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ABSTRACT 
One of the first steps in a software engineering process is 
the elaboration of the conceptual domain model. In this 
paper, we investigate how Formal Concept Analysis can 
be used to formally underpin the construction of a 
conceptual domain model. In particular, we demonstrate 
that intuitive verification rules for process-data matrices 
can be formally grounded in FCA theory. As a case study, 
we show that the well-formedness rules from MERODE 
are isomorphic to the clustering rules in Formal Concept 
Analysis, and that the relationships in the class diagram 
are isomorphic to the subconcept-superconcept 
relationship in FCA. 
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1.  Introduction 
 
The complexity of most information systems is caused by 
the complexity of the reality they have to deal with and 
statements about the required functionality always have 
some underlying assumption about the real world. 
Therefore, it is useful to build a real world model prior to 
the development of an information system [1]. High 
quality conceptual models are critical to the success of 
system development efforts [2]. 

Unfortunately, developers often encounter problems 
while elaborating the business domain model [3]: 
inconsistencies arise between static and dynamic 
schemas, object types are missing in the business domain 
model, the business domain model contains errors, etc. 
Quality has been identified as one of the main topics in 
current conceptual modeling research [4]. Despite this 
importance, algorithmic approaches to assure conceptual 
model quality are virtually nonexistent [5]. In [6], the 
authors suggested to use CRUD-matrices to analyze 
consistency in conceptual models. However, this topic 
was only briefly discussed. Can we mathematically 
ground this type of analysis? Can we find an algorithmic 
approach to detect missing object types? Can we benefit 

from an algorithmic method for enforcing consistency in 
business models? Can we mathematically analyze 
completeness of models? 

In this paper, we explore the possibilities of using a 
technique known as Formal Concept Analysis (FCA) [7, 
8] for mathematically underpinning the construction and 
analysis of conceptual models. FCA arose twenty-five 
years ago as a mathematical theory [9]. In the domain of 
software engineering, FCA has typically been applied to 
support software maintenance. It has been used for 
reorganizing existing class hierarchies and for refactoring 
and modifying existing code [10, 11]. FCA has also been 
used for identifying class candidates in legacy code [12]. 
In requirements analysis, FCA has been used to identify 
class candidates in use case descriptions [13, 14] and to 
reconcile descriptions written by different stakeholders 
using controlled vocabulary and grammar [15, 16]. More 
recently FCA has also been used in combination with 
ontology. Cimiano investigates how FCA and ontologies 
may complement each other from an application point of 
view [17]. Bain applies FCA to identify structure in 
theories [18]. Within the area of design, FCA has been 
applied to classes and methods [19]. However it has never 
been applied to the earlier stage of conceptual modeling. 
In this paper we apply FCA to the combination of object 
types and processes to validate the relationships captured 
by the class diagram and to identify missing object types. 

The remainder of this paper is composed as follows. In 
section 2, we introduce the research question. As FCA is 
in essence a matrix-technique, we discuss the three most 
frequently used matrix techniques in conceptual domain 
modeling: the CRUD-matrix from Information 
Engineering, the entity-event table from OOSSADM and 
the object-event table from MERODE. Subsequently we 
discuss how FCA could be used as formal foundation for 
well-formedness rules for process-data matrices in 
conceptual modelling. In section 3, we introduce the 
pivotal notions of FCA theory. As MERODE is the only 
method that defines well-formedness rules for a CRUD-
like matrix, in section 4, we discuss the essentials of 
MERODE. In section 5, the close relationship between 
FCA and these well-formedness rules is investigated. 
Section 6 concludes the paper.  



2.  Research Question 
 
In this section, we elaborate on the three most frequently 
used matrix techniques in object-oriented conceptual 
domain modeling. 

The Create, Read, Update and Delete (CRUD)-matrix 
was initially introduced in information engineering by 
Martin [20]. The purpose of this matrix is to illustrate the 
relationships between objects and the processes in which 
they participate. A process may either create, read, update 
or delete an object. 

The Object-Oriented Structured Systems Analysis and 
Design Methodology (OOSSADM) builds on the Jackson 
Systems Development approach [2]. In this approach, 
entities impose sequence constraints on business events 
by means of a sequence diagram. As events can appear in 
the sequence diagrams of multiple entities, Robinson [21] 
introduced the notion of Entity-Event matrix to capture 
the entities that are affected by each business event. 

Model driven, Existence dependency Relation, Object 
oriented DEvelopment (MERODE) is an object-oriented 
analysis and design methodology [22, 23] and is 
complementary to UML [24], in that it offers a precise 
and computationally complete methodology. MERODE 
represents an information system through the definition of 
business events, their effect on enterprise objects and the 
related business rules.  

Similarly as in OOSSADM, business events are 
identified as independent concepts, with an object-event 
table defining which types of objects are affected by 
which types of events. Each object type has a method for 
each event type in which it may participate. Such method 
implements the object’s creation, its state changes (i.e. 
changes to attribute values) or its deletion as the 
consequence of an event of the corresponding type. 

The events in OOSSADM and in MERODE can be 
considered as elementary processes that have an effect 
(create, modify or update) on at least one, but possibly 
more object types. Hence, in its most simple form, these 
three tables indicate which objects participate in which 
elementary processes1. A convenient way for representing 
such table is by a cross table, which is a rectangular table 
of which the rows are labeled by the objects, the columns 
labeled by events and a cross in an entry indicates that the 
corresponding object participates in the corresponding 
event.  

One major difference between the three approaches is 
the way a table is filled.  In all three approaches, the table 
is initially filled on the basis of classical analysis: 
interviews with key users and logical reasoning. 
Subsequently, the table should be verified against some 
quality criteria. Typically existing criteria will attempt to 
identify missing rows, columns or crosses by means of 
general and intuitive "rules of thumb" such as: for each 
                                                 
1 In the remainder of this paper, we will call these elementary 

processes "events". It should however be noted that these 
"events" do not only symbolise the initiating trigger, but also 
the processing that is activated as response to the event. 

object type, there should be at least one process that 
creates objects of that type; each process should at least 
read some data, etc. Of the three modeling approaches, 
MERODE is the only approach that defines formal 
criteria for the completeness and well-formedness of the 
table. 

The CRUD-matrix, Entity-Event and Object-Event 
table have a clear relationship with a single-valued formal 
context from FCA (see section 3): object or entity types in 
a conceptual model can be mapped to "objects" in FCA 
and events can be mapped to "attributes" in FCA. Formal 
Concept Analysis is a recent mathematical technique that 
can be used as an unsupervised clustering technique. The 
starting point of the analysis is a table consisting of rows 
(i.e. objects), columns F (i.e. attributes) and crosses (i.e. 
relationships between objects and attributes).  

The goal of the research is to investigate the 
possibilities of using FCA as grounding theory assisting 
in the development of conceptual domain models. The 
core contributions of this paper are as follows. First, we 
show that conceptual modeling can be considered as an 
application of FCA. FCA provides a sound mathematical 
foundation for assisting modelers in the elaboration of 
conceptual domain models. Moreover, it provides a 
formal underpinning for the central notion of concept. 
Second, we show that the well-formedness rules from 
MERODE - obtained by reasoning on the semantics of 
existence dependency, on common sense reasoning and 
on process algebra considerations – are an inherent part of 
the FCA lattice construction algorithm. Whereas in 
MERODE, the consistency requirements were statically 
modeled as meta frame for conceptual models, FCA 
provides an algorithm that automatically verifies whether 
the association matrix and existence dependency graph 
are correct and consistent. Starting from an Object-Event 
table that is well-formed according to the MERODE-
rules, we apply the clustering principles of FCA and 
demonstrate that FCA comes up with a ordering of 
concepts that is isomorphic to the ordering imposed by 
the existence dependency relationship used in MERODE. 
Hence, we can postulate that FCA offers a theoretical 
foundation for the consistency rules of MERODE. 
Reversely, a principal result is that it is possible in 
conceptual object-oriented analysis to obtain a concept 
lattice by using the MERODE rules. In this way we 
demonstrate that FCA is a valid instrument for the formal 
underpinning of matrix verification techniques [23].  
 
3.  FCA essentials 
 
Formal Concept Analysis is a recent mathematical 
technique that can be used as an unsupervised clustering 
technique. Objects participating in the same set of events 
are grouped in concepts. The starting point of the analysis 
is a table consisting of rows M  (i.e. objects), columns F 
(i.e. attributes) and crosses T M F⊆ ×  (i.e. relationships 
between objects and attributes).  

The mathematical structure used to reference such a 
cross table is called a formal context (M, F, T).



 
Table 1.  Example of a formal context 
 

 enter leave acquire classify borrow renew return sell lose 
Member X X   X X X  X 
Book   X X X X X X X 
Loan     X X X  X 

 
An example of a cross table is displayed in Table 1. In 

the latter, objects are related (i.e. the crosses) to a number 
of events (i.e. the attributes); here an object is related to 
an event if the object participates in the event. Given a 
formal context, FCA then derives all concepts from this 
context and orders them according to a subconcept-
superconcept relation. This results in a line diagram 
(a.k.a. lattice).  

The notion of concept is central to FCA. The way FCA 
looks at concepts is in line with the international standard 
ISO 704, that formulates the following definition: A 
concept is considered to be a unit of thought constituted 
of two parts: its extension and its intension [7. 8]. The 
extension consists of all objects belonging to the concept, 
while the intension comprises all attributes shared by 
those objects. Typically, one would think here about 
informational attributes but one can just as well consider 
behavioral attributes such as reaction to events or 
participation in processes.  So let us illustrate the notion 
of concept of a formal context using the data in Table 1. 
For a set of objects O M⊆ , the events that are common 
to all objects o in the set O can be identified, written 

( )Oσ , via: 
( ) { | : ( , ) }A O f F o O o f Tσ= = ∈ ∀ ∈ ∈  

 
Take for example the set O M⊆ consisting of objects 

Member, Book and Loan. This set O of objects is closely 
connected to a set A consisting of the attributes “borrow”, 
“renew”, “return” and “lose”, being the events shared by 
the objects in O. That is: 

({Member, Book, Loan}) = {borrow, renew, return, 
lose} 

 
Reversely, for a set of attributes A, we can define the 

set of all objects that share all attributes in A: 
( ) { | : ( , ) }O A i M f A i f Tτ= = ∈ ∀ ∈ ∈  

 
If we take as example the set of events of Loan, 

namely {borrow, renew, return, lose}, we get to the set O 
⊆ M consisting of the objects Member, Book and Loan. 
That is to say: 

({borrow, renew, return, lose}) = {Member, Book, 
Loan} 

 
As one can see, there is a natural relationship between 

O as the set of all objects sharing all attributes of A, and A 
as the set of all attributes that are valid descriptions for all 
the objects contained in O. Each such pair (O, A) is called 
a formal concept (or concept) of the given context. The 

set ( )A Oσ=  is called the intent, while ( )O Aτ=  is 
called the extent of the concept (O, A). 

Notice that concepts are always maximal in the sense 
that the set O contains all objects that share the attributes 
of A and that A contains all shared attributes of the objects 
in O. 

Moreover, there is a natural hierarchical ordering 
relation between the concepts of a given context that is 
called the subconcept-superconcept relation.  

1 1 2 2 1 2 2 1( , ) ( , ) ( )O A O A O O A A⊆ ⇔ ⊆ ⊆∧  
 
A concept d 1 1( , )O A=  is called a subconcept of a 

concept e 2 2( , )O A=  (or equivalently, e is called a 
superconcept of a concept d) if the extent of d is a subset 
of the extent of e (or equivalently, if the intent of d is a 
superset of the intent of e). For example, the concept with 
intent “enter,” “leave,” “lose,” “return,” “renew,” and 
“borrow” is a subconcept of the concept with intent 
“lose,” “return,” “renew,” and “borrow.” With reference 
to Table 1, the extent of the latter is composed of object 
types Loan, Member and Book, while the extent of the 
former is composed of object type Member. 

The set of all concepts of a formal context combined 
with the subconcept-superconcept relation defined for 
these concepts gives rise to the mathematical structure of 
a complete lattice, called the concept lattice ( , , )M F Tβ of 
the context. The latter is made accessible to human 
reasoning by using the representation of a (labeled) line 
diagram. The line diagram in Figure 1, for example, is a 
compact representation of the concept lattice of the formal 
context abstracted from Table 1. The circles or nodes in 
this line diagram represent the formal concepts. It 
displays only concepts that describe objects and is 
therefore a subpart of the concept lattice.  The shaded 
boxes (upward) linked to a node represent the attributes 
used to name the concept. The non-shaded boxes 
(downward) linked to the node represent the objects used 
to name the concept. The information contained in the 
formal context of Table 1 can be distilled from the line 
diagram in Figure 1 by applying the following reading 
rule: An object g is described by an attribute m if and only 
if there is an ascending path from the node named by g to 
the node named by m. For example, Member is described 
by the attributes “enter”, “leave”, “lose”, “return”, 
“renew” and “borrow”. 

Retrieving the extension of a formal concept from a 
line diagram such as the one in Figure 1 implies collecting 
all objects on all paths leading down from the 
corresponding node. In this example, the extension 



associated with the upper node is {Loan, Book, Member}. 
To retrieve the intension of a formal concept one traces all 
paths leading up from the corresponding node in order to 
collect all attributes. In this example, the second concept 
in row two is defined by the attributes “ sell,”  “ classify,”  
“ acquire,”  “ lose,”  “ renew,”  “ return,”  and “ borrow.”  The 
top and bottom concepts in the lattice are special. The top 
concept contains all objects in its extension. The bottom 
concept contains all attributes in its intension. A concept 
is a subconcept of all concepts that can be reached by 
travelling upward. This concept will inherit all attributes 
associated with these superconcepts. In our example, the 
first node on the second row with extension {Member} is 
a subconcept of the top node with extension {Loan, 
Member, Book}.   

 

 
 

Fig. 1.  Line diagram corresponding to the context 
from Table 1 

 
In FCA, the concept generated by an object type P is 

defined as ( ) ( ( ( )), ( ))P P Pγ τ σ σ= and the concept 
generated by an event type b as ( ) ( ( ), ( ( )))b b bλ τ σ τ= . 
In the line diagram, the nodes are labelled by the object 
types which generate the corresponding concept C. These 
are called the own object types of the concept C. 
 
4.  MERODE essentials 
 

The MERODE methodology entails the notion of 
existence dependency, which superimposes a lattice 
structure (not to be confused with inheritance hierarchies) 
on objects. The concept of existence dependency (ED) is 
based on the notion of the “ life”  of an object. The life of 
an object is the span between the point in time of its 
creation and the point in time of its end. Existence 
dependency is defined at two levels: at the level of object 
types or classes and at the level of object occurrences. 
The existence dependency relation is a partial ordering on 
objects and object types which is defined as follows. 

 
Definition 1 (Existence Dependency): Let P and Q be 

object types. P is existence dependent on Q (notation: P 
←  Q) if and only if the life of each occurrence p of type 
P is embedded in the life of one single and always the 
same occurrence q of type Q. p is called the dependent 
object, (P is the dependent object type) and is existence 

dependent on q, called the master object (Q is the master 
object type). 

The result is that the life of the existence dependent 
object cannot start before the life of its master. Similarly, 
the life of an existence dependent object ends at the latest 
at the same time that the life of its master ends.  

The notion of existence dependency is similar to the 
notion of weak entity as introduced by Chen and the 
notion of master entity from OOSSADM. In the ER-
notation [25] we can use the notion of a weak entity to 
denote an existence dependent object type since the 
existence of a weak entity depends on the existence of the 
other entities it is related to by means of a weak 
relationship [25]. Existence dependency is equivalent to 
the notion of a weak relationship that is in addition 
mandatory for the weak entity type. 

MERODE requires all objects in the conceptual model 
to be related through existence dependency relationships 
only. The class diagram can therefore be represented as an 
existence dependency graph.  

 
Definition 2 (Existence Dependency Graph): Let M  

be the set of object types in the conceptual schema.  The 
existence dependency graph (EDG) is a relation ← which 
is a bag2 over M × M such that ← satisfies the following 
restrictions: 

1) An object type is never existence dependent on 
itself: 
  ∀ P ∈ M : (P,P) ∉ ← 

2) Existence dependency is acyclic.  This means that: 
     ∀ n ∈ , n ≥ 2, ∀ P1, P2, ..., Pn ∈ M:  

(P1,P2), (P2,P3),..., (Pn-1,Pn) ∈ ← ⇒ (Pn,P1) ∉ ←  
Í is the non-reflexive transitive closure of ← : 
Í ⊆ M × M such that  
 1)   ∀ P, Q ∈ M : (P,Q) ∈ ← ⇒ (P,Q) ∈ Í 

2) ∀ P, Q, R ∈ M : (P,Q) ∈ ← and (Q,R) ∈ Í   
       ⇒ (P,R) ∈ Í 

 
In practice, MERODE also demands that the EDG is 

fully connected. 
 
Definition 3 (Object Event Table): The object-event 

table is a table with one row for each object type and one 
column for each event type.  Each cell contains either a 
blank or a ‘X’, which stands for “ participates in event” . 
Let A be the universe of relevant event types.  Then T ⊆ 
M × A × {' ', 'X'} such that ∀ P ∈ M, ∀ a ∈ A :  

(P,a,' ') ∈ T or (P,a,'X') ∈ T  
∀ P ∈ M : x(P) = {a ∈ A | (P,a,'X') ∈ T} 
A = ∪  {x(P) | P ∈ M }  
 
The OET is drawn as a matrix containing one row for 

each object type and one column for each event type.  An 
'X' on a row-column point of intersection indicates that 

                                                 
2. Bags can contain the same element more than once (as 

opposed to sets).  

subconcept 

superconcept 



this particular event type is an element of x(P) (the 
alphabet of P), where P is the object type corresponding 
to the row.   

In MERODE, a multiple of well-formedness rules for 
object-oriented conceptual models are defined.  These 
rules were elaborated based on reasoning on model 
quality (completeness and consistency), on object life 
cycles and the formalization by means of process algebra 
[23, 26]. We now discuss four of these rules that are 
relevant for this paper. It should be noted that we take the 
MERODE-rules as such and do not aim at motivating 
these rules in this paper.  For a motivation, the interested 
reader is referred to [22, 23]. 

Rule 1:  the relevant life of a domain object type has a 
certain duration that can be delimited by two events: one 
event when the object enters the domain of interest and 
one event when the object leaves the domain of interest. 
In other words, each object type should participate in at 
least two event types: one for its creation and one for its 
ending. For the object-event table, this means that each 
row should contain at least two crosses. 

Rule 2: each identified event type must be relevant for 
at least one object type. For the object-event table, this 
means that on each column there is at least one row with a 
cross.  

Rule 3 (propagation rule): a master object type is 
always involved in all event types in which one of its 
dependent object types participates. For example, a state 
change of a loan, e.g. because of the return of the book, 
automatically implies a state change of the related book 
and member: the book is back on shelf and the member 
has one copy less in loan. Therefore, if P is existence 
dependent of Q, the alphabet of P must be a subset of the 
alphabet of Q. This is called the propagation rule: P ← Q 
⇒ x(P) ⊆ x(Q). 

Rule 4 (contract rule): the contract rule says that when 
two object types share two or more event types, the 
common event types must be in the alphabet of one or 
more common existence dependent object types:  

∀ P, Q ∈ M : #(x(P) ∩ x(Q)) ≥ 2 and ¬(x(P) ⊆ x(Q) 
or x(Q) ⊆ x(P)) ⇒ ∃ R1, ... Rn ∈ M: ∀ i ∈ {1,...,n}: Ri 
← P,Q and x(R1)∪ ... ∪ x(Rn)= x(P) ∩ x(Q) 
Consequence: x(P) ⊆ x(Q) ⇒ P ← Q 

Notice that in MERODE the contract rule is only 
applicable in case of two or more common event types 
and that at least one of these must create and another one 
must end the existence dependent object types. If there is 
only one common event type MERODE does not require 
the definition of an extra object type, because an object 
type requires at least two event types. The argument for 
two events is only based on the fact that a life cycle 
requires a start and an end.   

 
5.  FCA and the object-event matrices 

As explained before, the well-formedness rules from 
MERODE were obtained by reasoning on the semantics 
of existence dependency, on common sense reasoning and 
on process algebra considerations. We reformulate each 

of the MERODE-rules in FCA terms. The existence of 
rules 1 and 2 can easily be motivated in FCA as well: 
objects without attributes and attributes (events) that 
belong to no objects can be considered as 
incompletenesses in a conceptual model. For rule 3 it 
appears that the principle of propagation of events along 
existence dependency paths yields the result that the FCA 
and EDG lattice are to a large extent isomorphic. In other 
words, by imposing the well-formedness rules from 
MERODE, we obtain a concept lattice in conceptual 
object-oriented analysis. Reversely, the subconcept-
superconcept relationship of FCA turns out to be 
isomorphic to the existence dependency relationship. 
Finally, although rule 4 (contract rule) can be formulated 
in FCA terms, FCA offers no substantiation for the 
existence of this rule. This could be a reason to revise that 
rule in MERODE.  

 
5.1 Object-event table with empty row column 
 
Consider the object-event table displayed in Table 2. The 
lattice corresponding to Table 2 is displayed in Figure 2. 
This table has an empty row, which means there is an 
object type R that is involved in no event type at all. In 
FCA, this implies that the object type R is part of the 
extent of the top concept of the corresponding lattice. This 
top concept has an empty intent. In other words, there is 
an object type that has no attributes: it participates in no 
events. 

This table also has an empty column, which means 
there is an event type e that involves no object type at all. 
In FCA, this implies that the event type e is part of the 
intent of the bottom concept of the lattice. This bottom 
concept has an empty extent. In other words, there is an 
attribute that belongs to no object. 

Table 2.  Object-event table with empty row and column 

 a b c d e 
P  X X X  
Q X X X   
R      

 

 
Fig. 2. Lattice corresponding to Table 2 

 
MERODE considers these two cases as modeling 

anomalies.  Rule 1 demands that each object type 
participates in at least two event types, one for the 
creation of objects and one for the deletion of objects. So, 



empty rows are not allowed. This MERODE rule can be 
reformulated in FCA terms as follows. 

 
Rule 1 in FCA terms: 

Let P be an object type, L a concept and m, n events: 
: ( , , )

:
   ( , , ) : ( ) , : , int( )

Given M F T
P M

L M F T P ext L m n m n L m nβ
∀ ∈

∃ ∈ ∈ ∧ ∃ ∈ ∧ ≠
 

MERODE also demands that each event type is 
relevant for at least one object type, so empty columns are 
not allowed. This MERODE rule can be reformulated in 
FCA terms as follows. 

 
Rule 2 in FCA terms: 

: ( , , )
: ( , , ) : ( ) int( )

Given M F T
a F L M F T ext L a Lβ∀ ∈ ∃ ∈ ≠ ∅ ∧ ∈  

 
5.2 Propagation rule and subconcept-superconcept 
relation 
 
In this section we demonstrate that because of the 
propagation rule, every object in the EDG generates a 
tuple ε(P) = (P*, x(P)), where P* is the set of all masters 
of P and x(P) is the alphabet of P. Then ε(P) matches 
with the concept in the FCA line diagram with label P and 
moreover,  if P is existence dependent on Q, then there is 
an upward path in the FCA lattice from the node with 
label Q to the node with label P. 

 
Definition 3: Let ( )Pε  be defined as follows:  

( )Pε  = (P*, x(P)), with P*= {X | (P,X) ∈ Í } { }P∪   
 

Theorem 3: ( )Pε is a concept in FCA  
Proof: 

( )Pε  = (P*, x(P)) 
To be proven:  P* = τ(x(P)) = {Q ∈ M | ∀ e ∈ x(P) | e 

∈ x(Q)} 
Q ∈ P* 
⇔ (P,Q) ∈ Í 
⇔ x(P) ⊆ x(Q) (because of propagation rule) 
⇔ ∀ e ∈ x(P): e ∈ x(Q) 
⇔ Q ∈ τ(x(P)) 
QED 
 

Theorem 4: if P ← Q then ( )Pε is a superconcept of ( )Qε  

Proof 
( )Pε = ({P} ∪ {X | (P,X) ∈ Í } ,  x(P) ) 

( )Qε = ({Q} ∪ {Y | (Q,Y) ∈ Í } ,  x(Q) ) 
(1): 
P ← Q 
⇒ (Q Í Y ⇒ P Í Y )  
⇒ {X | (P,X) ∈ Í } ⊇ {Y | (Q,Y) ∈ Í } 
⇒ ({P} ∪ {X | (P,X) ∈ Í }) ⊇ ({Q} ∪ {Y | (Q,Y) ∈ Í } 
(2): 

x(P) ⊆ x(Q)  (because of propagation rule) 
(1) + (2) ⇒ ( )Pε is a superconcept of ( )Qε   
QED. 
 

Theorem 5: if ( )Pγ is a superconcept of ( )Qγ in FCA 
then P ← Q in MERODE 

Proof 
( ) ( ( ( )), ( ))P P Pγ τ σ σ=  
( ) ( ( ( )), ( ))Q Q Qγ τ σ σ=  

int( ( )) int( ( ))P Qγ γ⇒ ⊆  
⇒  x(P) ⊆ x(Q)   
⇒  P ← Q 
QED 
 
Consider for example the object-event table in Table 1. 

The set of events in which Loan participates is a subset of 
the events in which Member participates. In MERODE, 
Loan is said to be existence dependent of Member. In 
FCA, the concept generated by Loan is a superconcept of 
the concept generated by Member. As a consequence, 
there is an upward leading path from the node with label 
Member to the node with label Loan in the FCA lattice 
(see Figure 1). 
 
5.3 FCA and the contract rule 
 
In this section we show how the object-event lattice may 
help in identifying potentially missing object types. If the 
object-event lattice contains a concept with two or more 
own event types in its intent and zero own object types in 
its extent, then we have a node in the line diagram with 
attribute labels, but without object type labels attached to 
the node. In MERODE, this indicates a situation where 
the object types one level lower in the lattice share at least 
two events that do not appear in the alphabet of one or 
more common existence dependent object types. This 
situation is in contradiction with the contract rule. 

 
Theorem 6: If a lattice ( , , )O A Iβ  contains a concept C 
such that (ext( ))own C = ∅  and (int( )) 2own C ≥ , then an 
object type is missing in the object-event table according 
to the MERODE contract rule. 

Proof: 
( ( , , )) ( ( ) ) | int( ) | 2C O A I ext C Cβ∈ ∧ = ∅ ∧ ≥  
(1){ | ( , , ) }L L O A I L Cβ∈ ∧ ⊂ = ∅

: { | ( , , ) ( ) int( )}a A P Y O A I P ext Y a Yβ⇒ ∃ ∈ ∈ ∧ ∈ ∧ ∈ = ∅
⇒  violation of Rule 2 

(2) , : , ( , , ) ( ) ( )P Q O L R O A I L R L C R C P ext R Q ext Lβ∃ ∈ ∃ ∈ ∧ ≠ ∧ ⊂ ∧ ⊂ ∧ ∈ ∧ ∈
⇒  int(C) ⊆  x(P) and int (C) ⊆ x(Q) and ext(C) = ∅ 
⇒  |x(P) ∩ x(Q)| > 1 and ¬(∃ R1, ... Rn ∈ O: ∀ i ∈ 
{1,...,n}: Ri ← P,Q and x(R1)∪ ... ∪ x(Rn)= x(P) ∩ x(Q)) 
⇒  violation of  contract rule  
QED 



Table 3.  Expanded formal context 
 enter leave acquire classify borrow renew return sell lose reserve cancel 

Member X X   X X X  X X X 
Book   X X X X X X X X X 
Loan     X X X  X   

 
Table 4.  Formal context with object type Reservation 

 enter leave acquire classify borrow renew return sell lose reserve cancel 
Member X X   X X X  X X X 
Book   X X X X X X X X X 
Loan     X X X  X   
Reservation          X X 

 
We now illustrate Theorem 6. Suppose that besides 

borrowing books, it is also possible to reserve books that 
are not on shelf. If a member changes her mind and 
decides not to fetch the copy, she can cancel the 
reservation. The events “ reserve”  and “ cancel”  are added 
to the object-event table from Table 1. The resulting 
object-event table is displayed in Table 3.  

The shaded area of Table 3 shows the common event 
types of Book and Member. Some of the events are also 
in the alphabet of the dependent object type Loan but 
“ reserve”  and “ cancel”  do not appear in the alphabet of a 
common existence dependent object type. Figure 3 
displays the corresponding lattice when the object type 
Reservation is missing. 

 

 
Fig. 3.  Potential missing object type 

 
The concept with own attributes “ reserve”  and 

“ cancel”  does not have any own object types in its extent. 
To fulfill the requirements imposed by the MERODE 
contract rule, an object type that participates in the own 
event types contained in the intent of the concept should 
be added to the business domain model. This object type 
must be existence dependent of the object types contained 
in the extent of the concepts one level lower in the lattice.  

In this case, according to the MERODE contract rule, 
the two event types should either be included in the 
alphabet of Loan or they should be included in the 
alphabet of a new object type Reservation, dependent of 
both Member and Copy. According to MERODE-
practices, the latter solution is to be preferred, because a 
loan can occur without a reservation and a reservation can 
occur without being followed by a loan. Figure 4 displays 
the correct object-event lattice. 

 
Fig. 4.  Correct object-event lattice 

 
However, FCA does not provide any formal grounding 

for the contract rule and in particular for the requirement 
that the contract rule should only be applicable in case of 
two or more common event types. One could for example 
already consider to create an additional object type even if 
there is a node with only one event type and no own 
object type. Also, a node with a potential missing object 
type as in Fig.3, has already a non-empty extension. So, 
there is no immediate reason to add an object in that point 
of the lattice. As a result, FCA does not offer a formal 
foundation for this rule in MERODE. In fact, in 
MERODE, this rule was created for deadlock verification 
purposes [26], rather than to actually identify missing 
object types. The fact that FCA does not immediately 
support this rule, could motivate a revision of this rule. 

 
5.4 Verification process 
 
The results of this paper can be used for formal 
verification purposes as part of a larger software 
engineering process.  The verification process using FCA 
can be seen as an iterative learning loop. In each iteration,  
an existing process-data matrix is used to automatically 
derive an FCA lattice. As we have shown in the previous 
sections, this lattice can be considered as a conceptual 
domain model that obeys the wellformedness rules as 
imposed by MERODE. The lattice structure can then be 
used for formal verification purposes, i.e. to detect 
anomalies, missing concepts, missing object types, etc.  
These changes can be implemented in the existing 



process-data matrix and a new iteration through the 
learning loop is started until a correct model is obtained. 
 
6.  Conclusions 
 
In this paper, we proposed a novel application of FCA, 
namely as a formal foundation for the verification of 
matrices used in conceptual domain modeling. The well-
formedness rules for the object-event table in MERODE 
were developed by reasoning on the semantics of 
existence dependency, on common sense reasoning and 
on process algebra considerations.  We showed that by 
imposing the well-formedness rules from MERODE, we 
obtain a domain model that has all the properties of a 
concept lattice. This substantiates the well-foundedness of 
these rules. Reversely, if FCA is used to cluster an object-
event matrix, the concepts identified by FCA can easily 
be mapped to object types in an enterprise model. In 
addition, the subconcept-superconcept relationship 
between FCA-concepts can be mapped to the existence 
dependency relationship in the enterprise model.  And 
finally, we showcased that one of the rules that was 
created purely for deadlock verification purposes, can 
indeed not be grounded in the theory of Formal Concept 
Analysis. In this way, we demonstrated the applicability 
of FCA as a theory to aid in the development of sound 
conceptual modeling methods.  

The theory of FCA can also be applied to the is-a 
relationship between concepts.  Future research will 
investigate the application of FCA to generalisation/spe-
cialisation lattices and how this can be combined with a 
CRUD-like matrix. Yet we already dare to postulate as a 
general conclusion that FCA is a valid instrument for 
formalizing the construction of a conceptual domain 
model. In the future, the work presented in this paper will 
be empirically validated by applying it to a real life case 
study using data from a banking company. 
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