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E�ect of choice complexity on design e�ciency in
conjoint choice experiments

Abstract

Conjoint choice experiments have become a powerful tool to explore individual pref-
erences. The consistency of respondents' choices depends on the choice complexity. For
example, it is easier to make a choice between two alternatives with few attributes than
between �ve alternatives with several attributes. In the latter case it will be much harder
to choose the preferred alternative which is re�ected in a higher response error. Several
authors have dealt with this choice complexity in the estimation stage but very little at-
tention has been paid to set up designs that take this complexity into account. The core
issue of this paper is to �nd out whether it is worthwhile to take this complexity into
account in the design stage. We construct e�cient semi-Bayesian D-optimal designs for
the heteroscedastic conditional logit model which is used to model the across respondent
variability that occurs due to the choice complexity. The degree of complexity is measured
by the Entropy, as suggested by Swait and Adamowics (2001). The proposed designs are
compared with a semi-Bayesian D-optimal design constructed without taking the com-
plexity into account. The simulation study shows that it is much better to take the choice
complexity into account when constructing conjoint choice experiments.
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1 Introduction

Conjoint choice experiments have become increasingly popular for collecting and studying pref-
erences of individuals. Discrete choice models are usually derived under the assumption of
utility-maximizing behavior of the decision makers. In a random utility model, the utility that
a decision maker obtains from an alternative is described by a structural part, with informa-
tion about the alternative, and an error term which represents all other in�uences. In most
applications, this error term is assumed to have the same variance in all choice sets. However,
according to Swait and Adamowics (2001), people use di�erent strategies to cope with complex
situations. Therefore one can expect that the error variance will vary with the complexity of the
choice set. In this paper we will use the heteroscedastic model that was proposed to model this
between respondent variability and develop optimal designs to estimate this model e�ciently.

In the literature of conjoint choice experiments, there is only limited research on how changes
in the structure of the choice set changes choice outcomes (DeShazo and Fermo, 2002). The
complexity of a choice set is however crucial, because it directly a�ects the choice consistency.
That it is easier to make a choice between two alternatives with few attributes than between �ve
alternatives with a lot of attributes will be re�ected in a higher response error in the latter case.
In the literature, several measurements have been introduced to quantify the choice complexity.
DeShazo and Fermo (2002) used �ve measurements, which describe the structure of the choice
set. Sándor and Franses (2009) used two of the complexity measures of DeShazo and Fermo
(2002) and one price related measure, which is the key factor of their empirical study. Severin
(2000) used one major complexity measurement which is the number of trade-o�s that respon-
dents have to make in his or her decision process. This can also be referred to as the similarity
of alternatives in terms of attribute levels. Mazzotta and Opaluch (1995) and Dellaert et al.
(1999) use the number of attributes that vary across the alternatives to measure the complex-
ity in their research on choice consistency and complexity. In all the studies mentioned above,
statistics that describe the structure of the choice set are used to measure the complexity. Swait
and Adamowicz (2001) made an argument that each of these measurements is a component of
complexity rather than an overall measure. Therefore, they introduced entropy as an overall
complexity measure, which summarizes the impact of the number of alternatives, the number
of attributes, the correlation among attributes and the similarity among utilities of alternatives.

The statistical design is one of the key challenges in implementing a conjoint experiment, since
the e�ciency of the parameter estimates depends on the design. Most of the authors referred to
above do not assess the e�ect of choice complexity on the statistical design of the experiment.
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By ignoring choice complexity when designing the experiment, the choice data obtained will
be inconsistent with the estimation model. Hence, the experimental design obtained cannot be
optimal.
The core issue we address in our paper is to investigate whether it is worthwhile to take the
choice complexity into account when we construct the design. Standard models assume that
respondents have unlimited information processing capacity, which allows them to make their
choice in a strictly optimal way irrespective to the complexity of the choice situation (de Palma
et al., 1994). The heteroscedastic conditional logit model proposed by Swait and Adamowics
(2001) however uses the scale factor to bring the complexity into the model. We use their
parameterization to model the between respondent variability that occurs due to the choice
complexity. In our research, we propose e�cient semi-Bayesian D-optimal designs, constructed
by considering the choice complexity. The proposed designs are compared with two semi-
Bayesian D-optimal designs which are constructed without considering the choice complexity
but for the rest uses the same design setting as the proposed design.

We organize this paper as follows. In section 2, we present the theoretical model, discuss
the complexity measure, the design e�ciency criterion, the design construction algorithm and
the benchmark designs we used. This is followed in section 3 by a relative design e�ciency
study. In section 4, we present the simulation study setup, the proposed design settings and
the estimation results. We discuss the impact of the misspeci�cation of the complexity function
in section 5 and �nally in section 6 we evaluate and summarize our key �ndings.

2 Methodology

2.1 Heteroscedastic Conditional Logit Model

First consider the homoscedastic conditional logit model (McFadden, 1974), which is popular
for analyzing the data from conjoint choice experiments. The random utility a given respondent
n attaches to an alternative k in choice set s is given as

Uksn = x′ksβ + εksn (1)

where, xks is a p-dimensional vector containing the attribute values of alternative k in choice
set s, β is a p-dimensional vector of parameters and Uksn is the utility that the decision maker n
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actually obtained from alternative k in choice set s. The error term εksn is assumed to have an
extreme value distribution. Assuming there are K alternatives in a choice set, the probability
that alternative k is chosen from choice set s is

qks =
exp (µ x′ksβ)∑K
i=1 exp (µ x′isβ)

, k = 1, ..., K (2)

where µ is the scale factor. The scale factor is de�ned as π√
6σ
, where σ is the standard error

of ε. This model is called the homoscedastic conditional logit model since the scale factor is
assumed constant.

An increase in choice set complexity will add noise to the error term of the random utility
function (DeShazo and Fermo 2002) which is re�ected in a higher response error σ. Thus,
the error variance σ2 depends on the choice complexity and we will denote this dependency
explicitly in

pks =
exp (µ(Cs) x′ksβ)∑K
i=1 exp (µ(Cs) x′isβ)

(3)

where Cs measures the complexity of choice set s. The model is called the heteroscedastic
conditional logit model (HCLM) by DeShazo and Fermo (2002) and Swait and Adamowics
(2001).
When the choice situation becomes more complex, respondents use di�erent methods to make
their decision process simple which generates higher choice inconsistencies across respondents.
So we assume that tastes, represented by β, are homogeneous across individuals but introduce
the possibility that the error term is heteroscedastic across individuals due to complexity. In
other words, this model can test whether the variability between respondents can be explained
by some complexity measures. This model for between respondent variability, was also used by
Swait and Adamowics (2001) and Amaya-Amaya et al. (forthcoming).

Instead of modeling heterogeneity across individuals some researchers have used the HCLM to
model the individual variation in the error term from choice set to choice set. For example,
Sándor and Franses (2009), DeShazo and Fermo (2002) use HCLM to model the consistency of
an individual's behavior.
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2.2 Measure of Choice Complexity

To describe choice complexity, most authors use measures which describe the structure of the
choice set. In this subsection we will discuss them in detail and de�ne the measure of complex-
ity that we apply in this paper.

DeShazo and Fermo (2002) use �ve complexity measures: the number of alternatives, the
number of attributes, the variance of the attribute levels across alternatives, the mean stan-
dard deviation of attribute levels for each alternative in the choice set and the dispersion of the
standard deviation of each alternative in the choice set. Sándor and Franses (2009) also use the
mean standard deviation of attribute levels for each alternative in the choice set in addition to
the number of trade o�s.

Swait and Adamowics (2001) use a single measurement to assess the choice complexity, namely
the entropy. Entropy is a measure of the uncertainty associated with a random variable. For
example, a fair coin �ip (2 equally likely outcomes) will have less entropy than a roll of a die
(6 equally likely outcomes). By de�nition, entropy measures the uncertainty of a situation and
is therefore an indication of complexity. That is, higher complexity or higher uncertainty is
re�ected by higher entropy. This can be explained in terms of choice probabilities. Figure 1
is a plot of choice probability against entropy. In Figure 1, the X-axis indicates the choice
probability of alternative 1. All other alternatives are assumed to have equal probability and
the probability of alternative 1 varies from 0 to 1. Consider the case of 2 alternatives (red line).
When the choice probability of the �rst alternative is zero, there is no complexity at all in the
choice set since the second choice set has maximum choice probability. This is re�ected by
zero entropy. When the choice probability of the alternative 1 is equal to 1, again there is no
complexity in the choice set since the alternative 1 dominates the other. Entropy is maximized
when the choice probability of the �rst alternative is equal to 0.5. This is where the choice set
is more complex since both alternatives have the same probability to be chosen. In the case of
3 alternatives, the highest entropy comes when the choice probabilities are equal to each other
(0.33). As entropy is a proper summary measurement of many other complexity measures used
in the literature (see Swait and Adamowics, 2001) we will use entropy as the measure of choice
complexity. Entropy is de�ned as

Hs = −
K∑

k=1

qks ln qks (4)
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Figure 1: Entropy vs. Choice Probability for di�erent choice set sizes

where qks as de�ned in (2).
As we described earlier, the variance of the error term of the random utility function is a�ected
by the complexity of the choice situation. Therefore, we use the scale factor which is inversely
proportional to the error variance to bring the complexity into the model. In the literature,
we can �nd two ways to relate the scale factor to the complexity measure. Sándor and Franses
(2009) use an exponentiated linear function of the complexity measures as the scale function.
As they model the inconsistency in individual choices, they assume that the accuracy of the
decision process monotonically decreases when the complexity increases.

Swait and Adamowics (2001) use psychological insights to derive that respondents will ap-
ply more e�ort to make consistent decisions up to a certain point of complexity, but after that
level they simplify their decision process by applying simple theories and using prior knowledge
which generates greater inconsistencies across respondents. So when the choice complexity is
low (i.e. when the choice situation has dominant alternatives), the variance is also low since
the choice of best alternative is easy to select with low e�ort. In medium complex situations,
variance is high since di�erent respondents use di�erent heuristics and di�erent e�ort levels
which will add more noise across respondents. When the complexity is high (i.e. equal choice
probabilities), variance decreases compared to the medium complexity situation because all
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respondents will choose one of the alternatives with equal utility regardless their e�ort level.
These intuitive explanations suggest that the scale, or decision accuracy, has an U-shape be-
havior with the choice set complexity.
To capture this nonlinearity, the scale factor is assumed to be an exponentiated quadratic
function of the entropy:

µ (Cs) = exp (θ1Hs + θ2H
2
s ). (5)

The exponential function ensures non negativity and also convergence properties (DeShazo and
Fermo, 2002). The U-shape is obtained by restricting θ1 and θ2, i.e., θ1 6 0 and θ2 > 0.

2.3 Design E�ciency Criteria

The log likelihood function of the heteroscedastic conditional logit model can be written as

LL(y|β,θ) =
N∑

n=1

S∑
s=1

K∑

k=1

yksn ln pksn (6)

where yksn is 1 if decision maker n chooses alternative k in choice set s and 0 otherwise, and
pksn is the probability that yksn is equal to 1.
Considering all the merits of the D-criterion in this context (see Yu et al., 2008), we choose this
criterion in our study. The D-criterion is based on the Fisher's Information matrix and mini-
mizes the determinant of the inverse information matrix. The information matrix I(β,θ|X) of
the heteroscedastic conditional logit model can be derived by taking the second order deriva-
tives of the log-likelihood function with respect to both β and θ. It is a (p + 2) × (p + 2)

dimensional matrix where p is the number of parameters corresponding to the attribute levels
and 2 is the number of parameters in the complexity measure (θ1 and θ2). The expression of
this information matrix is rather complicated and can be found in appendix.

The design e�ciency measure corresponding to the D-criterion is the D-error, which is based
on the determinant of the information matrix. As this determinant depends on the parameter
values, we consider the expected value of the D-error over some prior distribution π0:

DC
SB − error =

ˆ

Rp+2

det[I(β, θ|X)]−
1

p+2 π0(β,θ) d(β)d(θ) (7)
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which is called the semi-Bayesian D-error. The design with the smallest DC
SB − error is called

the optimal design and is denoted by XC
SB.

In practice, this semi-Bayesian D-error has to be approximated:

D̃C
SB − error ' 1

R

R∑
r=1

det[IFIM((β, θ)r|X)]−
1

p+2 (8)

where R is the total number of random draws taken from the prior distribution π0(β,θ). Fol-
lowing Yu et al. (2008), we assume a multivariate normal prior distribution and take R=2000
random draws from the prior distribution to approximate the DC

SB − error.

2.4 Design Construction Algorithm

In this study, we use the coordinate-exchange algorithm proposed by Meyer and Nachtsheim
(1995) which is a computationally e�cient algorithm. It starts with a random design and
replaces only one coordinate or attribute level of a pro�le at each step. A level change is
accepted if and only if it results in a better DC

SB− error. After the �rst iteration, that is, when
the algorithm has found the best exchange for all attributes of all pro�les of the design, the
algorithm goes back to the �rst attribute of the �rst pro�le and continues until no signi�cant
improvement is possible anymore. To avoid poor local optima, we used 1500 runs of the
algorithm to �nd the designs reported in this paper.

2.5 Benchmark Designs

The XC
SB designs that we derive for the heteroscedastic conditional logit model taking into

account the choice complexity are compared with some benchmark designs. These benchmark
designs are also semi-Bayesian D-optimal designs but optimized for the homoscedastic condi-
tional logit model(see Sándor and Wedel, 2001 and Kessels et al., 2006). These designs are
denoted by XSB.
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3 Relative Design E�ciency (RDE)

In this section we will compare the e�ciency of the proposed designs XC
SB with the e�ciency of

the benchmark designs XSB. To measure how well a XC
SB design performs compared to another

design we use the relative e�ciency. The relative design e�ciency of design XSB relative to
design XC

SB is de�ned as

RDE =
DC

SB − error(XC
SB)

DC
SB − error(XSB)

. (9)

Note that for values below 1, the design XSB is less e�cient for estimating β and θ than the
design XC

SB.

We consider 15 choice sets, each choice set having 2 alternatives and the alternatives described
by 4 attributes with 3 levels. This design setting is denoted by 34/2/15. We used e�ect coding
to assign [1 0], [0 1], [-1 -1] to the levels 1, 2, 3 respectively. The prior distribution for β is
multivariate normal with mean µ0β = [−1, 0,−1, 0,−1, 0,−1, 0] and variance covariance matrix
Ip. Specifying such a mean value for β ensures that the mean parameters corresponding to
each of the attribute levels are evenly spaced between -1 and 1. For each three level attribute,
the values -1, 0 and 1 then correspond to the attribute levels 1, 2 and 3. Thus it is assumed
that the utility increases with the level of each attribute (Yu et al., 2008 and Kessels et al.,
2006). The prior distribution for θ is multivariate normal with mean µ0θ = [1,−1] and variance
covariance matrix 0.1 I2 and is assumed to be independent from the prior of β. The benchmark
design XSB has the same speci�cation and uses the same prior for β.

We evaluate the e�ciency of the two designs in 88 di�erent parameter spaces. For each pa-
rameter space, the parameters are drawn from a multivariate normal distribution with mean(

β̃

θ̃

)
and covariance matrix

∑
where,

(
β̃

θ̃

)
=

(
µ0β

µ0θ

)
+ γ 1p+2

∑
=

∑
0 +δ Ip+2

and
∑

0=diag(1,...,1, 0.1, 0.1) is a (p + 2) × (p + 2) diagonal matrix, 1p+2 and Ip+2 denote a
(p+2)×1 vector of ones and a (p+2)× (p+2) identity matrix respectively. Note that µ0β, µ0θ
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and
∑

0 are the parameter values we used to construct the design XC
SB. The mean deviation

factor γ takes values in the interval [-0.5, 0.5] and the variance deviation factor δ takes values in
the interval [-0.2, 0.5]. The parameter γ re�ects how much the mean of the multivariate normal
distribution that we use to assess the DC

SB−error deviates from the mean value assumed in the
design stage. The parameter δ re�ects how much the variances di�er from the ones assumed in
the design stage.
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Figure 2: Relative design e�ciency of the proposed design over the benchmark design

The relative design e�ciency values for each of these 88 parameter spaces are represented in
Figure 2 and are divided into several categories. The plot shows that the proposed design is
more e�cient than the benchmark design within the whole parameter space we considered.
Only the red area shows scenarios where both designs have comparable e�ciencies.

Figure 2 can be used to assess the sensitivity of the designs to the misspeci�cation of the
prior. The parameter space de�ned by γ = 0 and δ = 0 is the space we used to construct the
designs. It can be seen that the proposed design is quite robust against the misspeci�cation of
the mean of the prior distribution but less robust with respect to the misspeci�cation of the
variances in the prior distribution.
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4 Simulation Study

4.1 Designs Considered in the Simulation

We construct XC
SB designs for di�erent prior distributions and di�erent experimental setups.

An overview of these designs is given in Table 1. The �rst four designs have 15 choice sets,
each choice set having 2 alternatives and each alternative containing 4 attributes with 3 levels.
Each of these designs is constructed using the same prior distribution for β but with di�er-
ent prior distributions for θ. The prior distribution for β is multivariate normal with mean
µ0β = [−1, 0,−1, 0,−1, 0,−1, 0] and variance covariance matrix Ip. We used four di�erent mul-
tivariate normal prior distributions for θ; θ ∼ N(µ0θ, σ

2
0θI2) where µ0θ takes the values [-1, 1.7]

or [-2, 3] and σ0θ can be 0.1 or 0.5. These prior values are obtained from the empirical study
of Swait and Adamowics (2001). These prior values also ensure that the scale as a function of
complexity is U-shaped. We compare these 4 designs with the semi-Bayesian D-optimal design
XSB for the corresponding homoscedastic model using the same prior for β .

The last four designs have a smaller number of parameters but three alternatives per choice
set. Each alternative is described using two attributes each having three levels and the design
has only 6 choice sets. In this case the benchmark design is again a semi-Bayesian D-optimal
design, XSB, constructed without considering the choice complexity. Similar to the �rst four
designs, we keep the same prior distribution for the β , �xed at mean µ0β = [−1, 0,−1, 0] and
variance σ2

0βIp .

Table 1: Overview of the designs used in the simulation study

Prior Values
Design Speci�cation β ∼ N(µ0β, Ip) θ ∼ N(µ0θ, σ2

0θI2) Benchmark
µ0β µ0θ σ0θ

1 34/2/15 (-1 0 -1 0 -1 0 -1 0) (-1 1.7) 0.1 Semi-Bayesian D-optimal Design
2 34/2/15 (-1 0 -1 0 -1 0 -1 0) (-1 1.7) 0.5 with the same speci�cation and priors
3 34/2/15 (-1 0 -1 0 -1 0 -1 0) (-2 3) 0.1 but generated without considering
4 34/2/15 (-1 0 -1 0 -1 0 -1 0) (-2 3) 0.5 the choice complexity (XSB)
5 32/3/6 (-1 0 -1 0) (-1 1.7) 0.1 Semi-Bayesian D-optimal Design
6 32/3/6 (-1 0 -1 0) (-1 1.7) 0.5 with the same design speci�cation
7 32/3/6 (-1 0 -1 0) (-2 3) 0.1 and priors but without taking the
8 32/3/6 (-1 0 -1 0) (-2 3) 0.5 choice complexity into account (XSB)
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4.2 Simulation Setup

For each design setting in Table 1, we drew 120 parameter values (β, θ) from the prior dis-
tribution. For each draw, we simulated responses for 100 respondents based on the XC

SB and
corresponding XSB design and estimated the parameters. The Expected Root Mean Square
Error of Estimation (ERMSE) value is then calculated as explained in the next section. Finally,
we average all the ERMSE values over the 120 true parameter values and use this average value
to represent the estimation performance of a design.

4.3 Expected Root Mean Square Error of Estimation (ERMSE)

To assess how well parameters can be estimated using the di�erent designs, we compute the
ERMSE. This measure compares how close the estimated parameters are to the true parameters:

ERMSE(λ) =

ˆ

Rq

[(λ̂− λ)
′
(λ̂− λ)]1/2 ϕ(λ̂) d(λ̂) (10)

where λ is the parameter vector we consider to calculate the ERMSE. For example, if we
calculate the ERMSE for the total parameter vector then λ = (β,θ)

′ and q = p+2. If we cal-
culate the ERMSE for β alone then λ = β and q = p. Also note that, ϕ(λ̂) is the distribution
of the estimates, λ̂ is the vector of estimated parameters and λ is the vector of true parameters.

In practice, ERMSE values will be approximated by

ERMSE(λ̃) ' 1

M

M∑
m=1

[(λ̂
m − λ)

′
(λ̂

m − λ)]1/2 (11)

where M is the number of simulations and λ̂
m is the parameter estimate obtained from the mth

simulated data set.

To compare the estimation accuracy of di�erent designs, we compute the percentage decrease
in ERMSE. This measure is de�ned by

1− ERMSE(XC
SB)

ERMSE(XSB)
. (12)

Positive values of this measure show that estimation accuracy increases by using the XC
SB design

compared to the benchmark design XSB.
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Table 2 shows the ERMSE(β, θ) values and the percentage decrease in ERMSE(β,θ) by using
the proposed design instead of the benchmark design. Note that the ERMSE is computed by
taking into account both β and θ.

Table 2: Evaluation of the estimation accuracy in terms of ERMSE(β,θ) and percentage
decrease of ERMSE(β, θ)

Design ERMSE(β, θ) Percentage Decrease
Proposed Benchmark

1 1.1748 1.5907 26%
2 1.2183 1.5172 20%
3 1.2917 1.6778 23%
4 1.3362 1.6766 20%
5 0.3925 0.5644 30%
6 0.5552 0.8579 35%
7 0.4204 0.6610 36%
8 0.6334 0.9524 33%

As can be seen in Table 2, designs constructed by considering the choice complexity, perform
better in terms of estimation accuracy for all designs we looked at. On average, the decrease
in ERMSE is more than 25% which is quite considerable.
To investigate whether this improvement comes from β or from θ or from both of them, we
compute the ERMSE(β) and ERMSE(θ) separately. Table 3 presents the results of ERMSE(β)

and ERMSE(θ) for the last four designs with three alternatives. It can be seen that the proposed
designs are, on average, 35% more accurate than the benchmark design in terms of β. This is
a very encouraging result as β is the parameter vector that people are most interested in. Also
note that, similar results were obtained for the other designs.

To better visualize the accuracy of the estimates, we plot the distribution of the estimated
parameter values. We sampled 120 vectors of true parameters and for each true parameter
vector, we simulated data with both designs XC

SB and XSB and estimated the parameters.
Figure 3 shows the distribution of the estimated β parameters for �ve randomly selected true
parameter vectors. In Figure 3, the black dashed line represents the estimation density obtained
by the design XC

SB and the red line represents the benchmark design XSB for design number 5
in Table 1. Moreover, the vertical line shows the true parameter in each case.
As can be seen in Figure 3, in most of the cases the proposed design performs much better than
the benchmark.
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Figure 3: Distributions of estimated β parameters under XC
SB and XSB designs - Design 32/3/6

(Design number 5 in Table 1)
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Table 3: Evaluation of the estimation accuracy in terms of ERMSE(β) and ERMSE(θ)
seperately and percentage decrease of ERMSE

Design Parameter set ERMSE Percentage Decrease
Proposed Benchmark

5 Total 0.3925 0.5644 30%
β 0.1254 0.2070 39%
θ 0.3537 0.4711 25%

6 Total 0.5552 0.8579 35%
β 0.1506 0.2530 40%
θ 0.5174 0.7773 33%

7 Total 0.4204 0.6610 36%
β 0.1060 0.1627 35%
θ 0.3910 0.5663 31%

8 Total 0.6334 0.9524 33%
β 0.1238 0.1901 35%
θ 0.6012 0.8264 27%

5 Misspeci�cation of the Scale Function

Parameterizations of the complexity function in the HCLM as used by Swait and Adamowics
(2001) assures that the variance as function of the choice set complexity is inversely U-shaped.
This shape was found in their empirical study when analyzing some data sets. But they also
obtained constantly decreasing patterns of variance with increasing complexity for some of the
data sets they analyzed. This pattern can be modeled by a exponentiated linear complexity
function.

In this section we assess the robustness of the designs against misspeci�cation of the complex-
ity function. We study how much we will loose by using a exponentiated quadratic complexity
function to construct the design when there is no quadratic e�ect in reality and how much we
will loose by using a exponentiated linear complexity function to construct the design when
there is a quadratic e�ect.

To investigate this, we constructed two semi-Bayesian D-optimal designs what we call the
quadratic design and the linear design, using the following two speci�cations of the scale factor,
respectively:

µ (Cs) = exp (θ1Hs + θ2H
2
s )

and
µ (Cs) = exp (θ1Hs).
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Note that the design setting is 32/3/6. The prior distributions of the β and θ are assumed to
be independent multivariate normal with the following parameters.

β ∼ N(µ0β, Ip) where µ0β = [−1, 0,−1, 0]

θ ∼ N(µ1θ, 0.1 I2) where µ1θ = [−1, 1.7] (for the quadratic complexity function),

θ ∼ N(µ2θ, 0.1 I2) where µ2θ = [−1] (for the linear complexity function),

In the modeling stage, for cases in which no or small quadratic e�ects are present, we use the
quadratic design and the linear design to �t a linear model and compare the resulting estima-
tion performance. This is because in practice, if the quadratic e�ect is not signi�cant in the
modeling stage, the researcher often turns to the linear model. In this way we can investigate
how much is lost in terms of estimation performance by using the quadratic design instead of
the linear design. For cases in which higher quadratic e�ects are present in the scale function,
we compare the estimation performance obtained from using the quadratic design for �tting
a quadratic model with the estimation performance of the linear design for �tting a linear model.

The comparison in terms of estimation performance is visualized in Figure 4 for di�erent sizes of
the quadratic e�ects. The magnitudes of the quadratic e�ects, parameterized by θ2, are shown
on the x-axis. The estimation performance of the particular model, re�ecting by the ERMSE,
is shown on the y-axis. Here we compute the ERMSE values only in terms of β. Note that
θ2 = 0 corresponds to the situation where the model that generates the responses contains no
quadratic e�ects.

The estimation performance of the quadratic design that is used to �t either the quadratic
model or the linear model, is visualized by the line labeled "QD". The estimation performance
of the linear design that is used to �t the linear model is visualized by the line labeled "LD".
The curve "QD" was drawn in the following way: when θ2 is small, the values shown in the
curve QD are the ERMSE(β) values obtained using the quadratic design to �t a linear model.
This is because �tting a linear model results in more accurate estimates than �tting a quadratic
model. For higher values of θ2, the curve QD shows the ERMSE(β) values obtained for the
quadratic model.

Figure 4 indicates that, when no or small quadratic e�ects are present, the loss in estima-
tion accuracy by using the quadratic design instead of the linear design to �t a linear model is
small, on average 16%. On the other hand, the loss of estimation accuracy by using the linear
design rather than the quadratic design, when there are higher quadratic e�ects in reality, is
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Figure 4: Evaluation of estimation accuracy in terms of ERMSE(β) under di�erent design
settings and data generating models

relatively larger. Thus it is clear that, if there is a quadratic e�ect in reality, then the quadratic
complexity function is necessary to obtain accurate estimates. Even if the true complexity
function is a linear function of entropy, by using a quadratic complexity function to construct
the design one will not loose much. Therefore, it is advised to use a quadratic complexity
function in all situations.

6 Discussion and Conclusions

Several authors have addressed the e�ect of choice complexity at the estimation stage. We
examined whether it is worthwhile to take the choice complexity into account at the design
stage. We used entropy as a general measure of complexity. The heteroscedastic conditional
logit model was used to bring the choice complexity into the model.

In terms of relative design e�ciency the proposed designs for the heteroscedastic conditional
logit model performed much better than the design which is optimal for the related homoscedas-
tic conditional logit model.

In the simulation study, we constructed 8 semi-Bayesian D-optimal designs considering the
choice complexity and compared them with semi-Bayesian D-optimal designs which have the
same design settings but are constructed without considering the choice complexity. We found
that the average gain in estimation accuracy by using the proposed designs was 25%. Consid-
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ering only the improvement in the estimation of β, an average gain of 35% was obtained.

We also studied the e�ect of misspeci�cation of the scale factor as a function of the complexity.
Based on the simulation results it was concluded that the use of a quadratic complexity function
is necessary if there is quadratic e�ect in reality. By considering the relatively minor loss of
estimation accuracy by using a quadratic complexity function to estimate a linear model, it can
be conclude that it is best to use the quadratic complexity function in all situations.
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Appendix: Derivation of the information matrix

In this appendix we present the derivation of the Fisher information matrix for the heteroscedas-
tic conditional logit model, following Sándor and Franses (2009). We derive it only for one
respondent and one choice set. The information matrix is obtained by taking the sum over all
respondents and choice sets.

The log likelihood function for one choice set with K alternatives is

LL(y|β,θ) =
∑K

k=1 yk ln pk = y′ lnp

where yk is 1 if decision maker chooses alternative k and 0 otherwise, and pk is the probability
that yk = 1, y = (y1, ..., yK)′ and p = (p1, ..., pK)′. The Fisher information matrix can be
obtained by taking the second order derivatives with respect to both β and θ. The information
matrix can be written as

IFIM(β, θ|X) =

(
E[∂L

∂β
∂L
∂β′ ] E[∂L

∂β
∂L
∂θ′ ]

E[∂L
∂θ

∂L
∂β′ ] E[∂L

∂θ
∂L
∂θ′ ]

)
.

Note that for a parameter vector τ that is either β or θ

∂L

∂τ
=

(
y′ ∂ lnp

∂τ

)′
=

(
∂p
∂τ ′

)′
P−1y (13)

where P = diag(p1, ..., pK). The choice probability pk of the heteroscedastic conditional logit

model is

pk =
exp [exp (θ1H+θ2H

2) x′kβ]∑K
i=1 exp [exp (θ1H+θ2H2) x′iβ]

.

Then for τ = β and τ = θ we obtain

∂p

∂β′
= C[I + ωβA′][P− pp′]X (14)

∂p

∂θ′
= C[P− pp′]Xβh (15)

where the design matrix X for one choice set with p attributes and K alternatives is de�ne as
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X = [X1 X2 .... Xp] =




x11 x21 ... xp1

x12 x22 ... xp2

. . . .

x1K x2K ... xpK




and

C = exp (θ1H + θ2H
2)

ω = (θ1 + 2θ2H)

A =
(
−∑K

k=1[(ln qk + 1)(xk1qk − qk

∑K
i=1 qixi1)] .... −∑K

k=1[(ln qk + 1)(xkpqk − qk

∑K
i=1 qixip)]

)

h =
(

H H2
)

qk =
exp (µ x′kβ)∑
j exp (µ x′jβ)

By using (14) and (15) in the equation 13, we obtain

∂L
∂β

= CX′[P− pp′]′[I + ωβA′]′ P−1y,

∂L
∂θ

= Ch′β′X′[P− pp′]′ P−1y.

These derivations can be used to compute the components of the information matrix. We
introduce the notations

M = (P− pp′)X and B = (I + ωβA′)

and use the fact that E[yy′] = P.

E[∂L
∂β

∂L
∂β′ ] = C2 M′B′ P−1E[yy′] P−1BM = C2 M′B′ P−1 BM

The other components can be computed similarly. The resulting information matrix is

IFIM(β,θ|X) = C2

(
M′B′ P−1 BM M′B′P−1Mβh

h′β′M′P−1BM h′β′M′P−1Mβh

)
.
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