
Variable Compression in ProbLog

Theofrastos Mantadelis and Gerda Janssens

Departement Computerwetenschappen, K.U. Leuven
Celestijnenlaan 200A - bus 2402, B-3001 Heverlee, Belgium

{firstname.lastname}@cs.kuleuven.be

Abstract. In order to compute the probability of a query, ProbLog
represents the proofs of the query as disjunctions of conjunctions, for
which a Reduced Ordered Binary Decision Diagram (ROBDD) is com-
puted. The paper identifies patterns of Boolean variables that occur in
Boolean formulae, namely AND-clusters and OR-clusters. Our method
compresses the variables in these clusters and thus reduces the size of
ROBDDs without affecting the probability.
We give a polynomial algorithm that detects AND-clusters in disjunctive
normal form (DNF) Boolean formulae, or OR-clusters in conjunctive
normal form (CNF) Boolean formulae.
We do an experimental evaluation of the effects of AND-cluster compres-
sion for a real application of ProbLog. With our prototype implemen-
tation we have a significant improvement in performance (up to 87%)
for the generation of ROBDDs. Moreover, compressing AND-clusters of
Boolean variables in the DNFs makes it feasible to deal with ProbLog
queries that give rise to larger DNFs.
Keywords: ProbLog, Statistical Relation Learning, Probabilistic Logic
Programming, Variable Compression, Binary Decision Diagrams

1 Introduction

ProbLog [1, 2] is a probabilistic framework that extends Prolog with probabilis-
tic facts. ProbLog computes the probability of a query in two main steps. First,
ProbLog collects the probabilistic facts for each SLD proof of the query. Each
probabilistic fact is represented by a Boolean variable, each proof by the con-
junction of probabilistic facts used in the proof, and the set of all proofs by a
disjunction of conjunctions (a DNF). In the second step, ProbLog uses ROBDDs
[3, 4] to calculate the success probability of the query. Note that assessing the
probability of a DNF Boolean formula is a #P-complete problem [5] and using
ROBBDs is a state-of-the-art approach [6].

For typical ProbLog applications, generating a ROBDD can become one of
the limiting factors. The size of the constructed ROBDD depends heavily on the
variable ordering. There has been a lot of research on finding efficient variable
orderings by using static [7, 8] and dynamic heuristics [9, 10]. In this paper we
present variable compression as a complementary approach to construct smaller
ROBDDs. We observed patterns (AND-clusters, OR-clusters) in the ROBDDs
that make it possible to replace a set of Boolean variables with a single new one



without affecting the final probability. To benefit from the variable compression,
the clusters should be discovered before the actual ROBDD generation.

The paper has two main contributions. The first contribution is the definition
of the AND-clusters and OR-clusters, their usage in assessing the probability
of a DNF Boolean formula, and their usage for compressing ROBDDs. The
second contribution is the Book Marking algorithm that detects AND-clusters
in ProbLog set of proofs.

We also evaluate experimentally the effects of the AND-clusters in a typi-
cal ProbLog application [1, 11]. Our experiments show the impact of the AND-
cluster compression: the number of variables in the ROBDD is on average re-
duced by 28% and the time performance of the generation of the ROBDDs
improves on average by 41%. The AND-cluster compression also allowed us to
compute queries that caused timeouts. In our benchmarks AND-cluster compres-
sion is beneficial for larger DNFs where the cost of executing the bookmarking
algorithm is lower than the time gain we have during ROBDD generation.

We briefly introduce ProbLog in Section 2 and explain how ROBDDs are
used. In Section 3 we define AND-clusters, OR-clusters and present their use
in a probabilistic context. The Book Marking algorithm for AND-clusters is in
Section 4. The experiments follow in Section 5 and the complexity analysis is in
Section 6. Finally, Section 7 concludes.

2 ProbLog and its use of ROBDDs

2.1 The ProbLog Language

A ProbLog program T [2] consists of a set of labelled ground facts pi :: pf i

together with a set of definite clauses. Each such fact pf i is true with probability
pi, that is, these facts correspond to random variables, which are assumed to be
mutually independent. Together, they thus define a distribution over subsets of
LT = {pf1, . . . , pfn}. The definite clauses add arbitrary background knowledge
(BK) to those sets of logical facts. Given the one-to-one mapping between ground
definite clause programs and Herbrand interpretations, a ProbLog program also
defines a distribution over its Herbrand interpretations.

ProbLog inference calculates the success probability Ps(q|T ) of a query q in
a ProbLog program T , that is, the probability that the query q is provable in a
logic program that combines BK with a randomly sampled subset of LT .

Figure 1 shows a small ProbLog program encoding a probabilistic graph and
the graph that is represented by the probabilistic facts edge/2. The success prob-
ability of path(1,3) corresponds to the probability that a randomly sampled
subgraph contains at least one of the four possible paths from node 1 to node 3.

2.2 Program Execution in ProbLog

ProbLog programs are executed in two steps. Given a ProbLog program T and a
query q, the first step, SLD-resolution, collects all proofs for query q in BK∪LT .



0.5::edge(1, 2). % x0 0.4::edge(1, 4). % x1 0.7::edge(2, 3). % x2

0.8::edge(2, 6). % x3 0.9::edge(4, 5). % x4 0.7::edge(5, 2). % x5

0.6::edge(5, 7). % x6 0.4::edge(6, 3). % x7 0.3::edge(6, 7). % x8

path(X, Y):- path(X, Y, [X]).

path(X, Y, _):- edge(X, Y).

path(X, Y, A):- edge(X, Z), \+ member(Z, A), path(Z, Y, [Z|A]).

% Query: problog_exact(path(1, 3), Probability)

1 2 3

4 5 67

x0

x1

x4

x5

x2

x7x3

x6 x8

Fig. 1. Example ProbLog program path/2 and its graph.

Proofs are stored as lists of probabilistic facts in a trie data structure. This trie
represents the proofs of the query q in a compact way as it exploits prefix sharing
between proofs. The usage of tries is not important for this paper.

In our example, SLD resolution finds four proofs for the query path(1,3)
which are represented by the following lists of probabilistic edge/2 facts:

edge(1,2),edge(2,3)

edge(1,2),edge(2,6),edge(6,3)

edge(1,4),edge(4,5),edge(5,2),edge(2,3)

edge(1,4),edge(4,5),edge(5,2),edge(2,6),edge(6,3)

In general these lists of probabilistic facts express the Boolean formula:∨
prj∈proofs

(
∧

pfi∈prj

pfi) (1)

where the pfi represent the probabilistic facts used in proof prj . Using the xi

to represent the edge/2 facts as indicated in the ProbLog program, the DNF
for the path(1,3) query is the formula (x0 ∧ x2) ∨ (x0 ∧ x3 ∧ x7) ∨ (x1 ∧ x4 ∧
x5 ∧ x2) ∨ (x1 ∧ x4 ∧ x5 ∧ x3 ∧ x7). In order to compute the correct probability
for (1), ProbLog faces the disjoint sum problem [6]. ProbLog solves this in its
second step, namely by the transformation of the disjunction of conjunctions
into mutually disjoint conjunctions by constructing a ROBDD for (1).

A ROBDD for the path(1,3) example of Figure 1 is given in Figure 2a.
The topmost circular node in the ROBDD corresponds to the probabilistic fact
x0 and is called a variable node. A variable node has two successors pointed to
by the high edge and the low edge. Edges are implicitly directed: they point
downwards. The ROBDD that is rooted at the low successor represents the
Boolean expression that is yielded by substituting “false” for the variable. The
high successor represents the Boolean expression that is yielded by substituting



“true”. The “true” node 1 and the “false” node 0 represent whether the binary
formula is satisfied or not. The paths from the root to node 1 give the disjoint
sum as a disjunction of disjoint conjunctions.

The computation of the probability is bottom up and linear in the size of
the ROBDD. Details are in [2]. ProbLog computes that 0.498296 is the exact
probability that a path from node 1 to node 3 exists.

 x0 

 x1 

 x2 

 x3 

 x4 

 x5 

 x7 

F0

a9

aa

9aab

0

9e

a1

a6

1

ac

a7

9d 98

(a) Bad ordering.
x0-x1-x2-x3-x4-x5-x7

 x0 

 x1 

 x4 

 x5 

 x2 

 x3 

 x7 

F0

a7

a0

9b

a2

0

a1

9a

1

98

(b) Good ordering.
x0-x1-x4-x5-x2-x3-x7

 x7 

 x3 

 x2 

 x5 

 x0 

 x4 

 x1 

F0

b4

b3

b2

b1

0

afb0

ae

1

ad

(c) ProbLog ordering.
x7-x3-x2-x5-x0-x4-x1

Fig. 2. ROBDD for the query path(1,3).

Note that in general a variable can have multiple nodes in a ROBDD. For
example, in Figure 2a the variables x2, x3, x4, x5 have two nodes each. A ROBDD
imposes an order on the Boolean variables and the different variables appear in
that order in all the paths of the ROBDD. ROBDDs are reduced which means
that two nodes never have the same successors if they are nodes of the same
variable and that no node has the same high and low successor. These reductions
do not perform the variable compression we are aiming at.

3 Variable Compression

3.1 Motivation

ProbLog uses ROBDDs to compute the success probability of a query. While the
complexity of the calculation of the probability is linear in terms of the size of
the ROBDD, the generation of the ROBDD is NP-hard.

It is well-known that the variable ordering used to construct the ROBDD for
a Boolean formula has an impact on the size of the ROBDD. For our path(1,3)
example, Figure 2a until 2c use different variable orderings. The orderings that
give rise to smaller ROBDDs are called good orderings: constructing smaller



ROBDDs takes less time and space and also the computation of the probability is
faster. State-of-the-art ROBDD tools use heuristics to decide about the variable
ordering, whose search space is exponential.

We reduce the search space for the variable ordering by decreasing the number
of variables in the Boolean formula, namely by replacing subsets of variables by
new representative variables. We call this variable compression. We can only
do variable compression if we do not affect the probability.

We discovered sets of variables in the ROBDDs for which we can compute
the contribution of such a set of variables to the probability of the ROBDD
independently from the rest of the ROBBD. For example, the set of variables x1,
x4 and x5 in Figure 2b. This implies that we can replace those three variables by a
new representative variable, whose probability is computed from the probabilities
of x1, x4 and x5. Later in this section we define this set as an AND-cluster.

In order to do variable compression before ROBDD generation, we need to
detect these patterns in the Boolean formulae, or in the case of ProbLog at the
level of the DNF (1). It turns out that in the proofs of path(1,3) either the prob-
abilistic facts corresponding to x1, x4 and x5 appear all three together in a proof,
or none of them occurs. The AND-clusters are determined for particular DNFs
and as such they are query-dependent. For path(1,7), x1, x4 and x5 no longer
form an AND-cluster as we also have a proof edge(1,4),edge(4,5),edge(5,7)
that does not contain x5. Now only x1 and x4 form an AND-cluster.

As the AND-clusters are query-dependent, they do not appear in the Prob-
Log source program itself. Although one could be tempted to replace the facts
edge(1,4),edge(4,5) by a single one, this is not a good idea because path/2
queries could have 4 as a starting node.

3.2 Cluster Definitions

We define two kinds of clusters and proof that their compression does not effect
the final probability. We define the clusters in terms of the ROBDDs because
the patterns can also be valuable for other application areas that use ROBDDs.

Definition 1. Let F be a Boolean formula with variables v1, . . . , vl. The vari-
ables {x1, . . . , xk} ⊆ {v1, . . . , vl}, k > 1, form an AND-cluster if there exists a
variable ordering such that the ROBDD R of F

1. has only one node ni for variable xi, 1 ≤ i ≤ k,
2. node nj has as only incoming edge the high edge of node nj−1, 2 ≤ j ≤ k,
3. and the low edges of the nodes {n1, ..., nk} connect to the same node in R.

Definition 2. Let F be a Boolean formula with variables v1, . . . , vl. The vari-
ables {x1, . . . , xk} ⊆ {v1, . . . , vl}, k > 1, form an OR-cluster if there exists a
variable ordering such that the ROBDD R of F

1. has only one node ni for variable xi, 1 ≤ i ≤ k,
2. node nj has as only incoming edge the low edge of node nj−1, 2 ≤ j ≤ k,
3. and the high edges of the nodes {n1, ..., nk} connect to the same node in R.



In a probabilistic framework like ProbLog that uses ROBDDs to calculate
probabilities, each ROBDD variable has an assigned probability. To be able to
compress the clusters of variables to new representative variables, we need to
compute the probabilities of the representative variables such that the probali-
bilty we compute for the ROBDD as a whole does not change.

Theorem 1 (Probability of AND-cluster). To replace an AND-cluster {x1,
. . . , xn} by a representative variable V with probability PV = PAND({x1, . . . , xn})
=

n∏
i=1

P (xi) does not change the probability of the ROBBD as a whole.

Proof. First consider the simple case of a ROBDD that consist of exactly one
AND-cluster, {x1, . . . , xn}. The probability of this ROBDD is P (x1) · ... ·P (xi) ·
... · P (xn) · 1 + (1− P (x1) · ... · P (xi) · ... · P (xn)) · 0 =

n∏
i=1

P (xi). But in general,

an AND-cluster has an outgoing high edge to a part T with PT and its low
edges connect to a part F with PF . The probability of the ROBDD part that
includes the AND-cluster can be generalised as P = P (x1) · ... · P (xi) · ... ·
P (xn) · PT + (1 − P (x1) · ... · P (xi) · ... · P (xn)) · PF = PT ·

n∏
i=1

P (xi) + PF −

PF ·
n∏

i=1

P (xi) = (PT − PF ) ·
n∏

i=1

P (xi) + PF . If we replace the AND-cluster with

a new representative variable V with PV and calculate the probability, we get
P = PV · PT + (1− PV ) · PF = PV · PT + PF − PV · PF = (PT − PF ) · PV + PF .

Therefore PV = PAND({x1, . . . , xn}) =
n∏

i=1

P (xi).

Theorem 2 (Probability of an OR-cluster). To replace an OR-cluster {x1,
. . . , xn} to the representative variable V with probability PV = POR({x1, . . . , xn})
= P (x1) + (1 − P (x1)) · POR({x2, . . . , xn}) and POR({xn}) = P (xn) does not
change the probability of the ROBBD as a whole.

Proof. First consider the simple case of a ROBDD that consist of exactly one
OR-cluster, {x1, . . . , xn}. The probability of this ROBDD is P (x1) · 1 + (1 −
P (x1)) · (P (x2) · 1 + (1 − P (x2)) · . . . · (P (xi) · 1 + (1 − P (xi)) · . . . · (P (xn) ·
1 + (1 − P (xn)) · 0)) . . .) = P (x1) + (1 − P (x1)) · POR({x2, . . . , xn}). But in
general an OR-cluster has its high edges to a part T with PT and an outgoing
low edge to a part F with PF . The probability can be generalised as P =
P (x1) ·PT +(1−P (x1)) · (P (x2) ·PT +(1−P (x2)) · . . . · (P (xi) ·PT +(1−P (xi)) ·
. . . ·(P (xn) ·PT +(1−P (xn)) ·PF )) . . .) = (P (x1)+(1−P (x1)) ·P (x2)+ . . .+(1−
P (x1)) · . . . · (1−P (xi−1)) ·P (xi) + . . .+ (1−P (x1)) · . . . · (1−P (xn−1)) ·P (xn)) ·
PT + (1− P (x1)) · . . . · (1−P (xn)) · (PF /PT ). If we replace the OR-cluster with
a new representative variable V with PV and calculate the probability, we get
P = PV ·PT +(1−PV ) ·PF if we replace PV = P (x1)+(1−P (x1)) ·P (x2)+ . . .+
(1−P (x1)) · . . . ·(1−P (xi−1)) ·P (xi)+ . . .+(1−P (x1)) · . . . ·(1−P (xn−1)) ·P (xn)
then we need to prove that 1−PV = (1−P (x1)) · . . . ·(1−P (xn))⇒ 1−(P (x1)+
(1 − P (x1)) · P (x2) + . . . + (1 − P (x1)) · . . . · (1 − P (xi−1)) · P (xi) + . . . + (1 −



P (x1)) · . . . · (1 − P (xn−1)) · P (xn)) = (1 − P (x1)) · . . . · (1 − P (xn)). Finally
by using the distribution rule we see that the previous formula is a tautology.
Therefore PV = POR({x1, . . . , xn}) = P (x1) + (1− P (x1)) · POR({x2, . . . , xn}).

3.3 Using the Clusters for Variable Compression

We illustrate the variable compression with our path(1,3) example. In Figure 3a
we have two AND-clusters, {x1, x4, x5} and {x3, x7}. After compression we ob-
tain the ROBDD in Figure 3b with two new Boolean variables x1, 4, 5, x3, 7 and
their associated probabilities P (x1, 4, 5)1, P (x3, 7)2. After AND-compression we
now have two OR-clusters, {x0, x1, 4, 5} and {x3, 7, x2} as shown in Figure 3b; by
further compressing them we get the ROBDD in Figure 3c with two new Boolean
variables x0, 1, 4, 5, x3, 7, 2 and their probabilities P (x0, 1, 4, 5)3, P (x3, 7, 2)4. Fi-
nally, by compressing the single AND-cluster {x0, 1, 4, 5, x3, 7, 2} of the ROBDD
in Figure 3c we end up with the ROBDD in Figure 3d that has a single Boolean
variable x0, 1, 4, 5, 3, 7, 2 and probability P (x0, 1, 4, 5, 3, 7, 2)5.

 x0 

 x1 

 x4 

 x5 

 x2 

 x3 

 x7 

F0

a7

a0

9b

a2

0

a1

9a

1

98

(a) AND-clusters.

 x0 

 x1,4,5 

 x3,7 

 x2 

F0

dd

dc

db

0

da

1

(b) OR-clusters.

 x0,1,4,5 

 x3,7,2 

F0

dd

db

0 1

(c) AND-cluster.

 x0,1,4,5,3,7,2 

F0

db

0 1

(d) Compressed.

Fig. 3. Compressing ROBDD of path(1,3). Notation: coloured nodes represent clus-
ters.

Not all ROBDDs can be compressed to a single variable, iterating AND/OR-
cluster based variable compression can lead to an easier to construct ROBDD.
We want to use variable compression to be able to deal with queries that caused
timeouts. So, we are willing to pay a certain cost to detect the clusters. In order

1 P (x1, 4, 5) = PAND({x1, x4, x5}) = 0.4 · 0.9 · 0.7 = 0.252
2 P (x3, 7) = PAND({x3, x7}) = 0.8 · 0.4 = 0.32
3 P (x0, 1, 4, 5) = POR({x0, x1, 4, 5}) = 0.5 + (1− 0.5) · 0.252 = 0.626
4 P (x3, 7, 2) = POR({x3, 7, x2}) = 0.32 + (1− 0.32) · 0.7 = 0.796
5 P (x0, 1, 4, 5, 3, 7, 2) = PAND({x0, 1, 4, 5, x3, 7, 2}) = 0.626 · 0.796 = 0.498296



to use our variable compression in practise, we first have to detect AND-clusters
in DNFs. In the rest of this paper we focus on AND-clusters and we already
obtain promising results with AND-cluster variable compression. The detection
of OR-clusters in the DNFs is part of future work.

4 Discovering AND-clusters

To be able to benefit from AND-cluster compression, we need to identify them
before the ROBDD generation. Fortunately, AND-clusters also appear in the
DNF representing the proofs: either all the probabilistic facts of an AND-cluster
appear in a proof, or none of them. A naive approach to detect AND-clusters is to
find longest common subsequences (LCS) in conjunctions of the DNF, however
this is an NP-hard problem [12]. As our problem is a special case of the LCS we
can do better.

Lemma 1. Every set of probabilistic facts {pf1, ..., pfn} in a set of proofs {pr1, . . .
, prm} satisfying ∀pfi ∈ {pf1, ..., pfn} occur(pfi) = (

⋂
pfi∈prj

prj)∩(
⋂

pfi 6∈prj
prj)

= {pf1, ..., pfn} forms an AND-cluster.

The first part of occur(pfi) is the set of probabilistic facts that occur in each
proof in which pfi occurs. The second part is the set of probabilistic facts that do
not occur in proofs that do not contain pf . We use prj to denote the complement
of the set prj with respect to the set of the probabilistic facts in all proofs. The
first set is a possible AND-cluster for pfi but it might also contain probabilistic
facts that occur in proofs that do not contain pfi. In order to exclude the latter
ones, the possible AND-cluster has to be restricted to probabilistic facts that
only occur in proofs containing pfi.

4.1 The Book Marking Algorithm

Based on Lemma 1, the Book Marking algorithm in Table 1 deals with all the
proofs one by one and ensures that for all probabilistic facts pfi seen by the
algorithm so far occur(pfi) is computed. The algorithm encodes a proof by a
bit string. We order the probabilistic facts by their chronological appearance in
the proofs. The ith probabilistic fact is denoted by pf(i). The ith bit encodes
whether the probabilistic fact pf(i) is used in the proof. We refer to the bitstring
as the occurrence number (ON) of the proof.

We use a two dimensional matrix (MA) of bits to represent the AND-clusters.
Row k corresponds to the probabilistic fact pf(k) and represents occur(pf(k)).
Column l represents the probabilistic fact pf(l). The element l of a row k indi-
cates whether pf(l) forms an AND-cluster with pf(k). This matrix grows incre-
mentally as we deal with the proofs one by one and the size of each dimension
is equal to the number of different, already seen probabilistic facts.

Dealing with a new proof involves computing ON and then computing its
impact on the AND-clusters already in MA according to Lemma 1 using the
following three operations:



1. for each previously seen probabilistic fact i which appears in this proof, we
compute MA[i] = MA[i] ∧ON ,

2. for each previously seen probabilistic fact i that does not occur in this proof,
we compute MA[i] = MA[i] ∧ ¬ON ,

3. we grow MA to include AND-clusters for the probabilistic facts that were
not seen before.

After all proofs of the DNF have been dealt with, all the rows in MA with more
than one active bit (i.e. set to 1) represent an AND-cluster.

bookmarking(DNF) {

for each Proof in DNF {

ON = bit_encode(Proof)

for (i = 0; i < MatrixSize; i++) {

if (2 ^ i & ON) > 0 then

\\ Old row of pf in ON - operation 1

MA[i] = MA[i] & ON

else

\\ Old row of pf not in ON - operation 2

MA[i] = MA[i] & neg(ON)

}

for (i = MatrixSize; i < ListLength; i++) {

\\ Add a new row - operation 3

MA[i] = neg(2 ^ MatrixSize - 1) & ON

}

MatrixSize = ListLength

}

}

Table 1. The Book Marking algorithm.

4.2 An Example of the Book Marking Algorithm

As an example for the Book Marking algorithm we use the proofs of path(1,3):
{x0, x2}, {x0, x3, x7}, {x1, x4, x5, x2}, {x1, x4, x5, x3, x7}. Each row of Table 2
corresponds to a single proof (PR), and has the probabilistic fact order (OL),
the occurrence number (ON) and the matrix (MA).

For the first proof the algorithm uses the order x0 < x2 to compute 11 as the
occurrence number of the proof. As initially the matrix MA is empty, operation
3 uses the ON to construct a MA with two rows and two columns with all bits
activated.

For the second proof the algorithm adds x3 and x7 to the order which be-
comes x0 < x2 < x3 < x7. The algorithm computes ON = 1101; note that we
are reading the bitstrings from right to left. Operation 1 computes the conjunc-
tion of 1101 with the row of x0: 11∧ 1101 = 0011∧ 1101 = 0001. This operation
sets the bit corresponding to x2 to 0 as x0 and x2 are no longer an AND-cluster.
For the row of x2, operation 2 computes 11 ∧ neg(1101) = 0011 ∧ 0010 = 0010



and sets the bit for the probabilistic fact x0 to 0. Finally, the algorithm extends
MA by two new rows and columns for the probabilistic facts x3 and x7 with
as values of the rows neg(11) ∧ 1101 = 1100 ∧ 1101 = 1100. Note that also the
existing rows are expanded with new columns set to 0.

Proof(PR) = x0, x2
Order List(OL) = [x0, x2]
Occurrence Number (ON) = 11 = 3
Matrix(MA) = [3, 3]

1 1 x2
1 1 x0

x2 x0

PR = x0, x3, x7
OL = [x0, x2, x3, x7]
ON = 1101 = 13
MA = [3 ∧ 13, 3 ∧ neg(13), neg(3) ∧ 13, neg(3) ∧ 13]
MA = [1, 2, 12, 12]

1 1 0 0 x7
1 1 0 0 x3
0 0 1 0 x2
0 0 0 1 x0

x7 x3 x2 x0

PR = x1, x4, x5, x2
OL = [x0, x2, x3, x7, x1, x4, x5]
ON = 1110010 = 114
MA = [1 ∧ neg(114), 2 ∧ 114, 12 ∧ neg(114),

12 ∧ neg(114), neg(15) ∧ 114,
neg(15) ∧ 114, neg(15) ∧ 114]

MA = [1, 2, 12, 12, 112, 112, 112]

1 1 1 0 0 0 0 x5
1 1 1 0 0 0 0 x4
1 1 1 0 0 0 0 x1
0 0 0 1 1 0 0 x7
0 0 0 1 1 0 0 x3
0 0 0 0 0 1 0 x2
0 0 0 0 0 0 1 x0

x5 x4 x1 x7 x3 x2 x0

PR = x1, x4, x5, x3, x7
OL = [x0, x2, x3, x7, x1, x4, x5]
ON = 1111100 = 124
MA = [1 ∧ neg(124), 2 ∧ neg(124), 12 ∧ 124,

12 ∧ 124, 112 ∧ 124, 112 ∧ 124, 112 ∧ 124]
MA = [1, 2, 12, 12, 112, 112, 112]

1 1 1 0 0 0 0 x5
1 1 1 0 0 0 0 x4
1 1 1 0 0 0 0 x1
0 0 0 1 1 0 0 x7
0 0 0 1 1 0 0 x3
0 0 0 0 0 1 0 x2
0 0 0 0 0 0 1 x0

x5 x4 x1 x7 x3 x2 x0

Table 2. Book Marking algorithm example.

When all proofs are dealt with, the Book Marking Algorithm has found
two different AND-clusters, namely {x1, x4, x5} and {x3, x7}. Without vari-
able compression, ProbLog generates the ROBDD of Figure 2c, which has a
size in between the sizes of the other two ROBDDs in Figure 2. After com-
pressing the variables of the AND-clusters to a representative variable x1, 4, 5
with P (x1, 4, 5) = 0.252 and x3, 7 with P (x3, 7) = 0.32, we get the compressed
proofs: {x0, x2}, {x0, x3,7}, {x1,4,5, x2}, {x1,4,5, x3,7}. For the compressed
proofs, ProbLog generates the ROBBD of Figure 3b.

The algorithm as presented here only tackles proofs that contains either
positive or negative occurrences of each probabilistic fact and not both. If in one
proof a probabilistic fact is positive and in an other is negative, this probabilistic
fact does not form an AND-cluster.



5 Experiments for AND-clusters

We implemented the variable compression method using only AND-clusters
within ProbLog. To judge the practicality and the impact we use ProbLog bench-
marks that discover links in real biological networks [11]. Graphs model proba-
bilistic links between concepts such as genes, proteins, etc.. The first benchmark
consists of a graph of concepts related to the Alzheimer disease that has 23060
edges; because of the size, inference for this graph soon becomes intractable.
We query for the existence of a path between two given nodes, to control the
problem size we limit the maximum path length. For the second benchmark, we
take the experiments (the same data sets and the same queries) from [1]. All
the graphs are fragments of the same network [11]. The experiments should give
answers to the following questions:

1. What is the compression ratio in a real life data set?
2. How does compression improve the performance of generating a ROBDD?
3. In which cases is the variable compression beneficial?

The default setting of ProbLog is to use CUDD’s [13] group sifting [14] dy-
namic reordering during ROBDD generation. CUDD uses the following memory-
time trade-off. It starts by consuming memory without reordering the variables,
once the memory usage passes a threshold, it starts reordering the variables and
as a consequence it consumes time. While CUDD is implemented in C, our Book
Marking algorithm is implemented in Yap Prolog [15].

When we increase the problem size for the first benchmark, we see that
the ROBDD generation time is the limiting factor. We executed three different
queries with a timeout of 1 hour for the ROBDD generation. Each query was
executed 5 times and we present the averaged times for the ROBDD generation.
Table 3 presents the comparison of executing the queries with four different
settings. The first and second column use the dynamic reordering strategy; the
third and the fourth use the order in which probabilistic facts appear in the
proofs as a static ordering; the first and third column use variable compression of
AND-clusters. Our experiments confirm that for big ProbLog problems dynamic
reordering performs better than static ordering. Variable compression improves
the ROBDD generation times and has the expected effect both for dynamic and
static orderings.

The second part of Table 3 presents the compression statistics which are
independent of the reordering method: the time to do variable compression,
the number of AND-clusters found, the number of variables before compres-
sion (ovars), the number of variables after compression (cvars), and finally the
variable compression ratio6. We note that the time cost for doing the variable
compression is by far less than the time gained during ROBDD generation. More
importantly, the time for finding the AND-clusters is polynomial (as shown in
the next section), while that for ROBDD generation is exponential. Because our

6 Ratio = (ovars - cvars) / ovars



constant costs are relatively high, we notice that in small problems variable com-
pression needs more time than we gain during ROBDD generation, but those
problems are solved very fast either way. The benefit of variable compressing is
far more significant for larger problem sizes.

Path Reordering Reordering Static Static Compression statistics
Length Compressed only Compressed time clusters ovars cvars ratio

8 4 4 5 5 7 11 34 23 32%
9 51 97 7 9 22 17 91 71 22%

(a) 10 153 297 10 12 32 25 137 110 20%
11 24,830 90,529 * * 336 76 337 254 25%
12 3,083,750 - - - 835 92 479 378 21%

8 5 4 4 5 5 7 26 17 35%
(b) 9 282 417 24,904 47,000 72 49 170 119 30%

10 1,035 1970 * * 91 53 226 169 25%
11 1,019,588 - - - 966 104 528 410 22%

4 4 4 4 4 0 3 13 10 23%
(c) 5 95 246 18 23 64 42 135 91 33%

6 224 497 74 122 33 45 180 131 27%
7 58,917 2,488,793 * * 385 92 455 350 23%

Table 3. First benchmark results. The reported times are in milliseconds. Longer path
lengths timeout. A - indicates a timeout and * that the system runs out of memory.

In order to confirm the positive results for the compression ratio and the
better performance of the ROBDD generation, we use the larger set of experi-
ments of our second benchmark. We study the impact of variable compression
in combination with dynamic reordering as it was confirmed to be the better
option for ProbLog. In this benchmark, all the queries can be computed without
variable compression. The behaviour of queries is diverse, as some spent most of
the time in the ROBDD generation and others in SLD-resolution. Among the
360 queries of [1], 100 queries do not use any probabilistic facts. We divided
the other 260 queries in 3 groups: the first group contains 92 queries that gen-
erate tiny ROBDDs with less than 20 variables; the second group contains 152
queries that generate small ROBDDs with 20 or more variables but less than
100; and finally the third group contains the queries that generated relatively
big ROBDDs with more than 100 variables.

For the ’Tiny’ group we obtain an average compression ratio of 42%. Their
ROBDD generation times and the variable compression times are too small to
draw any conclusions. For the other two groups, we compute averages for each
group and for both groups together. The results are in Table 4. We give the
variable compression ratio, the time gain realised for the ROBDD generation,
and the variable compression time relative to the SLD resolution time.

While the results might be specific for the application, they confirm the
actual presence of AND-clusters in real world datasets. In this real dataset we



Query ROBDD ROBDD Gen. Compression
Group Comp. Ratio Time Gain Time Ratio

Small (28± 11)% (40± 36)% (26± 41)%
Big (27± 5)% (47± 23)% (69± 107)%
All (28± 10)% (41± 36)% (32± 53)%

Table 4. Averaged results and standard deviation. Where Comp. Ratio = (number
of variables before compression - number of variables after compression) / number
of variables before compression, ROBDD Gen. Time Gain = (ROBDD time without
compression - ROBDD time with compression) / ROBDD time without compression
and Compression Time Ratio= (SLD time with book marking algorithm - SLD time
without) / SLD time without.

encounter a compression ratio that ranges from 7% to 61% with an average of
28%. The compression ratio results are similar to the ones of the first benchmark.

In the ‘Small query’ group 44% of the queries have a small number of variables
and they do not need variable reordering neither before nor after compression:
their time gain is near 0. Most of the other queries in the ‘Small query’ group
need reordering before and no reordering after compression, so they have a huge
time gain up to 87%. On average we end up with a gain of 40%.

For the ‘Big query’ group the average gain is larger namely 47%, but the
variation is less as all the queries need reordering before and after compression.
Here the gain comes from having less variables that have to be dealt with during
the reordering by the state-of-the-art tool.

Comparing the variable compression time with the SLD-resolution time shows
that the former is smaller than the latter, but its cost is relatively higher for the
’Big’ queries.

Our experiments7 yield promising results, answering our initial questions by
showing that there is in real life ProbLog applications a role for variable com-
pression as it improves significantly the performance of the ROBDD generation.

6 Complexity Analysis

The Book Marking algorithm in Table 1 has a worst case complexity of O(M ·
N2) where M is the number of proofs seen and N is the number of different
probabilistic facts; usually for ProbLog applications M >> N . For all M proofs,
we do a bitwise encoding, and then we modify the matrix MA.

By using an indexed table, the encoding of a proof is done in O(N) time and
requires O(N) space to remember the index for each probabilistic fact encoun-
tered. Each proof needs to modify MA which is an NxN bit table. Activating
or deactivating a bit in the table is done in constant time, but in the worst case
all bits needs to be processed resulting in O(N2) operations. So, the total time

7 For our experiments we used an IntelR CoreTM 2 Duo CPU at 3.00GHz with 2GB
of RAM memory running Ubuntu 8.04.2 Linux.



complexity is O(M · (N + N2)) = O(M · N2) and the total space complexity
O(N + N2) = O(N2).

One can take advantage of the symmetry and other properties of the NxN
bit matrix MA to avoid some computations. These optimisations reduce the
constant times rather than the complexity. One such optimisation is that we use
arbitrary precision integers to represent each row of MA.

7 Related Work and Conclusions

We exploit regularities, AND-clusters and OR-clusters, observed in ROBDDs to
improve the generation of ROBDDs for DNFs in ProbLog. Variable compression
based on these clusters reduces the number of variables in the DNFs. This results
in smaller ROBDDs, whose generation uses less time and memory, and as such
we can deal with ProbLog queries that used to cause timeouts. Our method
is a pre-processing step that detects clusters of Boolean variables. Taking into
account the probabilistic setting, variable compression is feasible and can be
followed by any other variable ordering heuristic. For other applications, one
might be able to find different meaningful compressions or one might just use
our clusters as input to existing variable ordering heuristics.

Variable ordering heuristics also exploit structural properties of the problem
modelled by the ROBDD such as connected variables [16, 14]. Heuristics designed
for one application area might perform poorly in another context [17]. We are
not aware of variable ordering heuristics to be used in a probabilistic context.

Hintsanen [18] argues that structural properties are important for finding the
most reliable subgraph. He calculates the probability of subgraphs connecting
two nodes and search for the subgraph with the maximum probability. The
paper identifies as a special case the series-parallel subgraphs for which they
can compute the probability polynomially. These series-parallel subgraphs have
similarities with our AND/OR-clusters.

We have presented a polynomial algorithm for detecting the AND-clusters
and we have obtained promising results for an application using a real database.
For ProbLog the best results are obtained by combining AND-cluster variable
compression with the group sifting dynamic variable ordering of CUDD. By using
variable compression we managed to answer more queries. We showed that AND-
cluster based variable compression is beneficial for more complex ROBDD.

For a future implementation of the Book Marking algorithm, C would be
a better choice than Prolog both for time efficiency as for space. This would
reduce many hidden constant costs of Prolog and would also save Prolog garbage
collector executions. It is worth noting that the AND-clusters could be computed
in parallel with the SLD-resolution.

In addition to the technical improvements, a challenging task is to investigate
how we can take advantage of OR-clusters and compress the ROBDDs even more.
Finally, the goal would be to generalise the method and to be able to compress
repeated structures in the ROBDD. The size of the ROBDDs is one of the limits



that is currently reached when executing ProbLog programs. We think that an
approach based on variable compression can push this limit.

8 Acknowledgements

We want to thank Bart Demoen and Angelika Kimmig for the valuable discus-
sions and comments. This research is supported by: GOA/08/008 “Probabilistic
Logic Learning”.

References

1. De Raedt, L., Kimmig, A., Toivonen, H.: ProbLog: A probabilistic prolog and its
application in link discovery. In: Proceedings of IJCAI. (2007) 2462–2467

2. Kimmig, A., Santos Costa, V., Rocha, R., Demoen, B., De Raedt, L.: On the
efficient execution of ProbLog programs. In: Proceedings of ICLP. (2008) 175–189

3. Akers, S.B.: Binary decision diagrams. IEEE Trans. Computers 27(6) (1978)
509–516

4. Bryant, R.E.: Graph-based algorithms for boolean function manipulation. IEEE
Trans. Computers 35(8) (1986) 677–691

5. Valiant, L.G.: The complexity of enumeration and reliability problems. SIAM
Journal on Computing 8(3) (1979) 410–421

6. Rauzy, A., Châtelet, E., Dutuit, Y., Bérenguer, C.: A practical comparison of
methods to assess sum-of-products. Reliab Eng Syst Safe 79(1) (2003) 33 – 42

7. Fujita, M., Fujisawa, H., Kawato, M.: Evaluation and improvements of boolean
comparison method based on binary decision diagrams. In: Proceedings of ICCAD.
(1988) 2–5

8. Malik, S., Wang, A., Brayton, R., Sangionvanni-Vincentelli, A.: Logic verification
using binary decision diagrams in a logic synthesis environment. In: Proceedings
of ICCAD. (1988) 6–9

9. Rudell, R.: Dynamic variable ordering for ordered binary decision diagrams. In:
Proceedings of ICCAD. (1993) 42–47

10. Somenzi, F.: Efficient manipulation of decision diagrams. STTT 3(2) (2001) 171–
181

11. Sevon, P., Eronen, L., Hintsanen, P., Kulovesi, K., Toivonen, H.: Link discovery in
graphs derived from biological databases. In: Proceedings of DILS. (2006) 35–49

12. Maier, D.: The complexity of some problems on subsequences and supersequences.
ACM 25(2) (1978) 322–336

13. Somenzi, F.: CUDD: Colorado university decision diagram package release 2.4.1
(2005) http://vlsi.colorado.edu/˜fabio/CUDD/.

14. Panda, S., Somenzi, F.: Who are the variables in your neighborhood. In: Proceed-
ings of ICCAD. (1995) 74–77

15. Santos Costa, V., Damas, L., Reis, R., Azevedo, R.: YAP User’s Manual. (2002)
http://www.ncc.up.pt/˜vsc/Yap.

16. Aloul, F.A., Markov, I.L., Sakallah, K.A.: Faster SAT and smaller BDDs via
common function structure. In: Proceedings of ICCAD. (2001) 443–448

17. Narodytska, N., Walsh, T.: Constraint and variable ordering heuristics for compil-
ing configuration problems. In: Proceedings of IJCAI. (2007) 149–154

18. Hintsanen, P.: The most reliable subgraph problem. In: Proceedings of PKDD.
(2007) 471–478


