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Abstract

Phase variation in functional data obscures the true amplitude variation when a typical
cross-sectional analysis of these responses would be performed. Time warping or curve
registration aims at eliminating the phase variation, typically by applying a transformation,
the warping function τ , to the function argument. We propose a warping method that jointly
estimates a decomposition of the warping function in warping components, and amplitude
components. For the estimation routine, adaptive MCMC calculations are performed and
implemented in C rather than R to increase computational speed. The R-C interface makes
the program user-friendly, in that no knowledge of C is required and all input and output
will be handled through R. The R package MRwarp contains all needed files.
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1 Introduction

Functional data analysis involves the analysis of a set of curves or images. Examples include
growth curves in biology, volatility of assets in economy, ecg curves in cardiology and black
and white images for face recognition. The different observations come naturally structured;
they correspond to a certain time point, grid point, etc. Although there is a similarity with
longitudinal data (see Hall et al., 2006), functional data require a separate treatment. Ramsay
and Silverman (2002) provide a clear overview oriented towards practise, facilitating the transfer
of functional data methodology from the academic circuit to society and industry.

An important aspect of a functional data analysis is the recognition of phase variation.
Most statistical methodology is designed to seek structure in the response values. That is, they
study the variation in amplitude in the data. When complex processes are observed over time,
however, another source of variation, so-called phase variation can arise. Figure 1 illustrates
this problem for a curve sample of total ion counts (TIC) of a liquid chromatography - mass
spectrometry (LC-MS) data set (Listgarten et al., 2005). In the original sample (a) the time
axes are misaligned in a non-trivial way, due to variable conditions (temperature, pressure,. . .) in
the LC step that cannot be remedied during the experiment. This obscures the true amplitude
variation when a typical cross-sectional analysis of these responses would be performed. In other
situations the phase variation could be of interest itself, e.g. the fact that a data peak is delayed
might contain important information for the further analysis of the data.

Time warping or curve Registration aims at eliminating the phase variation in a functional
sample. It achieves this goal by applying a transformation, the warping function τ , to the
function argument. This transformation needs to be a smooth monotonically increasing function
in order to respect the natural ordering of the time points. Figure 2 illustrates the warping
process. It shows the original curve (a), the original equally spaced time points (c), the warping
function in (d) and the warped curve and warped observation points in (b), resp. (e).

Many models have been considered in literature aimed to capture phase variation as it is
intuitively perceived by the data analyst. Landmark registration (Kneip and Gasser, 1992) is
one of the earliest methods and requires the identification of curve features or landmarks. The
approaches by Silverman (1995), later extended in Ramsay and Li (1998) to continuous monotone
registration, and Wang and Gasser (1997) are not based on landmarks but on the minimization
of a certain distance measure between the curves. More recent are likelihood-based methods by
Rønn (2001) and Gervini and Gasser (2005), and curve alignment by moments (James, 2007),
the latter combining advantages of landmark and continuous monotone registration.

In Claeskens et al. (2010) a model is proposed for time warping that also takes the amplitude
variability into account. Similar to Gervini and Gasser (2005), a warping function is applied
to transform the time domain and a random effects structure is added to represent amplitude
variation. The main novelty of the model in Claeskens et al. (2010) is that the warping function
is constructed resembling a multiresolution structure with a clear interpretation in the warping
framework. The spline basis functions in the amplitude structure however, are not estimated
in the model, but need to be specified by the user. In Gervini and Gasser (2005), the warping
structure is estimated without amplitude components, while the latter are estimated using the
estimated registered curves.

In this paper the model in Claeskens et al. (2010) is extended to jointly estimate the warping
and amplitude components. Instead of B-spline basis functions, a limited number of asymmet-
ric rescaled kernel functions are used to indicate modes of amplitude variation. Apart from
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Figure 1: (a) Original LC-MS data which vary both in phase and in amplitude (together with penalized spline
smoothed curves), (b) the penalized spline smoothed LC-MS data after warping using four warplets.
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Figure 2: (a) Original data, (b) warped data, (c) original time points, (d) warping function, (e) warped time
points.

a faster function evaluation, these kernels have the advantage that their parameters have an
easy graphical interpretation and make it possible for the user to provide good starting values.
The amplitude and warping components are presented in Section 3, together with the precise
formulation of the model.

The Achilles heel of the method is the estimation of the model. There are many parameters
to be estimated and on top of that, the decomposition structure of the warping function does
not have a unique parameterization. To deal with this, we have developed a Bayesian estimation
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method (Claeskens et al., 2010), see Section 4, which gathers the most important warping actions
in the first components of the multiresolution structure. A step-by-step estimation routine
provides the user output of a gradually extended model with additional warping components
that eliminate less and less phase variation. Two stopping methods are available, see Section 4.4.
Since we use Markov chain Monte Carlo (MCMC) computations the method is bound to be time
consuming. For this reason we perform adaptive MCMC calculations and program them in C
rather than R (R Development Core Team, 2010). The R-C interface makes the program user-
friendly, in that no knowledge of C is required and all input and output will be handled through
R.

2 Software overview

During the course of the paper, the method and all the function arguments will be explained
and illustrated by means of the LC-MS example (Figure 1). This data sets contains TIC counts
on 11 curve observations each at the same 400 time points.

Multiresolution warping is made available for easy usage via an R-C interface. It can be
executed by using the R-library MRwarp and by running the following command lines in R,
where the first call to MRwarp names the available input parameters, and the second call only
includes the required input arguments:

library("MRwarp")
MRwarp(Xdata,Ydata,chain,thin,burnin,kernel.s,components,

selection,thresh,threshd,prepr,outputfit,outputmcmc,alpha)
MRwarp(Xdata,Ydata,kernel.s,selection)

Three R functions are contained in this package: MRwarp, warp and comp. The main function
is MRwarp, which performs the actual warp by linking with C and calls the other two functions.
The function comp computes a single quartic warplet, while the function warp is used to evaluate
a composition of warplets. Table 1 presents an overview of the input arguments of the function
MRwarp. Denote N the number of curves and T the number of time points. The R output is
structured as a list with arguments as listed in Table 2. Additional to the parameters in Table 2,
which are directly provided in the output vector in R, the program creates and uses a number
of .txt files in the directory of the .dll file. The latter can also be of interest of the user and are
summarized in Table 3).

Four .dll files are available for different maximum values of N and S: interface100-200.dll
(maximum 100 curves and 200 time points), interface50-200.dll (maximum 50 curves and 200 time
points), interface100-400.dll (maximum 100 curves and 400 time points) and interface50-400.dll
(maximum 50 curves and 400 time points). Computational speed is gained by choosing the file
which corresponds the most to the data at hand. The MRwarp function does this automatically.

It is possible to manually set the maximum values equal to the actual sample size in the C
code as explained in the Appendix and change the corresponding lines at the beginning and end
of MRwarp to load and unload the .dll file.

Manual preprocessing of the data is required in the following cases:

• An unequal number of observations for the different subjects. Data points can be omitted
or interpolated for certain subjects or the data can be smoothed and predicted in a vector
of time points of equal size.
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Argument Description
Xdata N × T matrix containing the x-coordinates or time points of the curve ob-

servations. Each row corresponds to a particular subject. No default.

Ydata N × T matrix containing the y-coordinates or response values of the curve
observations. Each row corresponds to a particular subject. No default.

chain The number of MCMC iterations (default=100).

thin The thinning factor of the MCMC algorithm (default=10).

burnin The (final) fraction of the MCMC chain which needs to be stored (de-
fault=0.5).

kernel.s Vector containing the starting values for the kernel parameters. No default.

selection Whether we want to estimate a fixed number of warplets (“FIXED”), or
evaluate the warping procedure after each component (“STEP”). No default.

components The number of warping components in the final model (default=1). For
selection=“FIXED” only.

thresh Threshold on the warplet’s intensity (value in (0, 1], default=1)

threshd Minimum distance between the center and lower and upper bounds of the
warplets relative to the time-domain (value in (0, 1], default=1).

prepr Vector (p1, p2, p3, p4) with four 0/1 elements indicating whether a horizontal
shift (p1 = 1), a horizontal rescaling (p2 = 1), a vertical shift (p3 = 1)
and/or a vertical rescaling (p4 = 1) preprocessing actions should be included
(default= (0, 0, 0, 0)).

outputfit 1 if the warped curves should be plotted, 0 otherwise (default=1).

outputmcmc 1 if parameter chains (excluding the burnin fraction) for a selected number
of parameters should be plotted, 0 otherwise (default=0).

alpha The significance level to be used in the model selection procedure (see Sec-
tion 4.4) (default=0.05). For selection=“STEP” only.

Table 1: Input of the function MRwarp.
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Argument Description
shift.w The estimated horizontal shift in the preprocessing step for curves 1 to N .

scale.w The estimated horizontal rescaling in the preprocessing step for curves 1 to
N .

shift.a The estimated vertical shift in the preprocessing step for curves 1 to N .

scale.a The estimated vertical rescaling in the preprocessing step for curves 1 to N .

A.prev Vector containing the estimated warping centers of the one-but-final model
(a1, . . . , aQ−1).

Ll.prev Vector containing the estimated warping lower bounds of the one-but-final
model (wl,1, . . . , wl,Q−1).

Ul.prev Vector containing the estimated warping upper bounds of the one-but-final
model (wu,1, . . . , wu,Q−1).

Lambda.prev Vector containing the estimated warping intensities of the one-but-final
model. Rows (λn,1, . . . , λn,Q−1), n=1. . . N.

A Vector containing the estimated warping centers of final model (a1, . . . , aQ).

Ll Vector containing the estimated warping lower bounds of the final model
(wl,1, . . . , wl,Q).

Ul Vector containing the estimated warping upper bounds of the final model
(wu,1, . . . , wu,Q).

Lambda Vector containing the estimated warping intensities of the final model. Rows
(λn,1, . . . , λn,Q), n=1. . . N.

index 2-dimensional vector containing the iteration numbers (after burn-in) corre-
sponding to the highest posterior pseudo-loglikelihood, for both the one-but
final model and the final model.

In case selection=“STEP” (see Table 1), the output list contains the estimated parameters
for the last estimated model and the ones for the previous estimated model. In case selec-
tion=“FIXED” or the user wishes to stop the algorithm after 1 component, the items in
the list with the .prev suffix, are copies from the ones of the final estimated model (the list
items without .prev).

Table 2: Output of the function MRwarp.
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File Description
preproc.txt Estimated shift and scale parameters of the preprocessing step.
amcmcvals.txt Iterated warping and error variance parameter chains (after burn-in) in the

last estimated model with a uneven number of components.
amcmcker.txt Iterated kernel parameter chains (after burn-in) in the last estimated model

with a uneven number of components.
amcmcamp.txt Iterated parameter chains of variances of the amplitude random effect (after

burn-in) in the last estimated model with an uneven number of components.
amcmcsigma.txt Proposal variances used after the burnin stage, in the last estimated model

with an uneven number of components.
UPDATE.txt The number of completed iterations (to keep track of progress) when it is a

multiple of 100.

When these files have a suffix 2 (eg. amcmcvals2.txt) they correspond to the last estimated
model with an even number of components.

Table 3: Additional output files.

• Similar time and amplitude domains are required. Although the method can account for
horizontal and vertical shifts and rescalings, these are intended for small global phase and
amplitude effects in the data, not to adjust different observation domains. E.g. when the
data constitute a process observed for a month, cut into daily curves, these curves need to
shifted to a one-day frame, prior to the analysis.

3 Multi-resolution warping

3.1 Model components

Multiresolution warping distinguishes itself from existing warping methods, in that it allows for
flexible domain transformations, in which the parameters of the transformation have a mean-
ingful interpretation in the context of warping. This is in contrast with the use of spline basis
functions, for example, which are no warping functions, and hence require constraints on the
parameters to ensure the monotonicity of the resulting warping functions. Multiresolution warp-
ing is built around warplets, these are local warping components that concentrate the warping
action to a certain domain. Warplets are composed, one after the other, to form the final warp-
ing function. Warplets have a clear interpretation in terms of both location and intensity of the
warp.

3.1.1 Warplets

The warplets or warping components are designed to only warp a local area. Warplets are
denoted in full by τ̃((a, λ, wl, wu); t), or abbreviated by τ . It are strictly increasing functions that
deviate from the identity function in a smooth manner on the interval [a− r1, a+ r2] = [wl, wu],
the area where the warplet is active. This is achieved by rotating a rescaled quartic kernel
function alongside the first diagonal, as is illustrated in panels (a) and (b) of Figure 3. For the
use of other kernel functions, see Claeskens et al. (2010). For a positive value of λ, the warplet
will cause a dilation directly followed by a compression with an intensity determined by the
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value of λ. When λ is negative, a compression is followed by a dilation. The parameter λ can
take values in (−1, 1). The component center a divides the warping intensity in a compression
and dilation part, allowing for asymmetric actions. It turns out (see Claeskens et al., 2010) that
such asymmetric components require less warplets, and hence less parameters, than would be
the case with symmetric components.

The following definition introduces the warplets more formally (see Def. 2.2 of Claeskens
et al., 2010). Define the warplet

τ̃ (a, λ, wl, wu; t) = τ̃ (a, λ, a− r1, a + r2; t) (1)

=





a + r1 · g
(
λ r

r2
; (t− a)/r1

)
, t ∈ [a− r1, a− 3

√
3

8 λr]

a + r2 · g
(
λ r

r2
; (t− a)/r2

)
, t ∈ [a− 3

√
3

8 λr, a + r2]

t, otherwise,

with r1, r2 > 0, r = min(r1, r2), λ ∈ (−1, 1), g(λ; y) = z + λKq(z) in which z is the solution to
z − λKq(z) = y, and with the quartic warplet kernel Kq:

Kq(z) =

{
3
√

3
8 (1− z2)2, z ∈ [−1, 1]

0, otherwise.

For each curve n (n = 1, . . . , N), the warplets τ̃n,q (q = 1, . . . , Q) are composed in a warping
function τn = τ̃n,Q ◦ . . . ◦ τ̃n,2 ◦ τ̃n,1, where τ̃n,1 is executed first, then τ̃n,2, etc. The composition
of monotone warplets ensures the monotonicity of the overall warping function and moreover it
has the attractive property that the inverse transformation has an easy, explicit formula.

The function warp evaluates a warping function τ in a vector of time points. E.g. to obtain
a plot of τ(t) = τ̃(2, 0.4, 2− 1.5, 2 + 2) ◦ τ̃(5, 0.6, 5− 2, 5 + 3)(t) execute:

t <- seq(0,10,length.out=1000)
tau.t <- warp(c(5,2),c(0.6,0.4),c(2,1.5),c(3,2),t)
plot(t,tau.t)

There are two arguments in the MRwarp function related to the warplets. Together they
control the maximum severity of the deformations. The value thresh denotes the threshold
on the λ parameter of all warplets in the model, while threshd is the minimum value of r1

and r2 relative to the observed time domain. The lower thresh and the larger threshd, the
less extreme are the warplets. In practise, extreme deformations can translate into a loss of
smoothness and a decreased robustness against misspecification of the model, depending on the
underlying data. The following settings offer a good balance between flexibility and smoothness
in the LC-MS example.

thresh <- 0.5
threshd <- 1/15

These values are incorporated in the estimation routine of section 4.1.

3.1.2 Amplitude components

In line with the choice of the warplets, we use rescaled asymmetric quartic kernels ψ(ā, al, au; t)
to model the amplitude variability. Other choices are possible, for example, spline basis functions
have been used by Gervini and Gasser (2005) and Claeskens et al. (2010).
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The amplitude components have a straightforward parametrization as can be seen in Figure 3
(c) and allow to specify the center ã, lower (left) boundary al and upper (right) boundary
au. This makes it possible for the user to provide good starting values for the estimation
procedure. Moreover, similar to the warplets, the amplitude components can parsimoniously
model a number of local areas of variation. For use in the model, see (4), we define

ψ(ā, al, au; t) =





(
1−

(
(t−ā)
au−ā

)2
)2

, ā ≤ t ≤ au

(
1−

(
(t−ā)
ā−al

)2
)2

, al ≤ t ≤ ā.

(2)

Even though the kernel parameters are estimated in the model, the number of kernels and
starting values for the parameters need to be provided via the kernel.s argument. This vector
is coded as follows kernel.s= (al,1, ā1, au,1, . . . , al,K , āK , au,K) and hence the length of kernel.s
should be a multiple of 3. A maximum of four kernels is allowed, but this can be altered in the
.c file (see Appendix). For the example with the TIC responses, inspection of Figure 1 makes
us choose three regions of local amplitude variation, related to the heights of the peaks around
t = 100, t = 285 and the bumbs around t=30:
kernel.s <- c(0,20,40,70,100,130,270,285,300)

3.2 Preprocessing (shift and rescaling)

The main model is stated in (4). In case it would be necessary to shift and/or rescale the data
before the actual application of the warping, a preprocessing step is performed. In this case we
work with a simplified model. We make the assumption that the unobserved warping functions
are surjective on [l, u], by restricting the lower and upper warping bounds in the priors (8). The
observations yn(tj) = yn,j arise from N random curves Fn that originate from one underlying
mean function µ(t). For simplicity of notation we consider a fixed set of time points tn,j = tj ,
j = 1, . . . , T , for n = 1, . . . , N on the interval [l, u]. Since model (4) focusses on local effects
with respect to amplitude, we incorporate possible shifts and rescalings in a pre-processing step,
that estimates the following simple model with four parameters (wshift,n, wscale,n, ashift,n, ascale,n)
for each curve n = 1, . . . , N − 1. Denote [l.y, u.y] the domain of the responses.

yn(tj) = Fn(tj)+en,j = ascale,n [µ (wscale,n{tj − ct}+ ct + wshift,n)− cy]+ cy +ashift,n +en,j , (3)

with ct = (l + u)/2 and cy = (l.y + u.y)/2 and en,j independent realizations of N (0, σ2).
Both the horizontal shifts wshift,n and the vertical shifts ashift,n (n = 1, . . . , N) sum to zero:

wshift,N = −
N−1∑

i=1

wshift,i, ashift,N = −
N−1∑

i=1

ashift,i,

and both the horizontal scales wscale,n and vertical scales ascale,n (n = 1, . . . , N) are constrained
to be 1 on average:

wscale,N = N −
N−1∑

i=1

wscale,i, ascale,N = N −
N−1∑

i=1

ascale,i.
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Figure 3: (a) warplets, (b) the effect of applying the warplets to the curve (t, F (t)) and (c) kernel (dashed) and
curves with one amplitude component.

For estimation of the model in (3), the same pseudo-likelihood principle (6) as for model (4)
in Section 3.3 can be applied, since we can construct pairwise submodels by eliminating µ(t) as
in (5):

yn(tj) = Fn,j + en,j = ascale,n [µ (wscale,n{tj − ct}+ ct + wshift,n)− cy] + cy + ashift,n + en,j ,

µ(t) =
Fn,j

[
t−ct−wshift,n

wscale,n
+ ct

]
− cy − ashift,n

ascale,n
+ cy.

Shifts are limited to 1/10th of the time domain (horizontally) and to 1/10th of the response
domain (vertically) while scalings are limited to the interval [1 − 1/10, 1 + 1/10]. For editing
these settings we refer to the Appendix. This preprocessing step is optional and the user can
select which effects to include by adding the argument prepr= (wshift, wscale, ashifts, ascale), where
a one implies that a horizontal (w) or a vertical (a) shift or rescaling takes place, a zero entry
indicates no such transformation.

Returning to the LC-MS example, since the TIC response values more or less coincide in the
beginning and end of the domain, we only include a horizontal shift and scale:
prepr <- c(1,1,0,0).

3.3 Model formulation

Using the definitions of the warping functions in (1) and the amplitude components in (2), the
warping model with amplitude adjustment is phrased as

yn,j = Fn,j + en,j = µ(τn(tj)) +
K∑

k=1

bn,kψk(τn(tj)) + en,j , (4)

with bn,k and en,j independent realizations of respectively N (0, σ2
k) and N (0, σ2) for n =

1, . . . , N, j = 1, . . . , T, k = 1, . . . ,K. Since the main goal is to warp the data and since the
amplitude variation is considered a nuisance effect, the amplitude coefficients bn,k are modeled
as random effects. The curve-specific warping functions τn are modeled as follows,

τn(tj) = τ̃(aQ, λn,Q, wl,Q, wu,Q) ◦ . . . ◦ τ̃(a1, λn,1, wl,1, wu,1)(tj).
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The maximum amount of components is set to 6 in the .dll files, but this can be altered in
the .c file (see Appendix). The curve-specific parameters are the intensities λn,q (and the shift
and rescaling parameters in case a preprocessing step is performed). As an averaging constraint,
the intensity parameters satisfy that λN,q = −∑N−1

n=1 λn,q = 0 for q = 1, . . . , Q. Choosing
the same warping center, and the same lower and upper bound for all curves will result in a
more parsimonious model in terms of the number of parameters without limiting the flexibility.
Indeed, curve samples tend to display phase variation on only a few locations, which can be
taken to be common for all curves. A fine-tuning of the warping procedure is contained in
adding further components.

3.4 Model estimation

A sum of weighted pairwise log-likelihoods is used to estimate the parameters in the N warping
functions τn, the K kernels ψk and the variances of the random amplitudes and error term.
The number of kernels K is specified by the user. Claeskens et al. (2010) introduced a Bayesian
estimation strategy to estimate and select the number of warping components, see also Section 4.
The estimation of µ(t) can be avoided by exploiting the invertibility of the warping functions.
This holds since for every possible combination of values n1 6= n2 in {1, . . . , N} we have that

µ(t) = Fn2(τ
−1
n2

(t))−
K∑

k=1

bn2,kψk(t), and thus:

Fn1(t) = Fn2(τ
−1
n2

(τn1(t)))−
K∑

k=1

bn2,kψk(τn1(t)) +
K∑

k=1

bn1,kψk(τn1(t))

yn1,j = Fn2(τ
−1
n2

(τn1(tj))) +
K∑

k=1

(bn1,k − bn2,k) ψk (τn1(tj)) + en1,j . (5)

A pseudo-log-likelihood is constructed by summing the weighted pairwise log-likelihoods corre-
sponding to the N(N − 1) pairwise models (5) with n1 6= n2.
Denote ατ = {aq, wl,q, wu,q, λn,q; q = 1, . . . , Q, n = 1, . . . , N − 1} the parameters of the warplet
expansions of the warping functions, αψ = {āk, al,k, au,k, λ

ψ
i , σ2

k; k = 1, . . . , K} the kernel pa-
rameters and the variances of the random amplitudes, and σ2 the variance of the noise en,j . The
pseudo-log-likelihood is given by

log L(ατ , αψ, σ2) =
−1

(N − 1)N

N∑

n1=1

N∑

n2=1,n2 6=n1

T∑

j=1


log




√√√√2π(
K∑

k=1

2ψ2
i (τn1(tn1,j))σ2

k + σ2)




+

(
yn1,j − fn2(τ

−1
n2
◦ τn1(tn1,j))

)

2(
∑K

k=1 2ψ2
k(τn1(tn1,j))σ2

k + σ2)

]
, (6)

where fn(t) are predicted values of Fn(t) based on an interpolation of the data {tn,j , yn,j}.
Extrapolation in the preprocessing step is done by carrying over the response value of the nearest
observation. When the data display a lot of variation, linear interpolation is not a desirable
method to predict intermediate values. As a solution the data can be smoothed beforehand
and a new data set can be created based on the smoothed curves. This is also what we did for
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the LC-MS data, in which TIC is the original data matrix and TICx and TICy the new data,
smoothed by using the package SemiPar (Wand, 2010).

library("SemiPar")
TIC <- as.matrix(TICdata)
index <- 1:200*2-1
x <- 1:400
for (i in 1:11)
{
TIC.sm <- spm(TIC[i,]~f(x))
TICy[i,] <- TIC.sm$fit$fitted[index]
}
TICx <- t(matrix(index,200,11))

4 Algorithm

We adopted the Bayesian framework to overcome problems with numerical optimization which
would occur when directly maximizing the pseudo log-likelihood (6). The possibility to incor-
porate prior information is exploited in a strategy in which we gradually extend the model by
adding warping components as explained in section 4.2. It give also give rise to a natural model
selection criterion (section 4.4). But first, section 4.1 summarizes the estimation of model (4)
by means of adaptive MCMC.

4.1 Adaptive MCMC

In the Bayesian philosophy, model parameters are random rather then fixed entities. They have
a prior distribution f

(
ατ , αψ, σ2

)
which is updated in the posterior distribution fpost (7) by the

incorporation of the data likelihood f
(
{yn(tj)}n=1...N

j=1...T |ατ , αψ, σ2
)

= L(ατ , αψ, σ2). We use the
pseudo-likelihood of (6). This leads to the following expression for the posterior distribution,

fpost

(
ατ , αψ, σ2

)
= f

(
ατ , αψ, σ2

∣∣{yn(tj)}n=1...N
j=1...T

)

=
f

(
{yn(tij)}i=1...N

j=1...T |ατ ,αψ, σ2
)

f
(
ατ , αψ, σ2

)
∫

f
(
{yn(tj)}n=n...N

j=1...T |ατ , αψ, σ2
)

f (ατ ,αψ, σ2) d(ατ ,αψ, σ2)
. (7)

When we have no information on the parameters beforehand (which is usually the case) the
priors are desired to be uninformative, such that the data (likelihood) completely shapes the
posterior. We use the following non-informative priors for the warping and kernel parameters
in f

(
ατ , αψ, σ2

)
. Let U(x1, x2) denote the uniform distribution on the interval (x1, x2).

aq ∼ U(l, u), wl,q ∼ U(l, u), wu,q ∼ U(l, u),
λn,q ∼ U(−1, 1), q = 1, . . . , Q; n = 1, . . . , N − 1,

āk ∼ U(l, u), al,k ∼ U(l − (u− l)/v), u), au,k ∼ U(l, u + (l − u)/v), k = 1, . . . , K, (8)
with v = (u− l)/100 to enable increased amplitude variation near the borders of [l, u],

and an inverse gamma prior on σ and σk with shape and scale equal to 0.01, k = 1, . . . , K.
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Since the true posterior distribution is not tractable, numerical methods are used to obtain
an informative sample. An MCMC procedure generates chains of dependent samples which
converge to the equilibrium distribution, that is, the posterior distribution of the model pa-
rameters. The initial part of the chain, the burn-in period, is disregarded. The chain starts
with a proper starting value which must be determined in accordance to the prior distribution:
{a(1)

q , λ
(1)
n,q, w

(1)
l,q , w

(1)
u,q, ā

(1)
k , a

(1)
l,k , a

(1)
u,k, σ

2(1)
k , σ2(1)}n=1...N−1

q=1,...,Q, k=1...K = {α(1)
τ , α

(1)
ψ , σ2(1)}. The param-

eter values in iteration i are denoted by {α(i)
τ , α

(i)
ψ , σ2(i)}.

The Metropolis-Hastings algorithm is a type of MCMC method that generates a new proposal
(i+1) based on the previous one (i) by means of a certain proposal density P . The drawn sample
will be approved with probability

P (acceptance) = min

{
fpost

(
α

(i+1)
τ ,α

(i+1)
ψ , σ2(i+1)

)

fpost

(
α

(i)
τ ,α

(i)
ψ , σ2(i)

) · P (i),(i+1)

P (i+1),(i)
, 1

}
. (9)

Here, P (i),(i+1) denotes the proposal density with mean {α(i)
τ , α

(i)
ψ , σ2(i)}, evaluated in the newly

drawn values at step (i + 1). If the proposed value is rejected, the previous value is carried
over unchanged and thus {α(i+1)

τ , α
(i+1)
ψ , σ2(i+1)} = {α(i)

τ , α
(i)
ψ , σ2(i)}. The algorithm works

best (read: the chain converges fastest to a sample of the posterior) if the proposal density
matches the shape of the target distribution, namely, the posterior distribution. Since the
latter is unknown, we use adaptive MCMC (AMCMC), comparable to the adaptive Metropolis-
within-Gibbs algorithm in Roberts and Rosenthal (2009), which updates the proposal density
throughout the algorithm when more information on the posterior comes available through the
chain.

Different in our AMCMC scheme, as compared to that of Roberts and Rosenthal (2009), is,
first, the use of truncated normal proposal densities for each of the parameters. This guarantees
that the generated parameter proposals indeed give rise to valid warping functions and amplitude
components. Second, the updating of the variance of these densities is only done during the
burn-in stage and, third, in our algorithm we do not always evaluate (9) after a value has been
drawn for a particular parameter. We explain this in more detail below.

P is taken to be a product of densities Pp as in (10) for each of the parameters p in the
model. When sampling from Pp1 in iteration (i), the other parameters are left unchanged (thus
Pp is set to degenerate distributions located in the current value in the chain for p 6= p1 in step
i). In iteration (i + 1) a new value is drawn from Pp2 as given by the ordering in (10) while the

13



other values are carried over, and so on.




a
(i+1)
Q drawn from N̄

(
a

(i)
Q , σ2

aQ
, w

(i)
l,Q, w

(i)
u,Q

)
,

w
(i+2)
l,Q drawn from N̄

(
w

(p+1)
l,Q , σ2

wl,Q
, l, a

(i+1)
Q

)
,

w
(i+3)
u,Q drawn from N̄

(
w

(i+2)
u,Q , σ2

wu,Q
, a

(i+2)
Q , u

)
,

λ
(i+3+n)
n,Q drawn from N̄

(
λ

(i+3+n−1)
n,Q , σ2

λn,Q
,−thresh, thresh

)
, n = 1, . . . , N − 1,

σ(i+3+N) drawn from N̄
(
σ(i+3+(N−1)) , σ2

σ, 0, (ly − uy)
)

. (10)

For k = 1, . . . ,K :



a
(i+4+N)
l,k drawn from




N̄

(
a

(i+3+N)
l,k , σ2

al,k
, l − r, ā

(i+3+N)
k

)
, k = 1

N̄
(
a

(i+3+N)
l,k , σ2

al,k
, a

(i+4+N)
u,(k−1) + r, ā

(i+3+N)
k

)
, k > 1

ā
(i+4+N)
k drawn from N̄

(
ā

(i+3+N)
k , σ2

ās
, a

(i+4+N)
l,k , a

(i+3+N)
u,k

)
,

a
(i+4+N)
u,k drawn from




N̄

(
a

(i+3+N)
u,k , σ2

au,k
, ā

(i+4+N)
k + r, a

(i+3+N)
l,k+1 − r

)
, k < K

N̄
(
a

(i+3+N)
u,k , σ2

au,k
, ā

(i+4+N)
k + r, u + r

)
, k = K

For k = 1, . . . ,K :

σ
(i+5+N)
k drawn from N̄

(
σ

(i+5+N)
k , σ2

σk
, 0, (ly − uy)

)
,

For q = 1, . . . , Q− 1 :



a
(i+6+S)
q drawn from N̄

(
a

(i+5+N)
q , σ2

aq
, w

(p)
l,q , w

(i)
u,q

)
,

w
(i+6+N)
l,q drawn from N̄

(
w

(p+5+N)
l,q , σ2

wl,q
, l, a

(i+6+N)
q

)
,

w
(i+6+N)
u,q drawn from N̄

(
w

(p+5+N)
u,q , σ2

wu,q
, a

(i+6+N)
q , u

)
,

λ
(i+6+N)
n,q drawn from N̄

(
λ

(i+5+N)
n,q , σ2

λn,q
,−thresh, thresh

)
, n = 1, . . . , N − 1,

where N̄ (x1, x2, x3, x4) denotes the truncated normal distribution on the interval (x3, x4) with
mean x1, variance x2 and and with r = (u − l)/100, the minimum distance between kernels
parameters.

We not always perform the decision rule after each single parameter proposal, as already
indicated by the iteration numbers in (10). To increase computation speed, new values can be
generated in clusters. This is the cluster {σ2

k}k=1...K , αψ = {āk, al,k, au,k, k = 1, . . . , K} and the
warping parameters from the all but latest component {āq, wl,q, wu,q, λn,q; q = 1, . . . , Q− 1, n =
1, . . . , N − 1}. The reason why the last component is treated differently is explained in section
4.2.

The advantage of updating values one by one or in smaller clusters and not having one
big cluster, is that we can monitor the acceptance probabilities of the parameters that are
altered and evaluated separately. In order for the algorithm to converge sufficiently fast, an
acceptance rate during the Metropolis-Hastings step (9) of roughly 44% is targeted by Roberts
and Rosenthal (2009). The proposal variances in (10) can thus be adjusted differently for each
of the parameters, to better approximate the target density. Concretely this is done after b = 30
thinnings for the parameters. When we have more than 0.5b acceptances of that particular
parameter or cluster, the corresponding proposal variances are increased by 25%, when it is
lower than 0.4b they are increased by the same amount. We use a relatively large initial choice
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for the variances of the proposal densities to benefit the exploration phase.
In case of convergence, the iterated parameter values are still dependent draws from the

posterior distribution. Their information content is therefore smaller than that of a sample of
independent draws. For this reason thinning is applied, that is, we only store the estimates after
several iterations.

The thinning argument in the function call indicates after how many iterations the values
need to be stored, chain denotes the total number of stored values (burn-in included) and
burn-in the final fraction of the stored values that will be available in the output. The following
settings are applied to the LC-MS example:

chain=700
thin=10
burnin=0.5

When the estimation with the provided number of iterations is executed, the C code writes a
number of files (for a complete listing, see Table 3) which contain all the important information.
The file amcmcvals.txt contains the following vectors:

(a1, . . . aQ, wl,1, . . . , wl,Q, wu,1, . . . , wu,Q, λ1,1, . . . , λN−1,1, . . . , λ1,Q, . . . , λN−1,Q, σ2), (11)

where each row corresponds to a stored iteration. In the above example 250 values are available
in the output file, while 5000 iterations were performed. The file amcmcamp.txt consists of
the 250 iterated variances of the random amplitude coefficients, that is, σ2

1, . . . , σ
2
K . The file

amcmcker.txt contains the kernel parameters (al,1, ā1, au,1, . . . , al,K , āK , au,K). The output file
amcmcsigmas.txt consists of a single line, namely the proposal variances corresponding to each
of the parameters in (11), since these values are no longer updated after the burn-in stage.
During the estimation routine these files are accessed by the program, they should therefore
only be opened, renamed or removed afterwards.

Usually we are interested in a point estimate of the warping parameters in the model rather
than in a sample from the posterior. The output list in R contains the warping parameters in
the iteration corresponding to the highest posterior density value (as shown in Table 2).

To facilitate the decision on whether to stop the warping process or to further improve the
warp by adding a new warplet, we wish to keep the information (and in particular the produced
output files) of the previous model as well. Therefore we work with two series of files (e.g.
amcmcvals.txt and amcmcvals2.txt), in which amcmcvals.txt contains the vectors for the
last estimated model in case of an odd number of components and amcmcvals2.txt the values
for the last estimated model in case of an even number of components. In the output list, the
point estimates of the previous model are included and indicated by means of the ‘.prev’ suffix).
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4.2 A prior-posterior transfer

Instead of building the model stepwise, immediately starting with a large number of warplets,
say 6 components, would be problematic. The fact that the decomposition of τ is not unique
can give rise to a highly multimodal posterior density of the warping parameters, which makes
it difficult to detect convergence. The non-uniqueness is easily explained. For example, if the
true unobserved warping function has two components, a model with with four warplets can
simply take an arbitrary τn,3 and have τn,4 = (τn,3)

−1. Or, in the case of warplets with a non-
overlapping domain their order can be reversed. Such a multimodal posterior density is not only
difficult to use to judge convergence, but more importantly, it disables any sort of interpretation
of the parameters.

The solution that we offer is to build the model gradually. We start with a model with a
single warplet and extend the model with one warplet at a time. The information gathered after
estimating each such model is incorporated in the extended model in the next step in the form of
an updated prior. As a result, we estimate a sequence of models in which each additional warplet
is stimulated to eliminate the remaining phase variation only while the previous components take
care of the warping actions that were already achieved in the simpler model.

The joint posterior distribution of the vector ατ in a model with a single warplet is summa-
rized by means of marginal histograms of the MCMC chains for each of the parameters. While
more advanced methods could be used at this stage, we found the information contained in the
histograms sufficient.

Since the adaptive MCMC has adjusted the proposal variances of the warping parameters
in (10) a separate Metropolis-Hastings evaluation step (9) is not necessary and rather a cluster
of proposals is created as in Section 4.1.

4.3 Model selection

Because each new warplet contributes less to the warping action than the already present
warplets, a natural model selection procedure arises. When the newest warplet (indexed by
Q) can not sufficiently improve the model, it will either operate on a very small domain, which
results in an overlap of the highest posterior density (hpd) intervals of wl,Q and wu,Q and/or act
with a low intensity, in which case all the highest posterior density intervals of λQ,n contain 0.
In case of one of the latter scenarios, the model selection step suggests to drop this additional
component and opts for a reprise of the previously estimated model.

We use 95% highest posterior density intervals to represent the posterior densities in this
criterion which are calculated using the function hpd in the R-library boa (Smith, 2007).

The function MRwarp offers a choice between two strategies regarding the number of warplets.
First, a fixed number of warplets can be selected (e.g. 3) and the program will perform the
prior-posterior tranfer estimation procedure, without displaying any intermediate results. After
completion the R-output vector contains only information on the last estimated model (as also
explained in Table 2). This strategy is selected by choosing:

selection="FIXED"
components=3

A second use of the program is by user interaction. The option selection="STEP" makes the
program ask the user whether or not he/she wants to continue to add an extra component after
each estimated model. To facilitate this decision the current warped curves (including horizontal
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preprocessing) are plotted. After the first model estimation (1 warplet) also the horizontally
scaled and shifted curves and the horizontally and vertically scaled and shifted curves of the
preprocessing step are plotted. In addition, the user can consult the hpd intervals, which will
be automatically activated.

4.4 Example

This section contains the complete R-code for the LC-MS example.

Reading the data

TIC <- as.matrix(TICdata)

Smoothing the LC-MS data

library("SemiPar")

index <- 1:200*2-1
TICy <- t(matrix(index,200,11))
x <- 1:400
for (i in 1:11)
{
TIC.sm <- spm(TIC[i,]~f(x))
TICy[i,] <- TIC.sm$fit$fitted[index]
}
TICx <- t(matrix(index,200,11))

Multiresolution warping options

Xdata=TICx
Ydata=TICy
chain=700
thin=10
burnin=0.5
selection="STEP"
components=1
kernel.s=c(0,20,40,70,100,130,270,285,300)
prepr=c(1,1,0,0)
thresh=0.5
threshd=1/15
alpha=0.05
output <-MRwarp(Xdata,Ydata,chain,thin,burnin,kernel.s,components,selection,

thresh,threshd,prepr,alpha=0.05)

Plot of the warped data

x <- 1:400
TIC.plot <- matrix(0,11,400)
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WX <- t(matrix(x,400,11))
shift <- output$shift.w
scale <- output$scale.w

WX <- (WX -200)*scale +200 +shift

for (i in 1:11)
{
r1 <- output$A.prev - output$Ll.prev
r2 <- output$Ul.prev - output$A.prev
WX[i,] <- warp(output$A.prev,output$Lambda.prev[i,],r1,r2,WX[i,])
wx <- WX[i,]
TIC.sm <- spm(TIC[i,]~f(wx))
TIC.plot[i,] <- TIC.sm$fit$fitted
}

windows()
plot(WX[1,],TIC[1,],xlab="",ylab="",ylim=c(min(TIC),max(TIC)))
lines(WX[1,],TIC.plot[1,])
for (i in 2:11)
{
points(WX[i,],TIC[i,],xlab="",ylab="",col=i)
lines(WX[i,],TIC.plot[i,],col=i)
}

Output and answers provided to the program during the stepwise procedure

"start C loop"
"finish C loop"
Do you want to continue and add a component? (y/n)y
"start C loop"
"finish C loop"
Do you want to continue and add a component? (y/n)y
"start C loop"
"finish C loop"
Do you want to continue and add a component? (y/n)y
"start C loop"
"finish C loop"
Do you want to continue and add a component? (y/n)y
"start C loop"
"finish C loop"
"automatic model selection selects model with 4 components"
Do you want to continue and add a component? (y/n)n
"program stopped after 5 components"

After preprocessing and estimating the first model, containing one warplet, we receive the three
plots (a), (b) and (c) in Figure 4 and the following question: Do you want to continue and
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add a component? (y/n) Since we did not include any amplitude preprocessing, plot (a) and
(b) in Figure 4 are exactly the same. In case one would include a vertical shift or rescaling,
this will be included while estimating but will only be illustrated in plot (b). The first model
already eliminates a substantial part of phase variation. To investigate whether this is further
improved by including a second component, we answer the output question with y and enter.
The program now extends the model by adding a second warplet while updating the priors of
the warping parameters by using the posterior information. We continue until we are satisfied
with the result, which in this example is at Q = 4. This is also indicated by the model selection
criteria after including a fifth component. Since this model has an even number of components,
its corresponding output can be found in the files with the suffix 2. In the output list both the
warping parameters for the model with four (.prev suffix) and five components are provided.
The code for the plot of the warped data (Figure 1 (b)) illustrates how to use the output list to
obtain warped data curves.

5 Conclusion

The multiresolution warping method (Claeskens et al., 2010) has been extended to incorporate
joint amplitude estimates in the form of rescaled kernel functions. The latter were chosen because
of their parametrization which makes it easy for the user to interpret the parameters and to
provide proper starting values.

Thresholding on the warping intensities and the warping domain can be used to avoid too
severe transformations and to promote data smoothness after warping.

The R-C interface for multiresolution warping combines the computational efficiency of
C with the graphical features and user-friendliness of R. It provides the user with a several
options to monitor the warping stage. Extensive output is available in the output files and can
be consulted when desired, while the most important output is directly transferred to R.

A Additional settings in interface.C

Table 4 summarizes a selection of additional settings that can be easily altered in the C file.
The C-file is extensively documented, hence more adjustments can always be made. To compile
the .c file and obtain the .dll file in Windows, we have used Rtools, a collection of packages
put together by Prof. B. Ripley, currently maintained by D. Murdoch. We refer to the extensive
documentation on http://www.murdoch-sutherland.com/Rtools/. For use with Linux, this
is not necessary.
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Figure 4: (a) Horizontally shifted an rescaled curves, (b) transformed curves after the entire preprocessing step
(c)-(d)-(e)-(f) stepwise warped curves (horizontally shifted, rescaled and warping components). The plotted lines
linearly interpolate the data.
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Parameter Line Description
Nmax 11 The maximum number of time points N .

Smax 12 The maximum number of curves S.

MAXc 17 The maximum number of components Q.

MAXk 19 The maximum number of kernels K.

wshiftr 176 The maximum horizontal shift in the preprocessing step.

wscaler 177 The maximum horizontal rescaling in the preprocessing step.

ashiftr 558 The maximum vertical shift in the preprocessing step.

ascaler 561 The maximum vertical rescaling in the preprocessing step.

u 553 The number of thinning loops after which the proposal variances are
updated (currently 30).

Npreproc 554 The number of iterations in the preprocessing step (currently S × 100).

*gamma 564-565 The scale and shape parameter of the inverse gamma prior for the vari-
ances (currently 0.01) .

Table 4: Some easily adapted additional settings in the C file.
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