodal points for a grain boundary is three, which
guarantees the presence of at least one interior nodal point per grain boundary.
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During every time step, first, the grain boundaries are evolved according to the
kinetic equation describing grain movement, and second, the new positions of the
triple points are updated through an iterative process such that a force balance
equation is obeyed. As grain growth proceeds, two types of critical events occur.
When the length of a grain boundary falls below a certain threshold value, the
grain boundary is removed and the two triple junctions previously delimiting the
boundary become one quadruple junction. Since triple junctions typically are
the only stable junctions, the newly formed quadruple junction is instantly split
into two new triple junctions, connected by an infinitesimally small new grain
boundary. The latter grain boundary is most likely to grow during the next time
step. This process is called grain boundary flipping and is illustrated on Fig. 2.9.
It is designed to preserve the energy decrease of the microstructural evolution. The
second type of critical event occurs when small grains shrink below a certain size.
This event triggers a process called grain disappearance. As a small grain shrinks,
it eventually becomes a junction at which multiple grain boundaries meet. Again,
this multiple junction is instantly split into multiple triple junctions.

When implementing a front-tracking model, care has to be taken to the
construction of a correct and accurate discretisation scheme and to the treatment
of critical events [69]. Critical events are significant changes in the grain boundary
network, for example when a grain boundary or an entire grain disappears as
described above. To implement these changes and the responses to these changes,
assumptions on shape evolution have to be made in advance, which is far from
trivial, especially in three dimensions. An advantage of the front-tracking approach
is the reduced dimensionality of the data structure, which permits the simulation
of large-scale systems.

2.3.4 Phase field models

A phase field model describes a microstructure with a set of phase field variables
that are continuous in space and time. These phase field variables represent
microstructural properties such as the concentration of one of the components,
and the structure or the crystallographic orientation of a phase. When the phase
field variables represent structural properties, they are also called order parameters.
The spatial and temporal evolution of the phase field variables is governed by a
set of coupled partial differential equations. Based on the values assumed by the
phase field variables, a microstructure can be decomposed into several domains,
separated by diffuse interfaces. The values of the phase field variables are constant
within a domain, but vary continuously across the interfaces.

Phase field modelling has shown to be a versatile tool for simulating mi-
crostructural evolution phenomena, such as solidification [136, 99, 14, 30, 103],
precipitation [19, 137] and grain growth [25, 120, 35, 71, 74, 78]. It allows to predict
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(a) (b)

(c) (d)

Figure 2.9: When short grain boundaries shrink below a certain threshold value,
a process called grain boundary flipping is triggered: (a) the grain boundary
length falls below the critical threshold value, (b) the boundary is removed and
the previously delimiting triple junctions are joined into one quadruple junction,
(c) the quadruple junction is split and a new grain boundary is created with
an orientation orthogonal to the disappeared boundary, and (d) the new grain
boundary grows.
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the evolution of complex morphologies without the need of prior assumptions on
shape, while considering different thermodynamic driving forces, such as interfacial
energy, bulk energy and elastic energy, and different transport processes, such as
heat and mass diffusion.

In the next two sections, we will describe two phase field models for grain growth in
detail, namely the multi-phase field model of [120] and the continuum field model
presented in [25] and extended in [86, 89, 90]. These models are the main interest
of this thesis. Both models describe a polycrystalline microstructure with a large
set of phase field variables, with one phase field variable corresponding to each
crystallographic orientation. The most obvious difference between these models
is that in the multi-phase field model, the phase field variables are interpreted as
fractions of orientation. The model therefore imposes the constraint that these
phase field variables have to sum up to one, while in the continuum field model,
there is no such restriction. There exists no straightforward relation to transform
one of these models into the other. However, it is possible to derive relationships
between the model parameters for given grain boundary properties and grain
growth kinetics [92]. After a detailed comparison of the multi-phase field model
and the continuum field model in [92], it is concluded that both models essentially
give the same results, except for differences near small shrinking grains, which are
most often local and temporary for large grain structures.

2.4 Multi-phase field model for grain growth

In [120], a multi-phase field model is proposed which models a polycrystalline
microstructure by a vector-valued order parameter φ with p components:

φ(r, t) = (φ1(r, t), φ2(r, t), . . . , φp(r, t)) . (2.17)

Each component φi is a phase field variable and represents a different crystal-
lographic orientation. The values of the p components are continuous in space
and time. Inside a grain, one component φi takes the value 1, while the other
phase field variables assume the value zero. Across the grain boundaries, the
component values vary continuously from their equilibrium value within the grain
to their equilibrium value in the neighbouring grains. In accordance with [120],
the condition is imposed that the components φi must lie in the Gibbs-simplex G,
which is defined as

G = {φ ∈ R
p : φi ≥ 0,

p∑

i=1

φi = 1}. (2.18)
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The free energy F̃ of the microstructure is a function of the order parameter φ

and is described by

F̃ (φ) =

∫

V

(
ǫa(φ,∇φ) +

1

ǫ
w(φ)

)
dV, (2.19)

with a(φ,∇φ) the gradient free energy density and w(φ) the bulk potential. The
parameter ǫ is a measure for the width of the diffuse interfaces. The term a(φ,∇φ)
models the interfacial contribution to the free energy and is given by:

a(φ,∇φ) = s

p∑

i,j=1
i<j

σij‖φi∇φj − φj∇φi‖2, (2.20)

with σij the surface energy density of the corresponding i/j interface. A scaling
parameter s is introduced for technical reasons: it allows to formulate the phase
field model on the unit square [132]. Note that for p = 2, formulation (2.20)
reduces to a(φ,∇φ) = sσ12‖∇φ1‖2, taking into account that φ1 + φ2 = 1.

For the bulk potential w(φ), we describe two possible choices [42]. The first one
is the multi-obstacle potential, which is formulated as

wobst(φ) =
16

π2

∑

i<j

σijφiφj +
∑

i<j<k

σijkφiφjφk for φ ∈ G, (2.21)

where wobst(φ) is defined to be infinite whenever φ is not in the Gibbs-simplex G.
The second possible choice is the multi-well potential:

wwell(φ) = 9
∑

i<j

σijφ2
i φ2

j +
∑

i<j<k

σijkφ2
i φ2

jφ2
k. (2.22)

To ensure that the sum constraint in (2.18) is preserved, a Lagrange multiplier
function is added to the formulation of the free energy in (2.19). The free energy
functional is now described by

F (φ) =

∫

V

(
ǫa(φ,∇φ) +

1

ǫ
w(φ)

)
dV + λ

(
p∑

i=1

φi − 1

)
. (2.23)

The evolution of the phase field variables φi is governed by gradient flow dynamics
of the form

ωǫ
∂φi

∂t
= −δF (φ)

δφi
, i = 1, . . . , p, (2.24)

where the parameter ω is related to a physical grain boundary property: 1
ω equals

the interfacial mobility µ. The notation δ
δφi

is used to denote the variational
derivative with respect to φi and is computed as

δ

δφi
=

∂

∂φi
−∇ · ∂

∂(∇φi)
(2.25)
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in accordance with [120]. The second part of the right-hand side of this formulation
is the divergence of a vector, which can be written as

∇ · ∂

∂(∇φi)
= ∇ ·

(
∂

∂(∂φi/∂x)
∂

∂(∂φi/∂y)

)
. (2.26)

Substitution of (2.20) and (2.21) in the free energy functional (2.23), and
elaborating the kinetic equations (2.24) results in:

ωǫ
∂φi

∂t
= ǫ

(
∇ · ∂a

∂(∇φi)
− ∂a

∂φi

)
− 1

ǫ

∂w

∂φi
− λ, i = 1, . . . , p. (2.27)

Here, we shall not follow the approach suggested in [99], where the function λ
is eliminated explicitly. Instead, the system of equations (2.27) is extended with
the sum constraint of the Gibbs-simplex (2.18). Hence the model consists of p
partial differential equations plus one algebraic equation. The gradient free energy
component in (2.27) is derived as follows. For the first component in the right-hand
side of (2.27) we find:

∇ · ∂a

∂(∇φi)
= −2s

∑

j 6=i

σij∇φj · (φi∇φj − φj∇φi)

− 2s
∑

j 6=i

σijφj(φi∇2φj − φj∇2φi). (2.28)

The second component gives:

∂a

∂φi
= 2s

∑

j 6=i

σij∇φj · (φi∇φj − φj∇φi). (2.29)

As a result, we have that:

∇ · ∂a

∂(∇φi)
− ∂a

∂φi
= −4s

∑

j 6=i

σij∇φj · (φi∇φj − φj∇φi)

− 2s
∑

j 6=i

σijφj(φi∇2φj − φj∇2φi). (2.30)

The equations obtained by filling out (2.30) in (2.27) will be the subject of
Chapter 6. There, we will develop a fast multigrid solver for two-dimensional
grain growth simulations with multi-phase field model (2.27).
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2.5 Continuum field model for grain growth

2.5.1 Continuum field model for isotropic grain growth

The phase field model of Chen and Yang [25] represents the microstructure of a
single-phase polycrystalline material by a set of p phase field variables

η(r, t) = (η1(r, t), η2(r, t), . . . , ηp(r, t)) . (2.31)

The phase field variables are used to distinguish the different crystallographic
orientations of the grains and are continuous functions of the spatial coordinates
and time. Inside a grain, one phase field variable ηi takes a non-zero constant
value, 1 or −1, while the other phase field variables assume values close to zero.
Across the grain boundaries, all phase field variables vary continuously from their
equilibrium value within the grain to their equilibrium value in the neighbouring
grains. This is illustrated in Fig. 2.10, where a microstructure is visualised by
transforming the sum of the squares of the phase field variables into grey scale.

The spatial and temporal evolution of the phase field variables (2.31) is governed
by the equations

∂ηi

∂t
= −Li

δF (η)

δηi
, i = 1, . . . , p, (2.32)

where the kinetic coefficients Li are related to the grain boundary mobility. The
free energy F of the system is described by

F (η) =

∫

V

(
f0(η) +

p∑

i=1

κi

2
(∇ηi)

2

)
dV, (2.33)

with κi the gradient energy coefficients and f0 the homogeneous free energy density.
The gradient term in formula (2.33) is always positive and thus penalises the
presence of interfaces. The free energy density f0 is

f0(η) =

p∑

i=1

(
−α

2
η2

i +
β

4
η4

i

)
+ γ

p∑

i=1

p∑

j>i

η2
i η2

j , (2.34)

with α, β, and γ positive constants and γ > β
2 , as proposed in [25, 36]. For γ > β

2 ,
f0 has 2p degenerate minima with equal depth at

(η1, η2, . . . , ηp) = (1, 0, . . . , 0), (0, 1, . . . , 0), . . . , (0, 0, . . . , 1),

(−1, 0, . . . , 0), (0,−1, . . . , 0), . . . , (0, 0, . . . ,−1). (2.35)
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Figure 2.10: The continuum field model represents a single-phase polycrystalline
microstructure by a set of phase field variables (η1(r, t), η2(r, t), . . . , ηp(r, t)).

As in [85], we assume that the set of values (. . . , ηi, . . .) = (. . . , 1, . . .) and
(. . . , ηi, . . .) = (. . . ,−1, . . .) represent the same orientation. The 2p minima of
the free energy density f0 thus reflect the p orientations a grain can have. For a
particular phase field variable ηi, f0 is minimal for ηi = 1 or for ηi = −1 when
all other phase field variables equal zero. If one of the other phase field variables
equals 1 or −1, f0 only reaches its minimum when ηi = 0, because of the cross-
term in (2.34). The latter term makes it energetically unfavourable to have two
phase field variables different from zero at the same position in the system.

In accordance with Moelans in [85], the parameters α, β and γ in (2.34) are
renamed to the same parameter m = α = β = γ. The constraint that γ > β/2 is
still fulfilled. The free energy density expression f0 can then be written as

f0(η) = mf̃0(η) = m




p∑

i=1

(
−η2

i

2
+

η4
i

4

)
+

p∑

i=1

p∑

j>i

η2
i η2

j +
1

4


 . (2.36)
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The constant term m/4 is added so that the homogeneous free energy f0(η) equals
zero within grains.

Substituting (2.33) into (2.32) and applying formula (2.25) to compute the
variational derivative in (2.32) results in a set of reaction-diffusion partial
differential equations:

∂ηi

∂t
= Li


κi∇2ηi + m


η3

i + ηi − 2ηi

p∑

j=1

η2
j




 , i = 1, . . . , p. (2.37)

For isotropic grain boundary energy and mobility, the kinetic coefficients and the
gradient energy coefficients as well as the parameter m are constant values, with
κi = κ and Li = L.

2.5.2 Continuum field model for grain growth in the presence of
second-phase particles

In [86, 87], phase field model (2.37) is extended for the simulation of grain growth
in materials containing small incoherent second-phase particles with constant
properties. To include such particles in the model, a spatially dependent phase field
variable Φ is added. This parameter Φ equals 1 inside a particle and 0 elsewhere,
and remains constant in time. The free energy density f0 of the system is now
described by

f0(η, Φ) = m




p∑

i=1

(
−η2

i

2
+

η4
i

4

)
+

p∑

i=1

p∑

j>i

η2
i η2

j + Φ2

p∑

i=1

η2
i +

1

4


 . (2.38)

The extra term in the free energy expression forces all phase field variables to be
zero inside a particle. For Φ = 1, the free energy density has one minimum, namely
at (η1, η2, . . . , ηp) = (0, 0, . . . , 0). For Φ = 0, the free energy density reduces to
expression (2.36) with its 2p minima representing the orientations of the grains.

Substituting (2.38) into (2.33) and subsequently into (2.32) results again in a set
of reaction-diffusion partial differential equations, this time extended to include
the presence of second-phase particles:

∂ηi

∂t
= Li


κi∇2ηi + m


η3

i + ηi − 2ηi




p∑

j=1

η2
j + Φ2






 ,

i = 1, . . . , p. (2.39)
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In Chapter 5, a sparse bounding box method is developed to perform efficient
large-scale simulations with model (2.39). The applicability of the bounding box
algorithm is illustrated in Chapter 7, where model (2.39) is used to study the
pinning effect of spheroid second-phase particles on grain growth.

2.5.3 Continuum field model for grain growth in a microstruc-
ture with anisotropic grain boundary energy

The boundaries that delineate the grains represent misorientation between the
crystallographic orientations of neighbouring grains. The evolution of a grain
structure is influenced by the misorientation and the inclination of the grain
boundaries with respect to the reference lattice. Grain boundary characteristics
such as mobility and boundary energy strongly depend on these properties. A
predictive model for realistic evolution of polycrystalline materials should therefore
include orientation dependent microstructural properties and interactions to be
able to study the interplay of texture and grain growth [31, 57, 67, 7, 8, 15].

In [89, 90], a procedure is derived to generate the model parameters of a generalised
phase field model for anisotropic grain growth, which is based on the work
of [36, 63]. This procedure computes the model parameters to represent the
grain boundary energy and mobility of a material for arbitrary misorientation and
inclination dependence. Its formulation allows to perform quantitative simulations
with uniform stability and accuracy conditions. In this thesis, we will restrict
ourselves to misorientation dependence of the boundary energy function.

We reconsider the formulation of the free energy F and introduce misorientation
dependence through the gradient energy coefficient κ:

F (η) =

∫

V

(
f0(η) +

κ(Θ)

2

p∑

i=1

(∇ηi)
2

)
dV, (2.40)

where Θ corresponds to the ensemble of parameters that defines the boundary
misorientation (see also Section 2.2.3). The misorientation dependence is brought
into the homogeneous free energy f0 through the parameter γ(Θ):

f0(η) = m




p∑

i=1

(
−η2

i

2
+

η4
i

4

)
+

p∑

i=1

p∑

j>i

γ(Θ)η2
i η2

j +
1

4


 . (2.41)

Note that we have previously eliminated the parameter γ (see formula (2.34)
and (2.36)). As mentioned, the inclination dependence of the grain boundary
properties is ignored. The parameters κ(Θ) and γ(Θ) are defined as

κ(Θ) =

∑p
i=1

∑p
j>i κijη2

i η2
j∑p

i=1

∑p
j>i η2

i η2
j

(2.42)
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and

γ(Θ) =

∑p
i=1

∑p
j>i γijη2

i η2
j∑p

i=1

∑p
j>i η2

i η2
j

. (2.43)

Recall that inside a grain, one phase field variable ηi takes the constant value 1,
while the other phase field variables assume values close to zero. Across the
grain boundaries, the corresponding field variables vary continuously to their
equilibrium value in the neighbouring grains. Consequently, the parameters κ
and γ respectively equal κij and γij at the boundary between two neighbouring
grains represented by ηi and ηj .

In [89, 90], a procedure is developed that allows to compute the values of κij

and γij in such a way that any given grain boundary energy function can be
reproduced, as well as a constant diffuse interface width for uniform accuracy
stability. Substituting formulations (2.42) and (2.43) into the free energy F (2.40),
and in turn into the kinetic equations (2.32) yields model

∂ηi

∂t
= L


κ(Θ)∇2ηi −m


η3

i − ηi + 2ηi

p∑

j 6=i

γijη2
j




 , i = 1, . . . , p. (2.44)

To take into account the coupling between the phase field variables through the
parameters κ(Θ) and γ(Θ), dedicated features are added to the sparse bounding
box algorithm developed in Chapter 5.

In Chapter 8, we present preliminary results obtained from three-dimensional
simulations with model (2.44) of grain growth in a microstructure with fibre
texture. In this case, the parameter Θ reduces to the misorientation angle θ.
Furthermore, a Read-Shockley boundary energy dependence is assumed for the
energy of the low-angle boundaries, while a constant, higher boundary energy is
attributed to the other grain boundary types.

2.6 Conclusion

In this chapter, we have introduced the mechanisms of grain growth in
polycrystalline microstructures, as well as some of its influencing factors. After
a short discussion of the different types of models that have been developed
to simulate the latter phenomenon, we have described two different phase field
models for grain growth, namely the multi-phase field model of [120], and the
continuum field model of [25], which was extended to simulate grain growth in
the presence of second-phase particles in [86, 87] and to simulate grain growth in
a microstructure with anisotropic boundary properties in [89, 90]. Both models
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describe a polycrystalline microstructure with a large set of phase field variables,
with one phase field variable corresponding to each crystallographic orientation.
There is no straightforward relation between the two models, but for given system
properties, it is possible to derive relationships between the model parameters.
Furthermore, both models essentially give the same results [92].

In principle, the number of phase field variables p included in these phase field
models of grain growth should equal or exceed the total number of grains, as in
reality the number of possible grain orientations is infinite. When not enough
crystallographic orientations are involved in a grain growth simulation, grain
growth can occur by coalescence between neighbouring grains with the same
orientation, instead of by boundary migration. This leads to unphysical grain
shapes and incorrect growth kinetics. This was verified in two-dimensional phase
field simulations of coarsening in [35]: as the number of phase field variables was
decreased, the growth rate of the mean grain size increased steadily. Especially
in three-dimensional simulations, where grains have on average more neighbours
than in two dimensions, a very large number of crystallographic orientations are
required to minimise the effect of grain coalescence [74].

For anisotropic materials, it is particularly important that the orientation
dependencies of material properties are resolved accurately. Furthermore, when
the pinning effect of particles is modelled, the spatial resolution of the employed
numerical technique has to be fine enough in order to represent the particles, which
are much smaller than the grains, and to reproduce the shape of grain boundaries
at grain boundary-particle intersections correctly. To conclude, since one is mostly
interested in the evolution of the grain size distribution, a large amount of grains
(and particles) must be considered in grain growth simulations to achieve reliable
statistics. As a consequence, realistic three-dimensional computer simulations for
grain growth with a phase field model demand significant amounts of computation
power as well as data storage. In the next chapter, we will give an overview of the
computational techniques that have been applied to overcome these constraints.



Chapter 3

Acceleration techniques for
numerical simulation

As discussed in the previous chapter, realistic three-dimensional computer
simulations of grain growth with multi-phase field model (2.27) and continuum
field models (2.37), (2.39) and (2.44) demand significant amounts of computation
power as well as data storage. This chapter gives an overview of several algorithms
designed to overcome the computational limitations of the phase field method.
Sections 3.1 and 3.2 describe different discretisation schemes that have been
applied to phase field models. Subsequently, Section 3.3 discusses acceleration
techniques that intervene in the data structure, while Section 3.4 describes
techniques that take action on the level of the solver. Another possibility is to
use parallel computing, which is briefly discussed in Section 3.5. This chapter
ends in Section 3.6 with a summary and conclusive remarks.

3.1 Discretisation in space

Before simulating grain growth with model (2.37) or (2.27), it is important to
think of the appropriate spatial discretisation. A finer discretisation in space will
increase the resolution in space and augment accuracy. Unfortunately, a finer
discretisation also results in a larger system that has to be solved at each time
step: there is a larger number of unknowns involved. Also, depending on the
discretisation in time, a fine spatial discretisation can impose severe restrictions
on the possible time step size. For reasons of clarity, in this section, the spatial
discretisation will only be described in one dimension.

35
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3.1.1 Finite differences

We consider a uniform grid [x1 . . . xN ] on the interval [0, l] with ∆x = l
N , and the

vector of corresponding sample values [η1 . . . ηN ]T. The standard second-order
finite difference approximation of η′

r = η′(xr) is

η′
r =

ηr+1 − ηr−1

2∆x
. (3.1)

When periodic boundary conditions are assumed, as is the case for phase field
model (2.37), equalities η0 = ηN and η1 = ηN+1 hold. We can represent this
discrete differentiation as a matrix-vector product:




η′
1

...

η′
N




=
1

∆x




0 1
2 0 . . . 0 − 1

2
− 1

2 0 1
2 0

0 − 1
2 0

. . .
...

...
. . .

. . . 0
0 0 1

2
1
2 0 . . . 0 − 1

2 0







η1

...

ηN




. (3.2)

An alternative way to derive (3.1) is by a succession of local interpolation and
differentiation [126]:

Algorithm 3.1: Second-order finite difference approximation of η′
r by local

interpolation and differentiation

for r = 1, 2, . . . , N do
Let pr be the unique polynomial of degree ≤ 2 with pr(xr−1) = ηr−1,
pr(xr) = ηr, and pr(xr+1) = ηr+1;
Set η′

r = p′
r(xr);

end

This derivation by local interpolation can be generalised to higher orders. The
polynomial pr will then be of higher degree and the bandwidth of the corresponding
differentiation matrix will be larger.

The differentiation matrix in equation (3.2) has second-order accuracy. This means
that for data ηr obtained by sampling a sufficiently smooth function η(x), the
corresponding discrete approximations to η′

r will converge at rates O((∆x)2) as
∆x→ 0.
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After second-order finite differentiation of the Laplacian, model (2.37) becomes:

∂ηi

∂t
= Lκ

ηn
ir+1
− 2ηn

ir
+ ηn

ir−1

(∆x)2
+ Lm


η3

ir
+ ηir

− 2ηir

p∑

j=1

η2
jr


 ,

r = 1, . . . , N, i = 1, . . . , p. (3.3)

3.1.2 Spectral differences

The order of accuracy of spectral differences is much higher than that of finite
differences [126]. This property is called spectral accuracy. The design principle
for spectral difference approximation of η′

r is as follows:

Algorithm 3.2: General algorithm for spectral difference approximation of
η′

r by interpolation and differentiation

Let p be a single function (independent of r) such that p(xr) = ηr

for r = 1, . . . , N ;
Set η′

r = p′(xr);

For a periodic domain, the natural choice for the interpolant p is a trigonometric
polynomial on an equispaced grid. Before we construct interpolant p, we review
the concepts of the Discrete Fourier Transform (DFT).

We regard the basic periodic grid [x1 . . . xN ] on the interval [0, l] as one cycle
extracted from an infinite grid with sample values satisfying

ηr−mN = ηr, r = 1, . . . , N ; m ∈ Z. (3.4)

The Fourier domain is discrete as well as bounded, because waves in physical
space must be periodic over the interval [0, l]. Only waves eιk 2π

l
x with integer

wave numbers k have the required period l, with ι the imaginary unit. We limit
our attention to k ∈ {−N

2 + 1,−N
2 + 2, . . . , N

2 }, since wave numbers differing by

an integer multiple of N = l
∆x are indistinguishable on the grid. The DFT of the

sample values ηr is now computed with formula

η̂k = ∆x

N∑

r=1

e−ιk 2π
l

xr ηr, k = −N

2
+ 1, . . . ,

N

2
, (3.5)

while the inverse DFT is computed as

ηr =
1

l

N/2∑

k=−N/2+1

eιk 2π
l

xr η̂k, r = 1, . . . , N. (3.6)
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The DFT of the derivative η′
r, with r = 1, . . . , N , is therefore given by

η̂′
k = ιk

2π

l
η̂k, k = −N

2
+ 1, . . . ,

N

2
. (3.7)

Trefethen explains in [126] how the interpolant p in Algorithm 3.2 can be
constructed as

p(x) =
1

l

N/2∑′

k=−N/2

eιk 2π
l

xη̂k, (3.8)

where the prime indicates that the terms k = ±N/2 are multiplied by 1/2 for
reasons of symmetry. One of the algorithms developed in [126] to construct an
approximation for the derivative η′

r = p′(xr) uses formulas (3.5) and (3.6) as
follows:

Algorithm 3.3: Spectral difference approximation of η′
r

Given ηr, compute η̂k with formula (3.5);

Define η̂′
k = ιk 2π

l η̂k, except η̂′
N
2

= 0 for reasons of symmetry [126];

Compute η′
r from η̂′

k with formula (3.6);

For higher derivatives, we multiply η̂k by the appropriate power of ιk 2π
l , taking

special care of the η̂′
N
2

term. In summary, to approximate the νth derivative of
the function η on the grid, the following algorithm can be used:

Algorithm 3.4: Spectral difference approximation of η
(ν)
r

Given ηr, compute η̂k with formula (3.5);

Define η̂(ν)
k = (ιk 2π

l )ν η̂k, with η̂(ν)
N
2

= 0 if ν is odd;

Compute η
(ν)
r from η̂(ν)

k with formula (3.6);

The computation of the DFT can be accomplished by the Fast Fourier Transform
(FFT) [27].

Application of spectral differentiation in space to model (2.37) results in

∂ηir

∂t
= Lκη

(2)
ir

+ Lm


η3

ir
+ ηir

− 2ηir

p∑

j=1

η2
jr


 ,

r = 1, . . . , N, i = 1, . . . , p, (3.9)

with η
(2)
ir

computed as described above.
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3.1.3 Finite element method

Some authors have made use of the finite element method (FEM) to approximate
the solution of a phase field model [98, 104, 105, 106]. To our knowledge, no
work has been performed where the FEM was applied to phase field models (2.37)
and (2.27) for grain growth. Therefore, we will not go into detail on this
discretisation method.

3.2 Discretisation in time

Many authors that simulate grain growth with phase field simulations use first-
order, explicit time integration formulas [74, 97, 65, 45, 133], while some apply
implicit formulas [24, 129, 33]. Because phase field models (2.37) and (2.27) of
grain growth require a lot of computing memory, to our knowledge, no work has
been performed on the application of multi-step or multi-stage schemes. This
type of schemes relies on the solution values at different time steps or stages.
Keeping track of the solution values at these different stages requires additional
computing memory. On the other hand, multi-step and multi-stage schemes allow
fairly naturally for adaptive time step strategies.

3.2.1 IMEX schemes

For PDE systems such as phase field model (2.37), it is inefficient to use one
single time integration formula for the different parts of the system. Applying an
implicit formula to the latter model results in a large nonlinear system because
of the simultaneous coupling in space and between the phase field variables.
Model (2.37) naturally splits up into two parts: a diffusion part and a reaction
part. These different parts can be integrated over time with appropriate formulas:
the reaction part is suitable for explicit treatment, while the diffusion part
requires an implicit treatment. This type of splitting methods is known as IMEX
methods, which consist of an appropriate combination of an implicit and explicit
method [60]. IMEX methods are no universal cure, but can be very effective in
many situations [6]. In [113], the performance of several linear multi-step IMEX
schemes is analysed for reaction-diffusion problems in pattern formation.

In the case of our model, the application of an IMEX scheme has many advantages.
For example, it allows the diffusion part to be treated by a linear multigrid
solver, without the reaction part influencing the solver’s convergence properties
in a negative way. Also, the decoupling of the different phase field variables clears
the way for parallel computing. This possibility is briefly discussed in Section 3.5.
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First-order semi-implicit BDF (SBDF1)

The most straightforward IMEX scheme is the first-order semi-implicit BDF
method. It consists of the Forward Euler method as the explicit method, and
the Backward Euler method as the implicit method. The Backward Euler method
is in fact a first-order Backward Differentiation Formula (BDF), hence the name
SBDF1 [113]. For clarity, we first simplify model (2.37) to

∂ηi

∂t
= D(ηi) + R(η), i = 1, . . . , p, (3.10)

with D(ηi) the diffusion part, R(η) the reaction part, and η as defined in (2.31).

Application of SBDF1 to equations (3.10) results in

ηn+1
i − ηn

i

∆t
= D(ηn+1

i ) + R(ηn), i = 1, . . . , p. (3.11)

Combining SBDF1 with the finite differences in equations (3.3) results in the
following system:

ηn+1
ir
− ηn

ir

∆t
= Lκ

ηn+1
ir+1
− 2ηn+1

ir
+ ηn+1

ir−1

(∆x)2
+Lm


(ηn

ir
)3 + ηn

ir
− 2ηn

ir

p∑

j=1

(ηn
jr

)2


 ,

r = 1, . . . , N, i = 1, . . . , p. (3.12)

SBDF1 combined with the spectral differences of equations (3.9) results in

ηn+1
ir
− ηn

ir

∆t
= Lκ

(
ηn+1

ir

)(2)
+ Lm


(ηn

ir
)3 + ηn

ir
− 2ηn

ir

p∑

j=1

(ηn
jr

)2


 ,

r = 1, . . . , N, i = 1, . . . , p, (3.13)

Second-order semi-implicit BDF (SBDF2)

The second-order semi-implicit BDF method, or SBDF2, is given by

3ηn+1
i − 4ηn

i + ηn−1
i

2∆t
= D(ηn+1

i ) + 2R(ηn)−R(ηn−1), i = 1, . . . , p. (3.14)

One of the properties of this method is that it results in a strong decay of high-
frequency error components [6], which is useful when applying multigrid methods.
Moreover, it allows relatively large time steps and is recommended for most
problems when using second-order central differences for the diffusive term [113].
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Third-order semi-implicit BDF (SBDF3)

Another method that gives a strong decay of higher-frequency error components,
is third-order semi-implicit BDF (SBDF3) [6]. This scheme is constructed as

1

∆t

(
11

6
ηn+1

i − 3ηn
i +

3

2
ηn−1

i − 1

3
ηn−2

i

)
=

D(ηn+1
i ) + 3R(ηn)− 3R(ηn−1) + R(ηn−2), i = 1, . . . , p. (3.15)

SBDF3 is useful when higher-order approximations to the diffusive term are
used [113].

3.2.2 Adaptive time stepping

For the solution of systems with different time scales, variable step size schemes
are often essential to obtain computationally efficient and accurate results. In the
case of grain growth, the initial large amount of small competing grains requires
a relatively small time step, while larger time steps are desirable to capture the
subsequent slowly changing, long-term evolution of the microstructure.

In [111], an adaptive time stepping scheme is applied to a phase field model of
binary alloy solidification, following the variable step size strategy described in [60].
The idea behind this adaptive scheme is to compute a time step size ∆t such that
the (estimated) error is smaller than a tolerance value τ . Consider an attempted
computed time step from time point tn to time point tn+1, with tn+1 = tn + ∆tn,
and an error estimate Dn. The new time step size ∆tnew is then determined as

∆tnew = r∆tn, r =

(
τ

Dn

) 1
p̃+1

, (3.16)

with p̃ = p the order of the time discretisation scheme if Dn is an appropriate
estimate of the error of the method. Often, the estimate Dn is quite rough and p̃
may be less than p [60]. The time step is adapted throughout a simulation roughly
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as described in Algorithm 3.5.

Algorithm 3.5: Adaptive time stepping

foreach time step tn do

while time level tn+1 is not computed do
Apply time integration formula with time step size ∆tn;
Compute error estimate Dn;
if Dn ≤ τ then

Accept the attempted time step from tn to tn+1;
Compute ∆tn+1 such that Dn+1 will be close to τ ;

else
Reject the attempted time step;
Compute a new time step size ∆t′

n such that D′
n is closer to τ ;

∆tn ←− ∆t′
n;

end

end

end

Algorithm 3.5 is based on estimates, and often additional control on the decrease
and increase of step sizes is desirable. In most codes, the expression for the new
trial step size therefore has the form

∆tnew = min(rmax, max(rmin, θr))∆tn, (3.17)

where rmax and rmin are a maximal and minimal growth factor, and the parameter
θ < 1 makes the estimate conservative to avoid repeated rejections. The values of
these parameters depend on the type of integration method. The implementation
of [111] uses the parameter set rmin = 0.5, rmax = 2.0, and θ = 0.8.

Multi-step methods, such as SBDF2 and SBDF3 use information from at least
two previous time levels. Consequently, when variable step sizes are used with
a multi-step method, the formula coefficients need to be adjusted to maintain
the order of consistency [60]. In [135], easily implementable Variable Step size
Implicit-Explicit (VSIMEX) linear multi-step methods are designed, analysed, and
numerically investigated for time-dependent PDEs.

Variable step size implicit-explicit (VSIMEX)

In [135], a number of order-p VSIMEX schemes is developed that apply BDFs to
the implicitly treated part, and extrapolate the explicitly treated part to time step
tn+p. Those schemes are referred to as order-p Variable Step size Semi-implicit
BDF (VSSBDFp) schemes.
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The SBDF1 scheme (3.11) is in fact a first-order VSIMEX scheme, since it allows
for variable time stepping, and is the same as the VSSBDF1 scheme. The
VSSBDF2 scheme is given by

1

∆tn+1

(
1 + 2rn+1

1 + rn+1
ηn+2

i − (1 + rn+1)ηn+1
i +

r2
n+1

1 + rn+1
ηn

i

)
=

D(ηn+2
i ) + (1 + rn+1)R(ηn+1)− rn+1R(ηn),

i = 1, . . . , p. (3.18)

and corresponds to the constant step size SBDF2 scheme (3.14), with rn =
∆tn/∆tn−1.

To test the adaptive time stepping strategy of Algorithm 3.5, we solve system (2.37)
by using the VSSBDF1 method, in combination with finite differences to
approximate the spatial derivative. The error estimate Dn is obtained by
comparing the solution of VSSBDF1 to the solution obtained by applying the
second-order VSSBDF2 scheme. This allows us to use p̃ = p in formula (3.16) to
determine the new time step size. Formula (3.17) is included in the implementation
to provide extra control on the time step size. The same parameter values as
in [111] are used.

Figure 3.1 shows the history of the error estimate Dn and the time step size ∆tn

on a 32×32×32 grid with 5 phase field variables and a relative tolerance τ = 10−5,
during 10000 time steps. The other parameter values are κ = 0.5, L = 1, m = 1,
and ∆x = 1, and the initial time step size is set to ∆t0 = 0.001. The microstructure
is initialised with uniformly distributed values on the interval (−0.001, 0.001). It
can be seen that the time step size increases during the start of the simulation and
then oscillates around an equilibrium value.

The graph of the time step size in Fig. 3.1(b) shows different regimes. Some of these
changes correspond to the changing characteristics of the solution of system (3.12).
After a transitional period during which small grains nucleate and compete with
each other (see Fig. 3.2(a)), larger grains start to appear and impinge on each
other at, approximately, time step 2650, as depicted in Fig. 3.2(b). Once these
grains have impinged and the microstructure is covered as in Fig. 3.2(c), grain
growth sets in after approximately 2800 time steps. During grain growth, the
largest values of the error estimate Dn are located at the grain boundaries and
not within the grains.

Adaptive time stepping strategies have definite advantages, but in order to be able
to apply a strategy with the parameters described as above, the values of all phase
field variables at at least two time levels have to be kept in computing memory.
For large-scale simulations, this may well turn out to be infeasible. Before a similar
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Figure 3.1: History of (a) the error estimate Dn and (b) the time step size ∆tn for
the VSSBDF1 scheme (3.12) on a 32× 32× 32 grid with 5 phase field variables, a
relative tolerance τ = 10−5, κ = 0.5, L = 1, m = 1, and ∆x = 1, for 10000 time
steps.

time strategy can be applied in realistic simulations with phase field models (2.37)
and (2.27), the number of involved unknowns has to be reduced.

3.3 Sparse data structures

3.3.1 Adaptive mesh techniques

It can be very advantageous to adapt the resolution of the grid to the features
of the solution of a system of partial differential equations, especially when these
features are very small-scale when compared to the overall scale of the system.
Possible advantages of this approach are a decrease in the amount of computing
time and the storage requirements, since it can lead to a huge reduction of the
number of involved unknowns. Moreover, it is possible to achieve high accuracy in
space without excessive computational burden. When the features of the solution
in addition change with time, it is appropriate to adapt the grid dynamically
during a simulation in order to track the active regions of the solution.

One of the characteristics of phase field models is that they partition the system
into domains within which phase field variables are relatively constant. The
domain interfaces are represented by gradients in the values of the phase field
variables. When the phase field models do not include any type of nucleation
inside the domains, all evolution of the solution will take place in these interface
regions. This locality of the evolution intuitively makes phase field simulations
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Figure 3.2: Microstructure on a 32× 32× 32 grid with 5 phase field variables after
(a) 750, (b) 2650, (c) 2800, and (d) 10000 time steps.

very appropriate for the application of adaptive mesh techniques. An adaptive
mesh approach uses dense sets of grid points in the interfacial regions. The need
to resolve these interfaces accurately, imposes the minimal grid spacing.

There are two types of adaptive meshing techniques that have been applied to
phase field models. The first type of grid adaptation is the so-called h-adaptive
method, where the mesh is locally refined or coarsened by adding or deleting grid
points, in accordance with the values of the phase field variables. In [104, 105], it
is described how a two-dimensional grid is adapted dynamically based on an error
estimator that uses information from the two involved phase field variables. The
grid elements are organised into a quadtree, which is a tree-like data structure with
branches up to a prespecified level. Branches of the quadtree are in turn quadtrees.
The execution time of this adaptive method scales with the arc length of the
simulated interfaces, which allows simulation of much larger systems [104, 105].
The need for adaptive mesh refinement is even more acute in three dimensions.
The grid elements can now be stored in an octree data structure, which is a
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logical extension of the quadtree structure used in two dimensions [106]. The
mesh refinement algorithm and grid data structure used in [111, 112] are very
similar to that of [104, 105, 106]. The software used in [17] contains a different
type of data structure, which is constructed to achieve good vector performance.

The second type of mesh adaptivity that has been applied to phase field models
is the r-adaptive method, also called the moving mesh method, where mesh
points are moved throughout the domain while the connectivity of the mesh is
kept fixed [79, 11, 38, 125]. The main idea of the moving mesh approach is
to construct a time-dependent mapping from the computational domain to the
physical domain, such that the representation of the physical solution in the
computational domain is “better behaved” [38]. The computational mesh is thus
obtained by equidistribution of a monitor function tailored to the variation of the
phase field variables in the interfacial region [79]. An advantage of this approach
is that it preserves the same number of Fourier modes, as opposed to a mesh
refinement method. As a consequence, spectral differences can be used, allowing
for high accuracy in space. Simulation results show that for a prescribed accuracy,
the moving mesh method can lead to an order of magnitude improvement in
efficiency [38]. A thorough overview of the theory and application of the moving
mesh technique is given in [128].

The works of [104, 105, 106], [111, 112] and [17] are in the context of phase field
simulation of dendritic solidification. In [79, 11, 38], different phase field models
are tested. A common factor of these studies is that the adaptive mesh techniques
are applied to simulations with only a small number of phase field variables. For
polycrystalline structures, their benefits drastically reduce because of the amount
of interface involved. The coupling between the many phase field variables, each
with their associated interface regions, makes the application of an adaptive mesh
technique a complex matter, both in theory and in implementation.

3.3.2 Dynamic grain orientation assignment

For isotropic grain growth, the free energy density (2.34) of the continuum field
model is symmetric with respect to the local exchange of the values of phase field
variables, representing the grain orientations. Local here refers to the fact that
the exchange of values takes place on a subset of grid points of the full grid. If the
subset where this exchange is performed is chosen such that the gradients of the
phase field variables vanish at the edges of the subset, the operation will leave the
total free energy (2.33) unchanged as well [74]. It is thus possible to reassign grain
orientations without affecting the thermodynamic driving force for coarsening. An
impending coalescence between two neighbouring grains can be avoided by simply
reassigning the orientation of one of the grains to one not associated with any
nearby grain. This strategy of dynamic grain orientation assignment is found
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both easy to implement and effective in suppressing the rate of coalescence, thus
reducing the number of required phase field variables from more than 200 to about
20 in a three-dimensional grain growth simulation [74].

Unfortunately, the dynamic grain orientation assignment algorithm of [74] is
limited to systems where the only use of the phase field variables is to distinguish
unique domains. Incorporating anisotropy or any property depending on the
relative or absolute position of a grain or the orientation difference between
neighbouring grains into this technique is difficult. The algorithm of [74] is made
suitable for parallel computing in [122], and extended for parallel computing in an
anisotropic system in [124]. However, in a subsequent paper, the authors switch
over to the use of a different, sparse algorithm, developed in [133], which is “quite
easy compared with that of the dynamic grain orientation reassignment” [123].

3.3.3 Sparse algorithms

When an obstacle potential such as equation (2.21) is included in a phase field
model of grain growth, the values of the different phase field variables are driven
to their equilibrium values within finite grain boundary regions. In [97], this
property is exploited by solving the model equations only within these interface
regions using activation flags. In contrast, when a double-well potential such as
equation (2.22) or (2.36) is chosen, for phase field models of grain growth especially,
the number of involved unknowns can be cumbersome. In [45, 133, 65], efficient
algorithms using a sparse data structure are proposed to overcome this problem.
These algorithms are related to the computational algorithm of [97] and are all
based on the observation that only a few crystallographic orientations are active
at a given point in a microstructure. A close look at the solutions of model (2.27)
or (2.37) during a grain growth simulation indeed reveals that the values of the
phase field variables display small regions of high activity surrounded by large
regions of inactivity. This is clearly the case for the polycrystalline microstructure
depicted on Fig. 2.10.

Both [45] and [133] developed a sparse algorithm for the model of [25], which is
the same as model (2.37). The algorithm of [65] was constructed in the context of
the multi-phase field models of [119, 66], which correspond to model (2.27). These
sparse algorithms show significant improvements over conventional algorithms as
they scale with the size of the microstructure instead of with the number of
crystallographic orientations involved.
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Sparse data structure and algorithm (Gruber et al. [45])

In [45], the microstructural evolution is only computed for non-zero phase field
values. A simple data structure is proposed, which maintains a dynamic vector of
the indices and the values of the non-zero phase field variables at each grid point.
All phase field variables that exceed a small threshold value ǫ are considered non-
zero. During a simulation, the updates of the phase field variables at every grid
point require a different treatment, depending on the newly computed values:

1. the value of an existing non-zero phase field variable is changed without
further action;

2. when the number of non-zero phase field variables at a grid point increases,
new storage is added to the data vector of that particular grid point;

3. the data associated with a phase field variable that has dropped below the
threshold value ǫ is deleted.

Throughout a simulation, any phase field variable with a value less than ǫ is
considered to be zero and thus not retained. For sufficiently coarse systems, the
number of non-zero phase field variables in any neighbourhood is usually one
within a grain and seldom larger than three or four at a two-dimensional triple
junction [45]. The memory required by this sparse data structure thus scales with
the number of grid points.

As mentioned above, in [45], the computation of model equations (2.37) is
restricted to the non-zero phase field variables at each grid point. The new value
for a phase field variable at any grid point is therefore only calculated if it is
non-zero at some neighbouring grid point. The sparse algorithm now proceeds as
follows:

Algorithm 3.6: Sparse algorithm according to Gruber et al. [45]

for t = t1, t2, . . . , tend do

foreach grid point do
Generate a list of unique phase field variables that are non-zero in
the neighbourhood of the grid point;
Solve the model equations only for those phase field variables in the
list;

end

end

As with the memory requirements, the sparse data structure of the algorithm
causes the simulation time to scale with the number of grid points, independently
of the number of phase field variables. Furthermore, the algorithm becomes
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increasingly efficient as the grain size increases, since the average number of
non-zero phase field variables per grid point decreases with time. Simulation
results obtained with the sparse algorithm are compared with those obtained
by a conventional simulation algorithm in [45]. For a two-dimensional system
of 512 × 512 grid points with p = 100 and ǫ = 0.001, for 10000 iterations, the
sparse algorithm uses approximately 7% of the computing memory required by the
conventional algorithm on the full grid, and only 4% of its total simulation time.
The sparse data structure and simulation algorithm described above are presented
and tested in [45] for two-dimensional systems, but can easily be extended to grain
growth in three dimensions.

Active parameter tracking algorithm (Vedantam et al. [133])

In [133], a very similar data structure is employed. Furthermore, a simple test
condition is used, which distinguishes the evolving phase field values at grain
boundaries from the constant phase field values within the grains. The model
equations are then only solved for the evolving phase field values. At later times
in the simulation, when the grain boundary area is only a small fraction of the
overall system, additional computational savings are thus made.

Algorithm for effective phase field computation (Kim et al. [65])

In [65], an efficient algorithm is constructed in the context of the models of [119, 66],
which correspond to multi-phase field model (2.27). The algorithm uses a data
structure that is similar to those of the two algorithms that are described above,
but puts a restriction Np on the maximal number of non-zero phase field variables
at every grid point and only stores the indices and the values of the Np phase field
variables with the largest magnitudes.

To support the argument that the phase field variables do not have to be kept in
memory at all grid points, preliminary computations of grain growth are performed
in [65]. Based on the resulting data, it is concluded that during a simulation, at
almost all grid points, the number of phase field variables with positive values is
less than 6 in three dimensions and less than 5 in two dimensions. Consequently, a
restriction can be put on the maximal number Np of positive phase field variables
coexisting at one grid point. This maximal number is found to have a negligible
effect on the grain growth dynamics and means a significant reduction of the
memory requirements.

At each moment in time, the state of the microstructure at a grid point (x, y, z) is
described by a list of Np pairs (p1, q1), (p2, q2), . . . , (pNp

, qNp
). The real variables

pi(x, y, z) are the values of the phase field variables at grid point (x, y, z), ordered
as 1 ≥ p1 ≥ p2 ≥ . . . ≥ pNp

≥ 0. The integer variables qi(x, y, z) are the



50 ACCELERATION TECHNIQUES FOR NUMERICAL SIMULATION

corresponding indices of the phase field variables. The sparse algorithm of [65]
now proceeds as follows:

Algorithm 3.7: Algorithm for effective phase field computation according
to Kim et al. [65]

for t = t1, t2, . . . , tend do

foreach grid point do
Retrieve all pairs (pi, qi) and those of the nearest grid points;
Solve the model equations only for the retrieved phase field variables;
Reorder the new pairs such that 1 ≥ pnew

1 ≥ . . . ≥ pnew
Nnew

≥ 0;
Update the list of pairs;
if Nnew > Np then

Keep only the indices and values of the Np largest phase field
variables in memory;

end

Perform pi ←− pi/
∑min(Nnew,Np)

j=1 pj to ensure that
∑

pi = 1;

end

end

The correction operation in the last step of Algorithm 3.7 is essential: omitting
this step would result in unstable computations [65].

Concluding remarks

The three algorithms described above are designed for use with an explicit time
integration scheme. Explicit time integration schemes do not involve the solution
of coupled equations, but can require large amounts of computing time due to
impractically small time steps, imposed by strong stability conditions. In contrast,
implicit and semi-implicit schemes require more computations due to the involved
coupled equations, but have better stability properties and therefore, larger time
steps can be used. In [24], a semi-implicit scheme is shown to allow much
larger time step sizes than explicit schemes for the model of [25]. Unfortunately,
it is difficult to apply this semi-implicit scheme to the sparse data structures
of [45], [133], and [65].

Each of the described sparse algorithms employs a data structure that maintains
besides the values of the active phase field variables at every grid point, also
their indices. There is some overhead associated with this storage scheme, since
the same index values are stored at multiple locations. Simulations with a very
small total number of phase field variables should therefore prefer a conventional
phase field simulation method on a full grid [45]. For simulations starting with
random noise or with a microstructure whose grain size is comparable to the grain
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boundary thickness, a conventional simulation algorithm should be applied until a
well-defined polycrystalline microstructure is developed. At this point the sparse
algorithm can be used. For models that include anisotropic boundary properties, a
logical extension to the sparse data structures would be to store additional material
parameters at each grid point, which would only add to the overhead.

One of the main goals of grain growth simulations is to study the evolution
of the mean grain size and the grain size distribution. For this purpose, the
grains of a microstructure have to be resolved, and their volume has to be
computed. This information is not readily available in the sparse data structures
of [45, 133, 65]. Therefore, it can take a relatively large amount of time to obtain
the necessary information, especially when this post-processing is repeated for
multiple microstructures at different moments in their evolution.

In Chapter 5, a sparse bounding box data structure is developed that offers a
solution to many of these issues.

3.4 Efficient solvers

When an implicit time integration scheme is applied to a set of partial differential
equations, a system has to be solved at each time step in the simulation. Depending
on the characteristics of the applied discretisation scheme, this system will have
a different size and complexity. To make sure that the possibility of a large time
step compensates the execution time required to solve the discretised equations, it
is necessary to look for dedicated solvers.

3.4.1 Multigrid methods

The convergence rate of standard iterative solvers such as the Jacobi or the Gauss-
Seidel method typically stalls after a small number of iterations. The latter
methods remove the high-frequency modes of the error after a few iterations
already, while the low-frequency modes remain much longer present, which causes
a decrease of the convergence rate after a few iteration steps. Multigrid algorithms
accelerate the convergence of standard iterative solvers. They are based on the idea
that the remaining smooth, low-frequency error on the fine grid can be removed
efficiently by certain computations on a coarser grid. Since coarse-grid calculations
are significantly less expensive than calculations on a fine grid, the overall efficiency
of an iterative solver can be improved this way.

To solve the system on the coarser grid, the two-grid idea mentioned above can
be applied recursively: the low-frequency error on the coarser grid in turn can
be removed by computations on a grid that is even more coarse. This way,
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a multigrid cycle is obtained that uses an entire grid hierarchy. The smallest
system, on the coarsest grid of the hierarchy, can be solved by a direct solver.
In this work, we will apply standard coarsening to construct the grid hierarchy,
which means that coarser grids are obtained by doubling the grid spacing in all
dimensions. Figure 3.3 illustrates the grid hierarchy thus obtained for a two-
dimensional system.

Figure 3.3: Multigrid methods use an entire grid hierarchy to solve a system.
In this work, we apply standard coarsening to construct the grid hierarchy,
which means that coarser grids are obtained by doubling the grid spacing in all
dimensions.

When the components of a multigrid solver are carefully selected, the solver’s
convergence properties can be independent of the grid size. Moreover, the
computational work of a multigrid solver can scale linearly with the number of
spatial unknowns. These features make multigrid solvers very appropriate for large-
scale simulations. A number of studies has been performed on the development
of multigrid methods for phase field simulations. In [111], a nonlinear multigrid
solver is implemented to solve a phase field model for binary alloy solidification.
This solver is based on the Full Approximation Scheme (FAS) [16] and follows an
adaptive grid approach. Monotone multigrid solvers are constructed in the work
of [73] to solve vector-valued Allen-Cahn equations, which are extensively used for
phase field modelling. In [62], an extension of the method of [73] is presented
to solve the Cahn-Hilliard equation, which is often employed in conservative
phase field models. The latter equation type also has been solved by Uzawa-type
multigrid algorithms [10], linear multigrid methods [21] and FAS methods [64, 139].
However, in all of these studies, only a few phase field variables are considered.

Chapter 6 goes more deeply into the application of multigrid methods to phase
field models. In that chapter, the principles of multigrid methods are introduced
and a nonlinear FAS multigrid solver is constructed, implemented and tested for
the solution of multi-phase field model (2.27).



EFFICIENT SOLVERS 53

3.4.2 Fast Fourier transform

In [24], an efficient and accurate numerical method, also-called the Fourier spectral
method, is implemented to solve model (2.37). It is demonstrated that for a
specified accuracy of 0.5%, the speed-up of using this method, when compared
with an explicit finite difference scheme, is at least two orders of magnitude in two
dimensions, and close to three orders of magnitude in three dimensions. A similar
solver was used in [28] to solve a related phase field model, which was discretised
with finite differences. The reason why these solvers are so fast, is because they
make use of the Fast Fourier Transform (FFT) to solve the system of equations,
which scales as N log(N), with N the number of involved unknowns [27]. Of
course, there are very efficient codes available that implement the FFT, see for
example [39].

Fast Fourier transform applied to a finite difference scheme

Applying the Discrete Fourier Transform (DFT) to equations (3.12) results in a
decoupled system of equations in Fourier space:

η̂n+1
i (k)− η̂n

i (k)

∆t
= Lκλ(k)η̂n+1

i (k) + R̂i(k),

k = −N

2
+ 1, . . . ,

N

2
, i = 1, . . . , p. (3.19)

The term R̂i is the DFT of the reaction part of equations (3.12) and equals

R̂i = LmF


(ηn
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)3
+ ηn

ir
− 2ηn

ir

p∑

j=1

(
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)2


 ,

r = 1, . . . , N, i = 1, . . . , p, (3.20)

where F denotes the Fourier transform. The factor λ(k) can be computed by using
the shift property of the DFT, namely

F(ηir
)k = η̂i(k) ⇐⇒ F(ηir−m

)k = exp

(
−ι

2πkm

N

)
η̂i(k), (3.21)

with m a chosen integer. Because the Laplacian in equation (3.12) is discretised
with second-order finite differences, in this case m = −1, 0, or 1. The factor λ(k)
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thus equals
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)
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System (3.19) is now easily solved by performing a division:

η̂n+1
i (k) =

η̂n
i (k) + ∆tR̂i(k)

1−∆tLκλ(k)
, k = −N

2
+ 1, . . . ,

N

2
, i = 1, . . . , p. (3.23)

The solution in physical space is obtained by computing the inverse DFT of
η̂n+1

i (k). This solution method was applied to the Cahn-Hilliard equation in [28].

Fast Fourier transform applied to a spectral difference scheme

To solve scheme (3.13), we transform the equations to the Fourier space:

η̂n+1
i (k)− η̂n

i (k)
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= −k2

(
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Lκη̂n+1
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k = −N

2
+ 1, . . . ,

N

2
, i = 1, . . . , p. (3.24)

Again, this system is solved easily by performing a division, namely:
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i (k) + ∆tR̂i(k)
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(

2π
N∆x

)2
Lκ

, k = −N

2
+1, . . . ,

N

2
, i = 1, . . . , p. (3.25)

The solution in the spatial domain is obtained by computing the inverse DFT of
η̂n+1

i (k).

Concluding remarks

The application of the DFT is limited to systems on a uniform grid. In
Section 3.3.1, it is described how this method nevertheless can be combined with
adaptive mesh refinement.

We have made an implementation of both Fourier schemes by making use of the
FFTW library, which is a C subroutine library for computing the discrete Fourier



PARALLEL COMPUTING 55

transform (DFT) in one or more dimensions, of arbitrary input size, and of both
real and complex data [39]. The implementation of solver scheme (3.23) with the
FFTW library is used in Chapter 5 to generate initial microstructures, as well
as as a reference point for comparison with the sparse bounding box algorithm
developed in the latter chapter.

3.5 Parallel computing

Parallel computing offers a solution to the high computational requirements of
realistic three-dimensional phase field simulations, both in memory and in time.
So far, however, only a few authors have used parallel computing to perform large-
scale phase field simulations of grain growth [97, 122, 124, 129].

In [97], a three-dimensional parallel simulator of crystal growth and solidification
in complex alloy systems is described. No details are given on the specific
parallelisation scheme, but it is stated that the solver is parallelised for distributed
as well as shared memory computer architectures using both Message Passing
Interface (MPI) libraries and Open Multi-Processing (OpenMP) concepts. The
Message Passing Interface, or MPI, is the specification of a portable, high-
performance application programming interface designed for parallel programming
on distributed memory machines [94]. MPI provides functions for e.g. process
management, communication, and synchronisation. In contrast, OpenMP is an
API that supports shared memory programming, which relies on the availability
of directly addressable global memory [102]. The API of OpenMP consists of
compiler directives that indicate to the compiler how parallelism can be extracted
from the source code.

As mentioned in Section 3.3.2, the dynamic grain orientation assignment algorithm
of [74] was parallelised in [122, 124]. In their work, both MPI and an automatic
parallelisation scheme of the FORTRAN compiler are used to parallelise the solver
of the phase field model. The data representing the phase field variables is divided
over the different involved processors, while specific information that is required for
the dynamic orientation assignment, is present on all processors. The orientation
assignment algorithm itself is parallelised through MPI.

The use of an IMEX time discretisation scheme in the context of model (2.37),
effectively decouples the systems into p smaller systems such that parallel
computing is possible. This property is exploited in Section 5.3.1 to parallelise
an efficient algorithm for the solution of phase field model (2.39) on a full grid, as
well as in Section 5.5, to parallellise the sparse bounding box method developed
in Chapter 5.
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3.6 Conclusion

The goal of this thesis is to design, analyse and implement efficient numerical
algorithms for grain growth simulation with the multi-phase field model (2.27)
and the continuum field model (2.37). Both models describe a polycrystalline
microstructure with a large set of phase field variables, with one phase field variable
corresponding to each crystallographic orientation. Realistic three-dimensional
computer simulations of grain growth with these phase field models require the
use of a large number of phase field variables and therefore demand significant
amounts of computation power as well as data storage.

In this chapter, we have given an overview of the different computational
techniques that have been applied to overcome the computational constraints of
the multi-phase field model and the continuum field model. The strategies tested
so far range from the application of different discretisation schemes to the use of
sparse data structures and the development of efficient solvers. In particular, the
sparse algorithms of [45], [133] and [65] show a significant improvement over the
existing techniques as they scale with the size of the microstructure instead of
with the number of crystallographic orientations involved. In Chapter 5, we will
develop a sparse bounding box data structure in the context of the continuum field
model that offers a solution to many of the unresolved issues with the latter three
algorithms. Another promising strategy for large-scale phase field simulation is
the application of multigrid solvers, as they can scale linearly with the number of
spatial unknowns. However, all multigrid solvers developed until now only consider
a few phase field variables. In Chapter 6, we will construct a nonlinear multigrid
method to solve the multi-phase field model for multiple phase field variables.



Chapter 4

Stability of the continuum field
model and its discretisation

4.1 Introduction

Continuum field model (2.37) naturally splits into two parts, namely a reaction
part and a diffusion part. In Section 3.2.1, we described how IMEX schemes
treat these two parts differently: the reaction part is discretised by an explicit
scheme, while the diffusion part is discretised by an implicit scheme. This approach
effectively decouples the model equations into several smaller systems that can be
solved efficiently, which creates possibilities for parallel computing.

Explicit discretisation schemes are very efficient in computation, but unfortunately,
their stability properties limit the time step size. In contrast, implicit or semi-
implicit discretisation methods allow the choice of a larger time step. In this
chapter, we compare the stability properties of the first-order IMEX scheme SBDF1
with those of the Forward Euler scheme and the Backward Euler scheme. We
restrict ourselves to first-order methods, which require storage of just a single
solution. This is indeed the only feasible alternative in the case of large-scale
three-dimensional phase field simulations.

This chapter starts with a brief study of the semi-discretised continuum field model
in Section 4.2, after which an analysis of the two parts of the fully discretised
continuum field model separately is performed in Section 4.3. Both parts are
shown to have a different effect on the stability properties of the model. In the
subsequent Sections 4.4, 4.5, and 4.6, we perform a stability analysis of respectively
the Forward Euler scheme, the Backward Euler scheme and the SBDF1 scheme.

57
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For each discretisation scheme, the resulting stability conditions are checked
with numerical experiments. Section 4.7 ends this chapter with a summary and
concluding remarks.

4.2 Analysis of the semi-discretised model

In this section, the stability properties of the semi-discretised equations (3.3) of
continuum field model (2.37) are briefly examined. In particular, we want to find
out whether it is possible that numerical solutions of the continuum field model
arrive in an unstable configuration during a typical grain growth simulation, and
what will happen in such an event. Furthermore, for the use of multigrid solvers,
which employ a hierarchy of grids with different spacings (see Section 3.4.1), it is
important to know if and how these stability properties depend on the value of
the grid spacings.

To study the stability properties, at each time step of a grain growth simulation,
we linearise equations (3.3) about the current solution by composing the Jacobian.
Next, we examine the eigenvalues of the Jacobian, which are in fact the growth
rates of the associated eigenvectors. Two numerical experiments are performed on
a one-dimensional grid, with p = 2. The other model parameters are chosen as
κ = 0.5, L = 1, and m = 1. This choice of parameter values is justified in [87]
and returns in Section 7.2, where the set-up of simulations of grain growth in the
presence of second-phase particles is described.

In the first experiment, the phase field variables are initialised as

η0
1(r) = exp

[
−
(

5

(
r

l
∆x− 1

2

))6
]

, (4.1a)

η0
2(r) = 1− η0

1(r), r = 1, . . . , N, (4.1b)

where the interval length l equals 64 and the grid spacing takes different values
∆x = 4, 2, 1, and 0.5. With these initial values, the one-dimensional equivalent
of equations (3.12) is solved for 600 time steps, with ∆t = 0.2. Figure 4.1(a)
illustrates the values of the phase field variables at t = 0 and at t = 120. The
evolution of the maximal eigenvalue λ1 of the Jacobian, evaluated at each time
step, is depicted as a function of the time step index on Fig. 4.1(b). At the start of
the simulation, the value of λ1 is positive, which indicates the presence of unstable
modes. For ∆x = 4, after a short transition time, the value of λ1 drops below
zero and no unstable modes are left. For decreasing values of ∆x, the stability
properties are similar, but the transition time after which all instabilities have
disappeared becomes longer.
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Figure 4.1: (a) Values of the phase field variables η1 and η2 at time points t = 0
and t = 120 for ∆x = 0.5 and (b) the time evolution of the maximal eigenvalue λ1

of the linearised operator, for different values of the grid spacing ∆x.

For the second numerical experiment, a one-dimensional system of 128 grid points
is initialised with values that are generated according to a uniform distribution
over the interval (0, 0.001). The same model parameter values are applied as in the
first experiment, but now with a fixed value of the grid spacing, namely ∆x = 1.
With this initial state, the one-dimensional equivalent of equations (3.12) is solved
again for 600 time steps, with ∆t = 0.2. Figure 4.2(a) shows the values of the phase
field variables η1 and η2 both at t = 0 and at t = 120. For clarity, the complete
spectrum of the Jacobian is only depicted at specific time points on Fig. 4.2(b).
The evolution of the maximal eigenvalue λ1 is indicated at all time steps. At the
start of the simulation, the eigenvalues are spread over both the positive and the
negative side of the zero-axis. After a transition time, the maximal eigenvalue
drops below zero and all modes of the Jacobian are stable. The sharp drops of
the value of λ1 correspond to changes in the polycrystalline structure. Once the
microstructure is covered with grains and a well-defined polycrystalline structure
has appeared, no unstable modes remain present.

Both experiments described above indicate that at the start of a simulation,
many unstable modes are present, which disappear after a certain transition time,
depending on the formation of a well-defined polycrystalline microstructure. As
we are interested in the study of the influencing factors of grain growth in an
existing polycrystalline structure, rather than the modelling and simulation of
the formation of new grain structures, the unstable modes at the start of the
simulations pose no problem. Furthermore, the use of a coarser grid spacing ∆x
does not increase instabilities. In [9], a theoretical stability study is performed of
the Cahn-Hilliard equation, often used in conservative phase field models, and of a
related phase field equation. In the latter work, the occurrence of unstable modes
is connected to the coarsening of the system.
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Figure 4.2: (a) Values of the phase field variables η1 and η2 at time points t = 0
and t = 120 and (b) the time evolution of the complete spectrum of the linearised
operator. The evolution of the maximal eigenvalue λ1 is indicated.

4.3 Analysis of the fully discretised model

Continuum field model (2.37) consists of two parts, namely a reaction part and a
diffusion part. In this section, we analyse the stability properties of the Forward
Euler scheme applied to both parts separately. For reasons of clarity, we will
restrict the theoretical derivations in this section and in the next sections to the
one-dimensional case.

4.3.1 Analysis of the diffusion part

The first part of the right-hand side of the isotropic continuum field model is
a diffusion term. Dropping the reaction part, we obtain p decoupled diffusion
equations:

∂ηi

∂t
= Lκ∇2ηi, i = 1, . . . , p. (4.2)

Application of the Forward Euler method to equations (4.2) and of second-order
central finite differences to the Laplacian yields the following system:

ηn+1
ir
− ηn

ir

∆t
= Lκ

ηn
ir+1
− 2ηn

ir
+ ηn

ir−1

(∆x)
2 , r = 1, . . . , N, i = 1, . . . , p. (4.3)

In accordance with the stability analysis performed in [93], where the amplification
of Fourier modes is studied, the stability condition of the discretised diffusion
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equations (4.3) is

∆t <
(∆x)

2

2Lκ
. (4.4)

In three dimensions, this condition becomes

∆t <
(∆x)

2

6Lκ
. (4.5)

4.3.2 Analysis of the reaction part

The second part of the right-hand side of the isotropic continuum field model is a
reaction part. To study the latter part, we drop the diffusion part and obtain the
set of equations

∂ηi

∂t
= Lm


η3

i + ηi − 2ηi

p∑

j=1

η2
j


 , i = 1, . . . , p. (4.6)

Discretisation of equations (4.6) with the Forward Euler scheme results in the
following system:

ηn+1
ir
− ηn

ir

∆t
= Lm


(ηn

ir

)3
+ ηn

ir
− 2ηn

ir

p∑

j=1

(
ηn

jr

)2


 ,

r = 1, . . . , N, i = 1, . . . , p. (4.7)

Because of the nonlinearity in system (4.7), we cannot study the amplification
of Fourier modes as such. Instead, we will examine the amplification of small
perturbations in the form of scaled Fourier modes on the equilibrium values of
system (4.6). The latter values correspond to the zeros of the right-hand side of
equations (4.6), namely ηi(x) = 1, ηi(x) = −1 and ηi(x) = 0.

First, we analyse equilibrium solution (η1, . . . , ηi, . . . , ηp) = (0, . . . , 1, . . . , 0) by
adding a small perturbation to the equilibrium value ηi(x) = 1 of the form

V n
r = ǫλ(k)n exp

(
ιπk

r∆x

l

)
,

r = 1, . . . , N, k = −(N − 1),−(N − 2), . . . , N, (4.8)
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with l the length of the domain interval, ∆x the grid spacing, and ǫ a small value.
The Forward Euler scheme (4.7) is stable with regard to this perturbation if the
amplification factor λ(k) in (4.8) satisfies the condition

|λ(k)| < 1, (4.9)

for every wavenumber k.

Substitution of ηn
ir

by 1 + V n
r into system (4.7) results in:

V n+1
r − V n

r

∆t
= Lm

(
(1 + V n

r )
3

+ (1 + V n
r )− 2 (1 + V n

r )
3
)

,

r = 1, . . . , N. (4.10)

We neglect the higher-order terms in ǫ in equations (4.10), which yields:

V n+1
r − V n

r

∆t
= −2LmV n

r , r = 1, . . . , N, (4.11)

and extract the amplification factor λ(k) of the perturbation as:

λ(k) = 1− 2∆tLm. (4.12)

The condition λ(k) < 1 is automatically fulfilled. Computations with scheme (4.7)
are only stable with respect to the perturbation if −1 < λ(k) is also true. The
stability condition for the time step size ∆t is thus

∆t <
1

Lm
. (4.13)

The same stability condition is obtained when we add perturbation (4.8)
to the value ηi(x) = −1 of the equilibrium solution (η1, . . . , ηi, . . . , ηp) =
(0, . . . ,−1, . . . , 0).

Next, we study the effect of perturbation (4.8) on the value ηi(x) = 0 of the
equilibrium solutions (η1, . . . , ηj , . . . , ηp) = (0, . . . ,±1, . . . , 0). Substituting ηn

ir
=

0 + V n
r into equations (4.7) and neglecting the higher-order terms in ǫ yields the

amplification factor

λ(k) = 1−∆tLm. (4.14)

Computations with scheme (4.7) are stable if λ(k) fulfils condition (4.9) and hence
if ∆t satisfies the inequality

∆t <
2

Lm
, (4.15)

which is less strict than condition (4.13) found above. In order to perform stable
computations with the Forward Euler scheme (4.7), the time step size ∆t therefore
has to obey stability condition (4.13).
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4.3.3 Conclusion

In this section, we have analysed the stability properties of the Forward Euler
scheme applied to the diffusion part and the reaction part of the isotropic
continuum field model separately. The stability restriction on the time step size
is found to be much stricter for the diffusion part than for the reaction part:
condition (4.5) contains a dependency on the square of the grid spacing ∆x. This
is an indication that it is much more important to treat the former part implicitly
than the latter part.

In the next three sections, we bring the two parts of the continuum field model
back together and analyse the stability properties of three different discretisation
schemes applied to the model: the fully explicit Forward Euler scheme and the
fully implicit Backward Euler scheme, as well as the IMEX scheme that combines
the latter two methods, namely the SBDF1 scheme (see also Section 3.2.1). Many
elements of the analysis used in this section will return in the next sections.

4.4 Explicit discretisation

Application of the explicit Forward Euler scheme in combination with second-
order central finite differences to the Laplacian in the isotropic continuum field
model (2.37) results in the following system:

ηn+1
ir
− ηn

ir

∆t
= Lκ

ηn
ir+1
− 2ηn

ir
+ ηn

ir−1

(∆x)2
+Lm


(ηn

ir

)3
+ ηn

ir
− 2ηn

ir

p∑

j=1

(
ηn

jr

)2


 ,

r = 1, . . . , N, i = 1, . . . , p. (4.16)

4.4.1 Analysis

A perturbation of the form (4.8) on the equilibrium value ηi(x) = ±1, substituted
into scheme (4.16) yields the equations

V n+1
r − V n

r

∆t
= Lκ

(
V n

r+1 − 2V n
r + V n

r−1

(∆x)2

)

+ Lm
(

(1 + V n
r )

3
+ (1 + V n

r )− 2 (1 + V n
r )

3
)

, r = 1, . . . , N. (4.17)
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Before we continue, we derive the effect of the central difference on the
perturbation V n

r :

V n
r+1 − 2V n

r + V n
r−1 = exp

(
ιπk

∆x

l

)
− 2 + exp

(
−ιπk

∆x

l

)
(4.18a)

= −2

(
1− cos

(
πk

∆x

l

))
(4.18b)

= −4 sin2

(
πk

∆x

2l

)
(4.18c)

As in Section 4.3.2, we neglect the higher-order terms in ǫ in equations (4.17).
Using equality (4.18c), we obtain

V n+1
r − V n

r

∆t
= − 4Lκ

(∆x)2
sin2

(
πk

∆x

2l

)
V n

r − 2LmV n
r , r = 1, . . . , N. (4.19)

The amplification factor of the perturbation can be extracted from (4.19) as

λ(k) = 1− 4Lκ∆t

(∆x)2
sin2

(
πk

∆x

2l

)
− 2Lm∆t (4.20)

and automatically fulfils the condition that λ(k) < 1. The most oscillatory mode,
namely for wavenumber k = N , is the most sensitive to instabilities. The stability
properties of the Forward Euler scheme (4.16) are accordingly determined by the
inequality

−1 < 1− 4Lκ∆t

(∆x)2
− 2Lm∆t = λ(N), (4.21)

which yields the stability condition

∆t <
1

2Lκ
(∆x)2 + Lm

. (4.22)

In three dimensions, this stability condition becomes

∆t <
1

6Lκ
(∆x)2 + Lm

. (4.23)

Similarly, perturbation of the equilibrium value ηi(x) = 0 results in the condition

∆t <
2

4Lκ
(∆x)2 + Lm

(4.24)
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in the one-dimensional case, while in the three-dimensional case, the following
condition is obtained:

∆t <
2

12Lκ
(∆x)2 + Lm

. (4.25)

Since condition (4.23) is stronger than condition (4.25), the former determines
the stability properties of the Forward Euler scheme. Both conditions contain a
dependency on the square of the grid spacing ∆x, which means that for a finer
spatial discretisation the restriction on the time step soon becomes very tight,
resulting in an infeasibly small ∆t.

4.4.2 Numerical results

We test stability condition (4.23) with numerical experiments on a 32 × 32 × 32
grid, for p = 5. The phase field variables are initialised with small values generated
according to a uniform distribution over the interval (−0.001, 0.001). The values
of the model parameters are chosen as κ = 0.5, L = 1, and m = 1 (see also
Section 4.2), and the discretisation spacing is ∆x = 1. For the chosen set of
parameters, according to condition (4.23), the time step size has to fulfil condition

∆t <
1

6Lκ
(∆x)2 + Lm

= 0.25 (4.26)

in order to perform stable computations with the explicit scheme (4.16).

First, we approximate the exact solution η∗ at time point t∗ = 40 by evolving
the phase field variables with an explicit time stepper based on scheme (4.16) for
40000 time steps with ∆t = 0.001. The latter time step size is chosen well below
stability restriction (4.26). Next, we perform simulations for increasing time step
sizes ∆t with the same explicit time stepper. Each simulation starts from the same
initial state and runs until time point t∗ is reached. For every tested time step
size ∆t, the error D(t∗) at time point t∗ is measured as:

D(t∗) =
∑

r∈Ω

(
|Ψ∗(r)−Ψ(r, t∗)|2

)
, (4.27)

with Ω the system domain and with

Ψ(r, t) =

p∑

i=1

η2
i (r, t). (4.28)

The quantity Ψ∗ in equation (4.27) is computed by applying formula (4.28) to the
exact solution η∗. When time step size ∆t is chosen too large, small errors start
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Figure 4.3: Error measure D(t∗) and the maximal value of Ψ(r, t∗) as a function
of the time step size ∆t, obtained from numerical experiments with the Forward
Euler scheme (4.16) for t∗ = 40, compared with the theoretically derived stability
limit.

to grow and cause oscillations in the solution. These growing errors are detected
by the error measure D(t∗).

Figure 4.3(a) shows the error measure D(t∗) as a function of the time step size ∆t.
The theoretically expected stability limit (4.26) is indicated as well. The graph of
the error measure slowly increases with ∆t until approximately ∆t = 0.25, after
which the slope of the graph significantly increases. This steep rise is due to the
onset of instabilities in the computations. This can also be seen on Fig. 4.3(b),
where the maximal value of Ψ(r, t∗), taken over all grid points of the system
domain Ω, is depicted as a function of time step size ∆t. For the exact solution η∗,
this maximal value is approximately equal to 1. Figure 4.3(b) shows that for a
time step size larger than ∆t = 0.25, the value of max(Ψ(r, t∗)) explodes. Both
Figures 4.3(a) and 4.3(b) thus confirm stability condition (4.23).

According to the formula for the amplification factor (4.20), the mode that is the
most sensitive to instabilities is the most oscillatory mode, for k = N . Figure 4.4
depicts the values of Ψ(r, t) at time point t = 30, computed for time step size
∆t = 0.001, which is well below the stability limit (4.26), and computed for time
step size ∆t = 0.3, which is chosen just above the stability limit. For ∆t = 0.3,
the onset of instabilities is clearly visible by the appearance of rapid oscillations
on the solution, which confirms the analysis.
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Figure 4.4: Solution at time point t = 30 computed with the Forward Euler scheme
(a) for ∆t = 0.001, chosen well below stability limit (4.26), and (b) for ∆t = 0.3,
chosen just above the stability limit. The most oscillatory mode is seen to be the
most sensitive to instabilities.

4.5 Implicit discretisation

Application of the implicit Backward Euler scheme in combination with second-
order central finite differences to the Laplacian in the isotropic continuum field
model (2.37) results in the following system:

ηn+1
ir
− ηn

ir

∆t
= Lκ

ηn+1
ir+1
− 2ηn+1

ir
+ ηn+1

ir−1

(∆x)2

+ Lm


(ηn+1

ir

)3
+ ηn+1

ir
− 2ηn+1

ir

p∑

j=1

(
ηn+1

jr

)2


 ,

r = 1, . . . , N, i = 1, . . . , p. (4.29)

4.5.1 Analysis and numerical results

The addition of perturbation (4.8) to the equilibrium value ηi(x) = ±1 results in
an amplification factor given by

λ(k) =
1

1 + 4Lκ∆t
(∆x)2 sin2

(
πk ∆x

2l

)
+ 2Lm∆t

. (4.30)
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Figure 4.5: Error measure D(t∗) and the maximal value of Ψ(r, t∗) as a function
of the time step size ∆t, obtained from numerical experiments with the Backward
Euler scheme (4.29) for t∗ = 40. The implicit scheme is stable for the large time
step sizes, but significantly loses in accuracy for ∆t ≥ 1.

The value of λ(k) always fulfils condition (4.9). The same perturbation, but now
on the equilibrium value ηi(x) = 0, results in the amplification factor

λ(k) =
1

1 + 4Lκ∆t
(∆x)2 sin2

(
πk ∆x

2l

)
+ Lm∆t

. (4.31)

Again, the value of λ(k) always fulfils condition (4.9). Since both amplification
factors derived above will never exceed the value 1 in absolute value, implicit
discretisation scheme (4.29) is unconditionally stable.

To check the stability properties of the Backward Euler scheme with numerical
experiments, we have implemented an implicit time stepper that combines Gauss-
Seidel iterations with Newton steps. The experiments are run with the same
parameters as listed in Section 4.4.2, but now for time step sizes ranging from
∆t = 0.125 to ∆t = 8. The graphs on Fig. 4.5(b) confirm that the Backward
Euler scheme is stable for large time steps: the maximal value of Ψ(r, t∗) over the
system domain Ω never exceeds the value 1. The logarithmic plot of Fig. 4.5(a),
which shows the error measure D(t∗) as a function of the time step size ∆t, reflects
that the Backward Euler scheme is only of first-order accuracy: the value of D(t∗)
increases linearly with ∆t and reaches a limiting value for ∆t ≈ 1. For this
time step size, at t = 40, the microstructure only consists of one grain, which is
illustrated on Fig. 4.6(b). This indicates that for a large time step, the implicit
time stepper does not become unstable, but significantly loses in accuracy.
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Figure 4.6: Solution at time point t = 40 computed (a) with the Forward Euler
scheme for ∆t = 0.001, chosen well below stability limit (4.26), and (b) with
the Backward Euler scheme for ∆t = 1. No instabilities are detected during the
computations with the implicit time stepper.

4.6 Semi-implicit discretisation

Application of the semi-implicit SBDF1 scheme in combination with second-
order central finite differences to the Laplacian in the isotropic continuum field
model (2.37) results in the following system:

ηn+1
ir
− ηn

ir

∆t
= Lκ

ηn+1
ir+1
− 2ηn+1

ir
+ ηn+1

ir−1

(∆x)2
+Lm


(ηn

ir

)3
+ ηn

ir
− 2ηn

ir

p∑

j=1

(
ηn

jr

)2


 ,

r = 1, . . . , N, i = 1, . . . , p. (4.32)

This differentiation scheme corresponds to system (3.12) in Section 3.2.1.
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4.6.1 Analysis

A perturbation of the form (4.8) on the equilibrium value ηi(x) = ±1, substituted
into scheme (4.32) yields the equations

V n+1
r − V n

r

∆t
= Lκ

(
V n

r+1 − 2V n
r + V n

r−1

(∆x)2

)

+ Lm
(

(1 + V n
r )

3
+ (1 + V n

r )− 2 (1 + V n
r )

3
)

, r = 1, . . . , N. (4.33)

Again, we neglect the higher-order terms in ǫ in (4.33). Using equality (4.18c), we
obtain

V n+1
r − V n

r

∆t
= − 4Lκ

(∆x)2
sin2

(
πk

∆x

2l

)
V n+1

r − 2LmV n
r (4.34)

and amplification factor

λ(k) =
1− 2Lm∆t

1 + 4Lκ∆t
(∆x)2 sin2

(
πk ∆x

2l

) . (4.35)

Figure 4.7 plots the value of λ(k) as a function of the wavenumber k for different
values of the time step size ∆t. It can be seen that the condition λ(k) < 1 is
automatically fulfilled by (4.35). As illustrated on Fig. 4.7, the modes that are
the most sensitive to instabilities, for which λ(k) will fall below the value −1, are
the modes with wave numbers close to k = 0. For the latter wavenumber, the
amplification factor becomes

λ(0) = 1− 2Lm∆t. (4.36)

In order to fulfil −1 < λ(0), the time step size ∆t thus has to obey the inequality

∆t <
1

mL
, (4.37)

Similarly, perturbation of the equilibrium value ηi(x) = 0 yields stability condition

∆t <
2

Lm
. (4.38)

Conditions (4.37) and (4.38) correspond to the stability conditions derived
in Section 4.3.2 for the reaction part of the continuum field model and are
independent of the dimensions of the system. Since stability condition (4.38) is
less strict than condition (4.37), the stability properties of the SBDF1 scheme are
determined by the latter condition.
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Figure 4.7: Amplification factor λ(k) (4.35) obtained for the SBDF1 scheme (4.32)
as a function of the wavenumber k, for different values of the time step size ∆t.

4.6.2 Numerical results

The same numerical experiments as in Section 4.4.2 are performed to test stability
condition (4.37), but now with a time stepper based on scheme (4.32). The
expected stability limit for the time step size according to (4.37) is

∆t <
1

mL
= 1 . (4.39)

Figure 4.8(a) shows the error measure D(t∗) as a function of the time step size ∆t,
as well as the theoretically expected stability limit (4.39). The graph of the error
measure shows an increase of the slope at approximately ∆t = 1. On Fig. 4.8(b),
the maximal value of Ψ(r, t∗) also starts to rise at approximately ∆t = 1, which
corresponds to the onset of instabilities in the computations. The numerical
experiments thus confirm the theoretically derived stability condition (4.37).

Figure 4.9 shows the solution at time point t = 31.5 as computed with the
explicit time stepper for time step size ∆t = 0.001, chosen well below the stability
limit (4.26), and for the semi-implicit time stepper with time step size ∆t = 1.05,
just above the expected stability limit (4.39) of the SBDF1 scheme. For time step
size ∆t = 1.05, instabilities are visible under the form of slow oscillations.

4.7 Conclusion

This chapter started with a brief study of the stability properties of the semi-
discretised continuum field model. Subsequently, the fully discretised equations
of continuum field model (2.37) are examined. The latter model consists of two
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of the time step size ∆t, obtained from numerical experiments with the SBDF1
scheme (4.32) for t∗ = 40, compared with the theoretically derived stability limit.
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Figure 4.9: Solution at time point t = 31.5 computed (a) with the Forward Euler
scheme for ∆t = 0.001, well below stability limit (4.23), and (b) with the SBDF1
scheme for ∆t = 1.05, just above stability limit (4.37). Slow oscillatory modes are
seen to be the most sensitive to instabilities.

parts: a diffusion part and a reaction part. We have analysed the influence of
both parts separately on the stability properties of the explicit Forward Euler
time discretisation scheme. For this purpose, a theoretical stability analysis is
performed by studying the amplification of Fourier modes. The analysis of the
diffusion part is done in accordance with the approach described in [93]. Because
of the presence of nonlinear terms, a different approach is followed for the analysis
of the reaction part: the effect of a perturbation, which consists of scaled Fourier
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modes, on the equilibrium values of the system is studied as a function of time
step size ∆t. A comparison of the stability conditions thus obtained shows that
the diffusion part is the most restrictive part for the time step size in the case of
explicit time discretisation.

Following a similar approach as for the diffusion part and the reaction part
separately, stability conditions are derived for the explicit Forward Euler scheme,
the implicit Backward Euler scheme, and the semi-implicit SBDF1 scheme, now
applied to the full continuum field model. For three-dimensional systems, the
stability condition of the Forward Euler scheme is found to be

∆t <
1

6Lκ
(∆x)2 + mL

. (4.40)

The stability condition obtained for the SBDF1 scheme is

∆t <
1

mL
. (4.41)

In contrast to condition (4.40), this inequality does not include an explicit
dependency on the grid spacing ∆x. However, the parameter m is related to
∆x for accuracy reasons. The thickness of a grain boundary that is locally in
equilibrium is proportional to

√
κ/m [85]. A larger value of m thus corresponds

to a smaller boundary thickness, which in turn asks for a smaller grid spacing
∆x. With this relation in mind, it can be seen that the parameters m and
∆x supplement each other in stability condition (4.40) for the explicit Forward
Euler scheme. The implicit Backward Euler scheme is found to be unconditionally
stable. All theoretically derived stability conditions are confirmed by numerical
experiments.

While explicit time steppers are generally very efficient in their computations, the
stability condition of the Forward Euler scheme contains a dependency on the
square of the grid spacing ∆x. For finer spatial discretisations, the time step size
will therefore soon become infeasibly small. In contrast, the implicit Backward
Euler scheme is unconditionally stable. However, simulation with this implicit
scheme involves the solution of a single large nonlinear system. Also, since the
Backward Euler scheme is only of first-order accuracy, the possibility of a large
time step is restricted by accuracy concerns. The semi-implicit SBDF1 scheme
only has a weak stability condition, and decouples the system of partial differential
equations into several smaller systems that are relatively easy to solve and can be
solved simultaneously. When an efficient solver is used to solve these smaller
systems, the SBDF1 time discretisation scheme is therefore the best choice for the
continuum field model.





Chapter 5

Bounding box algorithm

5.1 Introduction

As discussed in Chapter 3, several algorithms have been designed to overcome
the computational limitations of the phase field method. In [129, 130], we
presented a bounding box method based on the same observations that led to
the sparse algorithms of [45, 133, 65] (see Section 3.3), but now for semi-implicit
time integration. It computes the phase field model only within cuboid hulls of
so-called grain regions. In contrast with the algorithms described above, it is
appropriate for implicit and semi-implicit time stepping schemes. The algorithm
was designed in the context of the study of grain growth in the presence of second-
phase particles according to the model of [25, 86]. Thanks to its object-oriented
design, the algorithm can easily be extended to more complex phase field models,
for example for grain growth in materials which show orientation dependence.
Moreover, the object-oriented approach has definite advantages in post-processing.
In [129], the bounding box algorithm was implemented for the solution of model
equations (2.39), but it can naturally be applied to other models as well.

The structure of this chapter is as follows. In Section 5.2, the concepts of the
bounding box algorithm are explained, as well as its sparse data structure and
the simulation algorithm. The simulation conditions of a test case are specified
in Section 5.3, after which the characteristics of the algorithm are discussed. The
computational requirements of our implementation of the algorithm are examined
in Section 5.4. Section 5.5 presents a parallel implementation of the algorithm, and
in Section 5.6, the extension of the bounding box data structure to microstructures
with anisotropic boundary properties is explained. Some concluding remarks are
formulated in Section 5.7.

75
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5.2 Bounding box algorithm

5.2.1 Concepts

A phase field variable ηi is defined to be active at a grid point r at time point t
when its absolute value exceeds a small positive threshold value ǫ:

|ηi(r, t)| > ǫ. (5.1)

At a given time point, at every grid point, only a few phase field variables are active
and thus contribute to the evolution of the microstructure: inside each grain,
away from its boundaries, one phase field variable, ηi, is active and near grain
boundaries, only those phase field variables corresponding to the neighbouring
grains, are active.

We now define a grain region Gi(t) as the set of ordered couples (r, ηi(r, t)) with
grid points r that are connected, and with |ηi(r, t)| > ǫ:

Gi(t) = {(r, ηi(r, t)) : (|ηi(r, t)| > ǫ) ∧ (r are connected)}. (5.2)

To take periodic boundary conditions into account, the grain regions are allowed
to wrap around the grid boundaries. Also, different grain regions, corresponding
to different phase field variables, can overlap, which allows them to interact.

For every grain region Gi(t), a bounding box Bi(t) is established as the smallest
cuboid grid part enclosing its grid points r. The bounding box Bi(t) is completely
characterised by the coordinates of two opposite delimiting grid points as

Bi(t) = (ri,min(t), ri,max(t)), (5.3)

with

ri,min(t) = (min(x), min(y), min(z)) (5.4)

and

ri,max(t) = (max(x), max(y), max(z)) , (5.5)

both taken over all grid points r(x, y, z) with (r, ηi(r, t)) ∈ Gi(t).

Finally, we define the set Bi(t) as

Bi(t) = {(r, ηi(r, t)) : r lies within Bi(t)}. (5.6)

As the values of the phase field variables ηi(r, t) evolve with time, the grain regions
Gi(t), the bounding boxes Bi(t), and the sets Bi(t) evolve accordingly.
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5.2.2 Data structure

To implement the bounding box data structure, we followed the approach of object-
oriented programming. The microstructure is thus treated as a class with a number
of attributes: the time point, the grid size and, if present in the model, second-
phase particles or other features of the polycrystalline microstructure. A grain
region in turn is also treated as a class. The attributes of a grain region are the
model parameters associated with each ηi, namely κ and L, the bounding box
delimiters, the crystallographic orientation type corresponding to ηi represented
by the index i, and the set Bi.

Figure 5.1 shows a Unified Modelling Language (UML) diagram of the object-
oriented data structure. UML is widely used to visualise object-oriented systems.
In the bounding box data structure, the microstructure is represented by the class
Microstructure; a grain region by the class GrainRegion. The line connecting the
elements of the data structure in Fig. 5.1 indicates their association relationship.
The notation at each end of the line indicates the multiplicity, which is the number
of classes that participate in the association.

Microstructure

- time point
- grid size
- second-phase particles

GrainRegion

- κ
- L
- (ri,min(t), ri,max(t))
- type i
- Bi

1..p

1

Figure 5.1: UML diagram of the object-oriented data structure composed during
initialisation of the bounding box algorithm. The microstructure and grain regions
are treated as classes with a number of attributes.

The sparse data structure of the bounding box algorithm can save significant time
in post-processing, e.g. when the number of grains or the mean grain size have to
be determined. The number of grains and their location is known throughout the
simulation and this information can be used immediately.

5.2.3 Initialisation of the data structure

To initialise the bounding box algorithm, a polycrystalline microstructure is
required. This initial microstructure can be obtained for example from microscopic
images, from other simulations, or by the construction of for example a Voronoi
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tessellation. We will describe two initialisation approaches in detail. The first
approach obtains the sparse bounding box data structure by processing data
available from a previous phase field simulation on a full grid. The second approach
constructs the data structure by generating nuclei in accordance with a uniform
distribution over the grid.

Initialisation from previous phase field simulation

Consider the set of phase field variables η̂l(r) for l = 1, . . . , q, containing data from
a phase field simulation of grain growth on a full grid. The values of each phase
field variable vary between the two equilibrium values −1 and 1, as illustrated in
Fig. 5.2(a). In a full phase field simulation, it is possible that several nl grains
possess the same crystallographic orientation and are thus represented by the same
phase field variable η̂l. We will identify these grains by a sequence number k that
ranges from 1 to nl, with nl the number of grain regions associated with one phase
field variable η̂l.

The initialisation of the bounding box data structure starts with several
preprocessing steps. First, the threshold value ǫ is applied to the phase field
variables and for every involved phase field variable η̂l, all grain regions Ĝl,k, with
k = 1, . . . , nl are located (see Fig. 5.2(b)). Second, the corresponding bounding
boxes B̂l,k and the sets B̂l,k are established, as illustrated in Fig. 5.2(c). Third,
a grain region renumbering takes place and a new set of phase field variables is
introduced, such that there is a one-to-one mapping between grain regions and
phase field variables. More precisely, the grain regions are renumbered such that
every grain region Ĝl,k for l = 1, . . . , q and k = 1, . . . , nl is given a unique index
i, ranging from 1 to p, the total number of grain regions, with p =

∑q
l=1 nl. That

is, grain region Ĝl,k is rewritten as Gi, a grain region corresponding to one of
the new phase field variables, ηi, for i = 1, . . . , p, with bounding box information
copied from B̂l,k to Bi. Figure 5.2(d) illustrates the mapping of one isolated grain
region to a single phase field variable ηi. The renumbering of grain regions and
phase field variables is only allowed if the model parameters associated with η̂l are
correctly copied to the new set of phase field variables ηi.

If second-phase particles are present in the input data structure, the additional
parameter Φ, which represents the particles (see Section 2.5.2), is processed to
locate all particles. An array is then constructed that contains the linearised
coordinates of all grid points occupied by a second-phase particle. In this way, the
parameter Φ is implicitly represented.

After the preprocessing of the phase field variables, the bounding box data
structure is set up. For every grain region Gi, a GrainRegion-object is instantiated.
Also, a Microstructure-object is created and the links between the Microstructure-
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(a) (b)

(c) (d)

Figure 5.2: Locating the grain regions and determining the bounding boxes during
initialisation of the bounding box data structure, when the initial microstructure is
obtained from a previous phase field simulation. (a) The values of one phase field
variable, η̂l, vary between the two equilibrium values −1 and 1. (b) The threshold
value ǫ is applied and the grain regions Ĝl,k are located. (c) The bounding

boxes B̂l,k and the sets B̂l,k are established. (d) A new phase field variable ηi

is assigned to every Ĝl,k and the values inside the corresponding bounding box

B̂l,k are isolated.
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object and the GrainRegion-objects are established. The preprocessing procedure,
followed by the data structure set-up is summarised in Algorithm 5.1.

Algorithm 5.1: Preprocessing algorithm that constructs a sparse bounding
box data structure from data resulting from a previous phase field simulation
on a full grid.

Input: Set of phase field variables η̂l with l = 1, . . . , q, defined on a full grid
and, if second-phase particles are present, parameter Φ

Output: Bounding box data structure
for l = 1 to q do

Find all grain regions Ĝl,k;
for k = 1 to nl do

Determine bounding box delimiters and B̂l,k;
end

end

Compute p =
∑q

l=1 nl;

foreach grain region Ĝl,k do

Rename Ĝl,k to Gi, corresponding to a unique phase field variable ηi;

Copy the bounding box information from B̂l,k to Bi;
end

if second-phase particles are present then
Process the parameter Φ to find the coordinates of all particles;
Construct an array that contains the linearised coordinates of all
particles;

end

Instantiate Microstructure-object;
Instantiate GrainRegion-object for every grain region Gi;
Set up bounding box data structure;

The assignment of a unique phase field variable to every grain region ensures
coalescence-free simulations with the bounding box algorithm. In the situation
where grains can split into subgrains (e.g. recovery after deformation), the
renumbering procedure can be reexecuted to guarantee a one-to-one phase field
variable to grain region relation.

We have implemented Algorithm 5.1 as a MATLAB-function, which saves the
resulting bounding box data structure in a dedicated data format.

Initialisation by random generation of nuclei

A second possible technique to initialise a microstructure is by spreading a set
of spherical grain nuclei over the domain, together with a distribution of second-
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Figure 5.3: Initialisation by generating grain nuclei and circular second-phase
particles according to a uniform distribution over the domain. (a) Initial state:
some grain nuclei and/or particles may overlap. (b/c) Microstructure evolution:
all grain nuclei grow and impinge. Initially overlapping nuclei become neighbouring
grains.

phase particles. This initialisation method somewhat resembles the nucleation of
new grains during recrystallisation (see Chapter 1).

First, for every phase field variable ηi, with i = 1, . . . , p, a grid point Ci is
chosen according to a specified distribution over the domain of the microstructure.
Depending on the application, a different distribution function can be used. In this
work, we will always assume a uniform distribution of the grain nuclei. Second,
a spherical grain region Gi with a small radius is created with Ci as its centre.
The phase field variable ηi is now initialised such that ηi equals 1 inside the grain
region Gi and 0 outside the grain region. Third, for every generated grain region,
the corresponding bounding box and the set Bi are determined. No attention is
paid to the fact that some nuclei may overlap. After an initial transitional period,
the overlapping nuclei will evolve to neighbouring grains, as shown in Fig. 5.3 for
a two-dimensional microstructure.

In this work, the second-phase particles are assumed to have a spheroid shape.
A spheroid shape is obtained by rotating an ellipse about one of its axes. It is
characterised by the ratio ra = c/a of its two axis radii a and c, illustrated in
Fig. 5.4. The second-phase particles are initialised similarly to the grains. Until a
desired volume fraction fV of particles is obtained, new particles are added to the
microstructure. The volume fraction of the second-phase particles fV is defined as
the number of grid points representing the second-phase particles, divided by the
total number of grid points in the system. For each particle, first, a grid point D is
chosen according to a uniform distribution over the system domain as the centre
of the new particle. Second, the particle orientation, which is the orientation
of the c-axis, is generated according to a desired distribution function. Third,
the coordinates of a spheroid with centre D and axes according to the generated
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orientation are computed. Next, the linearised coordinates of the spheroid are
added to an array that contains the linearised coordinates of all grid points
occupied by a second-phase particle. No effort is made to separate the second-
phase particles, since particle clusters also occur in real materials. Some particles
may therefore overlap. As in [4], we assume that the influence of this small amount
of particle clusters on the pinning effect is small. Finally, as in Algorithm 5.1, the
bounding box data structure is set up. Algorithm 5.2 summarises the initialisation
procedure described above.

Algorithm 5.2: Initialisation by generating nuclei over the microstructure.

Input: Number of phase field variables p and volume fraction fV

Output: Bounding box data structure
for i = 1 to p do

Choose grid point Ci according to a uniform distribution over the grid;
Generate a grain region Gi with a small radius and centre Ci;
Set ηi to 1 inside Gi and to 0 outside Gi;
Determine the bounding box delimiters of Gi, and the set Bi;

end

if fV > 0 then

while desired volume fraction fV is not reached do
Choose grid point D according to a uniform distribution over the
grid;
Generate particle orientation;
Compute the coordinates of a spheroid particle with centre D and
axes according to the orientation;
Add the linearised coordinates of grid points occupied by the particle
to an array representing the particles;

end

end

Instantiate Microstructure-object;
Instantiate GrainRegion-object for every grain region Gi;
Set up bounding box data structure;

5.2.4 Simulation

In a grain growth simulation, at any given time point, the phase field variables
are only locally active, inside the grain regions. Outside the grain regions, the
phase field values are assumed to be zero. The bounding box algorithm exploits
this property by solving the model equations only inside the bounding boxes, i.e.
for the phase field values included in the sets Bi.

At each time point t, for every set Bi, the model equations are solved. The
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a

a

c

Figure 5.4: In this work, the second-phase particles are modelled as spheroids.
They are characterised by two axis radii a and c.

bounding boxes of the different grain regions overlap and the phase field variables
interact within the regions of overlap. Depending on the computed updates of ηi

during one time step ∆t, it is possible that grain region Gi and correspondingly
the bounding box Bi and the set Bi grow or shrink. To anticipate this change,
the calculation of each time step is preceded by a preparation of Bi. In each grid
dimension, a margin of M grid points is added to Bi. The delimiters of Bi are
thus shifted as

r′
i,min = ri,min −M · (1, 1, 1) (5.7)

and

r′
i,max = ri,max + M · (1, 1, 1). (5.8)

To take into account the periodic boundary conditions of model (2.39), the enlarged
bounding box is allowed to wrap around the grid boundaries. However, this
preparatory step has to ensure that the dimensions of a single bounding box can
never exceed the dimensions of the full grid. The newly added margin is then
filled with zeros, which is in accordance with the assumption that phase field
values outside Gi are equal to zero. Note that the margin allows a grain region to
grow inside its bounding box during one time step, but not for more than M grid
points at once in each dimension.

After the preparatory step, the model equations are solved for each Bi separately
by locally applying homogeneous Dirichlet conditions. Possible choices for the
solution method are iterative methods such as multigrid methods (see Chapter 6),
the successive overrelaxation (SOR) method, or the Gauss-Seidel method. Note
however that the bounding boxes have different sizes. Therefore, not every solution
method will attain its maximal efficiency, e.g. solvers based on Fourier transforms
will lose speed. In [129], the Gauss-Seidel method is used. When the new values
of Bi are computed, the algorithm checks whether the grain region Gi has shrunk
or grown and adjusts the bounding box delimiters and the set Bi accordingly.
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A simulation with the bounding box algorithm thus proceeds as described in
Algorithm 5.3.

Algorithm 5.3: Bounding box algorithm

Input: Bounding box data structure at t1; tend, ǫ and M
Output: Bounding box data structure at tend

for t = t1, t2, . . . , tend do

for i = 1 to p do
Add a margin of M grid points in each grid direction to Bi;
Fill the margin with zeros;
Solve the discretised model equations for Bi;
Check whether Gi has grown or shrunk and update the bounding
box delimiters and Bi accordingly;

end

end

5.2.5 Remarks

We chose to restrict the computation and the storage of the phase field variables
during a grain growth simulation to the grid points contained by the cuboid hulls
of the grain regions. The cuboid shape of the bounding boxes is compatible with
the structure of the rectangular grids that are used throughout this work. A
bounding box can therefore be described by the use of only two delimiting grid
points, located in two opposing corners. The overhead to represent the boxes in
the data structure is therefore very small. Furthermore, the cuboid shape allows
for implicit time stepping: the systems that result from the application of implicit
time integration schemes can be used as the input for any iterative solver without
further mediation. The choice to limit the computation and the storage to cuboid
bounding boxes thus leads to a manageable data structure.

To a certain extent, the bounding box algorithm tracks the movement of the grain
boundaries. However, it does not have the same difficulties that front-tracking
models can meet (see Section 2.3.3). The choice of the cuboid shape of the
bounding boxes does not make any prior assumptions on the shape of the grain
regions. Furthermore, the possible changes that occur in the data structure during
a grain growth simulation, such as the disappearance of a grain, are much more
straightforward to cope with than the critical events a front-tracking model has to
be able to handle.

The parameter M , which measures the margin that is added to the bounding boxes
at the start of each time step, is related to the time step size ∆t. For a larger ∆t,
the grain regions will grow more during one time step. In this work, however, we
have not tested the interplay between these two parameters.
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The implementation of the bounding box algorithm used in [129, 130] employs the
Gauss-Seidel method to solve the phase field equations, which are discretised with
the 1SBDF scheme. Convergence is reached when the norm of the residual divided
by the norm of the right-hand side falls below a user imposed tolerance value. In
these works, a time step size is used that is rather below the stability condition
found in Section 4.6. Because of this choice of time step size, a higher accuracy
is obtained and only a few iterations of the Gauss-Seidel method are necessary to
solve the equations.

Section 5.2.4 describes how the model equations are solved for each set Bi

separately by locally applying homogeneous Dirichlet conditions. However, we
have also implemented the bounding box algorithm in combination with solver
scheme (3.23), assuming that the sets Bi can be solved with periodic boundary
conditions, using the FFTW library [39]. Numerical experiments with this
implementation show that the assumption of periodic boundary conditions is
correct and yields accurate results. Unfortunately, because all bounding boxes
have a different size, the efficiency of the FFTW library cannot be exploited to
the fullest.

5.3 Characteristics of the bounding box algorithm

5.3.1 Test case

In this section, we test the bounding box algorithm using model (2.39). We
compare the new algorithm with a parallel implementation of an algorithm
solving the equations (2.39) globally, based on the semi-implicit finite difference
scheme proposed in [28]. The solution scheme of this parallel implementation is
described by formula (3.23) in Section 3.4.2. This algorithm and its characteristics
will hereafter be referred to as the conventional algorithm, with conventional

characteristics.

To obtain an initial polycrystalline microstructure to set up the bounding box data
structure, simulations with the conventional algorithm were run on a equispaced
256×256×256 grid. Because of memory limitations, only 100 phase field variables
were employed, whereas according to [74], more than 200 phase field variables
are required to prevent grain coalescence in a three-dimensional simulation. The
parameter values were set to κ = 0.5, L = 1 and m = 1, and no second-phase
particles were included. The discretisation spacings were ∆x = 1 and ∆t =
0.2. At the start of a simulation, small random values between −0.001 and 0.001
were assigned to the phase field variables at all grid points. All computations
were performed on 20 nodes of a computer cluster, which are interconnected with
an Infiniband network. At simulation time ts, the conventional algorithm was
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stopped and the bounding box data structure was initialised with preprocessing
Algorithm 5.1. For the subsequent bounding box simulations, the parameter M
was chosen equal to 1.

The bounding box algorithm now depends on two parameters: the applied
threshold value ǫ and the initial mean grain size. The latter is determined by the
time point ts at which the conventional simulation is stopped. The parameters ǫ
and the mean grain size influence the accuracy, computing memory and computing
time of the bounding box algorithm.

5.3.2 Bounding box data structure

During the initialisation of the bounding box data structure, the active regions
of the phase field variables are identified and isolated. From this point on, all
data storage is thus restricted to the phase field values contained by the bounding
boxes. As a result, the storage requirements of the bounding box data structure
are significantly lower than those of the conventional grid-based data structure.
Whereas the requirements of the conventional data structure equal the number of
phase field variables multiplied by the grid size, the requirements of the bounding
box data structure are determined by the number of active phase field variables
per grid point and equal the number of phase field values included in the sets
Bi. This number depends on ǫ and the initial mean grain size and, as will be
shown below, is typically a small fraction of what is required for the conventional
implementation.

The initialisation procedure described by Algorithm 5.1 was performed on the
simulation results specified in Section 5.3 at time points ts = 200, 400, 600, and
800. Different values of ǫ were applied: 10−3, 10−4, 10−5, and 10−6. Table 5.1
shows the required number of phase field values per grid point for the bounding
box algorithm and the conventional algorithm as a function of ǫ and ts and thus
the initial mean grain size. The fine-grained topology of the microstructure at
the initial evolution stages results in smaller initial mean grain sizes and larger
numbers of required phase field values. It can be seen that the bounding box
algorithm is far more efficient than the conventional algorithm.

5.3.3 Bounding box simulation

The bounding box algorithm only solves equations (2.39) for the grid points within
the sets Bi. A large amount of computing time and computing memory is thus
saved. During a simulation, the topology of a microstructure becomes more and
more coarse-grained. While the memory demand of the conventional algorithm
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Table 5.1: Number of phase field values required per grid point for the bounding
box algorithm and the conventional algorithm as a function of ǫ and the initial
mean grain size (grid points).

threshold value ǫ
starting ts mean grain size 10−3 10−4 10−5 10−6 conventional
ts = 200 3.5× 103 6.15 9.35 14.19 31.12 100
ts = 400 7.8× 103 4.98 7.11 9.74 13.33 100
ts = 600 1.4× 104 4.29 5.84 7.73 10.16 100
ts = 800 2.0× 104 3.85 5.00 6.40 7.94 100

Table 5.2: Number of phase field values per grid point for the bounding box
algorithm and the conventional algorithm as a function of ǫ and the simulation
time.

threshold value ǫ
simulation time t 10−3 10−4 10−5 10−6 conventional

ts 5.75 6.48 7.26 8.10 100
ts + 200 6.71 6.74 6.90 6.90 100
ts + 400 6.72 6.73 6.81 6.81 100
ts + 600 6.68 6.69 6.73 6.73 100
ts + 800 6.64 6.65 6.68 6.68 100

is independent of the topology, the bounding box algorithm is more efficient for
coarser-grained topologies.

To study the efficiency of the bounding box computations, a conventional
simulation was performed on a 256×256×256 grid until simulation time t = 4600,
where the grain topology was clearly defined. To make sure that no further
coalescence would occur in the conventional simulation, a phase field variable
reassignment was performed. The resulting microstructure contained 67 grains,
with a mean grain size of 2.3 × 105 grid points and a different crystallographic
orientation for every grain. From time point ts = 4600 on, both the conventional
algorithm and the bounding box algorithm were applied with the described
microstructure as initial state. Table 5.2 shows the time evolution of the mean
number of phase field values per grid point for both algorithms for different
threshold values ǫ. It can be seen that the memory efficiency of the bounding
box algorithm increases with the simulation time for the smallest values of ǫ. Also,
in the course of the simulation, the memory efficiencies for the different threshold
values converge. This indicates that a lower threshold value ǫ only increases the
computational requirements considerably at the beginning.

Next, we compare the simulation accuracy of the bounding box algorithm with that
of the conventional algorithm. Since the microstructure, described in the previous
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paragraph, has a different crystallographic orientation for every grain, it allows for
coalescence-free simulations with the conventional algorithm. A common way to
study microstructural evolution, is by looking at the function Ψ, which is defined
as

Ψ(r, t) =

p∑

i=1

η2
i (r, t). (5.9)

Function Ψ(r, t) can be calculated during a bounding box simulation, only taking
into account the values inside the bounding boxes. It takes the value 1 inside
grains and considerably smaller values at grain boundaries.

The simulation accuracy of the bounding box algorithm is now studied by looking
at the differences between the results of the conventional algorithm and those of
the bounding box algorithm for different threshold values ǫ = 10−3, 10−4, 10−5,
and 10−6, after 1, 1000, and 7000 time steps. At these three time points, the
differences between the results for function Ψ(r, t) at every grid point, as well as
the mean grain size, are computed and compared. After one time step, the point-
wise differences between the results for the threshold values ǫ = 10−3, 10−4, 10−5,
and 10−6 are of order 10−5, 10−6, 10−6, and 10−6 respectively. Furthermore, the
mean grain size shows no influence of the use of different threshold values. After
1000 time steps, the point-wise differences are only of order 10−3. The mean grain
size obtained by the bounding box algorithm deviates less than 10−7, relatively,
from the size obtained by the conventional algorithm. The differences between the
results obtained for the different threshold values ǫ are even smaller. After 7000
time steps, the point-wise differences of all computed results are only of order
10−2 and located at the boundaries of grains, which are slightly larger or smaller
when compared. The mean grain sizes computed by the bounding box algorithm
for the different threshold values differ by less than 10−7, relatively. The relative
differences between the mean grain sizes computed by the bounding box algorithm
and the conventional algorithm have increased now, but are still only of order 10−5.
This shows that the bounding box algorithm is highly accurate. Furthermore, the
accuracy of the bounding box computations is little influenced by the magnitude
of the threshold value ǫ.

Finally, we study the effect of the threshold value ǫ and the time point ts on the
initial configuration. When the initial microstructure is obtained by simulation,
the value of ǫ can influence the initial configuration. If not enough phase field
variables are involved in a conventional simulation, the small grains which nucleate
and grow during the simulation can undergo significant coalescing. Consider a
small positive threshold value ǫ. In the time steps before two neighbouring grains
with the same crystallographic orientation coalesce, the values of the involved
phase field variable start to increase along the contact boundary and eventually
exceed ǫ in magnitude. At that point, the grains have become one according to the
definition in Section 5.2 and will also be considered as one grain by preprocessing
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Figure 5.5: Effect of ǫ on the initial configuration: evolution of the mean grain
size, measured in grid points (g.p.), from ts = 200 to t = 3000, computed by the
conventional algorithm and by the bounding box algorithm for different threshold
values ǫ.

Algorithm 5.1. As a result, fewer different grains are taken into account and the
initial mean grain size is larger. By using high values of ǫ, the neighbouring grains
will not be treated as one, but as separate grains. The use of too high threshold
values will however disturb the accuracy of the simulation results.

To investigate the influence of ǫ on the initial configuration and further, on the
long term kinetics, the bounding box is applied to the simulation results specified
at the start of this section. Figure 5.5 shows the evolution of the mean grain size
from ts = 200 to t = 3000, computed by the conventional algorithm and by the
bounding box algorithm for several values of ǫ. It can be seen that the mean grain
size is higher for lower threshold values and highest for the conventional algorithm.

The time point ts also has an influence on the initial configuration: when ts is
chosen earlier, some amount of the coalescence of the small grains which nucleated
during the initial simulation is prevented. To study this effect, the bounding box
algorithm was started at ts = 200, 400, 600, and 800 and run until t = 3000.
Figure 5.6 illustrates the evolution of the mean grain size as computed by the
conventional algorithm and by the bounding box algorithm for ǫ = 10−4 and
ǫ = 10−5, starting from the different time points ts until t = 3000. As anticipated,
the mean grain size is smaller when ts is chosen earlier. For smaller values of ǫ,
this effect is not clear: this can be explained by the effect discussed in the previous
paragraph.

Both the influence of ǫ and ts on the initial configuration are a consequence of
creating an initial microstructure with the conventional algorithm. Nevertheless,
we feel that this conventional method, possibly executed on a coarser mesh, is
a convenient way to obtain an initial large polycrystalline structure since in the



90 BOUNDING BOX ALGORITHM

0 500 1000 1500 2000 2500 3000
0

2

4

6

8

10

12

14

Simulation time

M
ea

n 
gr

ai
n 

si
ze

 (
10

4  g
.p

.)

 

 

conventional
t
s
 = 800

t
s
 = 600

t
s
 = 400

t
s
 = 200

(a) ǫ = 10−4

0 500 1000 1500 2000 2500 3000
0

2

4

6

8

10

12

14

Simulation time

M
ea

n 
gr

ai
n 

si
ze

 (
10

4  g
.p

.)

 

 

conventional
t
s
 = 800

t
s
 = 600

t
s
 = 400

t
s
 = 200

(b) ǫ = 10−5

Figure 5.6: Effect of ts on the initial configuration: evolution of the mean grain
size from ts to t = 3000, computed by the conventional algorithm and by the
bounding box algorithm for different starting time points ts and threshold values
(a) ǫ = 10−4 and (b) ǫ = 10−5.

case of ideal grain growth, the typical grain structure with stationary grain size
distribution is recovered after a short transition time (see also [140]).

Based on the observations concerning the memory reduction, accuracy and initial
configuration for the different threshold values, we advocate to use ǫ = 10−5 or
10−6. The simulations further showed that at every grid point, approximately
7 phase field variables are active. Since the bounding box algorithm only takes
into account the active phase field values, this means that the computational
requirements of the algorithm depend on the system size and not on the total
number of phase field variables.

5.4 Computational requirements

5.4.1 Bounding box data structure

From the start of the bounding box algorithm on, all phase field values not
exceeding ǫ in absolute value are assumed to be zero. They are not included in
the sets Bi and therefore excluded from further computations. As a consequence,
these values do not have to be stored and the data resulting from a bounding box
simulation require less storage space than the data from a conventional simulation.
Table 5.3 displays the bounding box storage requirements for ts = 200, 400, 600,
and 800, and thus different initial mean grain sizes, and ǫ = 10−3, 10−4, 10−5,
and 10−6, together with the conventional storage requirements. For smaller mean
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Table 5.3: Bounding box storage requirements (GB) as a function of ǫ and
the initial mean grain size (grid points), compared to conventional storage
requirements.

threshold value ǫ
starting ts mean grain size 10−3 10−4 10−5 10−6 conventional
ts = 200 3.5× 103 0.84 1.27 1.93 4.18 13.4
ts = 400 7.8× 103 0.70 1.00 1.37 1.90 13.4
ts = 600 1.4× 104 0.63 0.86 1.14 1.50 13.4
ts = 800 2.0× 104 0.59 0.77 0.98 1.24 13.4

grain size, the storage requirements are higher. Furthermore, the threshold value
ǫ has a larger influence on the storage amount when the mean grain size is smaller.

5.4.2 Bounding box simulation

If the initial microstructure is obtained by simulation, the total amount of
computing resources spent on a grain growth simulation depends on the starting
time point ts. When ts is chosen relatively small, little effort is spent on a time
and memory consuming conventional simulation. The computational requirements
are also influenced by the threshold value ǫ. Figure 5.7 shows the evolution of the
computing time and computing memory per 1000 time steps of the bounding
box algorithm for ts = 200 and different threshold values ǫ. At the start of
the bounding box algorithm, considerably more computing time and computing
memory is required, because of the smaller mean grain size. Furthermore, for
lower threshold values ǫ, the computational requirements are higher. Later on
in the simulations, the requirements are approximately the same for the different
threshold values.

The conventional computational requirements are constant in time, whereas the
bounding box algorithm requires less resources as simulation time progresses.
In Table 5.4, the computational requirements for the first 5000 time steps of a
conventional simulation and a bounding box simulation are shown for ǫ = 10−5

and ts = 200. The conventional algorithm was run on 20 processors, in contrast
to the bounding box algorithm which could be executed on a single processor.
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Figure 5.7: Evolution of (a) computing time (h) and (b) computing memory (GB)
per 1000 time steps of the bounding box algorithm for ts = 200 and different
threshold values ǫ.

Table 5.4: Computing time (h) and computing memory (GB) as a function of the
simulation time and the mean grain size (grid points), required during the first
5000 time steps of the bounding box algorithm with ǫ = 10−5 on a single processor,
compared to the conventional algorithm on 20 processors.

bounding box conventional
simulation time mean grain size time memory time memory
200→ 400 3.52× 103 → 7.82× 103 6.3 2.8 6.8 30.3
400→ 600 7.82× 103 → 1.35× 104 4.7 2.2 6.8 30.3
600→ 800 1.35× 104 → 1.95× 104 3.8 1.9 6.8 30.3
800→ 1000 1.95× 104 → 2.66× 104 3.5 1.7 6.8 30.3

1000→ 1200 2.66× 104 → 3.46× 104 3.1 1.6 6.8 30.3
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5.5 Parallelisation

5.5.1 Parallelisation scheme

Concepts

We have further accelerated the bounding box algorithm by parallelisation in [131].
The grain regions Gi, with i = 1, . . . , p, are divided into K different subsets of wk

elements. Each of these subsets is assigned to a different processor Pk and

K∑

k=1

wk = p. (5.10)

The numbers wk are chosen such that each processor disposes of approximately
the same number of grain regions. Another possibility to divide the grain regions,
which we have not implemented, is to add a weight to each grain region Gi that is
related to the size of its bounding box Bi. The numbers wk can then be decided
such that the sum of the weights is approximately equal for each processor.

This approach to parallelisation divides the computing work as well as the
computing memory over the processors, thus accelerating the simulation process
and alleviating the memory requirements for the individual processors.

Initialisation

When the system is initialised with Algorithm 5.2, each processor Pk is responsible
for the creation of wk grain regions. On the other hand, when the system
is initialised from data resulting from previous bounding box simulation or as
generated with Algorithm 5.1, a dedicated procedure divides the grain regions
into K approximately equally sized subsets as described above. If particles are
present in the microstructure, the data representing the second-phase particles
is initialised on every processor. Currently, the parallel implementation of the
bounding box algorithm does not include further dynamic load balancing: the
partitioning of the work load only takes place at the beginning of a simulation.

Simulation

During a bounding box simulation, within each time step, processor Pk computes
the solution of the model equations for the assigned grain regions. When
a simulation is performed with continuum field model (2.39), at each time
step, summation

∑p
j=1 η2

j has to be computed. Since the different phase field
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variables are spread over different processors, the computation of this sum requires
communication between the processors. First, every processor Pk computes the
partial sum Σk as

Σk =

p∑

j=1
j∈Sk

η2
j . (5.11)

The set Sk is the set of all indices j for which grain region Gj is assigned to
processor Pk. Next, the values of Σk are summed over all the processors, by
performing the MPI Allreduce-operation.

5.5.2 Evaluation

We evaluate the parallelisation scheme described above by running simulation
experiments with continuum field model (2.39) on a 256 × 256 × 256 grid with
parameter values fV = 0%, L = 1, κ = 0.5, m = 1, and discretisation spacings
∆t = 0.2 and ∆x = 1, until time point t = 200 is reached. The experiments are
performed on an increasing number of processors, each time starting from the same
initial microstructure with respectively p = 25000, p = 50000, and p = 75000 grain
regions. The type of scaling thus studied is called strong scaling, and measures
the speed-up of solving the same problem using more processors [68].

Figure 5.8 shows the computing time taken by the simulations as a function of the
number of processors K. The total computing time quickly decreases for increasing
values of K. However, for larger values of K, the speed-up of the parallelisation
scheme seems to slow down, as the addition of more processors does not decrease
the computing time significantly.

The speed-up of a parallelisation scheme is computed as the computing time
required by one processor divided by the computing time required by K processors.
Due to the communication between the processors and other overhead related
to parallel computing, the speed-up is generally smaller than its ideal value
K. To measure how close the speed-up is to its ideal value, the efficiency of
a parallelisation scheme is defined as the speed-up divided by K. Figure 5.9
depicts the speed-up and the efficiency as a function of the number of involved
processors K, for the different tested initial values of p. For a larger initial value
of p, the work load per processor is higher and the parallelisation scheme proves
to be more efficient. For each value of p, the number wk of grain regions per
processor decreases as the number of involved processes increases. Adding more
processes thus makes the parallel scheme less and less efficient, since the extra
communication overhead outweighs the possibility of dividing the work load. For
p = 75000, the efficiency graph in Fig. 5.9(b) jumps above the value 1 for K = 2.
This is related to the fact that the problem size is almost too large to run the
simulation on a single processor.
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Figure 5.8: Computing time (s) as a function of the number of processors for
simulations with continuum field model (2.39) on a 256 × 256 × 256 grid, with
fV = 0%, L = 1, κ = 0.5, m = 1, ∆t = 0.2 and ∆x = 1, run until t = 200.
Experiments are performed for p = 25000, p = 50000, and p = 75000 grain regions
respectively.
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Figure 5.9: (a) Speed-up and (b) efficiency as a function of the number of
processors for simulations with continuum field model (2.39) on a 256× 256× 256
grid, with fV = 0%, L = 1, κ = 0.5, m = 1, ∆t = 0.2 and ∆x = 1, run until
t = 200. Experiments are performed for p = 25000, p = 50000, and p = 75000
grain regions respectively.
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5.6 Extending the bounding box algorithm

The object-oriented design of the bounding box data structure and the bounding
algorithm allows for easy extension to more complex phase field models. Contin-
uum field model (2.44) attributes different characteristics to each grain boundary
through the parameters κ(Θ) and γ(Θ), with Θ the ensemble of parameters that
defines the misorientation between neighbouring grains. This section discusses the
extension of both the bounding box data structure and the bounding box algorithm
to take these anisotropic characteristics into account.

5.6.1 Extending the bounding box data structure

Misorientation dependence of the grain boundary energy is brought into the
existing data structure through two changes. First, a network structure is
introduced in the structure in Fig. 5.1 by including links between neighbouring
grains. Two grains are defined to be neighbours when their bounding boxes overlap,
i.e. the intersection of their bounding boxes is not empty. This connection between
neighbouring grain regions is indicated on the new, extended UML diagram shown
in Fig. 5.10. Note that a grain region cannot become its own neighbour.

Microstructure

- time point
- grid size
- second-phase particles
- κij

- γij

- L

GrainRegion

- (ri,min(t), ri,max(t))
- type i
- Bi

1..p

1

1..p-1 1..p-1

neighbours

Figure 5.10: UML diagram of the bounding box data structure extended to
model (2.44) with anisotropic properties.

The second difference lies in the assignment of the attributes of the Microstructure-
class and the GrainRegion-class. The parameters κij and γij are both depending
on the misorientation between the orientations of two neighbouring grain regions.
Fig. 5.10 shows that every grain region can become a neighbour of every other
grain region. Therefore, both parameters are now considered as attributes of the
microstructure, as well as the mobility parameter L. Note that depending on the
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dimensions of the system, the crystallographic orientation can be described by a
different type of parameter, e.g. a rotation matrix in the three-dimensional case.
The attribute “type i” in Fig. 5.10 is thus a generic parameter representing the
crystallographic orientation.

During the initialisation of the bounding box data structure, the network structure
now has to be set up as well. For each newly generated grain, the initialisation
algorithm therefore checks for every other grain whether their bounding boxes
overlap and correspondingly creates new links in the network data structure.

5.6.2 Extending the bounding box algorithm

Two major changes are required to extend the bounding box algorithm. The first
difference is due to the misorientation dependency of the parameters κij and γij

in model (2.44). To calculate the misorientation dependent terms in the model
equations, several steps are added to the algorithm just before the equations are
solved for a particular grain region Gi (see Algorithm 5.4). For every neighbouring
grain region Gj , first the intersection of the bounding boxes of Gi and Gj is
determined. Next, the corresponding parameter values κij and γij are retrieved,
and finally, the contributions of the i/j connection are calculated and added to
the respective coupling terms.

Algorithm 5.4: Extended bounding box algorithm

Input: Bounding box data structure at t1; tend, ǫ and M
Output: Bounding box data structure at tend

for t = t1, t2, . . . , tend do

for i = 1 to p do
Add a margin of M grid points in each grid direction to Bi;
Fill the margin with zeros;
foreach neighbour Gj of grain region Gi do

Determine the intersection of the bounding boxes;
Retrieve the parameter values κij and γij ;
Compute and add the contribution of the i/j connection to the
misorientation dependent terms;

end

Solve the discretised model equations for Bi;
Check whether Gi has grown or shrunk and update the bounding
box delimiters and Bi accordingly;

end

Update the grain network;
end

The second change is that at the end of each time step, the grain network is
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brought up-to-date. When a grain region has grown and meets new neighbours, the
algorithm adds the corresponding new connections to the network structure. Since
only the second-order neighbours of a grain region can become its new neighbours,
the algorithm restricts to these grain regions to check for new neighbours. Similarly,
when a grain region has shrunk and looses contact with previously neighbouring
grain regions, the algorithm removes the corresponding connections from the
network. When a grain region has disappeared, the connections between this
grain region and its former neighbouring grain regions, as well as the grain region
itself, are removed from the network.

Depending on the generation method of the grain regions, only shortly after
initialisation, it is possible that the microstructure is not completely covered by the
bounding boxes and that a grain region meets new neighbours that were previously
not connected as second-order neighbours. Therefore, until the grain regions have
impinged and the microstructure is completely covered, or more specifically, until
the constraint

∀r ∈ Ω : max
i=1,...,p

|ηi(r)| > ǫ (5.12)

is met, with Ω the system domain, all grain regions need to be checked for new
overlap.

5.6.3 Parallelisation

The extended version of the bounding box algorithm was also parallelised, but
because of the complex coupling between the boxes, another approach was followed
than in Section 5.5: the algorithm was accelerated through task parallelism. This
means that every involved processor has access to the same data structure, but
only processes a part of the bounding boxes.

Similar to the parallelisation scheme described in Section 5.5, within each time
step, processor Pk solves continuum field model (2.44) for an assigned subset of

wk grain regions, with
∑K

k=1 wk = p, where K is the total number of processors and
p the total number of grain regions. Again, the sizes wk of the subsets are chosen
such that each processor Pk is responsible for approximately the same amount of
grain regions. During a simulation, at the end of each time step, each processor
has computed an update for a subset of wk grain regions. Before the next time
step can be computed, all local updates are communicated among the processes,
such that at the beginning of the next time step, all processes again have local
access to the same information.
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5.7 Conclusion

In this chapter, a sparse bounding box algorithm is presented to perform efficient
phase field simulations of microstructural evolution in polycrystalline materials.
The algorithm only solves the phase field equations locally, inside bounding boxes
that delimit regions of active phase field variables. In contrast to other sparse
algorithms, the bounding box data structure naturally allows for semi-implicit
time integration.

The computational requirements of the bounding box algorithm depend on the
system size and not on the total number of involved phase field variables. In
combination with the one-to-one mapping between grain regions and phase field
variables, this allows to perform coalescence-free simulations of grain growth
without the excessive memory usage or computing time associated with existing
methods.

The bounding box algorithm is further accelerated through parallelisation, which
is described and evaluated in Section 5.5. Because of its object-oriented design,
the bounding box algorithm has advantages in post-processing and is extendible
to more complex models. The latter is illustrated in Section 5.6, where extensions
of the bounding box implementation are discussed with regard to grain growth in
a microstructure with anisotropic boundary properties.

The applicability of the bounding box algorithm will be illustrated in Chapter 7 by
phase field simulations of grain growth in the presence of second-phase particles
with continuum field model (2.39), and in Chapter 8 by phase field simulations
of grain growth in a microstructure with anisotropic boundary properties with
model (2.44).





Chapter 6

Multigrid method

6.1 Introduction

For realistic structures, the required execution time and memory of phase
field models such as (2.27) and (2.37) impose limitations on any practical
implementation. As mentioned in Chapter 3, several algorithms and methods
have been designed and tested to address these computational challenges. In
particular, the use of an efficient solver is very important. In this chapter, we
present a nonlinear multigrid solver based on the Full Approximation Scheme
(FAS), developed for model (2.27).

In [120, 42], multi-phase field model (2.27) is presented and simulation results
are discussed in [97]. The solvers employed in these works are constructed
using explicit discretisation schemes. While explicit time steppers can be
computationally very efficient, they generally suffer a limited time step size due
to a strict stability condition. In contrast, implicit discretisation methods allow
the choice of a larger time step size, but result in systems that need to be solved
at each time step. To make sure that this extra execution time is compensated
by the possibility of a large time step size, it is necessary to look for dedicated
solvers. For phase field model (2.27) in particular, the nonlinear systems resulting
from implicit discretisation are very large.

Multigrid algorithms accelerate the convergence of standard iterative solvers.
When the components of these algorithms are carefully selected, they can scale
linearly with the number of spatial unknowns. A number of studies has been
performed on the development of multigrid methods for phase field simulations.
In [111], a nonlinear multigrid solver is implemented to solve a phase field model
for binary alloy solidification. The solver is based on FAS and follows an adaptive

101
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grid approach. In the work of [73], monotone multigrid solvers are constructed
to solve vector-valued Allen-Cahn equations, which are extensively used for phase
field modelling. In [62], an extension of the method of [73] is presented to solve the
Cahn-Hilliard equation, employed in conservative phase field models. Furthermore,
Uzawa-type multigrid algorithms [10], linear multigrid methods [21] and FAS
methods [64, 139] have been developed to solve the latter equation type. However,
in all of these studies, only a few phase field variables are considered.

In this chapter, a nonlinear multigrid solver based on FAS is proposed for two-
dimensional phase field simulations with the multi-phase field model according
to [120, 42], which is described in detail in Section 2.4. This is the first time that
a FAS solver is implemented for this type of phase field models. In Section 6.2,
we restrict the model to a simple phase field model consisting of one phase. Three
classical discretisation schemes are applied to this simple model. The resulting
systems are solved with two different types of multigrid solvers, allowing us to
introduce and explain the basic concepts of multigrid methods. Section 6.3 is
dedicated to the full multi-phase field model. After discretisation of the model,
the nonlinear multigrid solver is presented. The solver shows the desired grid
size independent properties. Simulation results are presented in Section 6.4. The
chapter ends with a conclusion in Section 6.5.

6.2 A simple phase field model

In this section, we introduce the concepts of multigrid methods. We start by
reducing the multi-phase field model to a single phase system, which is easier to
handle. Next, three different classical discretisation schemes are applied to this
model. Each of these discretisation schemes has different stability properties and
requires a different type of solution method. The first scheme does not require for
a solver, since it is explicit, whereas for each of the two other implicit schemes, a
multigrid solver is implemented. One of these solvers is a nonlinear FAS solver,
which will be applied to the full multi-phase field model in Section 6.3.

6.2.1 Model derivation

We limit multi-phase field model (2.27) to a system containing two phases φ1 and
φ2. The two phases can further be reduced to a single phase by renaming φ1 to φ,
and using equality φ2 = 1− φ1 = 1− φ, which originates from the sum constraint
in (2.18). The gradient free energy density a(φ,∇φ) defined in (2.20) now reads

a(φ,∇φ) = a(∇φ) = sσ‖∇φ‖2, (6.1)



A SIMPLE PHASE FIELD MODEL 103

where s is a normalisation constant and σ the surface energy density. For the bulk
potential, we choose the single phase version of the multi-well potential (2.22), also
called the double-well potential:

w(φ) = 9σφ2(1− φ)2. (6.2)

The governing equation for the phase field variable φ can now be derived by taking
the variational derivative of the free energy (2.19) with respect to φ:

ωǫ
∂φ

∂t
= −δF(φ)

δφ
= ∇ · ∂F(φ)

∂(∇φ)
− ∂F(φ)

∂φ
. (6.3)

Applying the derivative in equation (6.3) to the gradient free energy density (6.1)
and the double-well potential (6.2) yields a simple phase field model:

ωǫ
∂φ

∂t
= ǫ(2sσ)∇2φ− 1

ǫ
18σφ(2φ2 − 3φ + 1). (6.4)

Periodic boundary conditions are assumed.

6.2.2 Discretisation

We apply three different classical finite difference schemes to model (6.4) and
briefly comment on their stability properties.

Explicit discretisation

First-order explicit discretisation of model (6.4) on a [0, 1] × [0, 1] domain yields
system

φn+1
r,s = φn

r,s +
∆t

ω
2sσ

(
φn

r+1,s − 2φn
r,s + φn

r−1,s

(∆x)
2 +

φn
r,s+1 − 2φn

r,s + φn
r,s−1

(∆y)
2

)

− ∆t

ωǫ2
18σφn

r,s(1− φn
r,s)(1− 2φn

r,s),

r = 1, . . . , Nx, s = 1, . . . , Ny, (6.5)

with Nx = 1/∆x and Ny = 1/∆y. Second-order central differences are used to
discretise the Laplace operator. In this scheme, the values φn+1

r,s at each time
step are computed as an explicit function of the values φn

r,s at the previous
time step. Since no matrix system has to be solved, it is a computationally
attractive choice. However, because explicit discretisation schemes suffer from
a strong stability restriction on the time step size, simulations with this type of
discretisation schemes can easily take too much time.
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Semi-implicit discretisation

The stability restriction of the explicit scheme on the choice of the time step size ∆t
is mostly due to the diffusion part of the model equation, which corresponds to the
stability discussion on continuum field model (2.37) in Chapter 4. This problem
can be alleviated by using an implicit, rather than an explicit discretisation scheme.
We now apply a semi-implicit scheme that treats the diffusion part of model (6.4)
implicitly and the reaction part explicitly. This way, a larger time step size can
be used than for an explicit method, while the system to solve is linear and thus
not very complicated:

φn+1
r,s −

∆t

ω
2sσ

(
φn+1

r+1,s − 2φn+1
r,s + φn+1

r−1,s

(∆x)
2 +

φn+1
r,s+1 − 2φn+1

r,s + φn+1
r,s−1

(∆y)
2

)

= φn
r,s −

∆t

ωǫ2
18σφn

r,s(1− φn
r,s)(1− 2φn

r,s),

r = 1, . . . , Nx, s = 1, . . . , Ny. (6.6)

Implicit discretisation

Applying a first-order, fully implicit discretisation scheme to (6.4) yields system

φn+1
r,s −

∆t

ω
2sσ

(
φn+1

r+1,s − 2φn+1
r,s + φn+1

r−1,s

(∆x)
2 +

φn+1
r,s+1 − 2φn+1

r,s + φn+1
r,s−1

(∆y)
2

)

+
∆t

ωǫ2
18σφn+1

r,s (1− φn+1
r,s )(1− 2φn+1

r,s ) = φn
r,s,

r = 1, . . . , Nx, s = 1, . . . , Ny. (6.7)

Fully implicit schemes are unconditionally stable and allow a large time step size
∆t. However, the discretised model that has to be solved at each time step is now
nonlinear.

Stability properties

Table 6.1 lists the stability conditions for the explicit, the semi-implicit and
the implicit discretisation schemes. The restriction is worked out for the set of
parameter values s = 1/(6.4)2, ǫ = 1.0, ω = 1.0, σ = 1.0, and ∆x = ∆y = 1/64.
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Table 6.1: Stability conditions for the explicit, the semi-implicit and the implicit
discretisation scheme. The conditions are calculated for an example set of
parameter values s = 1/(6.4)2, ǫ = 1.0, ω = 1.0, σ = 1.0, and ∆x = ∆y = 1/64.

Scheme Stability condition Example

Explicit: ∆t <
(

8sσ
ω∆x2 + 9σ

ωǫ2

)−1
∆t < 0.00123

Semi-implicit: ∆t <
(

9σ
ωǫ2

)−1
∆t < 0.1111

Implicit: – –

The stability condition for the explicit scheme is the strongest: there is a
dependency on the square of ∆x in the inequality. In contrast, the implicit scheme
is unconditionally stable.

6.2.3 Multigrid solver

Linear multigrid solver

To solve explicit discretisation scheme (6.5), at each time step, the values φn+1
r,s are

computed as an explicit function of the values φn
r,s at the previous time step. In

contrast, discretisation schemes (6.6) and (6.7) both define a system of equations
that have to be solved simultaneously. To make sure that the execution time
required to solve these systems is compensated by the possibility of a large time
step size, it is appropriate to look for efficient solvers.

Discretisation scheme (6.6) describes a linear system of equations Aφ = b. This
system can be solved by a standard iterative solver, such as the Jacobi or the Gauss-
Seidel method. Unfortunately, the convergence rate of standard iterative solvers
typically stalls after a small number of iterations. A closer look into the behaviour
of the error during these computations reveals that the high-frequency modes of
the error are smoothed out after a few iterations already, while the low-frequency
modes remain much longer present, causing a decrease of the convergence rate
after a few iteration steps. However, the resulting smooth error can be well
approximated on a coarse grid. Multigrid methods are based on the idea that
the low-frequency error that is present on a fine grid can be removed efficiently by
certain computations on a coarser grid. Because calculations on a coarse grid are
significantly less expensive than calculations on a fine grid, the overall efficiency
of an iterative solver can be improved.

Multigrid algorithms consist of different components:
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• a smoothing operator : a solver with appropriate smoothing properties to
reduce the high-frequency modes of the error on a fine grid (e.g. Jacobi,
Gauss-Seidel),

• intergrid operators for the transfer between the coarse and the fine grids:

– a restriction operator : for the downsampling from the fine to the coarse
grid (e.g. injection, full weighting),

– a prolongation operator : to interpolate from the coarse onto the fine
grid (e.g. bilinear interpolation),

• a coarse-grid solver : the solver on the coarsest grid. Since the coarsest grid
is often small, the coarse-grid solver can be a direct solver.

An important characteristic of multigrid methods is that the convergence
properties of a multigrid solver with carefully selected components are independent
of the grid size. Moreover, the computational work of a multigrid solver often
scales with the number of unknowns. These features make multigrid solvers very
appropriate for large-scale simulations.

Figure 6.1 shows a schematic representation of a two-grid method following the
multigrid principle. One cycle of the two-grid method consists of three parts. First,
ν1 iterations of the smoothing operator are applied to system Aφ = b on the fine
grid. This way, the high frequencies of the error e = φ∗ − φ are removed, with φ∗

the exact solution of Aφ = b. After this step, also called the presmoothing step,
the error e is sufficiently smooth so that it can be well approximated on the coarse
grid. Second, a coarse-grid correction step is performed. The residual r = b−Aφ
is computed and restricted to the coarse grid with the restriction operator. On
this coarse grid, the error e is computed by solving the system Ae = r, also called
the defect equation. The computed correction e is then prolongated back to the
fine grid and used to construct the new approximation φnew = φ + e. Because
the error is smooth, interpolation should work very well and the correction of
the fine-grid solution should be effective. Finally, ν2 postsmoothing iterations are
performed to remove any high-frequency error components that were reintroduced
by the coarse-grid correction through the prolongation operator.

To solve system Ae = r on the coarse grid, the two-grid method can be applied
recursively. This way, a multigrid cycle is obtained that uses an entire grid
hierarchy and proceeds as in Algorithm 6.1. The smallest system, on the coarsest
grid of the hierarchy, can be solved by a direct solver. The parameter γ specifies the
number of multigrid cycles that is to be carried out on the current grid. Figure 6.2
shows a schematic representation of a multigrid cycle for two different values of γ,
in the case of a three-grid hierarchy and in the case of a four-grid hierarchy. For
γ = 1, the schematic representation of a multigrid cycle has the shape of the letter
V. For this reason, this type of cycle is also called a V -cycle. Similarly, a multigrid
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b

b b

Fine grid:

Coarse grid: solve
Ae = r

presmooth
Aφ = b

compute residual
r = b−Aφ

correct
φnew = φ + e

postsmooth
Aφnew = b

prolongate
correction

restrict
residual

Figure 6.1: Schematic representation of a two-grid method.

cycle with γ = 2 is called a W -cycle. Unless explicitly mentioned, we will use the
parameter value γ = 1 in this text. Also, we will apply standard coarsening to
construct the grid hierarchy. Coarser grids are thus obtained by doubling the grid
spacing in both dimensions.

Algorithm 6.1: Standard linear multigrid cycle

φf = multigridCycle(Af, bf, φf, ν1, ν2, γ);
if Af sufficiently small then

φf ←− A−1
f bf;

else

for cycle = 1 to γ do
φf ←− preSmooth(Af, bf, φf, ν1);
rf ←− bf −Afφf;
bc ←− restrict(rf);
vc ←− 0;
vc ←− multigridCycle(Ac, bc, vc, ν1, ν2, γ);
φf ←− φf + prolongate(vc);
φf ←− postSmooth(Af, bf, φf, ν2);

end

end

To solve system (6.6), we implemented a linear multigrid solver. For both
smoothing operators, the Gauss-Seidel method was chosen, and respectively
full weighting and bilinear interpolation were chosen for the restriction and the
prolongation operator. The grid hierarchy was implemented such that the number
of grid points in the x- and in the y-dimension is equal and a power of two. The
coarsest grid consists of one grid point. The system on the coarsest grid can thus
be solved by simply inverting the matrix A, which is then defined by one scalar.
At each time step, system Aφ = b on the finest grid is solved by performing
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Three-grid method: b

b b

b

bc

(a) γ = 1

b

b b b

b

bc bc

(b) γ = 2

Four-grid method:

b

b

b b

b

b

bc

(c) γ = 1

b

b

b b b

b

b b b

b

b

bc bc bc bc

(d) γ = 2

Figure 6.2: Schematic representation of one multigrid cycle for two different
numbers of grids, and for two different values of γ. The solid dots (•) represent
smoothing steps, while the open dots (◦) represent solution on the coarsest grid.
The connecting lines (\ and /) indicate the intergrid transfers.

multigrid cycles as described in Algorithm 6.1, until the convergence criterion or
a maximal number of iterations is met. The convergence criterion uses the norm
of the residual scaled by the norm of the right-hand side: convergence is reached
when ‖r‖/‖b‖ ≤ τ is obtained, with τ a tolerance value provided by the user.

To verify the properties of the implemented solver, we perform simulations on a
square domain [0, 1] × [0, 1] for the set of parameter values s = 1/(6.4)2, ǫ = 1.0,
σ = 1.0, ∆t = 0.1, and τ = 10−11, for several values of ∆x = ∆y. The smallest
tested fine grid contained 64× 64 grid points, and for each subsequent larger grid,
the grid spacing ∆x was divided by 2, each time obtaining more spatial accuracy.
The phase field variable φ is initialised with the value 1 inside a square delimited
by the points (N/5, N/5) and (4N/5, 4N/5), with N the number of grid points in
each dimension. Outside the square, φ is set to zero.

Figure 6.3 depicts the convergence factor and the convergence behaviour of the
linear multigrid solver during the tenth time step of a simulation, for different
values of ∆x. It can be seen that the convergence factor is asymptotically
independent of the grid size. Another property of an optimal multigrid solver is
that the amount of computing work scales linearly with the number of unknowns,
i.e. with the grid size. Figure 6.4 shows a logarithmic plot of the execution time
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Figure 6.3: Convergence factor and convergence behaviour of the linear multigrid
solver during the tenth time step for different values of ∆x on a [0, 1] × [0, 1]
domain. The set of parameter values s = 1/(6.4)2, ǫ = 1.0, σ = 1.0, ∆t = 0.1, and
τ = 10−11 is applied.

Grid size Execution time
64× 64 3.9000e-01 s

128× 128 1.4300e+00 s
256× 256 7.6900e+00 s
512× 521 3.5420e+01 s

1024× 1024 1.4910e+02 s
2048× 2048 6.1038e+02 s
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Figure 6.4: Execution time required by the linear multigrid solver to compute 100
time steps with the parameter set s = 1/(6.4)2, ǫ = 1.0, σ = 1.0, ∆t = 0.1, and
τ = 10−11, as a function of the grid size.

needed to compute the first 100 time steps of a simulation as a function of the
grid size. It can be seen that the required execution time scales linearly with
the number of unknowns. The table in Fig. 6.4 lists the execution times for the
different grid sizes.
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Nonlinear multigrid solver

Implicit discretisation scheme (6.7) defines a nonlinear system A(φ) = b, which
cannot be solved by the linear multigrid solver. To solve this system with a
multigrid method, there exist two types of approaches. In the first approach, a
global linearisation method, e.g. Newton’s method, is applied to the nonlinear
problem. The resulting linearised system can be solved by a standard multigrid
solver. In the second type of approach, a multigrid method is directly applied
to the nonlinear problem. The two main multigrid components, namely the error
smoothing and the coarse-grid correction are now used to solve the nonlinear
problem itself. This leads to the so-called Full Approximation Scheme (FAS),
which is the approach we will follow. An advantage of FAS compared to the first
approach are the memory requirements: it is not necessary to compute and store
the fine-grid Jacobian, as is necessary in Newton-based solution methods.

Algorithm 6.2: Full Approximation Scheme multigrid cycle

φf = FASMultigridCycle(Af, bf, φf, ν1, ν2, γ);
if Af sufficiently small then

φf ←− A−1
f bf;

else

for cycle = 1 to γ do
φf ←− preSmooth(Af, bf, φf, ν1);
rf ←− bf −Af(φf);
rc ←− restrictOne(rf);
φc ←− restrictTwo(φf);
bc ←− Ac(φc) + rc;
uc ←− FASMultigridCycle(Ac, bc, φc, ν1, ν2, γ);
vc ←− uc − φc;
φf ←− φf + prolongate(vc);
φf ←− postSmooth(Af, bf, φf, ν2);

end

end

Similar to the linear case, the nonlinear FAS multigrid method can be recursively
defined on the basis of a two-grid method. The fundamental idea of nonlinear
multigrid is the same as in the linear case. However, on the coarse grid, we do
not work with the errors, but with full approximations to the discrete solution.
Algorithm 6.2 shows the algorithmic description of one FAS cycle. No global
linearisation is needed in the FAS multigrid process, except on the coarsest grid.
On the other grids, first, the error of the fine-grid approximation φf is smoothed
by ν1 iterations of the nonlinear presmoother. Second, in contrast to the linear
case, not only the residual rf is transferred to the coarse grid, but also the relaxed
approximation φf itself. Two restriction operators are applied. The first restriction
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operator acts on the residual, while the second transfers the full approximation to
the coarse grid. Third, the coarse-grid error is computed. The nonlinear equivalent
of the defect equation, which is given by

Ac(φc + vc)−Acφc = rc, (6.8)

or

Ac(uc) = Ac(φc + vc) = rc + Acφc, (6.9)

is now solved for the unknown uc. Since only the error is smoothed by the
relaxation process, it is only the error that can be well approximated on the coarser
grids. Therefore, only the correction vc is transferred back to the fine grid, as in
the linear case, and not the full approximation uc. Finally, ν2 iteration steps of
the nonlinear postsmoother are applied.

To solve equations (6.7), we have implemented a nonlinear FAS multigrid method.
In this implementation, the restriction operator of the residual is full weighting,
while the restriction operator for the transfer of the current approximation φf to
the coarse grid was selected to be injection, which is a common choice. For the
prolongator, bilinear interpolation is chosen. The same grid hierarchy as for the
linear multigrid solver is used. Both the presmoothing and the postsmoothing
procedure are now nonlinear relaxation procedures, with suitable error smoothing
properties. In this work, the Gauss-Seidel method using local linearisation is
employed. We can rewrite nonlinear system (6.7) as

Ar,s(φ1,1, . . . , φr,s, . . . , φNx,Ny
) = br,s,

r = 1, . . . , Nx, s = 1, . . . , Ny. (6.10)

The nonlinear Gauss-Seidel method iterates over system (6.10) and solves every
((s− 1)Nx + r)th equation in turn for the unknown φr,s. The (m + 1)th iteration
then reads

Ar,s(φm+1
1,1 , . . . , φm+1

r−1,s, φm+1
r,s , φm

r+1,s, . . . , φm
Nx,Ny

) = br,s,

r = 1, . . . , Nx, s = 1, . . . , Ny, (6.11)

and is solved by Newton’s method.

The properties of the implemented FAS solver are now verified for the same set
of parameter values as the linear multigrid solver, but with a larger time step
size, namely ∆t = 0.1. The same hierarchy of grids is tested, with the same initial
states. Figure 6.5 depicts the convergence factor and the convergence behaviour of
the FAS solver during the tenth time step, for different spatial accuracies. Again,
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Figure 6.5: Convergence factor and convergence behaviour of the FAS solver during
the tenth time step for different values of ∆x = ∆y on a [0, 1]× [0, 1] domain. The
set of parameter values s = 1/(6.4)2, ǫ = 1.0, σ = 1.0, ∆t = 0.1, and τ = 10−11 is
applied.

Grid size Execution time
64× 64 1.2000e-01 s

128× 128 4.3000e-01 s
256× 256 1.8900e+00 s
512× 521 8.0200e+00 s

1024× 1024 3.2500e+01 s
2048× 2048 1.2969e+02 s
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Figure 6.6: Execution time required by the FAS solver to compute 100 time steps
with the parameter set s = 1/(6.4)2, ǫ = 1.0, σ = 1.0, ∆t = 0.1, and τ = 10−11,
as a function of the grid size.

the convergence factor proves to be independent of the grid size. Figure 6.4 shows
a logarithmic plot of the execution time needed to compute 100 time steps. The
execution times for the different grid sizes are listed. As for the linear multigrid
solver, it can be seen that the execution time scales linearly with the grid size.
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6.2.4 Comparison

Next, we compare the implementation of both multigrid solvers with the explicit
solver for the parameter set s = 1/(6.4)2, ǫ = 1.0, σ = 1.0, and τ = 10−11, on
a 512 × 512 grid with ∆x = ∆y = 1/512. For the explicit solver, a time step
size of ∆t = 0.00001 is applied, while for the linear and the nonlinear solver,
respectively ∆t = 0.1 and ∆t = 1.0 are applied. This is in agreement with the
stability conditions of Table 6.1. Table 6.2 shows the simulation time required by
the three solvers on a 2.4 GHz Intel Core 2 Duo Processor (with 1 GB RAM) to
run until t = 10. Even though one time step with the explicit solver is much faster
than one time step with the multigrid solvers, the possibility of a larger time step
size due to the different stability characteristics largely compensates this. The
nonlinear FAS solver proves to be the fastest.

Table 6.2: Comparison of the different solvers for the explicit, the semi-implicit,
and the implicit discretisation scheme. All three solvers were run for the parameter
set s = 1/(6.4)2, ǫ = 1.0, σ = 1.0, and τ = 10−11, on a 512 × 512 grid with
∆x = ∆y = 1/512, each for a different time step size ∆t.

Solver ∆t # time steps Execution time Time/time step
Explicit 0.00001 1000000 28512.00 s 0.03 s

Semi-implicit 0.1 100 35.31 s 0.35 s
Implicit 1.0 10 8.06 s 0.81 s

All three discretisation schemes are of first-order accuracy. The explicit scheme
is straightforward to implement, but because of the strong stability condition
and thus severe restriction on the size of the time step, simulations with this
discretisation scheme take too much time. Simulations with the nonlinear solver
of the implicit scheme are computationally intensive. Although this scheme is
unconditionally stable, its accuracy is still only first-order. Therefore, depending
on the desired accuracy, the linear or the nonlinear multigrid solver is a more
appropriate choice for model (6.4).

6.3 Multi-phase field model

In this section, we describe a nonlinear multigrid solver based on the FAS scheme
for two-dimensional phase field simulations with multi-phase field model (2.27) [132].
The model is discretised with a semi-implicit discretisation scheme in Section 6.3.1.
In Section 6.3.2, the nonlinear multigrid solver is constructed. The multigrid
components are described and the properties of the solver are tested and discussed.
The solver has grid size independent properties and scales linearly with the number
of spatial unknowns. No comparison is made with other classical iterative solvers.
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In Section 6.4, simulation results for two types of applications illustrate the
operation of the solver.

6.3.1 Discretisation

To obtain statistically relevant results from a grain growth simulation, the use of
a large domain with a large number of grains is required. Since this requirement
makes model (2.27) memory intensive, it is appropriate to employ a two-step
scheme for the discretisation in time, rather than a multi-step scheme, where the
values of all phase field variables have to be retained for several time steps or stages
simultaneously. Central differences are used for the discretisation of the first and
second-order spatial derivatives. No artificial oscillations were observed that would
have required the use of one-sided differences for the first-order derivative term.
To avoid spurious oscillations near the sharp grain boundaries, we have decided
not to use the Crank-Nicolson method, which is not stiffly stable.

Model equations (2.27) are discretised with a first-order semi-implicit discretisation
scheme that treats the gradient energy part implicitly and the potential part
explicitly:

φn+1
i − φn

i

∆t
=

1

ω

(
∇ · ∂a

∂(∇φi)
− ∂a

∂φi

)n+1

− 1

ωǫ2

(
∂w

∂φi

)n

− λn+1, (6.12a)

i = 1, . . . , p,

p∑

i=1

φn+1
i = 1. (6.12b)

This way, all terms involving spatial derivatives are treated implicitly and the
stability condition on the time step size proved to be independent of the spatial
grid size. We also experimented with fully implicit schemes. However, this led to
a convergence deterioration of the Newton solver. After some rearrangements, the
following numerical scheme is obtained:

φn+1
i − ∆t

ω

(
∇ · ∂a

∂(∇φi)
− ∂a

∂φi

)n+1

+ λn+1 = φn
i −

∆t

ωǫ2

(
∂w

∂φi

)n

,

(6.13a)

i = 1, . . . , p,

p∑

i=1

φn+1
i = 1. (6.13b)
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The spatial discretisation of the gradient free energy component (2.30) is given by

(
∇ · ∂a

∂(∇φi)
− ∂a

∂φi

)

rs

≃ −4s
∑

j 6=i

σij

{
φirs

(
(∆0xφjrs

)2

(∆x)
2 +

(∆0yφjrs
)2

(∆y)
2

)

−φjrs

(
∆0xφirs

∆0xφjrs

(∆x)
2 +

∆0yφirs
∆0yφjrs

(∆y)
2

)}

− 2s
∑

j 6=i

σij

{
φirs

φjrs

(
φjr+1s

− 2φjrs
+ φjr−1s

(∆x)
2 +

φjrs+1
− 2φjrs

+ φjrs−1

(∆y)
2

)

−φ2
jrs

(
φir+1s

− 2φirs
+ φir−1s

(∆x)
2 +

φirs+1
− 2φirs

+ φirs−1

(∆y)
2

)}
,

i = 1, . . . , p, r = 1, . . . , Nx, s = 1, . . . , Ny, (6.14)

with ∆0xφirs
= (φir+1s

− φir−1s
)/2 and ∆0yφirs

= (φirs+1
− φirs−1

)/2. As for the
simple phase field model, periodic boundary conditions are assumed.

6.3.2 Nonlinear multigrid solver

Spatial discretisation of scheme (6.13) yields a nonlinear system of equations that
has to be solved at each time step. To solve this nonlinear system, a multigrid
solver is implemented based on the Full Approximation Scheme (FAS) [16], which
was described in some detail in Section 6.2.3. For the intergrid operators, full
weighting is chosen as the restriction operator for the residual, injection for the
restriction of the solution, and bilinear interpolation as the prolongation operator
for both the solution and the residual. The convergence criterion of the multigrid
cycle uses the norm of the residual scaled by the norm of the right-hand side. The
smoothers are implemented using the collective Gauss-Seidel method. This method
sweeps over all grid points in a lexicographic order, solving the spatially discretised
equations (6.13) for all phase field variables and the function λ simultaneously.
Therefore, at each grid point, a small nonlinear system of p + 1 equations in p + 1
unknowns has to be solved. For the solution of this nonlinear system, an inner
Newton iteration is employed. The equations at a single grid point can be written
in the form

N(φn+1
λ ) = B, (6.15)

where φλ is the vector-valued order parameter φ extended with the unknown λ.
The Newton iteration can now be formulated as

φk+1
λ = φk

λ + J−1
N

(
B −N(φk

λ)
)

, k = 0, 1, 2, . . . (6.16)
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with JN the Jacobian of the nonlinear operator N . Remark that B remains
constant throughout the Newton iterations: it is the explicit part of the
discretisation scheme. Iterations (6.16) are performed until the norm of the
residual of (6.15), scaled by the norm of the right-hand side B, falls under
the desired accuracy. The dense linear system involved in equation (6.16) is
solved with a direct algorithm, namely Gaussian elimination with partial pivoting.
This type of solver scales with the cube of the number of unknowns, which is
here O((p + 1)3) ≃ O(p3). For large, realistic grain growth simulations, ideally,
thousands of phase field variables are included and thus p ≫ 1000. However, at
every grid point, only a few phase field variables are active [45, 65, 129, 133] and
have to be taken into account. Therefore, with an adaptation of the multigrid
solver to the tracking of the active phase field variables, the use of a direct solver
should not be problematic. For the coarse-grid discretisation, the direct coarse-
grid analogue of the fine-grid operator is implemented. The associated system is
solved with the same direct solver as in the smoothers.

Once the smoother is defined, the optimal cycle type and number of presmoothing
and postsmoothing steps can be determined. Table 6.3 shows the convergence
rate, the number of cycles and the execution time, averaged over 10 time steps, for
different multigrid cycle types on a [0, 1]× [0, 1] domain with p = 3, s = 1/(6.4)2,
∆x = ∆y = 1/256, and ∆t = 0.1. The other parameter values are chosen ω = 1,
ǫ = 1, and σij = 1.0, for all i, j = 1, . . . , p with i 6= j. Unless mentioned otherwise,
the latter parameter values are assumed for all following simulation tests. Also,
each time, a tolerance of τ = 10−8 is enforced. The structure is initialised with
a sharp interface Voronoi tessellation: the domain is decomposed into p different
cells and each cell is assigned to a different phase field variable φi. The cycle type
is written as V (ν1, ν2) or W (ν1, ν2), with ν1 and ν2 respectively the number of
presmoothing and postsmoothing iterations. Overall, the V (1, 1)-cycle turned out
to be the most efficient.

Table 6.3: Convergence rate, number of cycles and execution time for different
multigrid cycles averaged over 10 time steps for p = 3, s = 1/(6.4)2, ∆t = 0.1, and
∆x = ∆y = 1/256.

Cycle type Convergence rate Number of cycles Time
V(1,1) 0.2067 11.4 3.2490 s
V(2,2) 0.0869 7.4 4.0150 s
W(1,1) 0.0389 6.0 4.5190 s
W(2,2) 0.0031 3.1 4.4810 s
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6.3.3 Convergence properties

We will now verify the convergence properties of the multigrid solver as a function
of the grid spacing ∆x = ∆y, and as a function of the number of phase field
variables p. Table 6.4 shows the execution time and the convergence factor
averaged over ten time steps of simulations on a [0, 1] × [0, 1] domain with
∆x = 1/64, 1/128, 1/256 and 1/512, for s = 1/(6.4)2, ∆t = 0.1 and p = 10. It can
be seen that the convergence properties of the multigrid solver are independent
of ∆x. The execution time scales linearly with the number of spatial unknowns.
This is confirmed by both Fig. 6.7 and Fig. 6.8. In Fig. 6.7, the relative execution
time per time step is plotted during the first ten time steps of the simulations.
The execution times of the simulation for ∆x = 1/64 are chosen as a reference.
The sharp interfaces of the initial Voronoi tessellation cause a large initial residual,
which increases for larger systems. Therefore, the initial time step takes relatively
more execution time for larger systems. Figure 6.8(a) shows the behaviour of the
residual norms scaled by the norm of the right-hand side during the first time step,
while Fig. 6.8(b) shows the behaviour during the tenth time step. It can be seen
that the multigrid convergence is grid size independent. The larger initial residual
for smaller grid spacings is reflected in the graph of Fig. 6.8(a).

Table 6.4: Average execution time and convergence factor for different numbers of
spatial unknowns during the first ten time steps of simulations on a [0, 1] × [0, 1]
domain with ∆x = ∆y = 1/64, 1/128, 1/256 and 1/512, for s = 1/(6.4)2, ∆t = 0.1
and p = 10. V (1, 1)-cycles are applied.

∆x System size Execution time Convergence factor
1/64 10× 64× 64 2.2250 s 0.3188
1/128 10× 128× 128 9.5110 s 0.3318
1/256 10× 256× 256 38.5610 s 0.3366
1/512 10× 512× 512 153.3250 s 0.3382

Next, we study the convergence properties and the execution time as a function of
p. In Table 6.5, the execution time is listed for different values of p, averaged over
the first ten time steps of simulations on a [0, 1]× [0, 1] domain, with s = 1/(6.4)2,
∆x = ∆y = 1/256 and ∆t = 0.1. It can be seen that the computation work
increases slightly faster than O(p2). Note that the smoothers include a direct
solver which scales as O((p + 1)3) ≃ O(p3); the execution times listed in Table 6.5
are thus better than expected, probably due to the relatively small number of
phase field variables of p used in our experiments. Figure 6.9 shows the relative
execution time per time step for the first ten time steps of these simulations. Here,
the execution time for p = 5 is taken as a point of reference. Again, the first time
step takes more processing time as the initial sharp interfaces cause a larger initial
residual. The increase in execution time at the tenth time step for p = 20 is related
to the disappearance of a smaller grain. Figure 6.10 illustrates the evolution of
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Figure 6.7: Execution time per time step during the first ten time steps of
simulations on a [0, 1] × [0, 1] domain with ∆x = ∆y = 1/64, 1/128, 1/256, and
1/512, for s = 1/(6.4)2, ∆t = 0.1 and p = 10. V (1, 1)-cycles are applied.
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(a) Convergence during first time step
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(b) Convergence during tenth time step

Figure 6.8: Convergence behaviour during (a) the first and (b) the tenth time step
of simulations on a [0, 1]× [0, 1] domain with ∆x = ∆y = 1/128, 1/256 and 1/512,
for s = 1/(6.4)2, ∆t = 0.1 and p = 10. For larger systems, more multigrid cycles
are required during the first time step to reduce the larger initial scaled residual.
V (1, 1)-cycles are applied.

the scaled residual norms during the first and the tenth time step. It can be seen
that convergence deteriorates as p increases. The similar convergence behaviour
for p = 10 and p = 15 in Fig. 6.10(b) can be attributed to coincidence.

It should be noted that the initial extra computing work is less significant for
smaller values of ∆t. Therefore, a solution to the problem of the initial work is to
employ a smaller time step size at the start of a simulation. Afterwards, a larger
time step size can be used. Otherwise, it would be impossible to start simulations
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Table 6.5: Average execution time and convergence factor for different numbers of
phase field variables p during the first ten time steps of simulations on a [0, 1]×[0, 1]
domain, with s = 1/(6.4)2, ∆x = ∆y = 1/256 and ∆t = 0.1. V (1, 1)-cycles are
applied.

p System size Execution time Convergence factor
5 5× 256× 256 8.0620 s 0.2497
10 10× 256× 256 38.5610 s 0.3366
15 15× 256× 256 89.0100 s 0.3473
20 20× 256× 256 193.3280 s 0.4342
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Figure 6.9: Execution time per time step during the first ten time steps of
simulations on a [0, 1]× [0, 1] domain for p = 5, 10, 15, and 20, with s = 1/(6.4)2,
∆x = ∆y = 1/256 and ∆t = 0.1. V (1, 1)-cycles are applied.

for very large systems because the initial iterations would take too much time.
A possible line of thought is to initialise the structure with smooth interfaces as
opposed to a decomposition with sharp interfaces.

6.3.4 Comparison with explicit time stepper

In this section, we will briefly compare the nonlinear multigrid solver with an
explicit time stepper. By using an explicit scheme instead of a semi-implicit or
a fully implicit scheme, severe restrictions are made with regard to the time step
size. However, the systems that need to be solved when using an implicit scheme
are larger and more complex, which costs more execution time.

The employed explicit discretisation scheme is the forward Euler method. After
applying this scheme to model equations (2.27), the discretised system can be
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(a) Convergence during first time step
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(b) Convergence during tenth time step

Figure 6.10: Convergence behaviour during (a) the first and (b) the tenth time
step of simulations on a [0, 1] × [0, 1] domain for p = 5, 10, 15, and 20, with
s = 1/(6.4)2, ∆x = ∆y = 1/256 and ∆t = 0.1. V (1, 1)-cycles are applied.

written as:

φn+1
i = φn

i +
∆t

ω

(
∇ · ∂a

∂(∇φi)
− ∂a

∂φi

)n

− ∆t

ωǫ2

(
∂w

∂φi

)n

− λn+1,

(6.17a)

i = 1, . . . , p,

p∑

i=1

φn+1
i = 1, (6.17b)

with the spatial discretisation of the gradient free energy component (2.30)
performed as in (6.14). At every time step, system (6.17) has to be solved for
the unknowns φn+1

1 , . . . , φn+1
p and λn+1. The system matrix is however constant

throughout a simulation and its analytically computed inverse is included as such
in the solver. The solution of the system is thus reduced to a matrix-vector
product.

Table 6.6 contains the execution time required for respectively the explicit and the
semi-implicit time stepper to reach the simulation time point t = 1.0 as a function
of the chosen time step size. For the chosen parameters ∆x = ∆y = 1/256 and
s = 1/(25.6)2, time step size ∆t = 0.001 is close to the numerical stability limit for
the explicit scheme, while for the semi-implicit scheme, ∆t = 1.0 is still a stable
choice. Simulations show that the semi-implicit solver is more than five times as
fast for this particular parameter set. Furthermore, it can be remarked that the
stability constraint for the explicit scheme is strongly dependent on the grid size
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∆x, while the grid size dependent part is treated implicitly by the semi-implicit
scheme included in the multigrid solver.

Table 6.6: Execution time for the explicit and the semi-implicit solver to reach
t = 1.0, on a [0, 1]× [0, 1] domain, with ∆x = ∆y = 1/256 and s = 1/(25.6)2, for
different time step sizes.

Time step ∆t Explicit solver Semi-implicit solver
0.001 474.35 s 6466.10 s
0.01 – 1512.90 s
0.1 – 279.78 s
1.0 – 92.16 s

At the beginning of a grain growth simulation, when the microstructure consists of
a myriad of small grains, it is important to capture the correct growth dynamics.
Therefore, the choice of a small time step size ∆t, in combination with the explicit
solver, is appropriate. Later in the simulation, when the grain growth dynamics
are coarser, a large time step size is more advantageous, which is enabled by the
use of the multigrid solver for the semi-implicit discretisation scheme.

6.4 Applications

6.4.1 Evolution of a circular grain in a matrix

For curvature driven growth [54], the evolution of the area of a circular grain of
phase α in a matrix of phase β, illustrated in Fig. 6.11(a), is known to satisfy

Aα(t) = Aα,0 − 2πµσαβt, (6.18)

where Aα,0 is the initial grain area, for t = 0. This relation corresponds to growth
law (2.2). We test the nonlinear multigrid solver by performing simulations of the
evolution of a single grain on a [0, 1]× [0, 1] domain with p = 2, ω = 1/µ = 1, ǫ = 1,
σαβ = 1, ∆x = ∆y = 1/256, s = 1/(25.6)2 and different time step sizes ∆t = 0.1,
0.05 and 0.025. To study the evolution of the grain, the grain area is computed as
the sum of φα(∆x)2/s over all grid points. Figure 6.11(b) shows the shrinkage of
the grain area during the simulations for the different values of ∆t. It can be seen
that the results of the simulations correspond well to analytical relation (6.18).
For smaller ∆t, the simulations results match the analytical relation better.
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Figure 6.11: (a) Circular grain of phase α within a matrix of phase β. (b)
Computed evolution of the area of a circular shaped grain in a matrix in a
simulation on a [0, 1] × [0, 1] domain with p = 2, ω = 1/µ = 1, ǫ = 1,
∆x = ∆y = 1/256, and s = 1/(25.6)2, with different time step sizes ∆t = 0.1,
0.05 and 0.025, compared to analytical relation (6.18).

6.4.2 Grain growth

Another application of the multigrid solver is the evolution of a polycrystalline
microstructure. A grain growth simulation is performed on a [0, 1]× [0, 1] domain,
with p = 15, ∆x = ∆y = 1/256, s = 1/(25.6)2, ∆t = 0.1, and isotropic surface
energies σij = 1.0. To initialise the structure, every grid point is assigned to a
unique phase field variable φi, according to a uniform distribution. The domain
is thus decomposed into a number of grains that equals the grid size. To visualise
the grain growth, we employ a sharp interface representation, where every grid
point is assigned to the phase field variable with the highest value at that point.
Figures 6.12(a), 6.12(b) and 6.12(c) show the microstructure at time points t = 2,
t = 20 and t = 160 respectively.

A second grain growth simulation is performed on a [0, 1] × [0, 1] domain, with
∆x = ∆y = 1/256, s = 1/(25.6)2 and p = 36. Simulation experiments described
in [35] indicate that it is possible to use a finite, but large number of phase field
variables to study grain growth kinetics. In particular, for a short amount of grain
growth simulation, it is found that there is no distinguishable difference between
grain size distributions obtained from simulations with p ≥ 36. A small time step
size ∆t = 0.004 is chosen to capture all the dynamics of the start of the grain
growth. The simulation shows a convergence factor of about 0.09 during these
first time steps. Figure 6.13(a) shows the microstructure at time point t = 0.8:
the initial grains have already grown into small grains. During grain growth, the
smaller grains disappear, while the larger grains grow. This is already clear at
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(a) t = 2 (b) t = 20 (c) t = 160

Figure 6.12: Results of a simulation on a [0, 1] × [0, 1] domain, with p = 15,
∆x = ∆y = 1/256, s = 1/(25.6)2, and isotropic σij = 1.0: (a) Microstructure at
t = 2: several grains are coalescing. (b) Microstructure at t = 20: some larger
grains result from the grain coalescence. (c) Microstructure at t = 160: only a few
grains remain.

(a) t = 0.8 (b) t = 2.4 (c) t = 12.4

Figure 6.13: Results of a simulation on a [0, 1] × [0, 1] domain, with p = 36,
∆x = ∆y = 1/256, s = 1/(25.6)2 and isotropic σij = 1.0 at (a) t = 0.8, (b) t = 2.4,
and (c) t = 12.4.

t = 2.4, depicted in Fig. 6.13(b), where many grains have disappeared in favour of
larger grains. From t = 2.4, a larger time step size is chosen: ∆t = 0.1. For this
time step size, the convergence factor increases to about 0.53.
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6.5 Conclusion

In this chapter, the concepts of multigrid methods were introduced. We described
a standard linear multigrid solver, as well as a nonlinear FAS (Full Approximation
Scheme) multigrid solver. Three different time discretisation schemes were applied
to a simple phase field model, which was obtained by reducing multi-phase field
model (2.27) for two phase field variables. It was illustrated how the multigrid
solver possesses convergence properties that are independent of the spatial grid
resolution and how the execution time of such a solver can scale linearly with the
number of unknowns.

In Section 6.3, a nonlinear multigrid solver was presented to solve the full multi-
phase field model. The goal of the solver is to perform grain growth simulations
in two dimensions in an efficient way. Until now, only explicit discretisation
schemes have been used to solve this particular highly complex and nonlinear
phase field model (see e.g. [99]). In Section 6.3.1, a semi-implicit discretisation
scheme is applied that treats the gradient energy part of the model implicitly and
the potential part explicitly. It is chosen to be a two-step scheme because of the
memory complexity of the model.

To solve the equations describing the discretised system, a nonlinear multigrid
solver based on the FAS scheme is constructed. Experiments with this solver
show that the convergence rates are independent of the grid size. However,
the convergence properties of the multigrid solver depend on the number of
involved phase field variables: for larger numbers, the convergence deteriorates. In
spite of its optimal convergence properties, it remains an open question whether
the presented multigrid solver is faster than classical iterative solvers. The
implementation of a solver combining a Newton iteration with an iterative solver
should resolve this issue.

To validate the implementation of the FAS solver, the results of specific test cases
are studied. In the first application, the simulation results for the shrinkage rate
of a circular grain within a matrix phase shows very good agreement with the
existing analytical relation. In the second application, grain growth simulations
are performed.



Chapter 7

Pinning effect of second-phase
particles on grain growth

7.1 Introduction

The addition of alloying elements, which leads to the formation of finely dispersed
second-phase particles, is a common technique to control the grain size of a
microstructure. The particles pin the grain boundaries and when a limiting grain
size is reached, grain growth stops. The limiting grain size depends on the number,
size, shape and spatial distribution of the particles.

In [86, 87], continuum field model (2.39) is presented for simulating grain growth
in materials containing small incoherent second-phase particles that are constant
in time. The interaction between a single particle and a grain boundary is
investigated and the results of two-dimensional simulations of the pinning effect
of the particles on grain growth are discussed. Simulations for three-dimensional
systems [83, 122, 88] show that the pinning effect of second-phase particles is
significantly weaker than in two-dimensional systems. Therefore, it is important
that predictive computer models reflect the three-dimensional nature of Zener
pinning (see also the discussion in Section 2.2.2). Unfortunately, the computational
requirements of three-dimensional phase field simulations are memory consuming
and computationally intensive. In this chapter, we illustrate the applicability of the
bounding box algorithm presented in Chapter 5. With the bounding box algorithm,
three-dimensional simulation results can be obtained for relevant comparison with
experimental data without excessive computational requirements.

To gain more insight in the dependence of the pinning force of a particle

125
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distribution on the shape of the particles, we perform three-dimensional phase field
simulations of grain growth in systems with spheroid particles, for different aspect
ratios and volume fractions of the particles. The parallelised implementation of
the bounding box algorithm of Section 5.5 is applied, which makes it feasible to
run three-dimensional simulations with a large amount of grains.

In Section 7.2, the set-up of the simulation experiments is described. Section 7.3
discusses the simulation results. Depending on the applied volume fraction and
the shape of the second-phase particles, their pinning effect on grain growth has
a different strength. Nevertheless, the final grain size has a volume fraction
dependence of the form 1/f0.93

V , following theoretical predictions assuming random
intersections between grain boundaries and particles. In Section 7.4, a generalised
Zener relation with a prefactor depending on the aspect ratio is proposed. Our
results are compared with the results of other studies in Section 7.5. The
conclusions of this chapter are formulated in Section 7.6.

7.2 Simulation parameters

7.2.1 Phase field model, discretisation and set-up

To simulate grain growth in the presence of second-phase particles, continuum field
model (2.39) is used. This model was presented and tested in [86, 87] for grain
growth simulation in materials containing small incoherent second-phase particles
that are constant in time. The model is discretised with second-order central
differences for the spatial derivative and the SBDF1 scheme is applied to the time
derivative, as in system (3.12).

All simulations are performed on an equispaced grid with dimensions 256 ×
256 × 256, and discretisation spacings ∆t = 0.2 and ∆x = 1. Since we are
mostly interested in the final grain size where grain growth is arrested, which
is independent of the grain boundary energy and mobility as can be inferred from
Zener relation (2.4), the exact values of the model parameters L and κ are not
important. Therefore, we take similar values as in previous studies [88, 129],
namely κ = 0.5, L = 1, and m = 1. The choice of these parameters values is
justified in [87] and is based on considerations of both accuracy and efficiency.
Periodic boundary conditions are applied, as in [85].

The simulations start from microstructures initialised with Algorithm 5.2. The
microstructures are constructed for 25000 phase field variables. After 1000 time
steps, about 1000 of the 25000 possible orientations remain. The parallelised
implementation of the bounding box algorithm of Section 5.5 is applied and run
on 3 nodes of a computer cluster, which are interconnected with an Infiniband
network and each contain 4 processors, making a total of 12 processors.
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7.2.2 Shape, size and volume fraction of the particles

The purpose of the simulations in this chapter is to study the effect of particle shape
on Zener pinning. Simulations are run for spheroid particles (see Section 5.2.3)
with different aspect ratios ra and for different volume fractions fV = 5%, 6%, 8%,
10%, 11%, and 12%. More specifically, three different aspect ratios are applied:
ra = 1, ra = 2, and ra = 3. Since in these three cases the inequality c ≥ a holds,
we rename the axis radius c to l, the long axis radius, and the axis radius a to s,
the short axis radius. The volume of the three particle shapes is intended to be
approximately the same. The formula for the volume VS of a spheroid is

VS =
4

3
πls2. (7.1)

In combination with the constraint that l ≥ s ≥ 3 grid points (g.p.) because of the
finite width of the boundaries in the simulations [88], this volume formula yields
spheroids with the following dimensions:

• for ra = 1: l = s = 4.3 g.p.,

• for ra = 2: l = 6.8 g.p. and s = 3.4 g.p.,

• for ra = 3: l = 9 g.p. and s = 3 g.p.

It is however impossible to work with fractions of grid points to represent the
particles. After discretisation, the radii of the spheroid particles become:

• for ra = 1: l = s = 4 g.p.,

• for ra = 2: l = 7 g.p. and s = 3 g.p.,

• for ra = 3: l = 9 g.p. and s = 3 g.p.

The volume of the spheroid particles with ra = 3 thus ends up to be slightly larger
than the volume of the other two particle types. Figure 7.1 illustrates the three
particle shapes after discretisation.

In this work, a particle is allowed to be oriented with its long axis either along the
x-, the y-, or the z-axis of the system. The orientations of the particles within the
same microstructure are approximately equally distributed over the three possible
axes. If the particles were allowed to be oriented along every possible direction,
they would differ in volume due to additional discretisation effects. We assume
that the orientation distribution along the three axes is a reasonable approximation
to a uniform orientation distribution.

For every parameter combination of aspect ratio and volume fraction, three
simulation runs are executed, over which all studied characteristics are averaged.
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(a) ra = 1 (b) ra = 2 (c) ra = 3

Figure 7.1: Three different spheroid shapes of the second-phase particles after
discretisation, with approximately equal volume. They are characterised by the
ratio ra between the long axis radius l and the short axis radius s.

The initial grain structure and particle distribution is entirely different for every
simulation run. There is however a correspondence between the simulation runs
for the same aspect ratio or for equal volume fraction: the particles are located
at similar locations, which allows one to compare the resulting microstructures
visually.

Since particle clusters also occur in real materials, no effort was made to separate
the second-phase particles. Some particles may therefore overlap. As in [4], we
assume that the influence of this small amount of particle clusters on the pinning
effect is small.

7.3 Effect of spheroid particles

7.3.1 Growth kinetics

Figure 7.2 depicts the time evolution of the mean grain radius for different volume
fractions fV, for ra = 1, ra = 2, and ra = 3 separately. The mean grain radius 〈R〉
is computed as the radius of a sphere with a volume equivalent to the mean grain
size of the microstructure. For each of the three particle types, the pinning effect
proves to be stronger for larger volume fractions: grain growth stops earlier and
the limiting grain size is smaller. This is in agreement with results from earlier
simulation studies for spherical particles [122, 83] and experimental data.

In Fig. 7.3, the time evolution of the mean grain radius is shown for the different
aspect ratios ra, for each studied volume fraction fV separately. Except for the
parameter combination of fV = 6% and ra = 3, for every volume fraction grain
growth stops earlier and at a smaller mean grain size for increasing aspect ratio.
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(c) ra = 3

Figure 7.2: Time evolution of the mean grain radius 〈R〉 for different volume
fractions fV, for each studied aspect ratio ra separately.

This result is qualitatively in agreement with the two-dimensional phase field
simulations of [22].

In one simulation run, for the parameter combination of fV = 5% and ra =
1, grain growth was not arrested by the particles and the final microstructure
only contained one grain, while in another run, only nine grains were present in
the microstructure at grain growth stagnation. To preserve a smooth graph on
Fig. 7.2(a) and Fig. 7.3(a), we removed the corresponding data points. Otherwise,
the graphs in question would go up, rather than stabilise at a limiting value.
According to [18], abnormal grain growth is possible in the presence of a stable
particle distribution for small grain sizes. Another reason, more plausible for the
present case, might be the statistical nature of the results in combination with the
finite dimensions and periodic boundary conditions assumed in the simulations.
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(a) fV = 5%
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(b) fV = 6%
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Figure 7.3: Time evolution of the mean grain radius 〈R〉 for different aspect ratios
ra, for each studied volume fraction fV separately.
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Table 7.1: Number of grains present in the microstructures when grain growth is
stopped, for every tested parameter combination. Note that the limiting number
of grains for the parameter combination fV = 5%, ra = 1 originates from only one
simulation run, instead of three for the other parameter combinations.

fV = 5% fV = 6% fV = 8% fV = 10% fV = 11% fV = 12%
ra = 1 27 30 62 110 170 250
ra = 2 30 41 65 159 212 313
ra = 3 36 38 95 198 255 330

The latter reason also explains why in another simulation run, for the parameter
combination of fV = 6% and ra = 3, grain growth stopped later than expected.
This is reflected in Fig. 7.2(c), where the graphs corresponding to fV = 5% and
fV = 6% almost coincide. Table 7.1 lists the number of grains present in the
microstructures when grain growth is stopped, for every parameter combination.
The number of grains remaining in a microstructure is in keeping with the limiting
grain size: for a smaller limiting size, the limiting number of grains is larger.

7.3.2 Grain size distribution

Figure 7.4 illustrates the evolution of the grain size distribution for both the
smallest and the largest tested volume fraction, namely fV = 5% and fV = 12%,
for the three studied aspect ratios separately. At the latest depicted time point
t = 800, there are still at least 200 grains present in every microstructure. For
all parameter combinations, the grain size distributions of the microstructures
with second-phase particles are compared with the grain size distribution of a
single-phase microstructure, which is time invariant [58]. As predicted by mean-
field theories [54, 59, 1], the simulation results indicate that, when second-phase
particles are present, the peak of the distribution shifts towards smaller grain sizes.
Figure 7.4 shows that this is true regardless of the aspect ratio. Furthermore, there
does not appear to be a significant influence of the aspect ratio on the distribution
shape.

7.3.3 Microstructure evolution

The evolution of a microstructure is captured at time points t = 200, 2000, 5000,
and 50000 on Fig. 7.5, for a volume fraction of fV = 8% of spherical particles
(ra = 1). After t = 50000, no further grain boundary movement is observed. The
microstructures on Fig. 7.5 are visualised with a diffuse interface representation:
the values of the sum Ψ are displayed as computed with formula (4.28). Naturally,
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(e) fV = 5%, ra = 3
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Figure 7.4: Evolution of the grain size distribution obtained from simulations for
fV = 5% and 12%, and for ra = 1, 2, and 3, compared to the time invariant grain
size distribution of a single-phase microstructure.
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the computation of Ψ is now limited to the phase field values contained by the
bounding boxes.

Figure 7.5(a) shows that at the beginning of the simulation, most particles are
located at grain boundaries. Later in the simulation, many particles are located
within the grains, as can be seen on Figs. 7.5(c) and 7.5(d). The latter figures
illustrate the fact that the pinning effect of second-phase particles is much weaker
in three-dimensional than in two-dimensional systems, where most of the particles
are located at the grain boundaries when grain growth is stopped [88].

7.3.4 Cross-section

To gain more insight in the location of the particles in the microstructure,
cross-sections through the middle of pinned structures are shown in Fig. 7.6 for
simulations with fV = 5% and 12%, and aspect ratios ra = 2 and ra = 3. The
figures illustrate that the limiting grain size is smaller for higher volume fractions
and for higher aspect ratio. Particles with ra = 3 seem to make up a substantial
part of the grain boundaries. At certain points in the microstructure, they have
a significant influence on the grain boundary orientation: the grain boundaries
follow their orientation in such a way that the particles constitute a part of the
boundaries. In this way, the particles are more efficient in pinning grain boundaries
compared to the particles with aspect ratio ra = 2. The extra amount of grain
boundary that has to be created for this reorientation appears to outweigh the
amount of grain boundary that is removed by the particles with ra smaller than 3.

7.3.5 Particle location

At grain growth stagnation, many of the second-phase particles are located at
grain boundaries. According to their location, the particles that intersect with
grain boundaries can be subdivided into four types:

1. the particles present at interfaces between two grains (φ2),

2. at junctions where three grains meet (φ3),

3. at junctions where four grains meet (φ4),

4. and at junctions where more than four grains meet (φn).

The total fraction of particles present at boundaries is φtot, with

φtot = φ2 + φ3 + φ4 + φn. (7.2)
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(a) t = 200 (b) t = 2000

(c) t = 5000 (d) t = 50000

Figure 7.5: Evolution of a grain structure containing spherical second-phase
particles (fV = 8%, ra = 1), obtained from a phase field simulation on a
256 × 256 × 256 grid. Images are shown at (a) t = 200, (b) t = 2000, (c)
t = 5000, and (d) t = 50000. No further grain boundary movement is observed
after t = 50000.
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(a) fV = 5%, ra = 2 (b) fV = 5%, ra = 3

(c) fV = 12%, ra = 2 (d) fV = 12%, ra = 3

Figure 7.6: Cross-sections of three-dimensional pinned structures obtained from
simulations for fV = 5% and 12%, and ra = 2 and 3. No further evolution was
observed after about (a) 70000, (b) 94000, (c) 34000 and (d) 34000 time steps.
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Figure 7.7 shows the fraction φtot as a function of the volume fraction fV for
the three tested aspect ratios ra separately, subdivided according to the different
locations of the particles. In agreement with previous studies for spherical particles,
the graphs show that the total fraction of particles present at boundaries increases
with fV. The present study furthermore shows that this increase is mainly
due to an increase of the number of particles located at triple and quadruple
junctions, while the fraction φ2 of particles located at grain interfaces is more
or less independent of the volume fraction of the spherical particles and slightly
decreases for higher aspect ratios. The fraction φn of particles located at junctions
of more than four grains slightly increases with fV for aspect ratio ra = 1 but
remains rather small, while for aspect ratio ra = 3, φn is considerably larger at
higher volume fractions. The tendency of the particles to lie at multiple junctions
at higher volume fractions is thus stronger for higher aspect ratio.

In Fig. 7.8, the fractions φi are shown as a function of ra, for different volume
fractions separately. This representation clearly shows that, except for statistical
variations, the pinning behaviour changes with aspect ratio: for higher aspect ratio,
particles lie on multiple junctions rather than at grain interfaces. This tendency
becomes much more pronounced for larger volume fractions, as the amount of
particles at multiple junctions relative to φtot increases and the grain size compared
to the particle size decreases with volume fraction. Particles with ra = 3 thus have
a significant influence on the microstructure topology, especially at high volume
fractions. We expect that the effect of particle shape increases further with the
aspect ratio of the particles for ra greater than 3.
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Figure 7.7: Fraction φtot of particles located at grain boundaries, divided into
four types: located at grain interfaces (φ2), at junctions where three grains meet
(φ3), where four grains meet (φ4), and where more than four grains meet (φn), for
different aspect ratios ra.
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(b) fV = 6%
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(c) fV = 8%
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(d) fV = 10%
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(e) fV = 11%
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Figure 7.8: Fraction φtot of particles located at grain boundaries, divided into
four types: located at grain interfaces (φ2), at junctions where three grains meet
(φ3), where four grains meet (φ4), and where more than four grains meet (φn), for
different volume fractions fV.
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7.4 Generalised Zener relation

7.4.1 Analysis of the simulation results

The presence of second-phase particles inhibits grain growth in such a way that
grain growth stops when a limiting mean grain radius 〈R〉lim is obtained. Most
theories predict a relation between 〈R〉lim and the size and volume fraction of the
particles of the form

〈R〉lim
r

= K
1

f b
V

, (7.3)

which is a generalisation of the Zener relation [81, 116]. In the classical Zener-Smith
analysis, it is assumed that particles are spherical, incoherent and that particles
and boundaries intersect on a random basis. As long as the number of particles at
grain boundaries is much larger than the number of particles at multiple junctions,
this approximation is likely to be valid [18]. According to [51, 81, 18] most particles
may be situated in grain corners for high volume fractions. In this case, the
Zener-Smith assumptions are not applicable anymore. Nevertheless, it is seen
that a Zener type relation is still appropriate at higher volume fractions, although
sometimes a weaker volume fraction dependence (b ≈ 0.33 instead of b ≈ 1 in
formula (7.3)) of the limiting grain radius is found [51, 81]. According to [51], this
change in volume fraction dependence is at fV = 10%; according to [81], it is at
fV = 5%.

In [75], the pinning pressure is derived for a distribution of mono-oriented
spheroid particles, following the classical Zener-Smith approach. Because of
the assumptions made in this approach, the large differences in pinning forces
for different shapes and orientations of single particles are not reflected in
the computed effect of the corresponding particle distributions. It is not yet
understood whether their approximations or the Zener-Smith approximations in
general are applicable for spheroid particles with aspect ratio different from 1. The
calculation of the total pinning effect of multiple spheroid particles thus proves to
be a complex problem. Analysis of our simulation results can shed new light on
the relation between 〈R〉lim on the one hand, and the volume fraction and the
aspect ratio of the particles on the other hand.

Zener relation (7.3) is formulated assuming spherical particles that are quantified
by means of the particle radius r. To extend the Zener relation to spheroid
particles, we propose three different measures m to replace the parameter r, namely
the long axis radius m = l, the short axis radius m = s and the geometric mean
m = (ls2)

1
3 of the three axis radii, yielding a relation of the form

〈R〉lim
m

= K
1

f b
V

. (7.4)
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The third measure is often used in experimental studies to characterise the size of
the particles.

For each of the three proposed measures m, formula (7.4) is fitted to the simulation
results. The resulting graphs are shown in Fig. 7.9. Relation (7.4) only has
predictive value if the graphs for the three aspect ratios coincide. The three
graphs in Fig. 7.9(a) are distinctly separated, with the graph of the particles with
ra = 1 on top and the graph of the particles with ra = 3 at the bottom. The
measure m = l thus seems to be less appropriate. In Fig. 7.9(b), the graphs lie
surprisingly close to each other, even though the measure m = s does not include
information on the aspect ratio. In Fig. 7.9(c), the graphs for ra = 1 and ra = 2
almost coincide, while the graph for ra = 3 lies a little lower. As mentioned in the
previous subsection, distributions of particles with higher aspect ratio therefore
seem to have a stronger pinning effect for the same volume fraction and particle
volume. Note that the simulation results of the parameter combination fV = 5%
and ra = 1 were excluded from the fitting calculations, since only one simulation
run with this parameter combination contained a sufficient number of grains at
grain growth stagnation.

Table 7.2 shows the estimated values for the parameters K and b obtained by
fitting relation (7.4) to the simulation data for the three different aspect ratios ra

and the three different measures m. There is a very good correspondence between
the data for ra = 1 and the simulation results of [83], as is also illustrated in
Fig. 7.11.

Table 7.2: Estimated values for the parameter set (K, b) in Zener relation (7.4) for
three different aspect ratios ra and three different measures m of the second-phase
particles.

m l s (ls2)
1
3

ra = 1 (0.8593, 0.9333) (0.8593, 0.9333) (0.8593, 0.9333)
ra = 2 (0.4557, 0.9339) (1.0633, 0.9339) (0.8017, 0.9339)
ra = 3 (0.3377, 0.9295) (1.0131, 0.9295) (0.7024, 0.9295)

As described in Section 7.3.5, the fraction of particles located at multiple junctions
increases with increasing volume fraction and aspect ratio (see Figs. 7.7 and 7.8).
Still, the values obtained for the parameter b agree very well with those obtained
in [96] and [55], where, respectively, b = 0.92 and b = 0.93 were theoretically
predicted, assuming that the main contribution to the pinning effect comes from
particles interacting with grain boundaries. Irrespective of the exact explanation
for the deviation from 1, the value for b seems to be independent of the aspect ratio
of the particles. Refitting of the data for b fixed, namely b = 0.93, gives values for
K as listed in Table 7.3. The values of K obtained for m = l differ more strongly
than those obtained for m = s and m = (ls2)

1
3 . However, for all three measures
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Figure 7.9: Fits of relation (7.4) to the limiting mean grain radius divided by
(a) m = l, (b) m = s and (c) m = (ls2)

1
3 , for all tested volume fractions fV and for

the three aspect ratios ra separately. The Zener relation (7.4) only has predictive
value if the graphs coincide for the different aspect ratios. The measure m = l is
not appropriate, since the graphs are clearly separated. For m = s and m = (ls2)

1
3 ,

the three graphs are close to each other.

m, it seems to be more appropriate to have a prefactor K that is a function of the
particle aspect ratio. Such a relation is derived in the next subsection.

7.4.2 Analytical derivation

The simulations show that most particles interacting with a grain boundary are
oriented with their major axis parallel with the grain boundary. Furthermore,
the finding that b = 0.93 indicates that the assumption of random intersections
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Table 7.3: Estimated values for the parameter K in Zener relation (7.4) for a
fixed parameter b = 0.93, for three different aspect ratios ra and three different
measures m of the second-phase particles.

m l s (ls2)
1
3

ra = 1 0.8664 0.8664 0.8664
ra = 2 0.4606 1.0746 0.8102
ra = 3 0.3372 1.0116 0.7015

between grain boundaries and particles is reasonable. Therefore, as a first
approximation, we repeat the Zener-Smith analysis [96, 81], but now adapted
for spheroid particles with their major axis parallel with the grain boundary.

The pinning force of a spheroid particle interacting with a grain boundary and
oriented with its major axis parallel with the boundary axis is described by
equation (2.5) [114]. The maximal pinning force of a spherical particle with equal
volume is given by

F S
Z = πr∗σgb = π(ls2)

1
3 σgb, (7.5)

where the radius r∗ is computed as the geometrical mean of the radii of the spheroid
particle. The maximal pinning force of the spheroid particle is therefore

F max
Z = (ls2)

1
3 σgb

1 + 2.14 ra

r
1/3
a

= sσgb(1 + 2.14 ra). (7.6)

Following the original derivation of Zener-Smith [116], we assume that all grain
boundaries are flat and that all particles are uniformly distributed in space.
Furthermore, all particles interacting with boundaries are assumed to be oriented
with their major axis parallel with the boundary and exert their maximal force
F max

Z . The number of particles interacting with a grain boundary per unit of
boundary area is accordingly

nZ =
fV

4
3 πls2

× 2s =
6fV

4πls
, (7.7)

assuming that all particles located within a distance of s on either side of the
boundary interact with the boundary. The total pinning force exerted per unit of
grain boundary area by the distribution of particles thus equals

F tot
Z = F max

Z × nZ = (1 + 2.14 ra)
6fVσgb

4πl
. (7.8)

The driving force FD for grain boundary movement is given by

FD =
2ασgb

R
, (7.9)
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with α a geometrical constant [58]. Grain growth will stop when the driving force
for grain boundary movement is equal to the total pinning force F tot

Z or when

2ασgb

〈R〉lim
= (1 + 2.14 ra)

6fVσgb

4πl
. (7.10)

This equation yields a Zener type relation of the form

〈R〉lim
l

= K
1

1 + 2.14 ra

1

fV
, (7.11)

with K a constant coefficient. Generalising this relation gives

〈R〉lim
l

= K
1

1 + ara

1

f b
V

, (7.12)

with K, a and b parameters that can be obtained by fitting the relation to
simulation data. If the short axis s is used as a measure for particle size, the
generalised Zener relation for spheroid particles becomes

〈R〉lim
s

= K
ra

1 + ara

1

f b
V

, (7.13)

since ra = l/s. Similarly, if the geometric mean (ls2)
1
3 of the three axis radii is

used as a measure for the particle size, the generalised Zener relation becomes

〈R〉lim
(ls2)1/3

= K
(ra)2/3

1 + ara

1

f b
V

. (7.14)

Figure 7.10 shows a plots of prefactor 1/(1 + ara) in relation (7.12), prefactor
ra/(1 + ara) in relation (7.13) and of prefactor (ra)2/3/(1 + ara) in relation (7.14)
respectively, for a = 2.14. Since the first and the third prefactor tend to zero for
high aspect ratios, whereas the prefactor of relation (7.13) tends to a constant
value 1/a, it is most appropriate to use s as a measure for the particle size in the
generalised Zener relation. Figure 7.10 also shows that variations in the prefactors
decrease for increasing aspect ratio, but are relatively large for ra ≤ 2. This
explains why the graphs on Fig. 7.9 do not coincide. From relation (7.13), one
may however expect that all curves for 〈R〉lim/s in Fig. 7.9(b) will coincide for
higher aspect ratios.

Fitting relation (7.13) to all the simulation data at once, including the data
obtained from the simulation run for parameter combination fV = 5% and ra = 1,
yields the parameter values (K, b, a) = (3.2774± 2.1646, 0.9040± 0.1392, 2.5492±
1.6789). The 95% confidence interval is much smaller for the parameter b than
for the other two parameters. Also, the value found for the parameter a is of
the same order as the theoretical value 2.14. We stress however that more data
points, considering higher aspect ratios and different orientation distributions of
the particles, are required for a more accurate fit.
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Figure 7.10: Plots of the prefactors of (a) relation (7.12), (b) relation (7.13) and
(c) relation (7.14) as a function of the aspect ratio ra, for a = 2.14. All plots show
that variations with ra decrease with increasing aspect ratio and are relatively
small for ra > 2. The prefactor values for ra = 1, 2, and 3 are indicated.

7.5 Comparison with other studies

Figure 7.11 shows an overview of data obtained in different studies. The results
of the simulations with spheroid particles are represented by the ratio 〈R〉lim/m,
with m = (ls2)

1
3 , for aspect ratios ra = 1 and ra = 3. They are compared with

the original Zener relation [116]

〈R〉lim
r

=
4

3

1

fV
, (7.15)

with the relation derived by Hillert for low (fV < 10%) and high (fV > 10%)
volume fractions [55], the relation of Manohar that is based on a large compilation
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Figure 7.11: Comparison of the simulation results for spheroid particles with aspect
ratios ra = 1 and ra = 3, represented by 〈R〉lim/m with m = (ls2)

1
3 , with the

original Zener relation [116], the relation derived by Hillert for low (fV < 10%)
and high (fV > 10%) volume fractions [55], the relation of Manohar based on
a large compilation of experimental data [81], experimental results for cementite
particles in a ferrite matrix [51, 2], and results obtained from simulations with a
Monte Carlo Potts model [83] and with the continuum field model [122].

of experimental data [81], experimental results for cementite particles in a ferrite
matrix [51, 2], and results obtained from simulations with a Monte Carlo Potts
model [83] and with the continuum field model [122].

The cementite particles of [51] are characterised as ‘spherical’, but the microscopic
pictures in the same article show that they have a rather irregular shape. These
experimental data show that there is generally a large scatter on experimentally
measured limiting grain sizes, even when they are obtained for the same material.
Nevertheless, all experimental data points are considerably below the curves
obtained for spherical particles.

Our data points for the distribution of spherical particles (ra = 1) almost coincide
with the relation obtained from Monte Carlo Potts simulation and are located
slightly below the relation obtained from previous phase field simulations. The
simulation data points for ra = 3 lie lower and thus closer to the experimental
data. The spheroid shape of the particles with aspect ratio ra = 3 thus gives a
better approximation for the pinning effect of real material particles. If particles
have a slightly irregular shape, grain boundaries have probably the tendency to
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align themselves with the largest cross-section of the particles.

The simulation results show that the dispersions of spheroid particles have a
stronger pinning effect than the dispersions of spherical particles. The effect is
however too small to fully explain the large difference between the final grain sizes
obtained in simulations and those obtained experimentally.

7.6 Conclusion

A common technique to control the grain size of a material is by the addition of
impurities, which leads to the formation of second-phase particles. These particles
inhibit grain boundary movement during grain growth. Despite long-standing
research, there is still a large discrepancy between the final grain sizes predicted
by theory and simulation and those measured for real materials. To gain more
insight in this pinning phenomenon, the effect of particles with a spheroid shape
on grain growth is studied in this chapter, using three-dimensional phase field
simulations.

In order to simulate grain growth in the presence of second-phase particles with
constant properties, the continuum field model (2.39) is employed. The studied
particles are spheroid and characterised by their aspect ratio ra, which is the ratio
between the long axis radius and the short axis radius of a particle. As phase
field simulations for grain growth are computationally very intensive, a parallel
implementation of the bounding box algorithm, which was presented in Section 5.5,
is used to execute the simulations in an efficient and fast way. Simulations are
performed for different volume fractions, ranging from fV = 5% to fV = 12%, and
three different aspect ratios: ra = 1, 2 and 3. For every parameter combination,
the results are averaged over three simulation runs.

The pinning effect of a particle distribution is found to be stronger for increasing
volume fraction, and for increasing aspect ratio. Similarly, the total fraction of
particles present at boundaries increases with volume fraction and with aspect
ratio, which is mostly due to an increase of the number of particles located at triple,
quadruple or higher-order junctions. The grain boundaries have the tendency to
align themselves with the longest axis of the particles with ra = 3. For aspect
ratio ra = 2, the extra amount of grain boundary (or curvature) that has to be
created in the neighbourhood of a particle when the boundary reorients with the
long axis of the particle, seems to be too large compared to the amount of grain
boundary removed by the particle after reorientation. Particles with ra = 3 thus
have a significant influence on the microstructural topology, especially at higher
volume fractions. Nevertheless, the effect is still too small to fully explain the large
difference between the final grain sizes obtained in simulations and those obtained
experimentally.
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In spite of the increasing number of particles located at boundary junctions, for all
simulated aspect ratios, a volume fraction dependence of the limiting mean grain
size of 1/f0.93

V is obtained, which follows the theoretical predictions of [96, 55]
where a uniform distribution of spherical particles is assumed. Moreover, based
on the simulation results, a generalised Zener type relation of the form

〈R〉lim
s

= K
ra

1 + ara

1

f b
V

(7.16)

is proposed.

The simulation results presented and discussed in this chapter correspond well
to other simulation results, but deviate from experimental data. To perform
simulations of realistic materials, the continuum field model still has to be extended.
We believe that the bounding box algorithm will enable such simulations and
provide better insight in microstructural evolution.





Chapter 8

Effect of anisotropic grain
boundary properties on grain
growth: initial results

8.1 Introduction

As mentioned in Chapter 2, a predictive model for grain growth in polycrystalline
materials should include orientation dependent microstructural properties and
interactions in order to be able to study the interplay of texture and grain growth.
This chapter presents initial results on the effect of anisotropic boundary energy
formulation on a polycrystalline microstructure during grain growth, obtained
from phase field simulations with continuum field model (2.44).

In Section 8.2, two different discretisation schemes of the anisotropic continuum
field model (2.44) are presented: a fully explicit scheme and a fully implicit scheme.
For both discretisation schemes, a solver is implemented which integrates with
the sparse data structure of the extended bounding box algorithm developed in
Chapter 5. Furthermore, the simulation parameters are discussed and determined
in accordance with [89, 90] for two different grain boundary energy formulations.
The simulation results are analysed and compared in Section 8.3. Section 8.4 ends
this chapter with some conclusions.

149
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8.2 Simulation parameters

8.2.1 Phase field model and discretisation

Continuum field model (2.44) was constructed in Section 2.5.3 in order to simulate
grain growth in a microstructure with anisotropic boundary properties. The model
is formulated as

∂ηi

∂t
= L


κ(Θ)∇2ηi −m


η3

i − ηi + 2ηi

p∑

j 6=i

γijη2
j




 , i = 1, . . . , p, (8.1)

where Θ corresponds to the ensemble of parameters that defines the grain boundary
misorientation, which is the difference in crystallographic orientation of two
neighbouring grains.

The purpose of the simulations in this chapter is to study the evolution of a
polycrystalline microstructure with a fibre texture during grain growth. In such a
microstructure, the crystallographic orientations of the grains are nearly identical
in one direction, a chosen axis, and random in the plane perpendicular to this axis.
The misorientation, which is the difference in orientation between two neighbouring
grains, can therefore be described by a single misorientation angle θ. This is
illustrated in Fig. 2.5, which shows a schematic representation of grain boundary
misorientation in a fibre-textured microstructure.

Application of the Forward Euler method to model (2.44), in combination with
second-order central finite differences to the Laplacian, now yields the following
discretisation scheme:

ηn+1
i,r − ηn

i,r

∆t
= Lκ(θn

r )∇2ηn
i,r − Lm


(ηn

i,r

)3 − ηn
i,r + 2ηn

i,r

p∑

j 6=i

γij

(
ηn

j,r

)2


 ,

r = (x, y, z) ∈ Ω; i = 1, . . . , p, (8.2)

with

κ(θn
r ) =

∑p
i=1

∑p
j>i κij

(
ηn

i,r

)2 (
ηn

j,r

)2

∑p
i=1

∑p
j>i

(
ηn

i,r

)2 (
ηn

j,r

)2 , (8.3)

∇2ηn
i,r =

∑

v=x,y,z

ηn
i (v + ∆v)− 2ηn

i (v) + ηn
i (v −∆v)

(∆v)2
, (8.4)

and Ω the system domain. Equations (8.2) can directly be applied to compute the
values of the next time step as a function of the values on the previous time step.
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However, the stability condition of explicit methods is generally very strict for the
time step size ∆t.

We have implemented an explicit time stepper based on scheme (8.2) that
integrates into the extended bounding box algorithm, which was developed in
Section 5.6 to simulate grain growth in a system with anisotropic boundary energy
depending on the misorientation between neighbouring grains.

Remark

We have also applied the Backward Euler method to continuum field model (8.1).
In combination with second-order central finite differences for the Laplacian, this
method yields the following discretisation scheme:

ηn+1
i,r − ηn

i,r

∆t
= Lκ(θn+1

r )∇2ηn+1
i,r

− Lm


(ηn+1

i,r

)3 − ηn+1
i,r + 2ηn+1

i,r

p∑

j 6=i

γij

(
ηn+1

j,r

)2


 ,

r = (x, y, z) ∈ Ω; i = 1, . . . , p, (8.5)

with κ(θn+1
r ) defined as in (8.3) and Ω the system domain. In contrast to

the explicit Forward Euler scheme (8.2), the Backward Euler scheme (8.5) is a
system of nonlinear equations. In order to solve this system, a nonlinear solver
was implemented based on the Gauss-Seidel-Newton method, which is similar to
the nonlinear smoothing procedure described in Section 6.2.3. The convergence
criterion of the Gauss-Seidel method is met when the norm of the residual scaled by
the norm of the right-hand side falls below a tolerance value provided by the user.
The maximal amount of iterations is set to 500. The Newton step is performed
only once per unknown, per Gauss-Seidel iteration.

During a bounding box simulation, a grain region is allowed to grow with M grid
points in each grid direction during a time step. So far, the value M = 1 has
proved to be sufficient. When a fully implicit scheme is employed, a larger time
step size ∆t is possible. During such a large time step, a grain region might grow
more than one grid point in each grid direction. In this case, the margin size M
should be chosen larger than the value 1. Since our experience with the implicit
solver is limited, in the next sections, we will only make use of the explicit solver.
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Figure 8.1: Grain boundary energy σgb and model parameters κ and γ as a function
of the misorientation angle θ for (a) the isotropic boundary energy function, and
(b) the anisotropic boundary energy function (8.7). The parameters κ and γ are
scaled by their maximal values κmax = 0.25 and γmax = 1.5.

8.2.2 Anisotropic boundary energy formulation

As in [91], a fourfold symmetry of the crystallography is assumed. The orientations
within one quadrant are discretised with an interspacing of ∆θ = 90◦/p and the
discrete orientations are assigned to p phase field variables η1, η2, . . . , ηp. The
misorientation angle θ associated with the boundary between two neighbouring
grains with orientations i and j is calculated as

θ =

{
∆θ · |j − i|, |j − i| ≤ p

2

−90◦ + ∆θ · |j − i|, |j − i| > p
2

(8.6)

and ranges from −45◦ to 45◦.

In this chapter, the effect of two different boundary energy formulations is studied.
The first boundary energy function is isotropic and attributes a constant boundary
energy σgb = σm = 0.25 J/m2 to all grain boundary types. Accordingly, the
associated model parameters κ(θ) and γ(θ) are constant functions, which are
plotted in Fig. 8.1(a).

The second boundary energy function is anisotropic and distinguishes between low-
angle boundaries (|θ| < θm) and high-angle boundaries (|θ| ≥ θm). The high-angle
boundaries are attributed the same constant boundary energy σm. The concept
of low-angle boundaries, or subgrain boundaries, was introduced in Section 2.2.3.
There, it was explained that subgrain boundaries are defined by a rotation vector
θ, a rotation angle θ, and the position of the boundary plane with respect to the
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rotation vector. In a microstructure with fibre texture, the rotation axis defined
by θ coincides with the fibre axis. Depending on the orientation of the boundary
planes with regard to this axis, the low-angle boundaries can be divided into
three different types: pure twist boundaries, partial twist boundaries, and tilt
boundaries. As mentioned in Section 2.2.3, the boundary energy of these three
boundary types can be described by the Read-Shockley dependence (2.10) if the
values of the function parameters are modified correspondingly. In this work,
we will use the same parameter values for all subgrain boundary types and thus
assume the same boundary energy function for all low-angle boundaries. The
resulting anisotropic boundary energy function is formulated as:

σgb(θ) =

{
σm

|θ|
θm

(
1− ln

(
|θ|
θm

))
, |θ| < θm

σm, |θ| ≥ θm

(8.7)

with σm = 0.25 J/m2 and θm = 15◦. Figure 8.1(b) plots σgb(θ), as well
as the corresponding model parameters κ(θ) and γ(θ), as a function of the
misorientation angle θ. The parameter functions κ(θ) and γ(θ) are computed with
the procedure developed in [89, 90], which allows to reproduce the grain boundary
energy and mobility of a material for arbitrary misorientation and inclination
dependence. This calculation of the model parameters furthermore permits to
perform quantitative simulations with uniform stability and accuracy conditions.

For both boundary energy functions, a constant grain boundary mobility µgb =
1×10−6 m2s/kg is assumed, while the grain boundary width is ℓgb = 1.33×10−6 m.
Calculation of the other model parameters according to the procedure of [89, 90]
gives m = 1.125 × 106 J/m3 and L = 1 ms/kg. Since both applied boundary
energy functions are symmetric, the properties of the grain boundaries can be
studied within a restricted misorientation range of [∆θ, 45◦].

8.2.3 Simulation set-up

Simulations are performed on a 256 × 256 × 256 grid and start from the same
microstructure, initialised with Algorithm 5.2 for p = 500 grain regions. One
simulation run uses the isotropic boundary energy function, while the other
simulation run employs the anisotropic boundary energy function (8.7). For both
runs, the lattice spacing ∆x is taken equal to 0.2× 10−6 m and the time step size
∆t is fixed to 0.015 s. Periodic boundary conditions are assumed.

In Chapter 5, the use of a threshold value of ǫ = 10−5 or 10−6 is advocated based on
simulation results with the continuum field model (2.39). Numerical experiments
with model (2.44) indicate the same sensitivity to the applied threshold value.
In terms of computational requirements, a simulation run with ǫ = 10−5 takes
approximately half of the execution time required by ǫ = 10−6 at the start. In
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the same way, the data files accompanying the former threshold value take 25%
less storage space. The value ǫ = 10−5 is therefore a valid and practical choice for
the simulations in this chapter. All simulations are run on four processors, with
the parallel implementation of the extended bounding box algorithm, which was
described in Section 5.6.

8.3 Effect of anisotropic boundary energy properties

8.3.1 Microstructure evolution

The images in Fig. 8.2 capture the evolution of a microstructure with anisotropic
boundary energy function (8.7) at time points t = 9, 180, 360, and 720. For each
time point, the microstructure is visualised by displaying the values computed for
the function Ψ, which was defined in Chapter 5 as:

Ψ(r, t) =

p∑

i=1

η2
i (r, t). (8.8)

Within a grain, the function Ψ takes a constant value close to 1, while at grain
boundaries, Ψ takes a lower value. The function Ψ distinguishes the low-angle
boundaries (LABs) from the high-angle boundaries (HABs) by assuming a larger
value at LABs than at HABs. Accordingly, the former boundary type is coloured
light red in Fig. 8.2, while the latter type is coloured blue.

The network of HABs seems to evolve independently over the images of Fig. 8.2,
whereas the LABs follow the movement of the HABs and enlarge accordingly. Also,
it can be seen that the LABs meet the HABs almost perpendicularly, because
of the large differences in boundary energy. The relative presence of the LABs
furthermore seems to increase with time: the LABs seem to be preferred during
grain growth.

8.3.2 Evolution of grain boundary characteristics

The misorientation distribution (MD) reflects the characteristics of the grain
boundaries in a microstructure. In a fibre-textured microstructure, the MD
describes the occurrence of each possible misorientation angle θ (8.6) as the
misorientation between two grains. To calculate the area of a grain boundary,
the following assumptions are made. The volume of a grain with crystallographic
orientation i, or grain i, is defined as the ensemble of grid points where the phase
field variable ηi has the highest absolute value of all phase field variables. The
area of the grain boundary between two grains i and j is then computed by
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(a) t = 9 (b) t = 180

(c) t = 360 (d) t = 720

Figure 8.2: Simulation images of a microstructure with anisotropic boundary
energy at (a) t = 9, (b) t = 180, (c) t = 360, and (d) t = 720, computed with
threshold value ǫ = 10−5. The low-angle boundaries are coloured light red, while
the high-angle boundaries are coloured blue.
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Figure 8.3: Area-weighted and number-weighted MD (a) in a microstructure with
isotropic boundary energy and (b) in a microstructure with anisotropic boundary
energy (8.7), at t = 108.

counting all grid points of grain i that lie next to a grid point of grain j, plus
all grid points of grain j that lie next to a grid point of grain i. In this view,
grains and grain boundaries overlap. Since we are interested in relative quantities
rather than absolute areas and volumes, this is a valid approach to construct the
area-weighted MD. The number-weighted MD is computed by counting for each
occurring misorientation the number of boundaries representing that particular
misorientation.

Figure 8.3 plots the area-weighted and the number-weighted MD for the two
simulated microstructures at one specific time point, namely t = 108. At this time
point, there are 241 of the initial 500 grains left in the microstructure with isotropic
boundary energy and 238 grains in the microstructure with anisotropic boundary
energy. For both microstructures, the shape of the MDs is in keeping with the
shape of the boundary energy functions in Fig. 8.1. The MDs of the microstructure
with isotropic properties in Fig. 8.3(a) agree with the uniform boundary energy.
Similarly, in the microstructure with anisotropic boundary properties, the area and
number fractions of the HABS are approximately equally low, while the presence
of the LABs increases for decreasing boundary energy. Note that the increase of
the area fractions for decreasing misorientation angle θ is much more pronounced
than the corresponding increase of the number fractions.

Figure 8.4 shows the evolution of the area and number fraction of boundaries with
specific misorientations, among which the two lowest occurring misorientation
angles, namely θ = ∆θ = 0.18◦ and θ = 2∆θ = 0.36◦. The preference for the
latter LABs in the microstructure with the anisotropic boundary energy function
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Figure 8.4: Evolution of the area and number fraction of boundaries with specific
misorientations, defined by the misorientation angle θ, (a/b) in a microstructure
with isotropic boundary energy and (c/d) in a microstructure with anisotropic
boundary energy (8.7).

is clearly visible in Figs. 8.4(c) and 8.4(d): both the area and the number fraction
of the two lowest-angle boundaries strongly increase during a simulation, while the
presence of the HABs remains much lower. The graphs in Figs. 8.4(a) and 8.4(b)
show that for the microstructure with the isotropic boundary energy, the area
and number fraction remain approximately equally distributed over the range
of the misorientation angle at the start of the simulation. At approximately
t = 800, there are 92 of the initial 250 misorientations left in the isotropic
microstructure. The relative presence of the boundaries with the remaining
misorientations accordingly increases with time, as can be seen in Figs. 8.4(a)
and 8.4(b). At the same time point, the anisotropic microstructure still contains
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Figure 8.5: Evolution of the number of boundaries with specific misorientations,
defined by the misorientation angle θ, (a) in a microstructure with isotropic
boundary energy and (b) in a microstructure with anisotropic boundary
energy (8.7).

216 different misorientations.

The graphs in Fig. 8.5 illustrate the evolution of the absolute number of
boundaries with misorientations corresponding to those studied in Fig. 8.4. In
the microstructure with isotropic boundary energy, all boundary types decrease
in number at approximately the same rate, as depicted in Fig. 8.5(a). This is not
the case for the microstructure with anisotropic boundary energy, where the two
lowest-angle boundaries remain present longer and even temporarily increase in
number with respect to the initial state, which is illustrated in Fig. 8.5(b). The
other boundary types all decrease at approximately the same rate.

Similar to Fig. 8.3, Figure 8.4 shows that the differences between the area fractions
of the different boundary types within the same microstructure is larger than the
corresponding differences between the number fractions. This is in keeping the
observation made based on the microstructural images of Fig. 8.2, namely that
the LABs seem to follow the movement of the HABs and enlarge.

8.3.3 Evolution of grain characteristics

Analogous to the calculation of the grain boundary area described in the previous
section, the size of a grain with crystallographic orientation corresponding to phase
field variable ηi is computed as the number of grid points where the value ηi has
the highest absolute value of all phase field variables. The mean grain radius 〈R〉
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Figure 8.6: Time evolution of the mean grain radius 〈R〉 as computed for
a microstructure with isotropic boundary energy and a microstructure with
anisotropic boundary energy (8.7).

is computed as the radius of a sphere with a volume equivalent to that of the grain.

The time evolution of the mean grain radius 〈R〉 is depicted for both the
microstructure with isotropic boundary energy and the microstructure with the
anisotropic boundary energy in Fig. 8.6. The anisotropic boundary energy is found
to slow down the growth kinetics in comparison to the isotropic boundary energy
case. However, a larger initial amount of grains is required to come to reliable
conclusions on long-term grain growth kinetics.

Figure 8.7 illustrates the evolution of the grain size distribution for both
microstructures. For the isotropic microstructure, the shape of the grain size
distribution is independent of time, which is the expected behaviour [58]. The
dent in the grain size distribution at t = 360 is due to the small number of grains
left in the microstructure. Figure 8.7(b) shows that the shape of the grain size
distribution for the microstructure with anisotropic grain boundary energy is time
invariant as well. The grain size distributions for the two simulated microstructures
at time point t = 108 are compared in Fig. 8.8(a). There is no visible effect of
the different grain boundary energy functions on the grain size distribution. In
contrast, the distribution of the number of faces per grain, which is illustrated
in Fig. 8.8(b), differs for the two studied microstructures. Overall, the number of
faces per grain is higher when the anisotropic boundary energy function is applied.

Recently, MacPherson and Srolovitz [80] suggested a relation between the growth
rate of an individual grain and the number of grain faces. Under simplifying
assumptions, this relation, which is the multi-dimensional extension of the von
Neumann-Mullins equation [134] developed for two-dimensional structures, can be
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Figure 8.7: Evolution of the grain size distribution obtained from simulation results
at t = 108 (a) of a microstructure with isotropic boundary energy and (b) of a
microstructure with anisotropic boundary energy (8.7).
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Figure 8.8: (a) Grain size distributions and (b) grain face distributions obtained
from simulation results at t = 108 in a microstructure with isotropic boundary
energy and in a microstructure with anisotropic boundary energy (8.7).

written as:

d (D(f))
2

dt
= c1µgbσgb

(
6− c2f

1
2

)
, (8.9)

where the quantity D is the linear dimension of a grain, which is computed as the
diameter of a sphere with the equivalent volume of the grain, and f is the number
of grain faces. Figure 8.9(a) plots the value of dD2/dt, computed for the individual
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grains of the microstructure with isotropic boundary energy at time point t = 108,
as a function of f . The simulation results are compared with a fit of the relation
according to the theory of [80], as well as the theories of [95, 43, 53]. Relation (8.9)
predicted by [80] shows the closest fit.

All theories mentioned above were developed for grain structures with isotropic
boundary properties. Nevertheless, we have also tested the simulation results
obtained from the microstructure with anisotropic boundary energy at t = 108
with the latter theories. Figure 8.9(b) illustrates how the growth rates for the
different topological classes still approximately follow the relations predicted for
grain structures with isotropic properties. However, there is much more scatter on
the data than for the isotropic case in Fig. 8.9(a). Also, it can be seen that the
range of the number of grain faces is larger in the microstructure with anisotropic
boundary energy, which is in accordance with the grain face distribution shown in
Fig. 8.8(b).

According to the theories of [95] and [53], the neutral number of faces, for which
the grain size is stable, is f0 ≈ 13.35, while [43] predicts a stable grain size for
f0 = 15.8. For the microstructure with isotropic boundary energy, the fit with
the relation of [80], which is the closest to the simulation data, indicates a stable
topology class for f0 ≈ 15. In contrast, for the microstructure with anisotropic
energy boundary, the simulation data in Fig. 8.9(b) displays a higher neutral
number of faces, namely f0 ≈ 17.3.

8.4 Conclusion

During grain growth, grains with favourable properties grow at the expense of
other grains, which results in an increase of the mean grain size. In particular, the
evolution of the grain structure is influenced by the misorientation between the
crystallographic orientations of neighbouring grains. In this chapter, preliminary
results are presented on phase field simulation with continuum field model (2.44),
which models grain growth in a microstructure with anisotropic boundary energy
properties. To simulate with the latter nonlinear model, two numerical solvers
have been implemented.

In order to gain some insight into the effect of crystallographic orientation
dependent properties on microstructural evolution, three-dimensional grain growth
simulations are performed in a microstructure with fibre texture, for two different
boundary energy functions. The first boundary energy function is isotropic
and attributes the same boundary energy to every boundary type. The second
boundary energy function is anisotropic and attributes a constant boundary energy
to all high-angle boundaries, while a Read-Shockley dependence is assumed for the
low-angle boundaries. The model parameters are calculated with the procedure
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Figure 8.9: Plot of the value dD2/dt as a function of the number of grain faces
f , with D the linear dimension of a grain, computed at t = 108 (a) for a
microstructure with isotropic boundary energy and (b) for a microstructure with
anisotropic boundary energy (8.7). The simulation results are compared with fits of
the theories of MacPherson and Srolovitz [80], Hilgenfeldt et al. [53], Mullins [95],
and Glazier [43]. The intersections with the horizontal dotted line indicate for
which number of faces the theories predict a stable grain size.
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developed in [89, 90], which allows to reproduce any given boundary energy
function and yields grain boundaries with homogeneous numerical properties.
All simulations are performed with the parallel implementation of the extended
bounding box algorithm, presented in Section 5.6.

The simulation results obtained for the microstructure with isotropic boundary
energy properties are compared with those obtained for the microstructure with
anisotropic boundary energy properties. The low-angle boundaries (LABs), which
have a lower boundary energy, are clearly preferred during grain growth. The
LABs remain much longer present in the microstructure, while the other boundary
types disappear at approximately the same rate. The anisotropic boundary energy
formulation is furthermore observed to change the individual growth rates of the
grains as a function of the number of grain faces. The neutral number of faces,
for which the grain size is stable, is found to be larger in the microstructure
with anisotropic boundary properties than in the microstructure with isotropic
boundary properties.

For realistic materials, a more general, three-dimensional description of the
crystallography will provide more insight into the interplay of texture and grain
growth. The formulation of such a crystallography in the context of phase field
simulation is still subject to materials science research. Furthermore, a larger
initial amount of grains is required to derive a reliable analysis of the effect of
anisotropic boundary energy on grain growth from three-dimensional phase field
simulations.





Chapter 9

Conclusions

9.1 Introduction

The microstructure of many materials consists of multiple grains with different
crystallographic orientations. Under certain circumstances, such as increased
temperature, the smaller grains will shrink and disappear under the influence
of surface tension. This phenomenon, called grain growth, is thus characterised
by an increase of the mean grain size. The study of the factors influencing grain
growth is of great technological importance, because many material properties,
such as strength and toughness, depend on the mean grain size and the grain size
distribution.

Computer simulations are essential in the study of grain growth, since they enable
parameter studies and provide three-dimensional insight into microstructural
evolution, which can be difficult to obtain from experiments. One of the modelling
techniques that has been successfully explored by many researchers for the
simulation of microstructural evolution is phase field modelling.

The goal of this thesis was to design, analyse and implement efficient numerical
solvers for grain growth simulation with two specific phase field models. With
the newly developed software, we addressed certain questions with regard to the
effect of second-phase particles and the presence of texture on grain growth. This
concluding chapter starts with an overview of the results of this thesis in Section 9.2.
In Section 9.3, we highlight the main contributions of this work. Section 9.4 ends
the chapter with suggestions for future research.
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9.2 Summary

In Chapter 2, the concepts of the grain growth phenomenon were introduced.
After a discussion on the different existing types of grain growth models, two
phase field models, namely the multi-phase field model (2.27) and the continuum
field model (2.37) were presented, which are the main interest of this thesis. Both
models represent a polycrystalline microstructure with a large set of phase field
variables, where each variable corresponds to a single crystallographic orientation.
In principle, the number of phase field variables included in a grain growth
simulation with one of these models should equal or exceed the total number
of grains, as in reality the number of possible orientations is infinite. Especially in
three dimensions, a shortfall in the number of included phase field variables can
cause incorrect growth kinetics. Realistic three-dimensional phase field simulations
of grain growth thus demand significant amounts of computation power as well as
data storage.

In Chapter 3, we have given an overview of the different acceleration techniques
that have been applied to overcome the computational constraints of the multi-
phase field model and the continuum field model. The strategies tested so far range
from the application of different discretisation schemes to the use of sparse data
structures and the development of efficient solvers. One of the discussed techniques
is the application of IMEX time integration schemes to the continuum field model,
which treat the diffusion part of the model with an implicit time integration
method, while the reaction part is treated with an explicit time integration
method. This approach is validated by the stability analysis in Chapter 4, where
the amplification of perturbations consisting of Fourier modes is studied both
theoretically and numerically.

In Chapter 5, a sparse bounding box algorithm is presented to perform
efficient phase field simulations of grain growth in polycrystalline materials. The
algorithm only solves the phase field equations locally, within bounding boxes that
delimit active regions of the phase field variables. The bounding box algorithm
shows significant improvements over existing techniques as its computational
requirements scale with the grid size instead of with the number of crystallographic
orientations involved. In contrast to other sparse algorithms, the bounding box
data structure naturally allows for semi-implicit and implicit time integration. The
bounding box algorithm is further accelerated through parallelisation and extended
to perform simulations with a more complex phase field model, which is possible
through its object-oriented design.

So far, multigrid methods developed for phase field simulation of microstructural
evolution only considered a few phase field variables. In Chapter 6 a nonlinear
multigrid solver is constructed based on the FAS scheme to solve the multi-
phase field model for multiple phase field variables. Experiments with this solver



CONTRIBUTIONS 167

show that the convergence rates are independent of the grid size. However, the
convergence properties of the multigrid solver depend on the number of involved
phase field variables: for larger numbers, the convergence deteriorates.

The applicability of the bounding box algorithm developed in Chapter 5 is
illustrated in Chapter 7 and Chapter 8. To gain more insight in the pinning effect
of second-phase particles on grain growth, the effect of spheroid particles is studied
in Chapter 7 by three-dimensional phase field simulations with the continuum
field model. The pinning effect of a particle distribution is found to be stronger
for increasing volume fraction, and for increasing aspect ratio. A notable result of
the analysis of the simulation results is that in spite of the increase of the number
of particles located at boundary junctions with increasing aspect ratio, for all
simulated aspect ratios, a volume fraction dependence of the limiting mean grain
size of 1/f0.93

V is obtained, which follows theoretical predictions. Furthermore,
based on the simulation results, a generalised Zener type relation is proposed.

Chapter 8 presents preliminary results on phase field simulation with continuum
field model (2.44), which models grain growth in a microstructure with anisotropic
boundary energy properties. Three-dimensional grain growth simulations are
performed in a microstructure with fibre texture, for an isotropic and for an
anisotropic boundary energy function. The latter boundary energy function
describes the boundary energy of the low-angle boundaries by a Read-Shockley
dependence, while the high-angle boundaries are attributed a constant, higher
energy quantity. The simulation results show that the low-angle boundaries
are clearly preferred during grain growth in the microstructure with anisotropic
boundary properties. The anisotropic boundary energy formulation is furthermore
observed to change the individual growth rates of the grains as a function of the
number of grain faces. The neutral number of faces, for which the grain size
is stable, is found to be larger in the microstructure with anisotropic boundary
properties than in the microstructure with isotropic boundary properties. However,
a larger amount of grains is required to derive a reliable analysis of the effect of
anisotropic boundary energy on grain growth from three-dimensional phase field
simulations.

9.3 Contributions

The main contributions of this thesis are:

• the development of a sparse bounding box algorithm to perform efficient
phase field simulations of grain growth in polycrystalline materials. The
bounding box algorithm shows significant improvements over existing
techniques, as its computational requirements scale with the size of the
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microstructure instead of with the number of crystallographic orientations
involved.

• a parallel implementation of the bounding box algorithm, which enables
large-scale simulations that were infeasible before.

• the development and implementation of a nonlinear multigrid solver based
on the FAS scheme with convergence properties that are independent of the
grid size.

• a study of the effect of the aspect ratio and the volume fraction of spheroid
second-phase particles with constant properties on grain growth, by three-
dimensional phase field simulations.

• three-dimensional simulation results on the effect of anisotropic boundary
energy formulation on grain growth in a fibre-textured microstructure

9.4 Future research directions

There are different possible directions for future research, both in the development
of computational acceleration strategies and in materials science.

Computational acceleration strategies

As mentioned in Section 3.3.3, the sparse algorithm of [133] exploits the property
that the evolution of the phase field variables in a grain growth simulation is
limited to the grain boundary regions. The algorithm accordingly distinguishes
the evolving phase field values at grain boundaries from the constant phase field
values inside the grains. In the same way, in the context of the bounding box
algorithm, it might be possible to give instructions to the solver not to compute
the phase field values that are already at equilibrium.

In Section 3.2.2, we described the merits of adaptive time stepping. Thanks to the
drastic reduction of the involved number of unknowns by the sparse data structure
of the bounding box algorithm, in combination with the fact that the cuboid shape
of the bounding boxes closely resembles the structure of the underlying grid, the
use of adaptive time stepping now seems more appropriate.

The current parallel implementation of the bounding box algorithm partitions the
simulation work by assigning approximately equal amounts of bounding boxes to
each involved processor. An improvement on this partitioning would be to take
into account the actual size of the boxes. Moreover, a graph cut algorithm could
be applied in order to minimise the connections between the grains and thus the
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communication between the processors. Also, the current implementation would
benefit from dynamic load balancing.

The numerical experiments with the implicit time stepper described in Section 8.2.1
are limited. It would be interesting to see how other nonlinear methods behave
when solving the anisotropic continuum field model. Furthermore, we would like
to explore the connection of the bounding box algorithm with the theory of local
defect correction methods.

It was briefly mentioned in Section 6.3.2 how the multigrid solver developed in
Chapter 6 could benefit of the concept of locally active phase field variables.
There are several ways in which the ideas of the bounding box algorithm and
the developed multigrid solver could be combined. The multigrid solver could be
integrated with the bounding box algorithm to solve the equations locally. Another
possibility is to use the idea of delimiters to specify to the multigrid solver where
the active grain regions are located.

Materials science research

In Chapter 7, the pinning effect of second-phase particles with a spheroid shape was
studied. For further research, it would be interesting to study this effect for a larger
range of aspect ratios and volume fractions, and different orientation distributions
of the particles. In addition, the effect of evolving second-phase particles could be
studied by extending the model equations. Simulations with this extended model
could also be performed within the framework of the bounding box algorithm.

The simulation results presented in Chapter 8 are focused on the effect of
anisotropic formulation of the grain boundary energy, as a function of the
misorientation angle of a boundary. Further investigations could include the effect
of anisotropic formulation of the grain boundary mobility. Another interesting
topic is the effect of the inclination dependence of both the boundary energy and
the boundary mobility on grain growth.

The description of the crystallography of the three-dimensional microstructures in
Chapter 8 is limited to microstructures with fibre texture. For realistic materials,
a more general, three-dimensional description of the crystallography will provide
more insight into the interplay of texture and grain growth.
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